专题八 动点问题人教版八年级数学上册

合集下载

人教八上动点问题

人教八上动点问题

动点问题的题目1、如图,AB是等腰直角三角形ABC的斜边,且AB=6,点P从A出发以每秒3个单位的速度向B点运动,点Q从B点出发以每秒2个单位的速度向点A运动,两点同时出发相向运动,其中任何一个点到达了终点,则两个点都停止运动。

设运动时间为t,那么当t= 时,△CPQ为直角三角形。

2、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上的一动点(不与B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为3、等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为秒。

4、如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE交AB于点E(1)求证:DE∥BC(2)若AE=3,AD=5,点P为BC上的一动点,当BP为何值时,△DEP为等腰三角形?请直接写出所有BP 的值。

备用图A C B 备用图A C B A C B yP1 A Ox P5、如图,△ABC 中,∠C=Rt ∠,AB=10cm ,BC=6cm ,若动点P 从点A 开始,沿射线AB 一直运动下去,且速度为每秒1cm ,设运动的时间为t 秒(1)求线段AC 的长和斜边AB 上的高(2)点P 出发2秒后,求△ACP 的面积(3)问t 为何值时,△BCP 为等腰三角形?6、如图,动点P 从(0.,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P 第2014次碰到长方形的边时,点P 的坐标为7、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2014次,点P 依次落在点P 1,P 2,P 3,……P 2014,的位置,则点P 2014的横坐标为8、如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2014次,点P 依次落在点P 1,P 2,P 3…P 2014的位置,则P 2014的坐标为9、已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 。

人教版初二上册第一学期数学期末复习《一次函数的应用—动点问题》(附练习及答案)

人教版初二上册第一学期数学期末复习《一次函数的应用—动点问题》(附练习及答案)

1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意数与形结合。

2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想研究解决,注意自变量的取值范围例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.例题2:如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为524个平方单位?当堂巩固:如图,直线6y kx =+与轴、y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。

(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与的函数关系式,并写出自变量的取值范围;(3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。

课后检测: 1、如果一次函数y=-+1的图象与轴、y 轴分别交于点A 点、B 点,点M 在轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,那么这样的点M 有( )。

A .3个B .4个C .5个D .7个2、直线与y=-1与两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有( ).A .4个B .5个C .6个D .7个4、如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点.(1)求点A B C ,,的坐标.(2)当CBD △为等腰三角形时,求点D 的坐标.5、如图:直线3+=kx y 与轴、y 轴分别交于A 、B 两点,43=OA OB ,点C(,y)是直线y =+3上与A 、B 不重合的动点。

人教版初中八年级数学上册专题三角形全等之动点问题习题及答案

人教版初中八年级数学上册专题三角形全等之动点问题习题及答案

三角形全等之动点问题(习题)➢ 例题示范例1:已知:如图,正方形ABCD 的边长为4,动点P 从点A 出发以每秒2个单位的速度沿AB -BC -CD 方向运动,到达点D 时停止运动.连接AP ,DP .设点P 运动的时间为t 秒,求当t 为何值时,△ADP 的面积为6.【思路分析】1.研究背景图形,标注四边形ABCD 是边长为4的正方形,四条边都相等,四个角均为90°. 2.分析运动过程,分段①分析运动过程:动点P 的起点、终点、状态转折点,以及对应的时间范围.0≤t ≤6DC(2/s) P :②根据状态转折点分为三段:02t ≤≤,24t <≤,46t <≤,需要对每一段分别进行分析. 3.表达线段长,建等式①当02t ≤≤时,即点P 在线段AB 上,PDCBA此时AP =2t ,AD =4,12ADP S AD AP =⋅⋅△,即16422t =⋅⋅,32t =,符合题意.②当24t <≤时,即点P 在线段BC 上,P DC BAA BCDABCDP DCB A此时1144822ADP S AD AB =⋅⋅=⨯⨯=△,不符合题意,舍去.③当46t <≤时,即点P 在线段CD 上,PAB CD此时DP =12-2t ,AD =4,12ADP S AD DP =⋅⋅△,即164(122)2t =⋅⋅-,92t =,符合题意. 综上,当t 的值为32或92时,△ADP 的面积为6.➢ 巩固练习1. 已知:如图,在等边三角形ABC 中,AB =6,D 为BC 边上一点,AP且BD=4.动点P从点C出发以每秒1个单位的速度沿CA向点A运动,连接AD,BP.设点P运动时间为t秒,求当t为何值时,△BPA≌△ADC.2.如图,正方形ABCD的边长为8,动点P从点A出发以每秒1个单位的速度沿AB向点B运动(点P不与点A,B重合),动点Q从点B出发以每秒2个单位的速度沿BC向点C运动,点P,Q同时出发,当点Q停止运动,点P也随之停止.连接AQ,交BD于点E,连接PE.设点P运动时间为x秒,求当x为何值时,△PBE≌△QBE.3.已知:如图,在等边三角形ABC中,AB=10 cm,点D为边AB上一点,AD=6 cm.点P在线段BC上以每秒2 cm的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.设CQBEPA DA点P运动时间为t秒,若某一时刻△BPD与△CQP全等,求此时t的值及点Q 的运动速度.4.已知:如图,在△ABC中,AB=AC=12,BC=9,点D为AB的中点.(1)如果点P在线段BC上以每秒3个单位的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,则经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,则当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过多长时间,点P与点Q 第一次在△ABC的哪条边上相遇?5.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动.设点F的运动时间为t秒.(1)请用含t的式子表达△ABF的面积S.(2)是否存在某个t值,使得△ABF和△DCE全等?若存在,求出所有符合条件的t值;若不存在,请说明理由.➢思考小结1.动点问题的处理方法:①______________________;②______________________,________;③______________________,________.2.分析运动过程包括4个方面(四要素):①起点、________、__________;②_________________________;③根据_____________分段;④所求目标.3.当研究目标多变或问题情形复杂时,我们往往将问题拆解成几个较为简单的问题来进行考虑,动点问题也是如此.具体分析动点问题时,往往会先研究背景图形,再分析运动过程、分段,为最后表达线段长,建等式做好准备.因为动点运动方向的改变不仅会改变线段长的表达,还可能改变和动点相关的图形的形状,所以要先分段,然后逐段分析,表达线段长,建等式.【参考答案】1.当t为4秒时,△BPA≌△ADC2.当x为83秒时,△PBE≌△QBE3. ①当t 为52秒时,△BPD ≌△CPQ ,此时Q 的速度为85cm/s . ②当t 为3秒时,△BPD ≌△CQP ,此时Q 的速度为2cm/s . 4. (1)①全等②Q 的速度为4cm/s 时,能够使△BPD 与△CQP 全等 (2)经过24秒,点P 与点Q 第一次在BC 边上相遇. 5.(1)034351258432t s t t s t s t <=<=<<=-+≤≤,,,(2)t 为1秒或7秒时,△ABF 与△DCE 全等。

人教版_人教版八年级数学关于动点问题的分析

人教版_人教版八年级数学关于动点问题的分析

动面问题博项训练之阳早格格创做1、如图,正在曲角坐标系中,O是本面,A,B,C三面的坐标分别为A (18,0),B(18,6),C(8,6),四边形OABC是梯形,面P,Q共时从本面出收,分别做匀速疏通,其中面P沿OA背末面A疏通,速度为每秒1个单位,面Q沿OC,CB背末面B疏通,当那二面有一面到达自己的末面时,另一面也停止疏通.(1)供曲线OC的剖析式.(2)设从出提倡,疏通了t秒.如果面Q的速度为每秒2个单位,试写出面Q的坐标,并写出此时t的与值范畴.(3)设从出提倡,疏通了t秒.当P,Q二面疏通的路途之战恰佳等于梯形OABC的周少的一半,那时,曲线PQ是可把梯形的里积也分成相等的二部分?如有大概,哀供出t的值;如没有成能,请道明缘由.2、如图1所示,正在△ABC中,面O正在AC边上疏通,过O做曲线MN∥BC接∠BCA内角仄分线于E面,中角仄分线于F面.试商量:当面O 疏通到那边时,四边形AECF是矩形?3、如图2所示,正在曲角坐标系中,四边形OABC为曲角梯形,OA∥BC,BC=14cm,A面坐标为(16,0),C面坐标为(0,2).面P、Q分别从C、A共时出收,面P以2cm/s的速度由C背B疏通,面Q以4cm/s的速度由A背O疏通,当面Q停止疏通时,面P也停止疏通,设疏通时间为ts(0≤t≤4).(1)供当t为几时,四边形PQAB为仄止四边形.(2)供当t为几时,PQ地圆曲线将梯形OABC分成安排二部分的里积比为1:2,供出此时曲线PQ的函数闭系式.坚韧普及:1. 如图,正在曲角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动面P从A启初沿AD边背D以1cm/s的速度疏通;动面Q从面C启初沿CB边背B以3cm/s的速度疏通.P、Q分别从面A、C共时出收,当其中一面到达端面时,其余一面也随之停止疏通,设疏通时间为ts.(1)当t为何值时,四边形PQCD为仄止四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为曲角梯形?2. 如图,△ABC中,面O为AC边上的一个动面,过面O做曲线MN∥BC,设MN接∠BCA的中角仄分线CF于面F,接∠ACB内角仄分线CE于E.(1)试道明EO=FO;(2)当面O疏通到那边时,四边形AECF是矩形并道明您的论断;(3)若AC边上存留面O,使四边形AECF是正圆形,预测△ABC的形状并道明您的论断.3. 如图,曲角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动面P从B面出收,沿线段BC背面C做匀速疏通;动面Q从面D 出收,沿线段DA背面A做匀速疏通.过Q面笔曲于AD的射线接AC于面M,接BC于面N.P、Q二面共时出收,速度皆为每秒1个单位少度.当Q面疏通到A面,P、Q二面共时停止疏通.设面Q疏通的时间为t 秒.(1)供NC,MC的少(用t的代数式表示);(2)当t为何值时,四边形PCDQ形成仄止四边形;(3)是可存留某一时刻,使射线QN恰佳将△ABC的里积战周少共时仄分?若存留,供出此时t的值;若没有存留,请道明缘由;(4)商量:t为何值时,△PMC为等腰三角形.4. 如图,正在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D 出收沿AD,BC,CB,DA目标正在矩形的边上共时疏通,当有一个面先到达地圆疏通边的另一个端面时,疏通即停止.已知正在相共时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为二边,以矩形的边(AD或者BC)的一部分为第三边形成一个三角形;(2)当x为何值时,以P,Q,M,N为顶面的四边形是仄止四边形;(3)以P,Q,M,N为顶面的四边形是可为等腰梯形?如果能,供x的值;如果没有克没有及,请道明缘由.5. 如图,正在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,面M从面A启初,沿边AD背面D疏通,速度为1cm/s;面N 从面C启初,沿边CB背面B疏通,速度为2cm/s、面M、N分别从面A、C出收,当其中一面到达端面时,另一面也随之停止疏通,设疏通时间为t 秒.(1)当t为何值时,四边形MNCD是仄止四边形?(2)当t为何值时,四边形MNCD是等腰梯形?6. 如图,正在曲角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动面P从面D出收,沿射线DA的目标以每秒2个单位少的速度疏通,动面Q从面C出收,正在线段CB上以每秒1个单位少的速度背面B疏通,P、Q分别从面D、C共时出收,当面Q疏通到面B时,面P随之停止疏通,设疏通时间为t(s).(1)设△BPQ的里积为S,供S与t之间的函数闭系;(2)当t为何值时,以B、P、Q三面为顶面的三角形是等腰三角形?7. 曲线y=- 34x+6与坐标轴分别接于A、B二面,动面P、Q共时从O面出收,共时到达A面,疏通停止.面Q沿线段OA疏通,速度为每秒1个单位少度,面P沿门路O⇒B⇒A疏通.(1)间接写出A、B二面的坐标;(2)设面Q的疏通时间为t(秒),△OPQ的里积为S,供出S与t之间的函数闭系式;(3)当S= 485时,供出面P的坐标,并间接写出以面O、P、Q为顶面的仄止四边形的第四个顶面M的坐标.。

人教版八年级上册数学期末动点问题压轴题专题训练(含答案)

人教版八年级上册数学期末动点问题压轴题专题训练(含答案)

人教版八年级上册数学期末动点问题压轴题专题训练1.如图,△ABC是等边三角形,点D是边BC上一个动点(点D不与点B,C重合),连接AD,点E在边AC的延长线上,且DA=DE.(1)求证:△BAD=△EDC:(2)用等式表示线段CD,CE,AB之间的数量关系,并证明.2.如图,已知△ ABC是边长为10cm的等边三角形,点F为AC的中点,动点D,E同时从A,B两点出发,分别沿AB,BC匀速运动,其中点D运动的速度是1cm/s,点E运动的速度是2cm/s,设运动时为t 秒.(1)当t为何值时,△ AFD与△ CFE全等;(2)当t为何值时,△ BDE为直角三角形.3.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:△BD=CE,△AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由.4.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,△BAP=20°,求△AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.△依题意将图2补全;△求证:P A=PM.5.如图,在三角形ABC中,D是射线BC上一动点.(1)如图1,点D在BC边上(不与点B,C重合),△ 按要求作图:分别过点D作DE BA∥交边AB于点F;∥交边AC于点E,作DF CA△ 在△的条件下,判断△EDF与△A的数量关系,并说明理由;(2)如图2,若点D在BC的延长线上,DF CA∥,△EDF=△A,试判断DE与BA的位置关系,并说明理由.6.如图1,等腰Rt△ABC中,△BAC=90°,AB=AC,D,E分别是AC和BC上的动点,BD△AE,垂足为F.(1)求证△CAE=△ABD;(2)连接DE,满足△AEB=△DEC,求证:BD=DE+AE;(3)点G在BD的延长线上,连接EG,满足△AEB=△GEC,试写出AE,EG,BG之间的数量关系,并证明.7.已知:如图,ABC是边长为6cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P,Q两点停止运动,设点P的运动时间为()s t,解答下列各问题:(1)ABC的面积为多少?△是等边三角形?(2)当t为何值时,PBQ△是直角三角形时,求t的值.(3)当PBQA a,将点A向右平移b个单位得到点B,其中a,b满足8.如图△所示,点A的坐标为(0,)+-=.a b50(2)如图△,坐标轴上有两个动点P ,Q ,点P 从A 点出发沿y 轴负方向以每秒1个单位长度的速度运动,点Q 从O 点出发以每秒2个单位长度的速度沿x 轴正方向运动,点P 、Q 同时出发,点P 到达O 点时整个运动结束.设运动时间为t 秒,问t 为何值时,使得12OBP BOQ S S =△△?并求出此时点P 和点Q 的坐标; (3)如图△所示,点F 为x 轴上一点,作△BOF 的平分线OG ,且OG △FB ,垂足为G ,△AOB 的平分线OE 与射线FB 交于点E ,求△E 的度数.9.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且a ,b 满足()23-20a b ++=.现同时将点A ,B 分别向左平移2个单位,再向上平移2个单位,得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)直接写出A ,B 两点的坐标为:A ___________, B ___________.(2)若点P 是线段AC 上的一个动点,Q 是线段CD 的中点,连接PQ ,PO ,当点P 在线段AC 上移动时(不与点A ,C 重合),请找出PQD ∠,OPQ ∠,POB ∠的数量关系,并证明你的结论.(3)在坐标轴上是否存在点M ,使三角形MAD 的面积与三角形ACD 的面积相等?若存在,请求出点M 的坐标;若不存在,试说明理由.10.已知:直线AD BC ∥,动点P 在直线EF 上运动,探究ADP ,DPC ∠,BCP ∠之间的关系.(1)【问题发现】若25ADP ∠=︒,35BCP ∠=︒,求DPC ∠的度数.(2)【结论猜想】当点P 在线段AB 上时,猜想ADP ,DPC ∠,BCP ∠三个角之间的数量关系,并说明理(3)【拓展延伸】若点P 在射线AE 上或者在射线BF 上时(不包括端点),试着探究ADP ,DPC ∠,BCP ∠之间的关系是否会发生变化,请挑选一种情形画出图形,写出结论,并说明理由.11.ABC 中,70C ∠=︒,点D ,E 分别是ABC 边AC ,BC 上的点,点P 是一动点,令1PDA ∠=∠,2PEB ∠=∠,DPE α∠=∠.初探:(1)如图1,若点P 在线段AB 上,且60α∠=︒,则12∠+∠=_____________; (2)如图2,若点P 在线段AB 上运动,则△1,△2,α∠之间的关系为_____________; (3)如图3,若点P 在线段AB 的延长线上运动,则△1,△2,α∠之间的关系为_____________; 再探:(4)如图4,若点P 运动到ABC 的内部,写出此时△1,△2,α∠之间的关系,并说明理由.12.如图,AB 、CD 被AC 所截,AB CD ∥,△CAB =108°,点P 为直线AB 上一动点(不与点A 重合),连CP ,作△ACP 和△DCP 的平分线分别交直线AB 于点E 、F .(1)当点P 在点A 的右侧时△若△ACP =36°,则此时CP 是否平分△ECF ,请说明理由. △求△ECF 的度数.(2)在点P 运动过程中,直接写出△APC 与△AFC 之间的数量关系.(1)求证:AB CD ∥;(2)如图2,若3ABE EBF ∠=∠,120BFD ∠=︒,试求CDFBDF∠∠的值;(3)如图3,若H 是直线CD 上一动点(不与D 重合),BI 平分HBD ∠,则EBI ∠与BHD ∠的数量关系为______.14.如图1,在△ABC 中,BO AC ⊥于点O ,3,1AO BO OC ===,过点A 作AH BC ⊥于点H ,交BO 于点P .(1)求线段OP 的长度;(2)连接OH ,求证:点O 到△AHC 的两边距离相等;(3)如图2,若点D 为AB 的中点,点M 为线段BO 延长线上一动点,连接MD ,过点D 作DN DM ⊥交线段OA 延长线于N 点,则BDM ADN S S ∆∆-的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.15.在ABC 中,BAC ABC ∠>∠,三个内角的平分线交于点O .(1)填空:如图1,若80BCA ∠=︒,则BOA ∠的大小为________度;(3)如图2,CO 的延长线交AB 于点E ,点M 是AB 边上的一动点(不与点E 重合),过点M 作MN CE ⊥于点N ,请探索AMN ∠、ABC ∠、BAC ∠三者之间的数量关系.16.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=︒(1)请判断AB 与CD 的位置关系并说明理由;(2)如图2,在(1)的结论下,当90E ∠=︒保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠是否存在确定的数量关系?(3)如图3,在(1)的结论下,P 为线段AC 上一定点,点Q 为直线CD 上一动点,当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?17.如图,在△ABC 中,D 为AB 的中点,AB =AC =10cm ,BC =8cm ,动点P 从点B 出发,沿BC 方向以每秒3cm 的速度向点C 运动;同时动点Q 从点C 出发,沿CA 方向以每秒3cm 的速度向点A 运动,运动时间是t 秒.(1)在运动过程中,当点C 位于线段PQ 的垂直平分线上时,求出t 的值;(2)在运动过程中,是否存在某一时刻t ,使△BPD 和△CQP 全等,若存在,求出t 的值.若不存在,请说明理由.18.如图,△ABC是边长是12cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由.(3)则当t为何值时,△BPQ是直角三角形?2,0,以线段OA为边在第四象限内作等边AOB,点C 19.如图,在平面直角坐标系中,点A的坐标为()OC>,连接BC,以线段BC为边在第四象限内作等边CBD,连接DA.为x轴正半轴上一动点()2(1)求证:OBC ABD≌;(2)是否存在点C,使得ACD△为直角三角形.若存在,请求出点C的坐标;若不存在,请说明理由;(3)是否存在点C,使得ACD△为等腰三角形.若存在,请求出AC的长;若不存在,请说明理由.B-(0,4)点4(6,)A -.(1)如图1,动点P 从点B 出发,以每秒2个单位长度的速度沿BA 方向运动,同时动点Q 从点O 出发,以每秒3个单位长度的速度沿y 轴向上运动,当点P 运动到点A 时,P 、Q 同时停止运动,设点P 运动时间为t 秒.用含t 的式子表示P ,Q 两点的坐标.(2)如图2,点D 为线段OA (端点除外)上某一点,当点D 在线段上运动时,过点D 作直线EF 交x 轴正半轴于E ,交直线AB 于F ,,EOD AFD ∠∠的平分线相交于点N ,若ODF α∠=,请用含α的式子表示ONF ∠的大小,并说明理由.答案1. (2)AB =CD +CE 2.(1)103t =(2)t =2或53.(2)AC+CD =CE ,4.(1)80°5.(1);△△EDF =△A , (2)DE BA ∥,6. (3)BG =AE +EG ,7.(1)2cm (2)3 (3)2或48.(1)(0,2)A ,(3,2)B (2)65t =,点0,54P ⎛⎫ ⎪⎝⎭,12,05Q ⎛⎫ ⎪⎝⎭ (3)△E =45°9.(1)(−3,0);(2,0)(2)△DQP +△QPO +△BOP =360°; (3)(0,163)或(0,−43)或(−8,0)或(2,0)10.(1)60°;(2)△DPC =△ADP +△PCB(3)△PCB =△DPC +△ADP ;或△ADP =△DPC +△PCB11.(1)130︒;(2)1270α∠+∠=︒+∠; (3)1270α∠-∠=︒+∠; (4)12430α∠+∠=︒-∠,12.(1)△平分,;△36°(2)当点P 在点E 的右侧时,2APC AFC ∠=∠;当点P 、点E 在点A 的左侧,点F 在点A 的右侧时,2180AFC APC ∠+∠=︒;当点P 、点E 、点F 均在点A 的左侧时, 2180AFC APC ∠-∠=︒.13. (2)4(3)△BHD =2△EBI 或△EBI =90°-12△BHD14.(1)OP =1;(3)不变,9415.(1)130(3)2360AMN ABC BAC ∠=∠-∠+︒或2AMN BAC ABC ∠=∠-∠16.(1)平行,(2)存在,1902BAE MCD ∠+∠=︒(3)BAC PQC QPC ∠=∠+∠17.(1)43t = (2)当1t =时,△BPD △△CQP18.(1)PQ 与AB 垂直,(2)能,当4s t =时,△BPQ 是等边三角形(3) 2.4s t =或6s t =,△BPQ 是直角三角形19. (2)C (4,0)(3)不存在,20.(1)P (2t ,-4),Q (0,3t ); (2)12ONF α∠=,。

人教版八年级上册数学期末复习8专题八 动点问题

人教版八年级上册数学期末复习8专题八 动点问题

3. 如图①,等边三角形ABC中,D是AB边上的动点,以CD为 一边,向上作等边三角形EDC,连接AE. (1)△DBC和△EAC全等吗?请说明你的理由; (2)试说明AE∥BC; (3)如图②,当点D运动到边BA的延长线上时,仍向上作等边 三角形EDC,请问是否仍有AE∥BC?证明你的猜想.
(1)解:△DBC和△EAC全等.理由如下:
(3)BD⊥MF. 理由如下:∵∠BAC=90°,ME⊥BC, ∴∠ABC+∠ACB=∠AME+∠ACB=90°, ∴∠ABC=∠AME, ∵BD平分∠ABC,MF平分∠AME, ∴∠ABD=∠AMF, ∵∠AMF+∠F=90°, ∴∠ABD+∠F=90°, ∴BD⊥MF.
谢谢!
3
解得a=15 ,
4
综上所述,a的值为3或 15 .
4
2.如图,在△ABC中,AB=BC=AC=12 cm,现有两点M, N分别从点A,B同时出发,沿三角形的边运动,已知点M的 速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达A点时, M,N同时停止运动. (1)点M,N运动几秒后,M,N两点重合? (2)点M,N运动几秒后,可得到等边三角形AMN? (3)当点M,N在BC边上运动时,能否得到以 MN为底边的等腰三角形AMN?如果能, 请求出此时M,N运动的时间.
解:(1)设点M、N运动t秒后,M、N两点重合,则2t-t=12, ∴t=12, 即点M、N运动12秒后,M、N两点重合.
(2)点M、N运动x秒后,可得到等边三角形AMN, 则x=12-2x,∴x=4, 即点M、N运动4秒后,可得到等边三角形AMN.
(3)当点M、N在BC边上运动时,能得到以MN为底边的 等腰三角形, 设此时M、N运动的时间为m秒, ∵△AMN是等腰三角形 ∴∠1=∠2 , ∴∠3=180°-∠1=180°-∠2=∠4 ∵△ABC是等边三角形 ∴∠C=∠B,AC=AB , ∴△AMC≌△ANB ∴CM=BN 即m-12=12×3-2m. ∴m=16, 即M、N运动的时间为16秒时,得到以MN为底边的等腰△AMN.

(完整版)初二动点问题(含答案)

(完整版)初二动点问题(含答案)

动态问题一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想类型:1.利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4.分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6.动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论二、例题:1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。

当t= 时,四边形是平行四边形;当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为3、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.OE CDα lC B AE D 图1 N M A B C D E M N 图2A CB E D N M 图35、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值A D F C G EB 图1 A D FG E B 图3A D FC G E B 图28、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?。

初中数学人教版八年级上册三角形全等之动点问题(习题及答案)

初中数学人教版八年级上册三角形全等之动点问题(习题及答案)

初中数学人教版八年级上册实用资料三角形全等之动点问题(习题)➢ 例题示范例1:已知:如图,正方形ABCD 的边长为4,动点P 从点A 出发以每秒2个单位的速度沿AB -BC -CD 方向运动,到达点D 时停止运动.连接AP ,DP .设点P 运动的时间为t 秒,求当t 为何值时,△ADP 的面积为6.【思路分析】1.研究背景图形,标注四边形ABCD 是边长为4的正方形,四条边都相等,四个角均为90°. 2.分析运动过程,分段①分析运动过程:动点P 的起点、终点、状态转折点,以及对应的时间范围.0≤t ≤62s2sDC(2/s) P :②根据状态转折点分为三段:02t ≤≤,24t <≤,46t <≤,需要对每一段分别进行分析. 3.表达线段长,建等式①当02t ≤≤时,即点P 在线段AB 上,PDCB A此时AP =2t ,AD =4,12ADP S AD AP =⋅⋅△,即16422t =⋅⋅,32t =,符合题意.PDC B A AB CDABCD②当24t <≤时,即点P 在线段BC 上,P DCB A此时1144822ADP S AD AB =⋅⋅=⨯⨯=△,不符合题意,舍去.③当46t <≤时,即点P 在线段CD 上,PAB CD此时DP =12-2t ,AD =4,12ADP S AD DP =⋅⋅△,即164(122)2t =⋅⋅-,92t =,符合题意. 综上,当t 的值为32或92时,△ADP 的面积为6.➢巩固练习1.已知:如图,在等边三角形ABC中,AB=6,D为BC边上一点,且BD=4.动点P从点C出发以每秒1个单位的速度沿CA向点A运动,连接AD,BP.设点P运动时间为t秒,求当t为何值时,△BPA≌△ADC.2.如图,正方形ABCD的边长为8,动点P从点A出发以每秒1个单位的速度沿AB向点B运动(点P不与点A,B重合),动点Q从点B出发以每秒2个单位的速度沿BC向点C运动,点P,Q同时出发,当点Q停止运动,点P也随之停止.连接AQ,交BD于点E,连接PE.设点P运动时间为x秒,求当x为何值时,△PBE≌△QBE.3.已知:如图,在等边三角形ABC中,AB=10 cm,点D为边ABAPB D CCQBEPA DA上一点,AD=6 cm.点P在线段BC上以每秒2 cm的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.设点P运动时间为t秒,若某一时刻△BPD与△CQP全等,求此时t的值及点Q的运动速度.4.已知:如图,在△ABC中,AB=AC=12,BC=9,点D为AB的中点.(1)如果点P在线段BC上以每秒3个单位的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,则经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,则当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过多长时间,点P与点Q 第一次在△ABC的哪条边上相遇?5.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动.设点F的运动时间为t秒.(1)请用含t的式子表达△ABF的面积S.(2)是否存在某个t值,使得△ABF和△DCE全等?若存在,求出所有符合条件的t值;若不存在,请说明理由.➢思考小结1.动点问题的处理方法:①______________________;②______________________,________;③______________________,________.2.分析运动过程包括4个方面(四要素):①起点、________、__________;②_________________________;③根据_____________分段;④所求目标.3.当研究目标多变或问题情形复杂时,我们往往将问题拆解成几个较为简单的问题来进行考虑,动点问题也是如此.具体分析动点问题时,往往会先研究背景图形,再分析运动过程、分段,为最后表达线段长,建等式做好准备.因为动点运动方向的改变不仅会改变线段长的表达,还可能改变和动点相关的图形的形状,所以要先分段,然后逐段分析,表达线段长,建等式.【参考答案】1.当t为4秒时,△BPA≌△ADC2.当x为83秒时,△PBE≌△QBE3. ①当t 为52秒时,△BPD ≌△CPQ ,此时Q 的速度为85cm/s . ②当t 为3秒时,△BPD ≌△CQP ,此时Q 的速度为2cm/s . 4. (1)①全等②Q 的速度为4cm/s 时,能够使△BPD 与△CQP 全等 (2)经过24秒,点P 与点Q 第一次在BC 边上相遇. 5.(1)034351258432t s t t s t s t <=<=<<=-+≤≤,,,(2)t 为1秒或7秒时,△ABF 与△DCE 全等。

专题八动点问题人教版八年级数学(上册)-【完整版】

专题八动点问题人教版八年级数学(上册)-【完整版】

专题八 动点问题人教版八年级数学上册-精 品课件p pt(实 用版)
(2)若 E 在 BC 的延长线上,其余条件不变,
上题的结论是否成立?若不成立,说明理由; 若成立,画出图形并给予证明.
(2)成立. 证明:如图,∵AB=AC,∴∠B=∠ACB. ∵∠ACB=∠ECF,∴∠B=∠ECF. ∵EF⊥BC, ∴∠B+∠BDE=90°,∠ECF+∠F=90°. ∴∠BDE=∠F,即∠ADF=∠F.
专题八 动点问题人教版八年级数学上册-精 品课件p pt(实 用版)
专题八 动点问题
专题八 动点问题人教版八年级数学上册-精 品课件p pt(实 用版)
专题八 动点问题人教版八年级数学上册-精 品课件p pt(实 用版)
1. 如图,已知 E 为等腰三角形 ABC 的底边 BC
上一动点,过点 E 作 EF⊥BC 交直线 AB 于点 D,
(2)M,N 同时运动几秒后,可得等边三角形 AMN?
(2)设点M,N运动t秒后, 可得到等边三角形AMN, 如图所示. AM=t×1=t,AN=AB-BN=10-2t. ∵△AMN是等边三角形, ∴t=10-2t. 解得t= . ∴点M,N运动 秒后,可得到等边三角形AMN.
专题八 动点问题人教版八年级数学上册-精 品课件p pt(实 用版)
且它们同时出发.
(1)经过 2 秒后,△BMN 和 △CDM 是否全等?请说明
理由.
专题八 动点问题人教版八年级数学上册-精 品课件p pt(实 用版)
专题八 动点问题人教版八年级数学上册-精 品课件p pt(实 用版)
解:(1)△BMN≌△CDM.理由如下. ∵vN=vM=3厘米/秒,且t=2秒, ∴CM=2×3=6(厘米),BN=2×3=6(厘米), ∴BN=CM. BM=BC-CM=10-6=4(厘米), ∵CD=4厘米, ∴BM=CD. ∵△ABC为等边三角形, ∴∠B=∠C=60°. 在△BMN和△CDM中,

人教版八年级数学上册数学动点问题专题练习(含详细参考答案)

人教版八年级数学上册数学动点问题专题练习(含详细参考答案)

人教版八年级数学上册数学动点问题专题练习(详细参考答案附后)1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;2、点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB 于点E,交CA的延长线于点F。

(1)如图(1),请观察AF与AE,它们相等吗?并证明你的猜想。

(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB 的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明。

3、如图,己知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点。

如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3)。

(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD 与△CQP全等?人教版八年级数学上册数学动点问题专题练习参考答案1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;解:(1)根据三角形三边之间的关系可知AB> BC -AC AB<AC+BC∴AB> 12 -9 AB<12+9即:3<AB<21(2)①∵PC=AC=9 t=v÷s=9÷2=4.5(秒)②△ABC的周长一半=(AB+ AC+BC)÷2=(15+9+12)÷2=36÷2=18(cm)当P从点C往点B运动至9cm处时,点P与点A的连线恰好将△ABC的周长分成相等的两部分。

人教版八年级上册数学期末动点问题压轴题专题训练(含解析)

人教版八年级上册数学期末动点问题压轴题专题训练(含解析)

人教版八年级上册数学期末动点问题压轴题专题训练(1)当时,点C 的坐标为 .(2)动点A 在运动的过程中,试判断发生变化,请说明理由.(3)当时,在坐标平面内是否存在一点若存在,请直接写出点P 的坐标;若不存在,请说明理由.(1)如图1,当点在边上时.①求证:;②求证:;(2)如图2,当点在边的延长线上时,其他条件不变,请写出2a =3a =D BC ABD ACE ≌△△BC DC CE =+D BC(1)请直接写出点A 和点B 的坐标;(2)请判断的形状并说明理由;(3)下列结论:①四边形为定值.请选择一个正确的结论并说明理由.(1)求证:;(2)求的面积;(3)点M ,N 分别是线段,上的动点,连接,求的最小值.DEF OEDF OEF DFE ∠+∠CD CE =CDE BC BD MN 12MN DN +(1)求出点的坐标.(2)求证:.(3)数学活动小组进行深入探究后发现变,你同意这个说法吗?请说明理由B OD BC =(1)如图①,请找出图中与相等的角,并说明理由;(2)如图②,交轴于点,过点作轴于点,求证:平分;(3)如图③,若,点在轴正半轴移动,且,取,连交轴OAB ∠BC x M C CD x ⊥,2D AM CD =AD BAC ∠()3,0A B y OB OA >()0,3P CP x边三角形,使其与点在直线的两侧,与直线相交于点(点与点A 不重合),连接.(1)如图,当时,①求证:;②在点A 运动的过程中,的度数是否会发生改变?如果会请说明理由,如果不会请求出的度数;(2)在点A 运动的过程中,试探究线段,,之间的数量关系.11.在平面直角坐标系中,点在轴的正半轴上,点在第一象限,,.(1)如图1,求证:是等边三角形;(2)如图1,若点M 为y 轴正半轴上一动点,以为边作等边三角形,连接并延长交轴于点,求证:;(3)如图2,若,,点为的中点,连接、交于,请问、与之间有何数量关系,并证明你的结论.12.在平面直角坐标系中,点A 为y 轴正半轴上一点,点B 为x 轴上一动点,连接ABD C AB DC l E E EB 120BAC ∠<︒ABE ACE =∠∠DCB ∠DCB ∠EA EB ED A y B OB AB =150BOP ∠=︒OAB BM BMN NA x P 2AP AO =BC BO ⊥BC BO =D CO AC DB E AE BE CE,以为腰作等腰,.(1)如图1,点B 在x 轴负半轴上,点C 的坐标是,直接写出点A 和点B 的坐标;(2)如图2,点B 在x 轴负半轴上,交x 轴于点D ,若平分.且点C 的纵坐标是,求线段的长;(3)如图3,点B 在x 轴正半轴上,以为边在左侧作等边,连接,,若,且,求的面积.13.等腰直角中,,,,点、分别是轴,轴上两个动点,直角边交轴于点,斜边交轴于点.(1)如图1,已知点的横坐标为,直接写出点的坐标;(2)如图2,若点为轴上的固定点,且,当点在轴正半轴运动时,分别以、为直角边在第一、二象限作等腰直角和等腰直角,连接交轴于点,问当点在轴的正半轴上运动时,的长度是否变化?若变化请说明理由;若不变化,请求出的长度.14.在平面直角坐标系中,点为坐标原点,点、分别位于轴和轴AB AB Rt ABC △90BAC ∠=︒(2,2)-AC BD ABC ∠3-BD BC BC BCE EO CO 60COE ∠=︒8CO =AOC ABC 90BAC ∠=︒AB AC =ABC C ∠=∠B A x y AC x D BC y E C 2-A A x ()6,0A -B y OB AB BOD ABC CD y P B y BP BP O ()6,0B -()0,6A x y上,连接,交轴于点.(1)求点的坐标;(2)动点从出发以个单位/秒的速度沿轴向终点运动,连接,将线段绕着点逆时针旋转后得到线段,与为对应点.连接、,为的面积,用含的式子表示;(3)在()的条件下,连接,过点作于,交轴于,交于,若,求点的坐标.15.如图①,在中,,现有一动点,从点出发,沿着三角形的边运动,回到点停止,速度为,设运动时间为秒.(1)如图①,当的面积等于面积的一半时,求的值:(2)如图②,点在边上,点在边上,在的边上,若另外有一个动点与点同时从点出发,沿着边运动,回到点停止.在两点运动过程中的某一时刻,以为顶点的三角形恰好与全等,求点的运动速度.16.如图,在平面直角坐标系中,,点在轴正半轴上,.AB CA AB ⊥x C C P B 2x C AP AP A 90︒AQ P Q PQ CQ S PCQ △t S 2BQ A AH BQ ⊥G x H PQ AC M :2:1APM AQM S S = H Rt ABC △90,12cm,16cm,20cm B AB BC AC ∠=︒===P A AB BC CA →→A 2cm /s t ABP ABC t D BC 4cm CD =E AC 5cm,,3cm CE ED BC ED =⊥=ABC Q P A AC CB BA →→A ,,A P Q EDC △Q ()0,9A B x 45OAB ∠=︒(1)求出点坐标;(2)动点从点出发,以每秒个单位长度的速度沿轴正半轴运动,同时点从点出发,以相同速度沿轴向左运动,连接,过点作交直线于点,连接,设点的运动时间为,请用含的式子表示的面积;(3)在(2)的条件下,直线与直线交于点,当时,求点坐标.17.已知中,,过点的直线交轴于,其中是方程组的解,(1)求的值(2)动点从点出发,沿线段以每秒1个单位的速度运动,运动时间为秒;请用含的式子表示线段的长度;并直接写出此时的取值范围;(3)在(2)的条件下,当为何值时,直线与直线互相垂直.18.在平面直角坐标系中,O 为坐标原点,直线交x 轴的正半轴于点A ,交y 轴的B P O 1y Q B x PQ O OG PQ ⊥AB G PG P t t OPG PQ AB H 72OPG S =△H AOB OA OB a ==A AM x (),0M b ,a b 3830a b a b +=⎧⎨+=⎩,a b P A AO t t OP t t BP AM AB(1)如图1求的长;(2)如图2动点E 在第二象限,点E 的坐标为,连接,,请写出面积s 与t 的关系;(3)在(2)的条件下,如图3点F 在第一象限,连接、、,,连接,当,求的值.OD (,)t m DE OE ODE FE FD FA 30ADF ∠=FE FA =EB 12,4EBO ODA ODA EFA EOB ∠=∠∠+∠=∠t m +参考答案:1.(1)(2)动点A 在运动的过程中,的值不变,(3)或或【分析】本题考查全等三角形判定及性质.(1)根据题意过点C 作轴于点,证明出,利用全等性质即可得到本题答案;(2)由(1)得,利用全等性质及点坐标表示线段长即可得到本题答案;(3)根据题意分3种情况讨论P 点位置,利用全等三角形性质及判定即可得到本题答案.【详解】(1)解:如下图,过点C 作轴于点E ,则,,∵是等腰直角三角形,∴,∴,∴.在和中,∴(AAS ),∵,∴,∴,∴;(2)解:动点A 在运动的过程中,的值不变.理由如下:(2,3)-+c d (4,)1-(3,2)--(2,1)-CE y ⊥E ACE BAO ≌ACE BAO ≌CE y ⊥CEA AOB ∠=∠ABC ,90AC BA BAC =∠︒=90ACE CAE BAO CAE ∠+∠=︒=∠+∠ACE BAO ∠=∠ACE △BAO CEA AOB ACE BAOAC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩ACE BAO ≌(0,1),(0,2)B A -12BO AE AO CE ====,123OE =+=2,3C -()+c d由(1)知,,∵,,∴,∴,∴,又∵点C 的坐标为,∴,即的值不变;(3)解:存在一点P ,使与全等,符合条件的点P 的坐标是或或,分为三种情况讨论:①如下图,过点P 作轴于点E ,则,∴,∴,在和中,,∴(AAS ),∴,∴,即点P 的坐标是,②如下图,过点C 作轴于点M ,过点P 作轴于点E ,ACE BAO ≌(0,1)B (0,)A a -1,BO AE AO CE a ====1OE a =+(,1)C a a --(,)c d 11c d a a +=--=-+c d PAB ABC (4,)1-(3,2)--(2,1)-PE x ⊥90PBA AOB PEB ∠=∠=∠=︒90,90EPB PBE PBE ABO ∠+∠=︒∠+∠=︒EPB ABO ∠=∠PEB △BOA △EPB OBA PEB BOA PB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩PEB BOA △≌△1,3PE BO EB AO ====314OE =+=(4,)1-CM x ⊥PE x ⊥则.∵,∴,∴,∴,∴,在和中,,∴(AAS ),∴.∵,∴,即点P 的坐标是;③如下图,过点P 作轴于点E ,则.∵,∴,∴,90CMB PEB ∠=∠=︒CAB PAB △≌△45,PBA CBA BC BP ∠=∠=︒=90CBP ∠=︒90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒MCB PBE ∠=∠CMB BEP △MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩CMB BEP △≌△,PE BM CM BE ==3,4),10C B -((,)2,413PE OE BE BO ==-=-=(3,2)--PE x ⊥90BEP BOA ∠=∠=︒CAB PBA △≌△,90AB BP CAB ABP =∠=∠=︒90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒∴.在和中,,∴(AAS ),∴,∴,即点P 的坐标是,综上所述,符合条件的点P 的坐标是或或.2.(1)①见解析;②见解析;(2),见解析【分析】本题主要考查了等边三角形,全等三角形.(1)①根据等边三角形的性质得出,,,根据得出,从而说明三角形全等;②根据全等的性质得出,然后根据即得;(2)根据等边三角形的性质得出,,,根据得出,从而说明,根据全等的性质得出,然后根据即得.【详解】(1)证明:①∵和是等边三角形,∴,,.∴,∴.在和中,,∴;②∵,ABO BPE ∠=∠BOA △PEB △ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩BOA PEB △≌△1,3PE BO BE OA ====312OE BE BO =-=-=(2,1)-(4,)1-(3,2)--(2,1)-BC CD CE +=AB AC =AD AE =60BAC DAE ∠=∠=︒BAC DAC DAE DAC ∠-∠=∠-∠BAD EAC ∠=∠BD CE =BC BD CD =+AB AC =AD AE =60BAC DAE ∠=∠=︒BAC DAC DAE DAC ∠+∠=∠+∠BAD EAC ∠=∠ABD ACE ≌△△BD CE =+=BC CD BD ABC ADE V 60BAC DAE ∠=∠=︒AB BC AC ==AD DE AE ==BAC DAC DAE DAC ∠-∠=∠-∠BAD CAE ∠=∠ABD △ACE △AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS ABD ACE △≌△ABD ACE ≌△△∵,,∴,∴是等腰直角三角形,即∵点D 是线段中点,∴,,(0,6)A (6,0)B 6O A O B ==AOB ∠AB OD AB ⊥12OD AD AB ==∠∵,,∴在中,∵在(1)中已求出根据翻折可知:、∴N 点关于的对称点H 在根据对称性有:∴,∴是等边三角形,∵N 点关于的对称点是点H ,3BD =30CBD ∠=︒DG Rt BDG △12DG BD =CE CD =11BDC BKC △BE BK DBC KBC ∠=∠60BDK DBC KBC ∠=∠+∠=︒BDK BE NH如图,,即:,在中,PNC DNC∠=∠24PNC αβ∠==2αβ=MCN DCM DCN x β∠=∠+∠=+MCN △180MCN DCN NMC ∠+∠+∠=2180x βαα+++=︒3180x βα++=︒解得:,.II.当点在线段上时,如图,,,即:,在中,,,即:联立得:,解得:,此时:,不合题意舍去;III .当点在线段上时,如图,,52550x βα=︒⎧⎪=︒⎨⎪=︒⎩∴5DCM ∠=︒N PD 180PNC DNC ∠+∠=︒∴24180αβ+=︒290αβ+=︒∴MCN DCM DCN x β∠=∠+∠=+ CMN PCN MCN CMN x βα∠=∠+∠=++∴4180PCN NDC x βαβ∠+∠=+++=︒5180x βα++=︒2602905180x x ααββα+=︒⎧⎪+=︒⎨⎪++=︒⎩11.2526.2537.5x βα=︒⎧⎪=︒⎨⎪=︒⎩11.2526.5PCN DCN ∠=︒<∠=︒N DM PNC DNC ∠=∠【详解】(1)解:过点B 作轴于点D ,∵,∴,∵轴,∴,∵,∴,∴,在和中,,∴,∴,∵,∴;(2)解:∵,∴,∴,∵轴,∴,∴,∴,在和中,BD y ⊥()()6,0,0,3A C -6,3OA OC ==BD y ⊥90BCD CBD ∠+∠=︒90ACB ∠=︒90BCD ACO ∠+∠=︒ACO CBD ∠=∠ACO △CBD △90AOC CDB ACO CBDAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩≌ACO CBD 6,3OA CD OC BD ====()0,3C ()3,3B -90ACB ∠=︒90BCF ∠=︒90CBF F ∠+∠=︒BE y ∥90AEF ∠=︒90CAD F ∠+∠=︒CAD CBF ∠=∠CAD CBF V∴,∴,∵,∴∴.【点睛】本题主要考查了三角形综合,折叠的性质,全等三角形的判定和性质,角平分线的性质,解题的关键是掌握全等三角形的判定方法,全等三角形对应边相等,对应角相等;折叠前后对应角相等;角平分线上的点到两边距离相等.7.(1)(2)见解析(3)的度数总是保持不变,理由见解析【分析】本题考查了全等三角形的性质与判定,等腰三角形的性质,坐标与图形;(1)根据等腰三角形的性质解答即可;(2)根据等式的性质得出,进而利用证明与全等,进而解答即可;(3)根据全等三角形的性质得出,进而利用平角的定义解答即可.【详解】(1)解:如图所示,过作轴于,()Rt Rt HL EFO EFN ≌FN FO =(),0F t FO t=-2FG HG t +=-()2,0-COD ∠BAC OAD ∠=∠SAS BAC OAD AOD ABO ∠=∠A AE x ⊥E),点C 是的中点,,D 作轴于点F ,,,4=AB 114222AB ==⨯=DF x ⊥90DFO =︒90FDO DOF +∠=︒),的坐标为,关于x 轴的对称点,则的坐标为,交x 轴于点,则为定值,此时的周长最小.作轴于点Q ,114222AB '==⨯=M '()0,2M '''M ''M AM ''P PAM C AM AP ''=+ AM 'PAM '△()4,4A -AQ y ⊥对于(3),作轴,先证明,可得,再得出,进而得出,根据等腰直角三角形的性质和判定即可得出答案.【详解】(1).理由:,;(2)证明:如图②中,延长交的延长线于点..∵,,,.,即.垂直平分,平分.(3)的长度不变,.理由:如图③中,过点作轴于点...CH y ⊥≌CHB BOA △△,3===CH BO BH OA 3==OA OP ==OB PH CH OAB OBC ∠=∠90,90OAB OBA OBC OBA ∠+∠=∠+∠=︒︒ OAB OBC ∴∠=∠AB CD T ,90,90,AD CD ADT T BAM BCT BAM ⊥∴∠=∴∠+∠=∴∠=∠︒︒ BC BA ===90CB T A B M ∠∠︒()CBT ABM ASA ∴≌△△CT AM ∴=2,2AM CD CT CD =∴= CD DT =,AD CT AD ⊥∴ CT ,AC AT AD ∴=∴BAC ∠OQ 3OQ =C CH y ⊥H 90,90CHB BOA HBC HCB ∴∠=∠=∴∠+∠=︒︒90,90,ABC OBA HBC HCB OBA ∠=∴∠+∠=︒︒∴∠=∠..,..,.【点睛】本题主要考查了全等三角形的性质和判定,同角的余角相等,线段垂直平分线的性质,等腰直角三角形的性质和判定等,构造辅助线是解题的关键.10.(1)①见解析;②不变,(2)或【分析】(1)①根据垂直平分线的性质得出,再由等边对等角及各角之间的数量关系求解即可;②设与交于点M ,根据等边三角形的性质及各角之间的关系得出,即可求解;(2)分两种情况进行分析:当时,当时,分别利用全等三角形的判定和性质及等边三角形的判定和性质分析求解即可.【详解】(1)证明:①点A 、E 在线段的垂直平分线l 上,∴,∴,∴,即;②在点A 运动的过程中,的度数不变,理由如下:如图,设与交于点M ,(),CB AB CHB BOA AAS =∴ ≌△△,3∴===CH BO BH OA ()()3,0,0,3,3A P OA OP ∴== ,BH OP OB PH CH ∴=∴==90,45CHP CPH OPQ ∠=∴∠=∠=︒︒ 90,45∠=∴∠=︒=︒∠ POQ OQP OPQ 3OQ OP ∴==30DCB ∠=︒ED EB EA =+EB ED EA=+AC AB EC EB ==,AB CD 260ECB ∠=︒120BAC ∠<︒120BAC ∠>︒BC ,AC AB EC EB ==,ABC ACB EBC ECB ∠∠∠∠==ABC EBC ACB EBC ∠∠∠∠-=-ABE ACE ∠∠=DCB ∠AB CD∵是等边三角形,∴ ,∴,∴,∴,∴,∴,∵,∴,即;(2)当时,在上截取,连接,∵,∴,由(1)得直线,,∴,∴是等边三角形,∴ ,∴,即,ABD ,60AB AD BAD ∠==︒AD AC =ADC ACE ∠∠=,ABE ADC EBC ECB ∠∠∠∠==,180,180AMD EMB BED ABE EMB BAD ADC AMD ∠∠∠∠∠∠∠∠==︒--=︒--60BED BAD ∠∠==︒,EBC ECB BED EBC ECB ∠∠∠∠∠+==260ECB ∠=︒30DCB ∠=︒120BAC ∠<︒ED EF EA =AF ED DF EF =+ED DF EA =+l BC ⊥30DCB ∠=︒903060AED ∠=︒-︒=︒AEF 60,EAF BAD AE AF ∠∠==︒=–EAF BAF BAD BAF ∠∠∠∠=-BAE DAF ∠∠=∴,∴,∵,∴;当时,如图所示在上截取,连接,∵,∴,由(1)得直线,,,∴,∴F 是等边三角形,∴,∴,∴,∴,∴,∵,∴;综上可得:或.【点睛】题目主要考查线段垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质等,理解题意,作出相应辅助线是解题关键,同时注意进行分类讨论.11.(1)见解析(2)见解析(3),证明见解析【分析】(1)根据有一个角是的等腰三角形是等边三角形可得结论;(SAS)BAE DAF ≌ EB DF =ED DF EA =+ED EB EA =+120BAC ∠>︒EB EF EA =AF EB BF EF =+EB BF EA =+l BC ⊥30DCB ∠=︒BE BC =903060AEB AEC ∠∠==︒-︒=︒AE 60,EAF BAD AE AF ∠∠==︒=–EAF DAF BAD DAF ∠∠∠∠-=EAD BAF ∠∠=(SAS)BAF DAE ≌ BF ED =EB BF EA =+EB ED EA =+ED EB EA =+EB ED EA =+AE BE CE =+60︒(2)根据证明,得,由8字形可得,最后由含角的直角三角形的性质可得结论;(3)如图2,在上截取,先证,方法是根据题意得到三角形为等边三角形,三角形为等腰直角三角形,确定出度数,根据,且,得到度数,进而确定出为,再由,得到,再由,且夹角,利用得到三角形与三角形全等,利用全等三角形的对应边相等得到,得到三角形为等边三角形,得到,由,等量代换即可得证.【详解】(1)解:证明:,,,,是等边三角形;(2)证明:由(1)知:是等边三角形,,是等边三角形,,,,,,,,,,,,SAS MBO NBA ≌OMB ANB ∠∠=60FAM FBN ∠∠==︒30︒AC AG CE =60AEB ∠=︒ABO BOC ABD ∠AB BC =150ABC ∠=︒BAE ∠AEB ∠60︒AG CE =AE CG =AB CB =BAC BCA ∠=∠SAS BCG BAE BG BE =BEG BE EG =AE EG AG =+150BOP ∠=︒ 90AOP ︒=∠60AOB ∴∠=︒OB AB = OAB ∴ OAB 60ABO ∴∠=︒BMN BM BN ∴=60MBN ∠=︒MBO NBA ∴∠=∠AB OB = (SAS)MBO NBA ∴△≌△OMB ANB ∴∠=∠AFM BFN ∠=∠ 60FAM FBN ∴∠=∠=︒60OAP FAM ∠=∠=︒ 90AOP ︒=∠30APO ∴∠=︒;(3),理由如下:如图2,在上截取,连接,,即,,,,为的中点,平分,即,,,,,,,在和中,,,,为等边三角形,,.【点睛】本题是三角形综合题,考查了等腰直角三角形的性质和判定,等边三角形的性质和判定,全等三角形的判定和性质,以及含角的直角三角形的性质,添加辅助线.12.(1),2AP AO ∴=AE BE CE =+AC AG EC =BG AG EG CE EG +=+AE CG =BC BO ⊥ BC BO =90OBC ∴∠=︒D CO BD ∴OBC ∠45CBD OBD ∠=∠=︒60ABO ∠=︒ 105ABD ∴∠=︒150ABC ∠=︒AB OB BC == 15BAC BCA ∴∠=∠=︒154560AEB ∴∠=︒+︒=︒ABE CBG AB CB BAE BCG AE CG =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE CBG ∴△≌△BG BE ∴=BEG ∴△BE EG ∴=AE AG EG CE BE ∴=+=+30︒()02A ,()40B -,∴,∵∴,∵,∴,,90ADC BOA ∠=︒=∠90CAD BAO ABO ∠+∠=︒=∠CAD ABO ∠=∠(2,2)C -2CD =2OD =∴,,∴,;(2)解:如图2,作轴,交轴于,交的延长线于,∴,∵平分,∴,,,∴,∴,∵,∴,∵,∴,∴,∵,,∴,∴,∴的长为6;(3)解:∵为等边三角形,∴,,如图3,在上截取,使,连接,2AO CD ==4BO AD AO OD ==+=()02A ,()40B -,CM x ⊥x N BA M 90BNM BNC ∠=︒=∠BD ABC ∠MBN CBN ∠=∠BN BN =90BNM BNC ∠=︒=∠()ASA MBN CBN ≌3MN CN ==∥CM AO ACM CAO ∠=∠90CAO BAO ABD BAO ∠+∠=︒=∠+∠CAO ABD ∠=∠ACM ABD ∠=∠AC AB =90MAC DAB ∠=︒=∠()ASA ACM ABD ≌6BD CM CN MN ==+=BD BCE BE CE =60BEC EBC ECB ∠=∠=∠=︒OC OF OF OE =EF∴是等边三角形,∴,∴∵,∴,∴,OEF OE EF =60OEF ∠=︒=∠OEF BEF BEC ∠-∠=∠-∠OE EF =BEO CEF ∠=∠()SAS BEO CEF ≌OBE FCE ∠=∠13.(1)(2)【分析】(1)如图①,过作 轴于, 证明可得从而可得答案;(2)如图①,过点作 轴于点.证明 ,可得 ,再证明,从而可得: .【详解】(1)解: 如图①,过作 轴于,∴,∵,∴,∴,∵,∴.∴,,∴,∴,故答案为 : .(2)的长度不变,理由如下:如图②, 过点作 轴于点.()0,23BP =C CF y ⊥F ,ACF BAO ≌CF AO =C CE y ⊥E CBE BAO ≌,6CE BO BE AO ===CPE DPB ≌3BP EP ==C CF y ⊥F 90,90CFA AOB ACF CAF ∠=∠=︒∠+∠=︒90BAC ∠=︒90CAF OAB ∠+∠=︒ACF OAB ∠=∠AC AB =()AAS ACF BAO ≌CF AO =2c x =- 2CF AO ==()0,2A ()0,2BP C CE y ⊥E∵ ,∴∵∴ .∵90ABC ∠=︒90CBE ABO ∠+∠=︒90BAO ABO ∠+∠=︒CBE BAO ∠=∠90CEB AOB ∠=∠=∵,∴,在和中,90BAC PAQ ∠=∠=︒BAP CAQ ∠=∠BAP △CAQ AB AQ =⎧∴四边形为正方形,∴,过作于点,∵AOCN 6OA CN OC ===T TL CN ⊥L AH BQ⊥AOH TLQ ≌∴,解得;②当点在上,点∴,解得;3AP DE cm AQ EC ===,352x =103x =cm/s P AB 5AP EC cm AQ ==,532x =65x =cm/s∴点P 的路程为∴点P 的路程为3AP ED AQ EC ===,AB +1216205AQ =++-=4543x =5AP EC cm AQ ==,AB +1216203AQ =++-=4345x =从出发,以每小时从出发,以相同速度沿,①当在线段上时,P O Q B OQ ∴=AP =t P AO,等腰,,设,,为的一个外角,RO PO ∴=∴POR 45R BAO ∴∠=∠=︒QPO α∠=45RPQ α∴∠=︒-QON BOG α∠==∠ABO ∠ OBG,,,,90HTA ∴∠=︒45HAT OAB ∠=∠=︒45HAT AHT ∴∠=∠=︒HT AT ∴=由(1)知,,则,∵直线与直线互相垂直,∴,()1.0M -1OM =BP AM 90MNB ∠=︒。

初中数学人教版八年级上册三角形全等之动点问题(讲义及答案)

初中数学人教版八年级上册三角形全等之动点问题(讲义及答案)

初中数学人教版八年级上册实用资料三角形全等之动点问题(讲义)➢课前预习已知:如图,AB=18 cm,动点P从点A出发,沿AB以2 cm/s的速度向点B运动,动点Q从点B出发,沿BA以1 cm/s的速度向点A运动.P,Q两点同时出发,当点P到达点B时,点P,Q同时停止运动.设点P运动的时间为t秒,请解答下列问题:(1)AP=_______,QB=_______(含t的式子表达);(2)在P,Q相遇之前,若P,Q两点相距6 cm,则此时t的值为_______.➢知识点睛由点(___________)的运动产生的几何问题称为动点问题.动点问题的解决方法:1.研究_____________;2.分析_____________,分段;3.表达_____________,建等式.➢精讲精练1.已知:如图,在矩形ABCD中,AB=4,AD=10,点E为边EAD上一点,且AE=7.动点P从点B出发,以每秒2个单位的速度沿BC向点C运动,连接AP,DP.设点P运动时间为t秒.(1)当t=1.5时,△ABP与△CDE是否全等?请说明理由;(2)当t为何值时,△DCP≌△CDE.2.已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=12,BC=24,动点P从点A出发以每秒1个单位的速度沿AD向点D运动,动点Q从点C 出发以每秒2个单位的速度沿CB向点B运动,P,Q同时出发,当点P停止运动时,点Q也随之停止,连接PQ,DQ.设点P运动时间为x秒,请求出当x为何P D A值时,△PDQ ≌△CQD .3. 已知:如图,在△ABC 中,AB =AC =10 cm ,BC =8 cm ,点D 为AB 的中点.点P 在线段BC 上以每秒3 cm 的速度由点B 向点C 运动,同时点Q 在线段CA 上由点C 向点A 运动.设点P 运动时间为t 秒,若某一时刻△BPD 与△CQP 全等,求此时t 的值及点Q 的运动速度.D CBA4.已知:如图,正方形ABCD的边长为10 cm,点E在边AB上,且AE=4 cm,点P在线段BC上以每秒2 cm的速度由点B向点C运动,同时点Q在线段CD上由点C向点D运动.设点P运动时间为t秒,若某一时刻△BPE与△CQP 全等,求此时t的值及点Q的运动速度.5. 已知:如图,在长方形ABCD 中,AB =DC =4,AD =BC =5.延长BC 到E ,使CE =2,连接DE .动点P 从点B 出发,以每秒2个单位的速度沿BC -CD -DA 向终点A 运动,设点P 运动时间为t 秒. (1)请用含t 的式子表达△ABP 的面积S .(2)是否存在某个t 值,使得△DCP 和△DCE 全等?若存在,请求出所有满足条件的t 值;若不存在,请说明理由.DA6. 已知:如图,在长方形ABCD 中,AB =CD =3 cm ,AD =BC =5 cm ,动点P 从点B 出发,以每秒1 cm 的速度沿BC 方向向点C 运动,动点Q 从点C 出发,以每秒2 cm 的速度沿CD -DA -AB 向点B 运动,P ,Q 同时出发,当点P 停止运动时,点Q 也随之停止,设点P 运动时间为t 秒.请回答下列问题:(1)请用含t 的式子表达△CPQ 的面积S ,并直接写出t 的取值范围.(2)是否存在某个t 值,使得△ABP 和△CDQ 全等?若存在,请求出所有满足条件的t 值;若不存在,请说明理由.DA【参考答案】➢课前预习(1)2t,t(2)4s➢知识点睛速度已知1.研究背景图形,标注;2.分析运动过程,分段;3.表达线段长,建等式.➢精讲精练1.解:(1)当t=1.5时,△ABP≌△CDE.理由如下:如图,由题意得BP=2t∴当t=1.5时,BP=3∵AE=7,AD=10∴DE=3∴BP=DE在矩形ABCD 中 AB =CD ,∠B =∠CDE 在△ABP 和△CDE 中AB CD B CDE BP DE =⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△CDE (SAS ) (2)如图,由题意得BP =2t ∵BC =10 ∴CP =10-2t若使△DCP ≌△CDE ,则需CP =DE即10-2t =3,t =72∴当t =72时,△DCP ≌△CDE .2. 解:如图,由题意得AP =x ,CQ =2x∵AD =12 ∴DP =12-x要使△PDQ ≌△CQD ,则需DP =QC 即12-x =2x ,x =4∴当x =4时,△PDQ ≌△CQD .3. 解:如图,由题意得BP =3t∵BC =8 ∴PC =8-3t∵AB =10,D 为AB 中点 ∴BD =12AB =5 ①要使△BDP ≌△CPQ , 则需BD =CP ,BP =CQ 即5=8-3t ,t =1 ∴CQ =3t =3则Q 的速度为Q v =s t =31=3(cm/s )即当t =1,Q 的速度为每秒3cm 时,△BDP ≌△CPQ .②要使△BDP ≌△CQP ,则需BP =CP ,BD =CQ 即3t =8-3t ,CQ =5∴t =43则Q 的速度为Q v =s t =5×34=154(cm/s )即当t =43,Q 的速度为每秒154cm 时,△BDP ≌△CQP .综上所述,当t =1,Q 的速度为每秒3cm 或t =43,Q 的速度为每秒154cm 时,△BPD 与△CQP 全等.4. 解:如图,由题意得BP =2t∵正方形ABCD 的边长为10cm ∴AB =BC =10 ∴PC =10-2t ∵AE =4 ∴BE =10-4 =6①要使△BEP ≌△CPQ , 则需EB =PC ,BP =CQ 即6=10-2t ,CQ =2t ∴t =2,CQ =4则点Q 的速度为Q v =s t =42=2(cm/s )即当t =2,Q 的速度为每秒2cm 时,△BEP ≌△CPQ . ②要使△BEP ≌△CQP , 则需BP =CP ,BE =CQ 即2t =10-2t ,CQ =6∴t =52则点Q 的速度为Q v =st=6×25=125(cm/s ) 即当t =52,Q 的速度为每秒125cm 时,△BEP ≌△CQP .综上所述,当t =2,Q 的速度为每秒2cm 或t =52,Q 的速度为每秒125cm 时,△BEP 与△CQP 全等.5. 解:(1)①当P 在BC 上时,如图,由题意得BP =2t (0<t ≤2.5)1214224ABP S AB BP t t∆=⋅=⨯⨯=∴②当P 在CD 上时,(2.5<t ≤4.5)12145210ABP S AB BC∆=⋅=⨯⨯=∴ ③当P 在AD 上时,由题意得AP =14-2t (4.5<t <7)12141422284ABP S AB APt t ∆=⋅=⨯⨯=∴--() (2)①当P 在BC 上时, 如图,由题意得BP =2t要使△DCP ≌△DCE ,则需CP =CE ∵CE =2 ∴5-2t =2,t =1.5即当t =1.5时,△DCP ≌△DCE②当P 在CD 上时,不存在t 使△DCP 和△DCE 全等 ③当P 在AD 上时,由题意得BC +CD +DP =2t ∵BC =5,CD =4, ∴DP =2t -9要使△DCP ≌△CDE ,则需DP =CE 即2t -9=2,t =5.5即当t =5.5时,△DCP ≌△CDE .综上所述,当t =1.5或t =5.5时,△DCP 和△DCE 全等.6. 解:(1)①当Q 在CD 上时,如图,由题意得CQ =2t ,BP=t ∴CP=5-t (0<t ≤1.5)2121(5)22 5CPQ S CP CQt t t t ∆=⋅=-⋅=-∴11 ②当Q 在DA 上时,(1.5<t ≤4)121(5)327.5 1.5CPQ S CP CDt t∆=⋅=⨯=∴--③当Q 在AB 上时,由题意得BQ =11-2t (4<t <5) 2121(5)(112)2215522CPQ S CP BQt t t t ∆=⋅=-⨯-=-+∴(2)①当Q 在CD 上时,不存在t 使△ABP 和△CDQ 全等 ②当Q 在AD 上时,如图,由题意得DQ =2t -3要使△ABP ≌△CDQ ,则需BP =DQ∵DQ =2t -3,BP =t∴t =2t -3,t =3即当t =3时,△ABP ≌△CDQ .③当Q 在AB 上时,不存在t 使△ABP 和△CDQ 全等 综上所述,当t =3时,△ABP 和△CDQ 全等.。

初二数学上动点问题

初二数学上动点问题

初二数学动点问题1.已知:如图,在直角三角形ABC 中︒=∠90C ,AC=BC ,AB=8,长方形DEFG 的边DE 为2,DG 为8.将长方形DEGF 沿着BA 方向平移,求:(1)当长方形DEFG 的顶点D 平移到BC 边上时,它们的重叠部分的面积是多少?(2)当长方形DEFG 的顶点D 平移到AC 边上时,它们的重叠部分的面积是多少?(3)当长方形DEFG 的顶点E 平移到A 上时,它们的重叠部分的面积是多少?2.已知:如图三角形∆ABC 和∆DEF 都是直角三角形,AC ⊥BF 于点C ,DE ⊥BF 于点E ,AC=BC=8,DE=EF=6,将∆DEF 沿着CB 方向平移。

求(1)当∆DEF 的顶点D 平移到∆ABC 的边AB 上时,它们重叠部分的面积是多少?(2)当∆DEF 的顶点E 平移到BC 中点上时,它们重叠部分的面积是多少?3.如图,在直角梯形ABCD 中,AD//BC ,︒=∠90B ,AD=24cm ,BC=26cm 。

动点P 从点A 开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以3cm/s 的速度运动。

动点P ,Q 分别从点A 、C 同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t (s ),则当t 分别为何值时,四边形PQCD 是平行四边形,等腰梯形?4.如图,在直角梯形ABCD 中,AB//DC ,︒=∠90B ,AB=16,BC=12,CD=21。

动点M 从点C 出发,沿射线CD 方向以每秒2个单位长度的速度运动;动点N 从点B 出发,在线段BA 上,以每秒1个单位长度的速度向点A 运动,点M 、N 分别从C 、B 同时出发。

当点N 运动到点A 时,点M 随之停止运动,设运动时间为t (秒)。

当t 为何值时,以A 、M 、N 三点为顶点的三角形是等腰三角形?5.为美化环境,计划在某小区内用30平方米的草皮内设一边长为10米的等腰三角形绿地。

人教版八年级上册数学动点问题(精编版)

人教版八年级上册数学动点问题(精编版)

三角形与动点问题1、如图,在等腰△ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF =.2、在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值).3、如图,将边长为1的等边△OAP按图示方式,沿x轴正方向连续翻转2011次,点P依次落在点P1,P2,P3,P4,…,P2007的位置.试写出P1,P3,P50,P2011的坐标.4、如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF(2)试证明△DFE是等腰直角三角形5、如图,在等边ABC ∆的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D,E 处,请问(1)在爬行过程中,CD 和BE 始终相等吗?(2)若蜗牛沿着AB 和CA 的延长线爬行,EB 与CD 交于点Q ,其他条件不变,如图(2)所示,,求证:︒=∠60CQE(3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F ”,其他条件不变,则爬行过程中,DF 始终等于EF 是否正确6、如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形. (1)当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由; (2)当△ADE 绕A 点旋转到图3的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.7、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;图1 图 2②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?8、如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点(不包括端点),作∠AEF = 90︒,使EF 交矩形的外角平分线BF 于点F ,设C (m ,n ).(1)若m = n 时,如图,求证:EF = AE ;(2)若m ≠n 时,如图,试问边OB 上是否还存在点E ,使得EF = AE ?若存在,请求出点E 的坐标;若不存在,请说明理由.9.在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右侧..作ADE △,使AD AE DAE BAC =∠=∠,,连接CE .(1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度; (2)设BAC α∠=,BCE β∠=.①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则αβ,之间有怎样的数量关系?请直接写出你的结论.A QCD B P AEEAABCDE FGH KMN1234567810.如图, 直线与轴、轴分别交于点,点.点从点出发,以每秒1个单位长度的速度沿→方向运动,点从点出发,以每秒2个单位长度的速度沿→的方向运动.已知点同时出发,当点到达点时,两点同时停止运动, 设运动时间为秒.(1)设四边形...MNPQ 的面积为,求关于的函数关系式,并写出的取值范围.(2)当为何值时,与平行?三、本次课后作业:1、如图,AC 为正方形ABCD 的一条对角线,点E 为DA 边延长线上的一点,连接BE ,在BE 上取一点F ,使BF BC =,过点B 作BK BE ⊥于B ,交AC 于点K ,连接CF ,交AB 于点H ,交BK 于点G .(1)求证:BG BH =; (2)求证:AE BG BE +=l x y ) 0,8 ( M ) 6,0 ( N P N N O QO O M QP 、QM QP 、t S S t t t QP llOM N xy P2、已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),解答下列问题:(1)当t 为何值时,△PBQ 是直角三角形? (2)设四边形APQC 的面积为y (cm 2),求y 与t 的关系式;是否存在某一时刻t ,使四边形APQC 的面积是△ABC 面积的三分之二?如果存在,求出相应的t 值;不存在,说明理由;3、已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.CPQBA M NCPQBA MNCPQB AMN AP4、如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒).(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.5、在ABC ∆中,,4,5,D BC CD 3cm,C Rt AC cm BC cm ∠=∠==点在上,且以=现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿AC 向终点C 移动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动。

八年级数学上学期之动点问题(精品)(2)(K12教育文档)

八年级数学上学期之动点问题(精品)(2)(K12教育文档)

八年级数学上学期之动点问题(精品)(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上学期之动点问题(精品)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上学期之动点问题(精品)(2)(word版可编辑修改)的全部内容。

八年级数学动点问题拔高练习1、如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方。

(1)将图1中的三角板绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(2)将图1中的三角板绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为_________ 秒(直接写出结果);(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM 与∠NOC之间的数量关系,并说明理由。

2、已知AB∥CD,直线l与AB、CD分别交于点E、F,点P是直线CD上的一个动点(点P不与F重合),点M在EF上,且∠FMP=∠FPM,(1)如图1,当点P在射线FC上移动时,若∠AEF=60°,则∠FPM= _________ ;假设∠AEF=a,则∠FPM= _________ ;(2)如图2,当点P在射线FD上移动时,猜想∠FPM与∠AEF有怎样的数量关系?请你说明理由。

3、如图(1)直线GC∥HD,EF交CG、HD于A、B,三条直线把EF右侧的平面分成①、②、③三个区域,(规定:直线上各点不属于任何区域).将一个透明的直角三角尺放置在该图中,使得30°角(即∠P)的两边分别经过点A、B,当点P落在某个区域时,连接PA、PB,得到∠PBD、∠PAC两个角.(1)如图(1),当点P落在第②区域时,求∠PAC+∠PBD的度数;(2)如图(2),当点P落在第③区域时,∠PAC﹣∠PBD= _________ 度(3)如图(3),当点P落在第①区域时,直接写出∠PAC、∠PBD之间的等量关系。

人教版_人教版八年级数学关于动点问题的分析

人教版_人教版八年级数学关于动点问题的分析

人教版八年级动点总是专项练习如图,在直角坐标系中,O是原点,A,B,C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P,Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC,CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动.(1)求直线OC的解析式.(2)设从出发起,运动了t秒.假如点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.(3)设从出发起,运动了t秒.当P,Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分?如有可能,请求出t的值;如不可能,请说明理由.(1)O,C两点的坐标分别为O(0,0),C(8,6),利用待定系数法即可求得一次函数的解析式;(2)当Q在OC上运动时,Q的坐标满足直线OC的解析式,可设Q(m,34m),则OQ就是Q运动的路程,利用勾股定理即可利用t表示出m,从而求得Q的坐标;当当Q在CB上运动时,Q点所走过的路程为2t,求得CQ的长度,即可求得Q的坐标;(3)当Q点在OC上运动时,P运动的路程为t,则Q运动的路程为(22-t),根据△OPQ的面积等于梯形面积的一半,即可得到一个关于t的方程,根据方程的解得情况即可判断;当Q在BC上运动时,Q走过的路程为(22-t),根据梯形OCQP的面积等于梯形OABC的面积的一半从而列方程求解.解:(1)∵O,C两点的坐标分别为O(0,0),C(8,6),设OC的解析式为y=kx+b,将两点坐标代入得:k=3 4 ,b=0.∴y=3 4 x.(2)当Q在OC上运动时,可设Q(m,3 4 m),依题意有:m2+(3 4 m)2=(2t)2,解得m=8 5 t.则Q(8 5 t,6 5 t)(0≤t≤5).当Q在CB上运动时,Q点所走过的路程为2t.∵OC=10,∴CQ=2t-10.∴Q点的横坐标为2t-10+8=2t-2.∴Q(2t-2,6)(5<t≤10).(3)∵梯形OABC的周长为44,当Q点在OC上运动时,P运动的路程为t,则Q运动的路程为(22-t).△OPQ中,OP边上的高为:(22-t)×3 5 .∴S△OPQ=1 2 t(22-t)×3 5 ,S梯形OABC=1 2 (18+10)×6=84.依题意有:1 2 t(22-t)×3 5 =84×1 2 .整理得:t2-22t+140=0.∵△=222-4×140<0,∴这样的t不存有.当Q在BC上运动时,Q走过的路程为(22-t),∴CQ的长为:22-t-10=12-t.∴S梯形OCQP=1 2 ×6(22-t-10+t)=36≠84×1 2 .∴这样的t值也不存有.综上所述,不存有这样的t值,使得P,Q两点同时平分梯形的周长和面积.如图1所示,在△ABC中,点O在AC边上运动,过O作直线MN∥BC交∠BCA内角平分线于E点,外角平分线于F点.试探究:当点O运动到何处时,四边形AECF是矩形?析解:当点O运动到AC的中点时,四边形AECF是矩形.因为MN ∥BC ,所以∠ECB=∠FEC .因为∠ECB=∠ECA ,所以∠ECA=∠FEC ,所以EO=OC .同理可得OF=OC ,所以EO=OF .又因为点O 是AC 的中点,所以CA 与FE 互相平分,所以四边形AECF 是平行四边形.又因为CE 、CF 分别是∠BCA 的内、外角平分线,而∠BCD 是一平角,所以∠ECA+∠ACF=90º,即∠ECF=90º.所以四边形AECF 是矩形.如图2所示,在直角坐标系中,四边形OABC 为直角梯形,OA ∥BC ,BC=14cm ,A 点坐标为(16,0),C 点坐标为(0,2).点P 、Q 分别从C 、A 同时出发,点P 以2cm/s 的速度由C 向B 运动,点Q 以4cm/s 的速度由A 向O 运动,当点Q 停止运动时,点P 也停止运动,设运动时间为ts (0≤t ≤4).(1)求当t 为多少时,四边形PQAB 为平行四边形.(2)求当t 为多少时,PQ 所在直线将梯形OABC 分成左右两部分的面积比为1:2,求出此时直线PQ 的函数关系式. 析解:(1)因为ts 后,BP=(14-2t) cm ,AQ=4t cm .由BP= AQ ,得14-2t=4t ,t=37(s).所以当t=37s 时,BP= AQ ,又OA ∥BC ,所以四边形PQAB 为平行四边形.(2)因为C 点坐标为(0,2),A 点坐标为(16,0),所以OC=2 cm ,OA=16 cm .所以OABC S 梯形=21(OA+BC)·OC=21×(16+14)×2=30(cm 2). 因为ts 后,PC=2t cm ,OQ=(16-4t) cm ,所以PQOC S 四边形=21(2t+16-4t)×2=16-2t . 由题意可得PQOC S 四边形=10,所以16-2t=10,解得t=3(s).此时直线PQ 的函数关系式为y=x-4.1. 如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从A 开始沿AD 边向D 以1cm/s 的速度运动;动点Q 从点C 开始沿CB 边向B 以3cm/s 的速度运动.P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts .(1)当t 为何值时,四边形PQCD 为平行四边形?(2)当t 为何值时,四边形PQCD 为等腰梯形?(3)当t 为何值时,四边形PQCD 为直角梯形?分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易水准适中.2.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存有点O,使四边形AECF是正方形,猜测△ABC的形状并证明你的结论.分析:(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:此题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)实行判断.解答时不但要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合使用.3.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存有某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存有,求出此时t的值;若不存有,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.分析:(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存有符合条件的t值.(4)因为等腰三角形的两腰不确定,所以分三种情况实行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答:解:(1)∵AQ=3-t∴CN=4-(3-t)=1+t在Rt△ABC中,AC2=AB2+BC2=32+42∴AC=5在Rt△MNC中,cos∠NCM= = ,CM= .(2)因为四边形PCDQ构成平行四边形∴PC=QD,即4-t=t解得t=2.(3)假如射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB即:(1+t)+1+t= (3+4+5)解得:t= (5分)而MN= NC= (1+t)∴S△MNC= (1+t)2= (1+t)2当t= 时,S△MNC=(1+t)2= ≠ ×4×3∴不存有某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.(4)①当MP=MC时(如图1)则有:NP=NC即PC=2NC∴4-t=2(1+t)解得:t=②当CM=CP时(如图2)则有:(1+t)=4-t解得:t=③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2而MN= NC= (1+t)PN=NC-PC=(1+t)-(4-t)=2t-3∴[ (1+t)]2+(2t-3)2=(4-t)2解得:t1= ,t2=-1(舍去)∴当t= ,t= ,t= 时,△PMC为等腰三角形点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?假如能,求x的值;假如不能,请说明理由.分析:以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以能够根据这两种情况来求解x的值.以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P 在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以能够根据这些条件列出方程关系式.假如以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC 即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,由x2+2x=20,得x1= -1,x2=- -1(舍去).因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.所以x= -1符合题意.②当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2=25>20,不符合题意.故点Q与点M不能重合.所以所求x的值为-1.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.当x=4时四边形NQMP是平行四边形.所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.因为2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x.解得x1=0(舍去),x2=4.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N 分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形?(2)当t为何值时,四边形MNCD是等腰梯形?分析:(1)根据平行四边形的性质,对边相等,求得t值;(2)根据等腰梯形的性质,下底减去上底等于12,求解即可.解答:解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.6.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).(1)设△BPQ的面积为S,求S与t之间的函数关系;(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?分析:(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.解答:解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.∴PM=DC=12,∵QB=16-t,∴s= •QB•PM= (16-t)×12=96-6t(0≤t≤ ).(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得,t2=16(不合题意,舍去).综上所述,当或时,以B、P、Q为顶点的三角形是等腰三角形.点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.7.直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P 的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.解答:解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是81=8(秒),∴点P的速度是6+108=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD⊥OA于点D,由PDBO=APAB,得PD= 48-6t5.∴S= 12OQ•PD=- 35t2+245t.(3)当S= 485时,∵485>12×3×6∴点P在AB上当S= 485时,- 35t2+245t= 485∴t=4∴PD= 48-6×45= 245,AD=16-2×4=8AD= 82-(245)2= 325∴OD=8- 325= 85∴P(85,245)M1(285,245),M2(- 125,245),M3(125,- 245)点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题八 动ቤተ መጻሕፍቲ ባይዱ问题
1. 如图,已知 E 为等腰三角形 ABC 的底边 BC
上一动点,过点 E 作 EF⊥BC 交直线 AB 于点 D,
交 CA 的延长线于点 F,问:
(1)∠F 与∠ADF 的关系怎样?说明理由;
解:(1)∠F=∠ADF. 理由如下. ∵△ABC为等腰三角形, ∴AB=AC,∴∠B=∠C. ∵EF⊥BC, ∴∠B+∠BDE=90°,∠C+∠F=90°. ∴∠BDE=∠F. ∵∠ADF=∠BDE,∴∠ADF=∠F.
解:(1)PC=BC-BP=6-2t.
(2)若点 P,Q 的运动速度不相等,当△BPD 与 △CQP 全等时,求 a 的值.
(2)∵点P,Q的运动速度不相等, ∴BP≠CQ. ∵△BPD≌△CPQ,∠B=∠C,∴BP= PC,BD=CQ.
3. 如图,在等边三角形 ABC 中,AB=AC=BC=10 厘米,DC=4 厘米.如果点 M 在线段 CB 上以 3 厘米/秒的速度由点 C 向点 B 运动,点 N 在线 段 BA 上以同样的速度由点 B 向点 A 点运动,
(2)M,N 同时运动几秒后,可得等边三角形
AMN?
(2)设点M,N运动t秒后, 可得到等边三角形AMN, 如图所示. AM=t×1=t,AN=AB-BN=10-2t. ∵△AMN是等边三角形, ∴t=10-2t. 解得t= . ∴点M,N运动 秒后,可得到等边三角形AMN.
谢谢!

1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
且它们同时出发.
(1)经过 2 秒后,△BMN 和 △CDM 是否全等?请说明
理由.
解:(1)△BMN≌△CDM.理由如下. ∵vN=vM=3厘米/秒,且t=2秒, ∴CM=2×3=6(厘米),BN=2×3=6(厘米), ∴BN=CM. BM=BC-CM=10-6=4(厘米), ∵CD=4厘米, ∴BM=CD. ∵△ABC为等边三角形, ∴∠B=∠C=60°. 在△BMN和△CDM中,
2. 如图,在△ABC 中,∠B=∠C,AB=8,BC=6,点 D 为 AB 的中点,点 P 在线段 BC 上以每秒 2 个单 位的速度由点 B 向点 C 运动,同时点 Q 在线段 CA 上以每秒 a 个单位的速度由点 C 向点 A 运动, 设运动时间为 t(单位:秒)(0≤t≤3).
(1)用含 t 的代数式表示线段 PC 的长;

2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。

3.把握好故事情节,是欣赏小说的基础,也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点,从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
(2)若 E 在 BC 的延长线上,其余条件不变,
上题的结论是否成立?若不成立,说明理由;
若成立,画出图形并给予证明.
(2)成立. 证明:如图,∵AB=AC,∴∠B=∠ACB. ∵∠ACB=∠ECF,∴∠B=∠ECF. ∵EF⊥BC, ∴∠B+∠BDE=90°,∠ECF+∠F=90°. ∴∠BDE=∠F,即∠ADF=∠F.

9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
感谢观看,欢迎指导!

4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。

5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。

6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。

7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。

8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。
∴△BMN≌△CDM(SAS).
(2)若△BMN 是一个直角三角形,则两点的运
动时间为多少?
(2)设运动时间为t秒, △BMN是直角三角形有两种情况: ①当∠NMB=90°时.∵∠B=60°, ∴∠BNM=90°-∠B=90°-60°=30°. ∴BN=2BM. ∴3t=2×(10-3t).解得t= . ② 当∠BNM=90°时.∵∠B=60°, ∴∠BMN=90°-∠B=90°-60°=30°. ∴BM=2BN. ∴10-3t=2×3t. 解得t= . 综上所述,当运动时间为 秒或 秒时, △BMN是直角三角形.
4. 如图所示,在△ABC 中,AB=AC=BC=10 厘米, M,N 分别从点 A,B 同时出发,沿三角形的 边运动.已知点 M 的速度是 1 厘米/秒,点 N 的速度是 2 厘米/秒,当点 N 第一次到达点 B 时,M,N 同时停止运动.
(1)M,N 同时运动几秒后,M,N 两点重合?
解:(1)设点M,N运动x秒后,M,N两 点重合.x×1+10=2x. 解得x=10. 即M,N同时运动10秒后,M,N两点重合.
相关文档
最新文档