常用分子生物学技术的原理及应用
常用分子生物学技术的原理及其应用
分子生物学技术是生物学领域中的重要工具,广泛应用于基础研究、医学诊断、药物研发等领域。
以下是常用的分子生物学技术及其原理和应用:1. PCR技术:PCR(聚合酶链式反应)是一种体外扩增DNA的方法,基本原理是通过DNA聚合酶酶在体外模拟DNA的复制过程,从而快速扩增目标DNA片段。
PCR技术在基因克隆、基因检测、DNA指纹分析等领域有着广泛的应用。
2. 基因克隆技术:基因克隆是将感兴趣的DNA片段插入到载体DNA 中,构建重组DNA分子的过程。
通过基因克隆技术可以获得大量目的基因的DNA序列,用于研究基因功能、表达调控等方面。
3. 蛋白质表达与纯化技术:蛋白质表达技术是将外源基因导入宿主细胞中,使其表达目的蛋白质的过程。
通过蛋白质表达与纯化技术,可以获得大量纯净的蛋白质样品,用于研究蛋白质结构、功能等。
4. 基因编辑技术:基因编辑技术包括CRISPR-Cas9系统、TALENs和ZFNs等,可以实现对基因组特定区域的精准编辑。
基因编辑技术在疾病治疗、植物育种等领域有着巨大的潜力。
5. RNA干扰技术:RNA干扰是一种通过RNA介导的基因沉默机制,可使目标基因的mRNA水平下降,从而抑制基因表达。
RNA干扰技术在基因功能研究、疾病治疗等方面具有重要应用价值。
6. 蛋白质亲和纯化技术:蛋白质亲和纯化技术利用蛋白质与其结合物质之间的特异性相互作用,实现对目标蛋白质的选择性富集和纯化。
该技术在药物筛选、蛋白质相互作用研究等领域有着广泛应用。
7. 基因芯片技术:基因芯片是一种高通量的生物芯片技术,可同时检测上千个基因的表达水平。
基因芯片技术广泛应用于基因表达谱分析、疾病诊断、药物研发等领域。
8. 蛋白质组学技术:蛋白质组学技术主要包括蛋白质质谱分析、蛋白质组芯片等,用于研究蛋白质在生物体内的表达水平、翻译后修饰等。
蛋白质组学技术在疾病诊断、药物靶点鉴定等方面有着重要应用。
以上是常用的分子生物学技术及其原理和应用。
常用分子生物学技术的原理及其应用
常用分子生物学技术的原理及其应用概述分子生物学技术是现代生物学研究中应用广泛的一系列技术方法。
这些技术能够帮助科学家从分子水平上理解生物学系统的结构和功能,并促进相关研究的进展。
本文将介绍几种常用的分子生物学技术,并详细探讨它们的原理和应用。
1. 聚合酶链式反应(PCR)•原理:聚合酶链式反应(PCR)是一种体外合成DNA的方法,通过循环性反应使DNA的数量迅速扩增。
该技术主要包括三个步骤:变性、退火和延伸。
在变性步骤中,DNA双链被加热使其解旋成两条单链。
在退火步骤中,引物与模板DNA序列互补碱基配对。
在延伸步骤中,热稳定DNA聚合酶将新的DNA链延伸。
•应用:PCR技术在生物学研究和临床诊断中有着广泛的应用。
它可以用于基因克隆、基因突变分析、DNA测序、DNA指纹鉴定等。
此外,PCR还常用于检测病原体、肿瘤标记物以及遗传性疾病的诊断。
2. 凝胶电泳•原理:凝胶电泳是一种分离DNA和蛋白质的常见方法。
该技术基于物质在电场中的迁移速度不同,利用电势差将分子分离开来。
DNA片段在凝胶中迁移速度与其大小有关,大片段迁移较慢,小片段迁移较快。
•应用:凝胶电泳广泛应用于DNA分析、蛋白质分析以及核酸杂交等实验中。
在分子生物学研究中,凝胶电泳可用于确认PCR扩增产物的大小,并进行DNA片段的分离和纯化。
此外,它还可以检测基因突变、遗传关系等。
3. 蛋白质电泳•原理:蛋白质电泳是一种分离和分析蛋白质的技术。
该技术基于蛋白质的大小、电荷和形状差异,利用电势差将蛋白质分离开来。
在电泳过程中,蛋白质样品被加载到聚丙烯酰胺凝胶中,并通过电场迁移。
•应用:蛋白质电泳在生物学研究和临床诊断中具有重要作用。
它可以用于鉴定蛋白质在细胞中的表达水平、研究蛋白质结构和功能以及检测特定蛋白质的存在与否。
此外,蛋白质电泳还用于分离和纯化重组蛋白质。
4. 核酸杂交•原理:核酸杂交是一种通过互补碱基配对而发生的分子相互作用。
通过标记的探针DNA或RNA与靶序列相互结合形成稳定的双链或三链结构,从而可进行检测和定位。
常用分子生物学技术的原理及其应用
酵母双杂交系统的应用 分析已知蛋白之间的相互作用 对蛋白质功能域的分析 分析未知蛋白相互作用 绘制蛋白质相互作用系统图 在药物设计中的应用
返回
返回
三 种 印 迹 技 术 的 比 较
返回
实时PCR技术原理 实时PCR技术原理 PCR
返回
返回
返回
(略 )
第六节 遗传修饰动物模型的建立及应用 The establishment and application of heredityhereditymodified animal model
一. 转基因技术
采用基因转移技术使目的基因整合入受精卵细胞或胚胎 干细胞,然后将细胞导入动物子宫,使之发育成个体。 干细胞,然后将细胞导入动物子宫,使之发育成个体。
医本<生物化学> 医本<生物化学>周爱儒 第六版
第二十二章 常用分子生物学技术的原理 及其应用
The Popular Technology in Molecular Biology: Principle and Application
第一节
分子杂交与印迹技术
Molecular Hybridization and Blotting 库
是指一个包含了 某一生物体全部DNA 某一生物体全部 序列的克相关基因的克隆与鉴定 Cloning and identification of disease relative gene
分子杂交(nucleic acid hybridization) 一. 分子杂交
不同来源的单链核酸经退火形成双链结构的过程。 不同来源的单链核酸经退火形成双链结构的过程。
DNA DNA DNA RNA
基础:核酸的变性与退火 基础:
常用分子生物学技术的原理及应用
常用分子生物学技术的原理及应用一、PCR技术1.PCR(Polymerase Chain Reaction)技术是一种常用的分子生物学技术,主要用于扩增DNA片段。
2.PCR技术的原理是通过添加DNA模板、引物和DNA聚合酶,以及一系列特定的温度循环,迅速扩增目标DNA序列。
3.PCR技术的应用广泛,如基因克隆、基因突变分析、疾病诊断等。
二、蛋白质电泳技术1.蛋白质电泳技术是用于分离和定量蛋白质的常用方法。
2.蛋白质电泳技术包括SDS-PAGE和蛋白质西方印迹等。
3.SDS-PAGE是一种蛋白质分子量分析方法,通过凝胶电泳分离蛋白质。
4.蛋白质西方印迹则用于检测特定蛋白质的表达,并通过特异性抗体与该蛋白质结合,产生特定的信号。
三、原位杂交技术1.原位杂交技术是研究基因表达和基因组结构的重要工具。
2.原位杂交技术通过结合特异性探针和标记物,用于检测目标序列在组织或细胞中的分布。
3.原位杂交技术有多种类型,如荧光原位杂交(FISH)和非放射性原位杂交等。
4.原位杂交技术在遗传学研究、疾病诊断和生物学研究中得到广泛应用。
四、基因克隆技术1.基因克隆技术是将特定DNA片段插入到载体DNA中的技术。
2.基因克隆技术的关键步骤包括:DNA片段的切割、载体DNA的选择和连接、转化等。
3.基因克隆技术在基因工程、重组蛋白质的表达以及基因功能研究等方面具有重要应用。
五、DNA测序技术1.DNA测序技术是用于确定DNA序列的方法。
2.DNA测序技术包括Sanger测序和高通量测序等。
3.Sanger测序是一种经典的测序方法,逐个位置确定DNA序列。
4.高通量测序技术通过并行测序大量的DNA片段,实现快速高效的DNA测序,并被广泛应用于基因组学研究、药物研发等领域。
六、蛋白质质谱技术1.蛋白质质谱技术是分析蛋白质结构和功能的重要方法。
2.蛋白质质谱技术包括质谱仪的使用和蛋白质样品的制备等。
3.蛋白质质谱技术能够快速鉴定蛋白质样品中的蛋白质组分,并定量分析特定蛋白质的表达水平。
常用分子生物学实验技术--整理
常⽤分⼦⽣物学实验技术--整理常⽤的分⼦⽣物学实验技术:离⼼技术: 是分离纯化蛋⽩质、酶、核酸(DNA、RNA)、细胞的最常⽤⽅法之⼀。
电泳(electrophoresis):带电粒⼦在电场中向着与其所带电荷相反⽅向电极移动的现象。
可⽤于分离不同分⼦量的⽣物⼤分⼦。
1.蛋⽩质的电泳: ⽤途:蛋⽩质的定量。
2.核酸的电泳: ⽤途:⽤于核酸的分离、鉴定、纯化、回收。
⽐如:我只需要长度300bp左右的分⼦。
那么,电泳后,在切胶过程中,只切300bp处的分⼦即可。
蛋⽩质研究相关的技术: 1. 含量测定: 2. 结构的测定: (1)⼀级结构的测定:搞清楚蛋⽩质肽链的氨基酸排列顺序。
⽅法:Edman降解法、质谱法(MS, 将蛋⽩⽔解,多肽链分成⼩段。
检测肽段) (2)空间结构测定:蛋⽩空间结构分析⽐⼀级结构分析复杂得多。
⽅法:X射线衍射晶体分析法、核磁共振法等。
3. 功能的测定: (1)酵母双杂交(YTH): 假设:欲检测蛋⽩X与蛋⽩Y是否相互作⽤。
检测⽅法: 将蛋⽩X与报告基因转录因⼦的BD融合; 将蛋⽩Y与AD融合; 确认蛋⽩X与蛋⽩Y形成的复合体能否激活报告基因的表达。
如果能激活报告基因的表达,说明:X与Y形成了复合体,则BD和AD靠近,激活了下游报告基因的表达;反之,报告基因不表达。
原理: 真核⽣物的转录因⼦(尤其是酵母转录因⼦GAL4),包括两个彼此分离、但功能必需的结构域:⼀个是与DNA结合的结构域-BD;⼀个是转录激活域-AD。
BD识别转录因⼦效应基因的上游序列并与之结合;AD通过与转录复合体的其他成分作⽤,启动下游的基因转录。
即使BD与AD分开,但如果在空间上较为接近时也能激活转录。
——利⽤转录因⼦的BD、AD这⼀特性,通过检测转录因⼦是否启动了其效应基因的表达,可研究蛋⽩质X与Y是否相互作⽤。
(2)蛋⽩质芯⽚技术:⼀种⾼通量、微型化、⾃动化的蛋⽩质分析技术。
⼀次试验中可同时检测⼏百甚⾄⼏千种⽬标蛋⽩或多肽。
分子生物学 常用分子生物学技术的原理及应用
(三)基因突变
利用PCR技术可以随意设计引物在体外对目的 基因片段进行嵌和、缺失、点突变等改造。
T G C
(四)DNA序列测定
将PCR技术引入DNA序列测定,使测序工 作大为简化,也提高了测序的速度;
待测DNA片段既可克隆到特定的载体后进 行序列测定,也可直接测定。
(五)基因突变分析
PCR与其他技术的结合可以大大提高基 因突变检测的敏感性 。
▪ 分子杂交: 不同来源的单链核苷酸链根据碱基互补原则形成
杂种双链的过程。
▪ 分子杂交的目的: 检测DNA和RNA
▪ 探针: 分子杂交中和待测核苷酸链碱基互补的被标记的
核苷酸链。
待测DNA或RNA
探针
碱基对间氢键
增色效应: DNA变性伴随260nm吸收值增高
减色效应: DNA复性伴随260nm吸收值降低
Taq
5’
Taq
5’
R
R
R Taq
R
Taq
R
l
R
3’
Extension Step
1. Strand Displacement
3’
5’
2. Cleavage
3’
5’ 3. Polymerization
3’
Complete
4. Detection
5’ 3’
PCR衍生技术
▪ 反向PCR ▪ 逆转录PCR ▪ 原位PCR ▪ 重组PCR ▪ 不对称PCR ▪ 多重PCR
酵母双杂交系统的建立基于对真核生物转录激 活因子结构与功能的认识
真核生物转录激活因子
DNA结合结构域 转录激活结构域
BD
AD
组件式:结构可互相分开 功能互相独立 空间较近时表现活性 中间序列对活性无影响
分子生物学常用技术(简化版)
Northern blot
类似于 Southern 印迹杂交的方法,用于 RNA 检测
in situ hybridization
原位杂交:特定 mRNA 的组织细胞分布
FISH Fluorescence in situ hybridization (FISH):特定基因的染色体定位
反 Northern 杂交与 DNA 芯片
DNA解旋解链
DNA的体内复制
ATCGCGATAGCGTAGCTGCGACCTAGC
5’
3’
TAGCGCTATCGCATCGACGCTGGATCG
3’
5’
GGAUCG
5’
AUCGCG
5’
引物酶
引物酶
RNA引物
RNA引物
DNA解旋解链
引物合成
DNA的体内复制
ATCGCGATAGCGTAGCTGCGACCTAGC
核酸:测序、印迹、杂交、体外扩增技术 蛋白质:电泳与印迹、组学技术、相互作用
基本技术:
基因工程技术 转基因生物与基因敲除技术
综合技术:
基因诊断 基因治疗
应用技术:
第一节:核酸分子杂交
Molecular hybridization: 利用已知核酸序列 (探针/probe) 检测与其互补的未知核酸序列 用途: 确认核酸序列间同源性 对特定核酸序列进行定量 自核酸混合体中辨认特定核酸序列
1.什么是耐热 DNA 聚合酶
早期 PCR 曾使用 DNA 聚合酶 I
在高温时发生变性,每一循环都需要重新添加酶 延伸反应温度为 37℃,非特异性太多
目前常用 Taq DNA 聚合酶
纯化自嗜热水生菌 (Thermus aquaticus) 可耐受 95℃ 高温,最适反应温度为 72℃ 左右
分子生物学-分子生物学技术的原理及其应用
遗传变异与进化
研究基因组的突变、遗传变异和物种进化过程。
生物工程与基因治疗
应用分子生物学技术进行
2
将目标基因插入携带载体中,实现基因
的复制和传递。
3
PCR技术
通过反复复制DNA片段,快速扩增目标 DNA序列。
基因测序技术
通过测定DNA碱基序列,获得基因组的 信息。
未来发展趋势和前景
分子生物学技术的不断发展将为医学、农业、环境等领域带来更多应用,推动科学研究和社会发展。
分子生物学-分子生物学 技术的原理及其应用
分子生物学的定义
分子生物学是研究生物体的分子基础和机制的科学,涉及生命的DNA、RNA和蛋白质等分子的结构、功能和 相互作用。
分子生物学的研究领域
基因结构与表达
研究基因的结构、转录过程和蛋白质合成调控 机制。
信号转导与细胞通讯
研究细胞内信号传递、细胞通讯和细胞命运决 定。
分子生物学技术的应用
生物工程
利用基因工程技术改良农作物、制造药物等。
功能基因研究
研究基因在生物体内的功能和作用机制。
基因改良
改良农作物和家畜,提高产量和品质。
医学诊断
通过基因检测诊断疾病,提供个性化医疗方案。
基因治疗
通过修复异常基因或引入正常基因来治疗遗传 性疾病。
检验食品安全
利用基因检测技术检测食品中的有害成分。
分子生物学中的重要技术和应用
分子生物学中的重要技术和应用分子生物学是研究生命活动层次中的分子机制的重要学科,其技术和应用已经广泛应用于医学、环境保护、农业等领域。
本文将重点介绍分子生物学中的重要技术和应用。
一、PCR技术PCR(聚合酶链反应)技术是目前分子生物学中最常用的分子生物学技术之一,它被广泛应用于DNA分子克隆、基因突变、基因检测、DNA指纹等方面。
PCR技术可以在无需克隆和纯化DNA分子的情况下,通过特定引物选择性扩增目的DNA片段。
PCR反应的关键是聚合酶,它可使模板DNA的两个链在一定条件下发生不断扩增的复制过程,从而使从最初的一份DNA样品扩增出成百上千万份同样的DNA分子,其中含有扩增体反复扩增的基因或片段。
PCR技术有很多变式,比如实时荧光PCR(又称荧光定量PCR),可以精确测量DNA模板的数量。
还有多重PCR,可以同时检测多个靶标。
二、分子克隆分子克隆是指利用DNA重组技术,将重组的DNA片段插入到含有能够支持DNA重组的载体DNA中(如质粒、噬菌体),并将产生的重组DNA进行克隆繁殖的过程。
分子克隆技术的发展,使分子生物学家不需要从大量的DNA分子集合体中提取关键的目的分子,也为DNA突变、基因工程、遗传学研究以及疫苗开发等提供了有力支持。
分子克隆技术在基因工程、生物医药等领域有广泛应用,如制造多肽、抗体等重要药物。
三、基因编辑基因编辑技术是指通过科学家能够通过离子溶液和光照工具,对基因进行编辑,操纵其形状和特定功能的技术。
CRISPR/Cas9基因编辑技术现在是最流行和最重要的基因编辑技术之一。
CRISPR/Cas9技术可以很快地切除、修改DNA序列,而且成本相对较低,操作简单,因此成为人们寻找治疗癌症、肌萎缩侧索硬化症、遗传性疾病以及其他许多疾病更好治疗方法的基础。
四、基因测序基因测序技术是指通过测定染色体或基因序列的指定区域中的核酸碱基序列来获取DNA信息的技术。
基因测序是分子生物学中极其重要的技术,其发展对生命科学的发展产生了重要影响。
简述pcr技术的原理及应用
简述PCR技术的原理及应用1. PCR技术的原理PCR(Polymerase Chain Reaction)是一种常用的分子生物学技术,通过扩增DNA片段,使其在实验室中大量复制。
PCR技术的原理基于DNA的复制过程。
PCR技术主要包括三个步骤:变性、退火和延伸。
1.1 变性在变性步骤中,PCR反应管内的DNA双链被加热至高温(通常为94-98°C),使其两条链分离,形成两条单链DNA。
这是为了破坏DNA间的氢键,使DNA解开。
1.2 退火在退火步骤中,PCR反应管内的温度被降低至一定温度(通常为50-65°C),此时引入了引物(PCR反应的两个端点),引物能够与目标DNA片段的起止位置互补结合。
1.3 延伸在延伸步骤中,PCR反应管内的温度被升高至一个适合的温度(通常为72°C),加入DNA聚合酶,使其沿着DNA模板链合成新的DNA链。
聚合酶从引物的3’端开始向5’端合成新的DNA链。
经过这三个步骤的循环反复,可以在较短的时间内扩增出大量的目标DNA片段。
2. PCR技术的应用PCR技术在生物科学研究、医学诊断、法医学和生物工程等领域有重要的应用。
2.1 分子生物学研究PCR技术在分子生物学研究中被广泛应用于DNA克隆、基因定量表达、基因突变分析、基因测序和基因型分析等方面。
•DNA克隆:PCR技术可以扩增目标DNA片段,获得足够的DNA用于进一步的实验操作,如构建重组质粒、定向克隆等。
•基因定量表达:PCR技术可以通过定量PCR(qPCR)方法量化基因的表达水平,研究基因的转录调控。
•基因突变分析:PCR技术可以扩增目标基因片段,进一步进行测序或限制性酶切等分析,用于检测基因突变。
•基因测序:PCR技术与测序技术相结合,可以在较短的时间内扩增出足够的DNA用于测序分析。
•基因型分析:PCR技术可以应用于基因型鉴定、DNA指纹分析等领域,用于确定个体的遗传特征。
2.2 医学诊断PCR技术在医学诊断中具有重要的应用,可以用于检测各种病原微生物、遗传疾病和肿瘤等。
常用分子生物学技术的原理及其应用
常用分子生物学技术的原理及其应用常用分子生物学技术是一系列用于分析和操作分子生物学层面的实验技术。
这些技术基于对核酸(DNA和RNA)和蛋白质的结构和功能的研究,以及对基因表达和调控机制的理解。
在本文中,我将介绍常用分子生物学技术的原理和应用。
1.聚合酶链式反应(PCR):PCR是一种能够从极少量的DNA样本中扩增特定DNA序列的技术。
它基于DNA的两条链之间的互补配对,使用DNA聚合酶酶和引物来在离子和温度周期变化的条件下进行。
PCR技术广泛应用于分子生物学和生物医学研究中,包括基因克隆、基因突变分析、DNA指纹鉴定以及病原体的检测等。
2.聚丙烯酰胺凝胶电泳:凝胶电泳是一种分离和分析DNA,RNA和蛋白质的常用技术。
其中,聚丙烯酰胺(或琼脂糖)是一种高分子量聚合物,能够形成孔隙凝胶。
在电场的作用下,DNA,RNA或蛋白质在凝胶中迁移,根据大小和电荷的差异进行分离。
凝胶电泳广泛用于DNA和RNA的分离和纯化,以及蛋白质的分析和鉴定。
3.DNA测序:DNA测序是确定DNA序列的技术。
它通过测量DNA片段中的碱基顺序来分析DNA的序列信息。
目前有多种DNA测序技术,包括链终止测序(Sanger测序)和高通量测序(如Illumina测序和Ion Torrent测序)。
DNA测序在基因组学、遗传学和基因诊断中起着重要的作用。
4.基因克隆技术:基因克隆是指将目标基因从其源DNA中扩增,并将其插入到载体DNA 中,然后转化到宿主细胞中。
利用基因工程技术,克隆的基因可以在宿主细胞中被表达。
这种技术被广泛应用于重组蛋白质的定制表达、转基因生物的制备以及基因治疗的研究中。
5. 蛋白质电泳和Western blot:蛋白质电泳是一种分离和分析蛋白质的技术。
与DNA电泳类似,蛋白质电泳通过在聚丙烯酰胺凝胶中迁移蛋白质来分离不同大小和电荷的蛋白质。
Western blot是一种检测目标蛋白质的特异性抗体的技术,通过将蛋白质转移到膜上,然后使用特异性抗体与目标蛋白质结合来检测和定量蛋白质。
分子生物学技术
分子生物学技术分子生物学技术是一门研究生物分子的结构、功能和相互作用的科学领域。
它通过一系列研究方法和实验技术,揭示生物体内分子的组成,研究其在生物规律中的作用,为生物科学的发展和应用提供了有力的支持。
本文将介绍几种常见的分子生物学技术及其在科学研究和应用中的重要性。
第一种技术是聚合酶链式反应(PCR)。
PCR是一种能够快速、准确地复制DNA片段的技术。
通过PCR,可以从微量的DNA模板扩增出大量的DNA片段,为后续的实验提供足够的样本。
PCR的过程包括三个步骤:变性、退火和延伸。
在变性过程中,DNA双链被加热分离为两条单链;在退火过程中,引物与目标DNA序列互补结合;在延伸过程中,DNA聚合酶通过合成新的DNA链。
PCR技术在基因克隆、基因检测和基因定量等领域得到广泛应用。
第二种技术是DNA测序。
DNA测序是确定DNA序列的方法。
通过对DNA分子进行测序,可以了解其中所包含的信息,以及基因在细胞中的功能。
测序的过程中,通常使用Sanger方法,也就是反复进行DNA聚合酶链式延伸反应,结果是生成一系列不同长度的DNA片段。
这些片段会被分离、检测和记录,得到DNA序列。
DNA测序技术对于遗传病的诊断和治疗、疾病基因的研究以及进化生物学的研究等有着重要意义。
第三种技术是凝胶电泳。
凝胶电泳是一种常用的分离和分析DNA、RNA、蛋白质等生物大分子的方法。
凝胶电泳通过电场的作用,使带电粒子在凝胶基质中迁移,根据它们的大小和电荷进行分离。
凝胶电泳可实现DNA分子的分离和纯化,以及分析DNA片段的大小、形状和数量等信息。
凝胶电泳技术在基因分型、基因突变检测、DNA指纹鉴定等领域被广泛应用。
第四种技术是基因克隆。
基因克隆是指将DNA片段插入到载体DNA中,并通过细胞转化等方法使其复制。
基因克隆技术在分子生物学研究和基因工程中具有重要的应用价值。
通过基因克隆,可以扩大DNA 片段的数量,并将其引入到其他生物系统中进行研究。
分子生物学技术原理
分子生物学技术原理分子生物学技术是一种应用于生物学研究和实践的方法和工具,可以帮助科学家在分子水平上探究细胞和生物体的结构、功能和相互作用。
以下是一些常见的分子生物学技术和它们的原理:1. 聚合酶链式反应(PCR): PCR是一种重要的分子生物学技术,用于扩增特定DNA片段。
其原理基于DNA的双链结构和酶的功能。
PCR反应中,DNA样品被加热至变性温度,使其双链解旋成两条单链DNA。
然后,引物与目标序列的两端结合,酶通过DNA合成,合成新的DNA链。
反复循环这个过程可以扩增目标DNA片段。
2. 蛋白质电泳:蛋白质电泳是一种用于分离和分析蛋白质的技术。
其原理基于蛋白质的电荷和大小差异。
蛋白质样品在凝胶中电泳,根据电荷的不同,蛋白质会向正极或负极移动。
最终,蛋白质在凝胶上形成带状图案,可以用于蛋白质的鉴定和定量。
3. DNA测序:DNA测序是确定DNA序列的技术。
其原理基于DNA的核酸碱基配对原则和荧光标记。
DNA测序反应中,DNA模板被复制,并与荧光标记的核酸碱基一起加入到反应中。
DNA合成酶以荧光信号的形式将碱基添加到新合成的DNA链上,形成一个能够表示DNA序列的信号序列。
通过测量荧光信号的强度和颜色,可以确定DNA的碱基序列。
4. 基因克隆:基因克隆是将DNA片段从一个生物体中复制并插入到另一个生物体中的过程。
其原理基于DNA的切割、黏合和重组。
基因克隆通常包括将目标DNA和载体DNA用限制性内切酶切割,然后用DNA连接酶黏合两端,形成重组DNA。
将重组DNA转化到宿主细胞中进行复制和表达,最终获得目标DNA在新生物体中的表达。
以上只是一些常见的分子生物学技术及其原理,分子生物学领域还有许多其他的技术,如原位杂交、PCR定量、南方和北方杂交等。
这些技术的应用广泛,可以帮助科学家揭示生物学的奥秘。
常用分子生物学技术的原理及应用
根据中心法则,可以RNA为模板,在逆转录酶作用下形成cDNA,于是建立了RT-PCR的方法。 根据mRNA的3’端有poly(A)的特点,在进行反转录时,就以poly(A)为模板设计了引物。并且纯化mRNA的方法,也是根据poly(A)的原理设计的。 根据最后的翻译蛋白质去向的不同,建立不同的蛋白质提取方法,如在线粒体,在细胞核、在细胞浆、分泌到血液中。
由宿主控制的限制与修饰作用使得细菌避免噬菌体感染,如果噬菌体DNA没有被修饰过,进入宿主就会被限制性酶切断。如果被修饰过,其侵染细菌的效率就提高。
限制性内切酶及由宿主控制的限制与修饰作用
分子克隆 (Molecular Cloning)
1.Vectors
Vectors: A DNA (a plasmid or a phage DNA) that serves as a carrier in gene cloning experiments.
本章常用技术词汇
一 基因工程与分子克隆
(genetic engineering and molecular cloning)
Research content: genomic library, cDNA library, gene cloning, gene expression, gene regulation, gene knockout 用于基因克隆的工具酶 (enzymes for gene cloning) 在生物技术中常用的各种工具酶系指能用于DNA和RNA分子的切割、连接、聚合、反转录等有关的各种酶系统称为工具酶。
非模板链称为有意义链,而模板常称为反义链。
以DNA一条链为模板, 诱导RNA聚合酶活性、RNA聚合酶识别并结合在转录起始位点 以ATP、GTP、CTP和UTP为前体,合成(转录)RNA 当遇到转录终止信号时,转录即停止。
(生物科技行业类)分子生物学常用技术的原理及其应用及人类基因组学
第八章分子生物学常用技术的原理及其应用及人类基因组学测试题一、名词解释1.分子杂交2.Southern blotting3.Northern blotting4.Western blotting5.dot blotting6.DNA芯片技术7.PCR8.功能性克隆9.转基因技术二、填空题1.Southern blotting用于研究、Northern blotting用于研究,Western blotting用于研究。
2.PCR的基本反应步骤包括、和三步。
3. 在PCR反应体系中,除了DNA模板外,还需加入、、和。
4.Sange法测序的基本步骤包括、、和。
5.目前克隆致病相关基因的主要策略有、、。
6.血友病第Ⅷ因子基因的首次克隆成功所采用的克隆策略是,而DMD致病基因的克隆所采用的克隆策略是。
三、选择题A型题1. 经电泳分离后将RNA转移到硝酸纤维素(NC)膜上的技术是:A.Southern blotting B.Northern blottingC.Western blotting D.dot blottingE.in situ hybridization2. 不经电泳分离直接将样品点在NC膜上的技术是A.Southern blotting B.Northern blottingC.Western blotting D.Dot blottingE.in situ hybridization3. 经电泳分离后将蛋白质转移到NC膜上的技术是A.Southern blotting B.Northern blottingC.Western blotting D.dot blottingE.in situ hybridization4. 经电泳后将DNA转移至NC膜上的技术是A.Southern blotting B.Northern blottingC.Western blotting D.Eastern blottingE.in situ hybridization5. PCR的特点不包括A.时间短,只需数小时 B.扩增产物量大C. 只需微量模板 D.用途非常广泛E. 底物必须标记6.用于PCR的DNA聚合酶必须A.耐热 B.耐高压 C. 耐酸 D.耐碱 E. 耐低温7.PCR反应过程中,模板DNA变性所需温度一般是A.95 ︒C B.85 ︒C C.75 ︒C D.65 ︒C E.55 ︒C8.PCR反应过程中,退火温度一般是A.72 ︒C B.85 ︒C C.75 ︒C D.65 ︒C E.55 ︒C 9. PCR反应过程中,引物延伸所需温度一般是A.95 ︒C B. 82 ︒C C.72 ︒C D.62 ︒C E.55 ︒C 10.PCR反应体系不包括A. 模板DNA B.TaqDNA聚合酶C. 上、下游特异性引物A、B D.ddNTPE.含Mg2+的缓冲液11.PCR的循环次数一般为A.5~10次 B.10~15次 C.15~20次D.20~25次 E.25~30次12.PCR反应体系与双脱氧末端终止法测序体系不同的是缺少A.模板 B.引物 C. DNA聚合酶D.ddNTP E.缓冲液13.Sanger法测序不需要A.Klenow小片段 B.引物 C. dNTPD.标记dNTP E.ddNTP14.Sanger法测序的基本步骤不包括A.标记模板 B.模板一引物杂交 C.电泳D.引物的延长与合成阻断 E.放射自显影直读图15.Sanger法测序的四个反应体系中应分别加入不同的A.模板 B.引物 C标记dNTP D.DNA聚合酶 E. ddNTP16.人类基因组计划的主要研究内容不包括A.遗传图分析 B.物理图分析 C.转录图分析D. 序列图分析 E.蛋白质功能分析17.1996年,英国科学家克隆的Dolly羊所采用的技术是A.转基因技术 B.核转移技术 C.基因剔除技术D.肽核酸技术 E. 反义核酸技术18.Maxam—Gilbert法与Sanger法测序的共同点是均需A. 引物 B.Klenow大片段 C. ddNTPD. 化学裂解试剂 E.电泳后放射自显影读图19.Sanger法测序所得直读图像中,由终点至始点所读序列为A.待测DNA5'到3'的碱基序列B.待测DNA3'到5'的碱基序列C.待测DNA互补链3'到5'的碱基序列D.待测DNA互补链5'到3'的碱基序列E.引物5'到3'的碱基序列20.PCR实验的特异性主要取决于:A.DNA聚合酶的种类 B. 反应体系中模板DNA的量C.引物序列的结沟和长度 D.四种dNTP的浓度E. 循环周期的次数21.基因剔除(knock out)的方法主要被用来研究A.基因的结构 B.基因的功能 C. 基因的表达D.基因的调控 E.基因的突变22. 反义核酸作用主要是A.封闭DNA B.封闭RNA C.降解DNAD.降解DNA E.封闭核糖体的功能23.有关Sanger法测序的叙述,不正确的是A.只需标记一种dNTPB. 一般应去除DNA聚合酶I的5'到3'外切酶活性C.与dNTP相比阻断剂应尽可能的多D.反应时间不必太长E. 应采用超薄高压电泳B型题(1—5)A.Northern blotting B.dot blotting C.Western blottingD. Southern blottingE. in situ hybridizanon1..用限制性内切酶酶切后进行电泳分离,再将DNA转移到NC膜上杂交的技术是2.电泳分离后将RNA转移至NC膜上杂交的技术是3.电泳分离后将蛋白质转移至NC膜上,与标记蛋白杂交的技术是4.不经电泳直接将样品点在NC膜上杂交的技术是5. 在组织切片上直接与探针杂交的技术是(6—8)A.95︒C B.85 ︒C C.72︒C D.65︒C E.55︒C6.PCR变性温度一般是7.PCR退火温度一般是8.PCR引物延伸温度一般是(9—12)A.Taq DNA聚合酶 B. 反转录酶 C.K1cnow大片段 D.末端核苷酸转移酶 E.Klenow小片段9.同聚物加尾连接需要10.PCR需要11.Sanger法测序需要12.由mRNA合成cDNA需要X型题1.PCR反应体系中含有A.特异性引物 B.Klenow大片段 C.dNTPD.ddNTP E.35S-α-dATP2. PCR技术的反应步骤包括:A.退火 B. 复性 C. 变性 D.引物延伸E.引物终止3.DNA链末端合成终止法反应体系中含有A.引物 B.dNTP C.ddNTPD.35S-α-dATP E.TaqDNA聚合酶4.DNA链末端合成终止法反应体系中不含有A.模板 B.TaqDNA聚合酶 C.ddNTPD.化学裂解试剂 E.35S-α-dATP5.PCR技术可以用于A.病原微生物的微量检测 B.突变基因的筛选C. 法医学鉴定 D.DNA序列分析E.克隆目的基因6.克隆致病相关基因的策略包括A.定位克隆 B.非定位候选克隆 C.功能克隆D.定位候选克隆 E.随机克隆四、问答题1.何谓PCR?简述其基本原理、反应体系和主要步骤。
pcr原理及在核酸检测中的应用
PCR原理及在核酸检测中的应用1. PCR(聚合酶链式反应)的原理PCR是一种常用的分子生物学技术,经常被用于核酸检测、基因测序以及基因工程中。
PCR基于DNA的复制原理,通过复制目标DNA片段来扩增其数量,从而便于后续的分析和研究。
PCR反应主要由以下三个步骤组成:1.1. 变性(Denaturation)PCR反应开始时,目标DNA被加热至高温(通常为94-98摄氏度),这样可以使DNA双链解开,变成两条单链的DNA。
这个过程称为变性,其目的是打开DNA双链结构,使其准备好与引物结合。
1.2. 预混合(Annealing)接下来,PCR反应体系的温度会降低到适合引物与目标DNA结合的范围(通常为50-65摄氏度)。
在此温度下,引物能够与目标DNA的互补序列结合,形成稳定的引物-模板复合体。
引物是一种短的DNA片段,可以识别并结合到目标DNA的特定区域。
1.3. 延伸(Extension)在引物与目标DNA结合后,PCR反应温度会升高到一个适合DNA聚合酶活性的范围(通常为65-72摄氏度)。
DNA聚合酶是一种酶类,能够在模板DNA上延伸新的DNA链。
在延伸步骤中,DNA聚合酶沿着引物在目标DNA模板上进行扩增,并合成新的DNA链。
2. PCR在核酸检测中的应用PCR技术广泛应用于核酸检测中,其高度特异性和敏感性使得它成为许多领域的首选方法。
下面列举了PCR在核酸检测中的主要应用:2.1. 疾病诊断PCR技术可以用于快速、特异性地检测疾病相关的病原体。
通过针对特定的DNA片段设计引物,可以检测患者样本中是否存在病原体的DNA。
例如,在COVID-19疫情期间,PCR被广泛应用于检测新型冠状病毒的存在,辅助诊断感染情况。
2.2. 基因突变检测PCR技术还可以用于检测个体基因组中的突变。
引物的设计能够使PCR特异性地扩增突变的基因片段,从而实现对特定突变的检测。
这对于基因疾病的早期筛查和个体基因型的确定非常重要。
分子生物学实验技术
分子生物学实验技术分子生物学是现代生物学的重要分支之一,其在疾病预防、治疗和生物科技等方面有广泛应用。
本文将介绍分子生物学实验中常用的技术,并讨论其原理和应用。
一、基本实验技术1. DNA/RNA提取技术DNA/RNA提取是分子生物学实验中的基础技术之一。
DNA/RNA提取的目的是从细胞或组织中提取高质量的DNA或RNA,为其后续检测和研究做好准备。
现在市场上有多种DNA/RNA提取试剂盒,供实验室使用。
通常,提取DNA首先将组织/细胞裂解,然后进行蛋白质沉淀、DNA沉淀、洗涤和重溶等步骤。
而提取RNA则需要防止RNA酶的污染并保护RNA的完整性。
RNA提取常见的方法是直接裂解和三步酚-氯仿法等。
2. PCR技术PCR(聚合酶链式反应)技术是一种常用的分子生物学技术,用于扩增DNA片段。
PCR反应是在一个热循环下进行的,包括退火、结合和扩增阶段。
其中,退火温度用于将引物与靶DNA结合,获得高特异性;扩增阶段用于扩增目标DNA片段,通常在72℃左右进行。
PCR技术广泛应用于疾病的诊断、基因多态性分析、DNA指纹鉴定和基因工程等方面。
对于基因工程,PCR技术在基因克隆、定量PCR、mutagenesis、突变扫描和芯片检测等方面也有重要应用。
3. 转染技术转染技术是指将外源基因或其他化合物转入目标细胞中的技术。
常用的转染方法包括:病毒介导的转染、电穿孔、化学转染及基于脂质体的转染等。
转染技术在基因治疗、模型建立、基因表达分析、药物筛选和基因敲除等方面都有广泛应用。
二、高级实验技术1. 基因测序技术基因测序是分子生物学中应用最广泛的技术之一,用于确定DNA序列。
常用的基因测序技术包括Sanger测序和新一代测序(NGS)技术。
Sanger测序是一种传统的测序技术,通过DNA聚合酶、DNA模板、引物和ddNTPs(二脱氧核苷三磷酸)来扩增和定序DNA。
此外,NGS技术的基本原理是平行测序,利用高通量测序技术对DNA样本进行重复测序,得到高质量的DNA序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三轮筛选
目录
第
五
节
疾病相关基因的克隆与鉴定
Cloning and Identification of Disease
Relative Genes
目录
克隆疾病相关基因的策略
(一)功能性克隆(functional cloning) (二)定位克隆(positional cloning) (三)非定位候选基因克隆策略(positionindependent candidate gene approaches) (四)定位候选基因克隆策略(positional candidate gene approaches )
目录
其他
斑点印迹 (dot blotting) 原位杂交 (in situ hybridization)
DNA点阵 (DNA array)
DNA芯片技术 (DNA chip)
目录
三 种 印 迹 技 术 的 比 较
目录
②
①
③
分子杂交实验
目录
放 射 自 显 影 照 片
目录
DNA 点阵
目录 目录
四、PCR的主要用途
(一)目的基因的克隆 (二)基因的体外突变 (三)DNA和RNA的微量分析 (四)DNA序列测定
(五)基因突变分析
目录
三、几种重要的PCR衍生技术
(一)反转录PCR技术
(二)原位PCR技术
(三)实时PCR技术
目录
实时PCR技术原理
目录
第
三
节
核 酸 序 列 分 析
Nucleic Acid Sequence Analysis
目录
一、转基因技术
转基因技术 采用基因转移技术使目的基因整合入 受精卵细胞或胚胎干细胞,然后将细胞导 入动物子宫,使之发育成个体。 转基因——被导入的目的基因 转基因动物(transgenic animal)
——目的基因的受体动物
目录
二、核转移技术 核转移技术 即动物整体克隆技术,将动物 体细胞核全部导入另一个体的去 胞核的受精卵内,使之发育成个 体,即克隆(clone)。
目录
(二)定位克隆
定义
从一种致病基因的染色体定位出发逐步 缩小范围,最后克隆该基因。
系统的定位克隆工作
① 遗传学分析(确定致病基因染色体定位)
交换分析、连锁不平衡分析
② 分子生物学分析
染色)非定位候选基因克隆策略
由于基因组作图的完成和分子病理学的
目录
第 七 节 生 物 芯 片 技 术
Biological Chip Technology
目录
一、基因芯片(gene chip) •DNA芯片(DNA chip)
•cDNA芯片(cDNA chip) 是指将许多特定的DNA片段或cDNA片
段作为探针,有规律地紧密排列固定于单位
面积的支持物上 。
目录
目录
蛋白质之间相互作用研究的重要性
蛋白质之间相互作用以及通过相互作用而 形成的蛋白复合物是细胞各种基本功能的主
要完成者。几乎所有的重要生命活动,包括
DNA的复制与转录、蛋白质的合成与分泌、
信号转导和代谢等等,都离不开蛋白质之间
的相互作用。
目录
常用蛋白质相互作用的研究技术
酵母双杂交
各种亲和分析(亲和色谱、免疫共沉淀等) 荧光共振能量转换效应分析 噬菌体显示系统筛选等等
目录
一、酵母双杂交技术的基本原理
目录
二、酵母双杂交系统的应用
(一)分析已知蛋白之间的相互作用 (二)对蛋白质功能域的分析 (三)分析未知蛋白相互作用 (四)绘制蛋白质相互作用系统图谱
(五)在药物设计中的应用
目录
目录
DNA自动测序结果举例
目录 目录
第
四
节
基
因
文
库
Gene包含了某一生物体全部技术 的原理及应用
The Popular Technology in Molecular Biology: Principle and Application
目录
第
一
节
分子杂交与印迹技术
Molecular
5 5
5 5
5 5
5 5
5 5
5 5
25~30 次循环后,模板DNA的 含量可以扩大100万倍以上。
目录
二、PCR体系基本组成成分
模板DNA 特异性引物
耐热DNA聚合酶
dNTPs
Mg2+
目录
三、PCR的基本反应步骤
变性
95˚C
延伸 72˚C
退火
Tm-5˚C
目录
目录
一、分子杂交与印迹技术的原理
核酸分子杂交 (nucleic acid hybridization ) 在DNA复性过程中,如果把不同DNA单链分 子放在同一溶液中,或把DNA与RNA放在一起, 只要在DNA或RNA的单链分子之间有一定的碱基 配对关系,就可以在不同的分子之间形成杂化双 链(heteroduplex) 。
目录
二、蛋白质芯片 蛋白质芯片(protein chip) 是将高度密集排列的蛋白分子作为探针 点阵固定在固相支持物上,当与待测蛋白样 品反应时,可捕获样品中的靶蛋白,再经检
测系统对靶蛋白进行定性和定量分析的一种
技术。
目录
第 八 节
蛋白质相互作用研究技术
Research Technology of Interaction of Protein
分子在不同位点断裂,从而获得一系列大小不同
的DNA片段,将这些片段经电泳分离。
分析前,用同位素标记DNA的5´末端,经放
射自显影即可在X胶片上读出DNA链的序列。
目录
二、DNA链末端合成终止法
目录
目录
三、DNA自动测序
采用荧光替代放射性核素标记是实现DNA序列 分析自动化的基础。用不同荧光分子标记四种双脱 氧核苷酸,然后进行Sanger测序反应,反应产物经 电泳(平板电泳或毛细管电泳)分离后,通过四种 激光激发不同大小DNA片段上的荧光分子使之发 射出四种不同波长荧光,检测器采集荧光信号,并 依此确定DNA碱基的排列顺序。
目录
复性
RNA
DNA
目录
(一)印迹技术 (二)探针技术 探针 (probe) 一小段用同位素、生物素或荧光染料标标记 其末端或全链的已知序列的多聚核苷酸,与固定 在NC膜上的核苷酸结合,判断是否有同源的核 酸分子存在。
目录
二、印迹技术的类别及应用
(一)DNA印迹技术 (Southern blotting) 用于基因组DNA、重组质粒和噬菌体的分析。 (二)RNA印迹技术 (Northern blotting) 用于RNA的定性定量分析。 (三)蛋白质的印迹分析 (Western blotting) 用于蛋白质定性定量及相互作用研究。
发展,人们可以不依靠染色体定位,直接根 预测出候选致病基因。
据病理学变化和对各种基因产物功能的了解,
目录
(四)定位候选基因克隆策略
当致病基因的染色体定位确认后, 人们可以利用因特网上的基因网站 所提供基因序列数据,鉴定出候选
致病基因。
目录
第六节
遗传修饰动物模型的建立 及应用
The Establishment and Application of Heredity-Modified Animal Model
第 二 节
聚 合 酶 链 反 应
Polymerase Chain Reaction
目录
一、基本工作原理
Template DNA
5 5
5
Primer 1 5 Primer 2
Cycle 1
5 5 5
5
Cycle 2
5 5 5 5
目录
5
5
5 5
Cycle 3
5 5 5 5
目录
(一)功能性克隆 定义 从对一种致病基因的功能的了解出发, 克隆该致病基因。
应用 生化机制已明确、基因表达产物较易得 到部分纯化的遗传性疾病。
目录
克隆方 complementation assay) 利用酵母系统从功能学角度鉴定致病基因。
目录
核酸序列分析的基本原理
化学裂解法 (Maxam-Gillbert法)
DNA链的末端合成终止法 (sanger法)
目录
一、化学裂解法(Maxam-Gillbert法)
基本原理
基于某些化学试剂可以使DNA链在1个或2个
碱基处发生专一性断裂的特性,精确地控制反应
强度,使一个断裂点仅存在于少数分子中,不同
目录
目录
三、基因剔除技术 基因剔除技术 也称基因靶向(gene targeting)灭
活,有目的去除动物体内某种基因 的技术。
目录
四、基因转移和基因剔除技术在 医学中的应用 建立动物模型
① 单基因决定疾病模型 基因剔除 获得性突变(gain-of-function mutation) ② 多基因决定疾病模型