2.2平面向量的加减运算

合集下载

2.2.向量加减法、数乘运算及其几何意义

2.2.向量加减法、数乘运算及其几何意义
向量加减法向量的加减法平面向量加减法加减法运算加减法互为逆运算加减法简便运算小数加减法简便运算向量运算空间向量与立体几何向量的运算
2.2.向量加法、减法运算 及其几何意义
1、位移
AB + BC = AC
C A B F1
2、力的合成
F1 + F2 = F
F2
F
数的加法启发我们,从运算的角度看, AC可以认为 是AB与BC的和,F可以认为是F1与F2的和,即位移、力的 合成可以看作向量的加法。
(1)同向
a
(2)反向
a
b
A
B C B C
b
A
AC = a + b
规定: a + 0 = 0 + a = a
AC = a + b
当向量a ,b不是共线向量时,a + b又如何 作出来?
b a

a
A
a+ b
b
B
| a+ b|< | a|+ |b| 一般地,有 | a + b |? | a | |b|
E
3AB BC
3 AC
∴ AC与 AE 共线.
作业:
课本P 4, P 5, P 4 84 90 91
数的加法满足交换律与结合律,即对任意a,b∈R,有
a+b=b+a
任意向量
a、 b
(a+b)+c=a+(b+a)
的加法是否也满足交换律与结合律?
a+ b = b+ a (a + b) + c = a + (b + c )

2.2 平面向量的线性运算

2.2 平面向量的线性运算

2.2 平面向量的线性运算2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ .⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++ ;③00a a a +=+=.⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++.3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ= ;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+;③()a b a b λλλ+=+ .⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= .设()11,a x y =,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.课堂训练 一.选择题1.下列命题正确的是( ) A.若∥a b ,则a 与b 同向B.若∥a b ,则a 与b 同向或反向 C.若a =0,则a 与0共线D.若a 不为0,则a 与0不共线且3AC CB =-,设2.如图1所示,向量 ,,OAOBOC 的终点A B C ,,在一条直线上,=OA p ,= OB q ,= OC r ,则以下等式中成立的是( )A.1322r p q =-+B.2r p q =-+baCBAa b C C -=A -AB =BC.3122r p q =- D.2r q p =-+3.如图2所示,在菱形ABCD 中,120DAB ∠= ,则以下说法错误的是( ) A.与AB 相等的向量只有一个(不含AB本身) B.与AB 的模相等的向量只有4个(不含AB本身) C.BD 的长度恰为DAD.CB 与DA不共线4.将1[2(28)4(42)]12+--a b a b 化简成最简式为( ) A.2a b - B.b a - C.a b - D.2b a -5.已知G 是ABC △的重心,如图1所示,则GA GB GC +-=( ) A.0 B.4GEC.4GDD.4GF6.若9AB = ,6AC = ,则BC的取值范围为( )A.[315],B.[39], C.(315),D.[69],二.填空题7.已知非零向量1e 和2e 不共线,欲使t 12+e e 和1+e t 2e 共线, 则实数t 的值为 .8.平行四边形ABCD 中,M 为DC 中点,N 为BC 的中点.设AB = a ,AD = b ,则=MN (用a ,b 表示).9.已知菱形ABCD 的边长为1,60ABC AB ∠==,a ,AC = c ,BC =b ,则a bc ++= .10.已知OA = a ,OB = b ,若12OA = ,5OB =,且90AOB ∠= ,则-=a b . 11.在菱形ABCD 中,60DAB ∠= ,1AB = ,则BC DC +=.12.在静水中划船速度是10米/分钟,水流速度10米/分钟,如果船从岸边径直沿垂直于水流方向行走,那么船实际行进速度应是 .实际行进方向与水流方向的夹角为 . 三.解答题13.两个非零向量12,e e 不共线.(1)若= AB 12e e +,BC = 1228e e +,CD =123()-e e ,求证:,,A B D 三点共线; (2)求实数k ,使k 12e e +与12+e k 2e 共线.14.一艘军舰从基地A 出发向东航行了200海里到达基地B ,然后又改变航向向东偏北60 航行了400海里到达C 岛,最后又改变航行,向西航行了200海里到达D 岛.(1)试作出向量AB BC CD,,;(2)求AD .15.如图4,在ABC △中,在AC 上取点N ,使得13AN AC =,在AB 上取点M ,使得13AM AB =,在BN 的延长线上取点P ,使得12NP BN =,在CM 的延长线上取点Q ,使得12MQ CM =,用向量的方法证明P A Q ,,三点共线.16.一架飞机向北飞行300 km ,然后改变方向向西飞行400 km ,求飞机飞行的路程及两次位移的合成.17.已知ABCD 的对角线AC 和BD 相交于O ,且OA a = ,OB b = ,用向量a ,b 分别表示向量OC ,OD,DC ,BC .18.飞机从甲地以北偏西15˚的方向飞行1400km 到达乙地,再从乙地以南偏东75˚的方向飞行1400km 到达丙地.试画出飞机飞行的位移示意图,并说明丙地在甲地的什么方向?丙地距甲地多远?第19题.如图,13AM AB = ,13AN AC =.求证:13MN BC = .同步提升一.选择题(每题5分)1.设b →是a →的相反向量,则下列说法错误的是( ) A .a →与b →的长度必相等 B .a bC .a →与b →一定不相等 D .a →是b →的相反向量2.已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为a →、b →、c →,则向量OD 等于( ) A .a b c ++ B .a b c -+ C .a b c + - D .a b c-- 3.(如图)在平行四边形ABCD 中,下列正确的是( ).A .AB CD = B .AB AD BD -=C .AD AB AC += D .AD BC 0+= 4.+++等于( ) A . B . C .AC D .CA5.化简SP PS QP OP ++-的结果等于( )A 、B 、C 、D 、A AB OC = B AB ∥DEC AD BE =D AD FC =7.下列等式中,正确的个数是( )①a b b a +=+ ②a b b a = --③0a a -=- ④(a )a --= ⑤a (a )0+-=A .5B .4C .3D .28.在△ABC 中,AB a = ,AC b = ,如果a||b|=|,那么△ABC 一定是( ).A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形9.在ABC ∆中,BC a =,CA b =,则AB 等于( )A .a b +B .(a b )-+C .a b -D .b a -10.已知a 、b 是不共线的向量,AB a b λ=+ ,AC a b μ=+(λ、R μ∈),当且仅当( )时, A 、B 、C 三点共线. ()1A λμ+= ()1B λμ-=()1C λμ=-()1D λμ=二.填空题(每题5分)11.ABCD 的两条对角线相交于点M ,且AB a,AD b ==,则MA = ______,MB = ______,MC = ______,MD =______.12.已知向量a 和b 不共线,实数x ,y 满足b y x a b a y x)2(54)2(-+=+-,则=+y x ______13.在ABCD 中,AB a,AD b ==,则AC = ______,DB = ______.14.已知四边形ABCD 中,1AB DC 2=,且AD BC = 则四边形ABCD 的形状是______.三.解答题15.化简下列各式:(1)=++++______;(2)()()AB MB BO BC OM ++++=______.(3)=-++-)()(______.16.某人从A 点出发向西走了10m ,到达B 点,然后改变方向按西偏北︒60走了15m 到达C 点,最后又向东走了10米到达D 点.(1)作出向量AB ,,(用1cm 长线段代表10m 长);(2)求DA17.如图,在梯形ABCD 中,对角线AC 和BD 交于点O ,E 、F 分别是AC 和BD 的中点,分别写出 (1)图中与、共线的向量; (2)与相等的向量.CDABNM18.在直角坐标系中,画出下列向量: (1)a 2= ,a的方向与x 轴正方向的夹角为 60,与y 轴正方向的夹角为 30;(2)a 4=,a的方向与x 轴正方向的夹角为 30,与y 轴正方向的夹角为 120;(3)a=,a的方向与x 轴正方向的夹角为 135,与y 轴正方向的夹角为 135.19.在ABC ∆所在平面上有一点P ,使得=++,试判断P 点的位置.20.如图所示,在平行四边形ABCD 中,点M 是AB 边中点,点N 在BD 上且BD BN 31=,求证:M 、N 、C 三点共线.2.2 平面向量的线性运算 课堂训练参考答案一.选择题 1~5 CADDD 6 A 二.填空题7.1± 8.1()2-a b 9.2 10.13 11.45三.解答题 第13题.(1)证明:=++= AD AB BC CD 1266+=e e 6AB, A B D ∴,,三点共线;(2)解: k 12+e e 与12e +k 2e 共线, ∴k 12+=e e λ(12e +k 2e ),(2)λ∴-k 1e +(1)k λ-2e =0,201k k k λλ-=⎧∴⇒=⎨-⎩,,第14题.解:(1)向量ABBC CD ,,如右图所示.(2)根据题意,易知AB 和CD 方向相反,故AB 与CD共线.又AB CD = ,∴在四边形ABCD 中,AB CD∥,四边形ABCD 是平行四边形, AD BC ∴= ,400AD BC ∴==海里.第15题.证明:111()()222AP NP NA BN CN BN NC BC =-=-=+=,111()()222QA MA MQ BM CM BM MC BC =-=-=+= ,AP QA ∴= ,P A Q ∴,,三点共线.第16题.飞机飞行的路程是700 km ;两次位移的合成是向北偏西约53˚方向飞行500 km .第17题.OC a =- ,OD b =- ,DC b a =- ,BC a b =--.第18题.丙地在甲地的北偏东45˚方向,距甲地1400km .第19题.证明:因为MN AN AM =-,而13AN AC = ,13AM AB = ,所以1133MN AC AB =- ()1133AC AB BC =-= .同步提升参考答案 一.选择题(每题5分)1.C2. B3.C4.B5. B6.D7.C8.A9.B 10.D 二.填空题(每题5分)11.111(a b ),(a b ),(a b )222-+-+ ,1(b a )2-12.1 13.a b + ,a b- 14.等腰梯形三.解答题(每题10分)15.(1)0(2)AC (3)016.【解答】(1)如图,(2)∵-=,故四边形ABCD 为平行四边形, )m (15==DA BC17.【解答】与EF 共线的向量有AB 、; 与CO 共线的向量有CE ,CA ,OE ,OA ,; 与EA 相等的向量是18.【解答】19.【解答】 PA PB PC AB ++=()PA PA AB PC AB ∴+++=,故-=2A ∴、P 、C 三点共线,且P 是线段AC 的三分点中靠近A 的那一个20.【解答】提示:可以证明MC 3MN =CDABNM。

2019-2020学年高中数学第二章平面向量2.2.1向量加法运算及其几何意义

2019-2020学年高中数学第二章平面向量2.2.1向量加法运算及其几何意义

③当两个非零向量a与b反向且|a|<|b|时(如图2),则a+b与b方向相同 (与a方向相反),且|a+b|=||a|-|b||. ④当两个向量a与b中至少有一个为0时,则必有|a+b|=|a|+|b|=||a||b||. 综上可知任意两个向量a,b恒有||a|-|b||≤|a+b|≤|a|+|b|.
uuur uuur 则飞机飞行的路程指的是| AB |+| BC |;
uuur uuur uuur 两次飞行的位移的和指的是 AB + BC = AC .
uuur uuur 依题意,有| AB |+| BC |=800+800=1 600(km), 又α=35°,β=55°,∠ABC=35°+55°=90°,
新知导学 课堂探究
新知导学·素养养成
1.向量加法的定义 定义:求两个向量 和 的运算,叫做向量的加法. 对于零向量与任一向量a,规定0+a=a+ 0 = a .
2.向量求和的法则
三角形 法则
法则
前提 作法
结论
已知非零向量a,b,在平面内任取一点A
uuur uuur
uuur
作 AB =a, BC =b,再作向量 AC
uuur uuur uuur uuur uuur uuur uuur uuur (1)解析:a=( AB + CD )+( BC + DA )= AB + BC + CD + DA =0, 所以 0∥b,①正确;0+b=b,③正确;|0+b|=|0|+|b|,⑤正确.故选 C.
uuur uuur uuur (2)化简:① AB + CD + BC ;

高中数学第二章平面向量2.2.1向量加法运算及其几何意义课件3新人教A必修4

高中数学第二章平面向量2.2.1向量加法运算及其几何意义课件3新人教A必修4

【即时小测】
1.思考下列问题.
(1)两个向量相加结果可能是一个数量吗? 提示:不能,实数相加结果是数,而向量具有方向,所以相加的结果 是向量. (2)两个向量相加实际上就是两个向量的模相加,这种说法对吗? 提示:这种说法是不正确的.向量既有大小又有方向,在进行向量相 加时,不仅要确定长度还要确定向量的方向.
答案:CF
知识点1 向量的加法
【知识探究】
观察图形,回答下列问题:
问题1:三角形法则和平行四边形法则的使用条件有何不同? 问题2:共线向量怎样进行求和? 问题3:当涉及多个向量相加时,运用哪个法则求解?
【总结提升】 1.对向量加法的三角形法则和平行四边形法则的三点说明 (1)两个法则的使用条件不同. 三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于 两个不共线的向量求和. (2)当两个向量不共线时,两个法则是一致的. (3)在使用三角形法则时要注意“首尾相连”,在使用平行四边形法 则时需要注意两个向量的起点相同.
3.如图,在正六边形ABCDEF中BuuAur
uuur CD
uur EF
=______.
【解析】根据正六边形的性质,对边平行且相等,我们容易得到
uuur uuur uur uuur uuur uur uur uuur uur BA CD EF BA AF EF BF CB CF.
uur
【解题探究】典例图1中a与b有何关系,图2两向量相加可采用哪种方
法进行?图3三向量相加可采用哪种方法进行? 提示:图1中向量a与向量b共线,图2中两向量相加可采用三角形法则 或平行四边形法则进行.图3中三向量相加可采用三角形法则或平行四 边形法则进行.
【解析】如图中(1),(2)所示, 首先作OuuAu=r a,然后作 Auu=Burb,则 Ou=uBura+b.

平面向量的加减法

平面向量的加减法

,b= ,仍是零向量
a
(-a)+a
-b
-a
0
向量减法的定义和法则
问题1:两个相反数的和为零,那么两个相反向量的和也为零吗? 提示:是零向量. 问题2:根据向量加法,如何求作a-b? 提示:①先作出-b;②再按三角形或平行四边形法则进行.
向量的减法
(1)定义:a-b=a+ (-b) ,即减去一个向
量相当于加上这个向量的 相反向量

(2)几何意义:以O为起点,作向量 OA =
a, OB =b,则 BA =a-b,如图所示,即a-b可表示从
向量b的终点
指向 向量a的终点
的向量.
深化理解
1.向量的减法运算与向量的加法运算是互逆运算, 可以相互转化,减去一个向量等于加上这个向量的相反 向量.
2.两个向量的差也可用平行四边形法则及三角形法 则求得:用平行四边形法则时,两个向量也是共起点,
跟踪练习
1.在平行四边形ABCD中, AB + CB - DC =
A. BC
B. AC
C. DA
D. BD
解析:如图∵ CB = DA , ∴ AB + CB - DC = AB + DA - DC = AB + CA = CA + AB = CB = DA .
答案:C
()
2.如图,在四边形 ABCD 中,根据图示填空: a+b=____,b+c=____,c-d=____, a+b+c-d=____.
答案:4 km/h
2.如图,一架飞机从 A 地按北偏西 30°的方向飞行 300 km 后 到达 B 地, 然后向 C 地飞行.已知 C 地在 A 地北偏 东 60°的方向处,且 A,C 两地相距 300 km,求飞机从 B 地向 C 地飞行的方 向及 B、C 两地的距离.

2.2 平面向量的减法

2.2  平面向量的减法

B C
A
C
B
A
习题 2.2 A组
第 4、6、7、8、11 题. B组
第 5 题.
4. 化简: 习题: (习题2.2) A 组
(1)AB BC CA;
(2) (AB MB) BOOM;
(3) OAOC BOCO; (4) AB- AC BD-CD;
(5) OA-OD AD;
① a 与-a互为相反向量.
② 零向量的相反向量仍是零向量.
③ 任上一a图向(中量-a的与)=它a0.相b反=0向. 量的和是零向量, 即:
问题1. 向量AB与向量BA有什么关系? 能化简
AB BC - DC - ED EF 吗?
答: 向量 AB 与向量 BA是互为相反向量, 即 AB = -BA.
2.2.2 向量减法运算 及其几何意义
返回目录
1. 什么是相反向量? 2. 向量加法与向量减法有什么关系? 3. 怎样作向量的减法? 两个非零向量的差向 量是怎样的一个向量?
(一) 相反向量
定义: 与向量 a 长度相等, 方向相反的向量, 叫做 a 的相反向量, 记作 -a.
如图:
a
b
-a
b = -a, a = -b, |a| = |b|.
= CΒ BC =0.
4. 化简: 习题: (习题2.2) A 组
(1)AB BC CA;
(2) (AB MB) BOOM;
(3) OAOC BOCO; (4) AB- AC BD-CD;
(5) OA-OD AD;
(6) AB- AD- DC;
(7) NQ QP MN - MP.
-

b
-a
-b-=a--ab

平面向量的加法与减法运算

平面向量的加法与减法运算

平面向量的加法与减法运算在平面向量的运算中,加法与减法是最基本的运算法则。

平面向量加法与减法的定义及运算规则如下:一、平面向量的定义在平面上,向量是由大小和方向确定的箭头表示,具有大小和方向的量。

平面向量用字母加箭头表示,如AB→,表示从点A指向点B的向量。

二、平面向量的加法运算1. 定义:对于两个平面向量AB→和CD→,可以将CD→放置在平面上的A点,使得它们有相同的起点,然后从A点指向D点,得到一个新的向量AD→。

AD→就是AB→与CD→的和,表示为AB→+CD→。

2. 运算规则:a) 加法的交换律:AB→ + CD→ = CD→ + AB→b) 加法的结合律:(AB→ + CD→) + EF→ = AB→ + (CD→ + EF→)c) 零向量的定义:零向量是指大小为0的向量,用0→表示,对于任意向量AB→,有AB→ + 0→ = AB→d) 反向向量的定义:对于任意向量AB→,存在一个与之方向相反但大小相等的向量,称为其反向向量,用-AB→表示,有AB→ + (-AB→) = 0→三、平面向量的减法运算1. 定义:对于两个平面向量AB→和CD→,可以将CD→取反,然后按照向量加法的规则,得到AB→ + (-CD→),表示为AB→ - CD→。

2. 减法的运算规则:a) 减法的定义:AB→ - CD→ = AB→ + (-CD→)b) 减法的性质:AB→ - CD→ ≠ CD→ - AB→,减法不满足交换律。

四、示例分析1. 平面向量加法示例:设有向量AB→ = 3i + 4j和向量CD→ = -2i + 5j,其中i和j是单位向量。

AB→ + CD→ = (3i + 4j) + (-2i + 5j) = (3 - 2)i + (4 + 5)j = i + 9j2. 平面向量减法示例:设有向量AB→ = 3i + 4j和向量CD→ = -2i + 5j,其中i和j是单位向量。

AB→ - CD→ = (3i + 4j) - (-2i + 5j) = (3 + 2)i + (4 - 5)j = 5i - j五、平面向量的运算性质1. 平面向量加法满足交换律和结合律,即满足整个群论的要求。

平面向量加减法口诀

平面向量加减法口诀

向量的加法口诀: 首尾相连,首连尾,方向指向末向量。

以第一个向量的起点为起点,以第二个向量的终点为终点的向量是两向量的和向量。

二、向量的减法两向量做减法运算,图像如下图所示:向量的减法口诀: 首首相连,尾连尾,方向指向被减向量。

以第一个向量的终点为起点,以第二个向量的终点为终点的向量是两向量的差向量。

向量的学习是高一数学必修四第二章的内容,要求同学们会向量的基本运算,其中就包括加法、减法、数乘。

要求大家能根据运算法则解决基本的向量运算,学会运用图像解决向量加减法,向量的数乘等问题。

向量的相关题目难度也不是很大,只要大家认真学习,认真做好笔记,认真做做题目,总结做题规律,那么当我们遇到类似题目时就会似曾相识,做起来也很顺手,再细心点的话,得满分也没有问题。

学习方法很多,重要的事找到适合自己的方法,当然适合自己方法就是最好的方法。

附一;三角形定则解决向量加减的方法将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。

注:两个向量相减,则表示两个向量起点的字母必须相同;差向量的终点指向被减向量的终点。

平行四边形定则解决向量加法的方法实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的λ∣倍.数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ 3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律a·b=b·a(交换律);(λa)·b=λ(a·b)(关于数乘法的结合律);(a+b)·c=a·c+b·c(分配律);向量的数量积的性质a·a=|a|的平方.a⊥b 〈=〉a·b=0.|a·b|≤|a|·|b|.向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.3、|a·b|≠|a|·|b|4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.。

平面向量的加减法

平面向量的加减法

[精解详析] 因为 a+b= BA ,c-d= DC , 所以 a= OA ,b= BO ,c= OC ,d= OD ;如图所示,作 平行四边形 OBEC,平行四边形 ODFA,根据平行四边形法则 可得:b-c= EO ,a+d= OF .
跟踪练习
1.如图,已知正方形 ABCD 的边长等于 1,
An1 An A0 An ,这可以称为向量加法
例题讲解
[例1] 如图所示,
已知向量a,b,c试作出向量a+b+c.
[精解详析] 法一:如图 1 所示, 首先在平面内任取一点 O,作向量 OA = a,再作向量 AB =b,则得向量 OB =a+b; 然后作向量 BC = c,则向量 OC = (a+ b)+ c =a+b+c 即为所求.
AB =a, BC =b, AC =c,试作以下
向量并分别求模. (1)a+b+c; (2)a-b+c.
解:(1)如图,由已知得:a+b= AB + BC = AC ,又 AC =c, 延长AC到E, 使| CE |=| AC |. 则a+b+c= AE ,且| AE |=2 2. (2)作 BF = AC ,连接CF, 则D、C、F共线, 则 DB + BF = DF , 而 DB = AB - AD =a- BC =a-b, ∴a-b+c= DB + BF = DF 且| DF |=2.
例题讲解
[例 2] 化简或计算:
(1) CD + BC + AB ; (2) AB + DF + CD + BC + FA .
[精解详析] (1) CD + BC + AB =( AB + BC )+ CD = AC + CD = AD . (2) AB + DF + CD + BC + FA =( AB + BC )+( CD + DF )+ FA = AC + CF + FA = AF + FA =0.

第二章 2.2 2.2.2 向量减法运算及其几何意义

第二章 2.2 2.2.2 向量减法运算及其几何意义

解析:① AB + BC + CA = AC + CA =0; ② OA+ OC + BO + CO =( CO + OA)+( BO + OC ) = CA+ BC = BA ; ③ AB - AC + BD - CD = CB + BC =0; ④ NO + QP + MN - MP = NP + PN =0.
法三:( AB - CD )-( AC - BD ) = AB - CD - AC + BD =( OB - OA)-( OD - OC )-( OC - OA )+(OD - OB ) = OB - OA- OD + OC - OC + OA + OD - OB =0.
先根据向量加、减法的运算法则将易求的向量表 示出来,再表示 BD . [提示]
[解] ∵四边形 ACDE 为平行四边形, ∴ CD = AE =c. BC = AC - AB =b-a. BE = AE - AB =c-a, CE = AE - AC =c-b, ∴ BD = BC + CD =b-a+c.
1.下面给出了四个式子: ① AB + BC + CA ;② OA + OC + BO + CO ; ③ AB - AC + BD - CD ;④ NQ + QP + MN - MP . 其中值为 0 的有 A.①② C.①③④ B.①③ D.①②③ ( )
如图 1 所示.
法二:a+b-c=(a+b)+(-c)在平面内任取一点 O,作 OA =a, AB =b, BC =-c,则 OC =a+b-c,如图 2 所示.

高中数学必修4第二章:平面向量2.2平面向量的线性运算

高中数学必修4第二章:平面向量2.2平面向量的线性运算
知识回顾
向量的表示:AB或a
有向线段
向量
向量的大小 (长度、模)
向量的方向
单位向量 与零向量
相等向量与 平行向量 相反向量 (共线向量)
既有大小又有方向的量叫向量; 向量不能比较大小,但向量的模可以比较大小。
新课导入
大三通之前,由 于大陆和台湾没有直 航,因此要从台湾去 上海探亲,乘飞机要 先从台北到香港,再 从香港到上海,这两 次位移之和是什么?
解:(1)OA OC OB;
(2)BC FE AD;
E
D
FO
C
(3)OA FE 0.
A
B
(1)向量加法交换律: a b b a
D
a
C
b
b a+b
A
a
B
(2)向量加法结合律:
(a+b)+c a (b c)
D
c
C
D
c
C
(a + b) + c
a+b
a + (b + c) b
b+c b
B
B
A
a
-c.
通法提炼 两个向量的减法可以转化为向量的加法来进行.例如, 作a-b,可以先作-b,然后作a+-b即可,也可以直接 用向量减法的三角形法则,把两向量的起点重合,则差向 量就是连接两个向量的终点,指向被减向量的终点的向量.
如图,已知不共线的两个非零向量a,b,求作向量a- b,b-a,-a-b.
2(2008安徽)若 AB (2,4), AC (1, 3),
则BC ( B )
A.(1,1) C.(3,7)
B.(-1,-1) D.(-2,-4)

平面向量的加减运算

平面向量的加减运算

平面向量的加减运算平面向量是表示平面上的有向线段的数学工具,常用于描述位移、速度、力等物理量。

在平面向量的运算中,加法和减法是最基本的操作。

1. 加法运算平面向量的加法运算是指将两个向量相加得到一个新的向量的操作。

设有向量A(A₁, A₂)和向量A(A₁, A₂),则它们的和为向量A(A₁,A₂),即:A = A + A = (A₁ + A₁, A₂ + A₂)2. 减法运算平面向量的减法运算是指将一个向量减去另一个向量得到一个新的向量的操作。

设有向量A(A₁, A₂)和向量A(A₁, A₂),则它们的差为向量A(A₁, A₂),即:A = A - A = (A₁ - A₁, A₂ - A₂)在进行平面向量的加减运算时,我们可以利用向量的坐标表示进行计算。

具体操作如下:1. 给出需要进行加减运算的向量A和向量A的坐标表示。

2. 将两个向量的对应坐标进行相加(或相减),得到新的坐标。

3. 根据得到的新坐标,构造新的向量A(加法运算)或向量A(减法运算)。

4. 最后,将新的向量A(加法运算)或向量A(减法运算)的坐标表示写出,即完成了平面向量的加减运算。

补充说明:1. 在计算过程中,要注意坐标的顺序,确保符号对应正确。

2. 加法运算和减法运算可以通过相互转化来进行,即:A + A = A - ( - A)3. 若有多个向量进行加减运算,可以采用逐步进行的方法,先进行第一对向量的运算,然后将得到的结果与下一个向量进行运算,依次类推。

4. 在实际问题中,应用到向量加减运算时,可以结合图像进行解释和计算,更直观地理解向量的运算规律。

通过以上步骤,我们可以完成平面向量的加减运算。

在实际应用中,平面向量的加减运算常常用于解决平面几何和物理学中的问题,如位移、速度、力的合成分解等。

总结:平面向量的加减运算是指将两个向量相加或相减得到一个新的向量。

通过计算向量的各个坐标,然后进行相应的加减操作,我们可以得到最终的结果。

2.2.2平面向量的减法及几何意义

2.2.2平面向量的减法及几何意义

例2:如下图,已知向量 a , b , c , d , 求作向量


a b, c d .
A



B
C

b a
c

d
O

b
D
c

a
d

则 BA OA OB a b



DC OC OD c d

例3:如下图,

ABCD中, AB a , AD b ,
a
b
O
a b
a
A
向量减法的几何意义: a b OA OB BA, 表示 从向量b的终点指向向量a的终点的向量.
练习:课本P87页T2. 例1:
化简:( ) AC DB 1 AB
( A) AD ( B) AC (C )CD ( D) DC
一、向量减法运算的定义
(1)相反向量.
相反的向量,叫做 a 的相反向量,记作 a ① a 和 a互为相反向量,于是 ( a ) a a
②规定:零向量的相反向量还是零向量,即 ③任一向量与其相反向量的和是零向量,即
规定:与向量 a 长度相等,方向
0 0
a
a (a ) (a ) a 0.
④如果 a 、b 是互为相反的向量,那么 a b, b a, a b 0. (2)向量减法的定义: a b a ( b )
即减去一个向量相当于加上这个向量的相反向量.
ab
• 变式训练五
若 a b a b , 则a与a b的夹角为多少度?

平面向量的加减法运算教学设计

平面向量的加减法运算教学设计

平面向量的加减法运算教学设计以平面向量的加减法运算为主题的教学设计第一节:引入引导学生回顾平面向量的定义和性质,强调向量的表示方法和运算规则。

简要介绍平面向量的加法和减法运算,以及它们的几何意义。

第二节:平面向量的加法运算1.1 向量的加法定义向量的加法是指将两个向量的对应分量相加得到一个新的向量。

引导学生根据定义进行向量的加法运算。

1.2 加法运算的性质向量的加法满足交换律、结合律和零向量的存在性。

通过示例和练习题让学生理解和应用这些性质。

1.3 加法运算的几何意义向量的加法可以用平行四边形法则来解释,即将两个向量的起点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和终点。

第三节:平面向量的减法运算2.1 向量的减法定义向量的减法是指将第二个向量取负后与第一个向量进行加法运算。

引导学生根据定义进行向量的减法运算。

2.2 减法运算的性质向量的减法满足减去一个向量等于加上其相反向量,即a-b=a+(-b)。

通过示例和练习题让学生理解和应用这个性质。

2.3 减法运算的几何意义向量的减法可以用平行四边形法则来解释,即将第二个向量的起点与第一个向量的终点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和第二个向量的终点。

第四节:应用练习通过一些实际问题和练习题,让学生应用所学的平面向量的加减法运算解决几何和物理问题。

可以设计一些场景,如力的合成、位移的计算等。

第五节:总结与拓展对平面向量的加减法运算进行总结,强调运算的规则和性质,以及几何意义。

鼓励学生进一步拓展应用平面向量的知识,如向量的数量积和向量的夹角等。

通过以上教学设计,可以帮助学生系统掌握平面向量的加减法运算,理解其几何意义,并能够应用于实际问题的求解。

同时,通过练习和拓展,培养学生的问题解决能力和数学思维。

高中数学 第二章 平面向量 2.2 平面向量的线性运算教学案数学教学案

高中数学 第二章 平面向量 2.2 平面向量的线性运算教学案数学教学案

2.2 平面向量的线性运算第1课时向量加法运算及其几何意义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P80~P83的内容,回答下列问题.(1)观察教材P80图2.2-1,思考:某对象从A点经B点到C 点,两次位移的结果是什么?与从A点直接到C点的位移有什么关系?提示:从A点经B点到C点,两次位移的结果是位移,与从A点直接到C点的位移相等.(2)观察教材P80“探究”的内容,思考:①力F对橡皮条产生的效果,与力F1与F2共同产生的效果相同吗?提示:产生的效果相同.②力F与力F1、F2有怎样的关系?提示:力F是F1与F2的合力.力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.(3)数的加法启发我们,从运算的角度看,F可以认为是F1与F2的什么运算?提示:F可以认为是F1与F2的和,即位移、力的合成可看作向量的加法.2.归纳总结,核心必记(1)向量加法的定义求两个向量和的运算,叫做向量的加法.(2)向量加法的运算法则向量求和的法则三角形法则已知非零向量a、b,在平面内任取一点A,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b=+=_.这种求向量和的方法,称为向量加法的三角形法则.对于零向量与任一向量a的和有a+0=0+a=a.平行四边形法则以同一点O为起点的两个已知向量a、b为邻边作▱OACB,则以O为起点的对角线_就是a与b的和.我们把这种作向量和的方法叫做向量加法的平行四边形法则.①交换律:a+b=b+a;②结合律:a+b+c=(a+b)+c=a+(b+c).[问题思考](1)两个向量相加就是两个向量的模相加吗?提示:因为向量既有大小,又有方向,所以两个向量相加不是模的相加.两个向量相加应满足三角形法则或平行四边形法则.(2)当两非零向量a,b共线时,向量加法的平行四边形法则还能用吗?三角形法则呢?提示:平行四边形法则不能用,但三角形法则可用.(3)式子=0正确吗?[课前反思](1)向量加法的定义:;(2)求向量和的三角形法则:;(3)求向量和的平行四边形法则:;(4)向量加法的交换律:;(5)向量加法的结合律:.[思考1] 求作两个向量和的方法有哪些?提示:三角形法则和平行四边形法则.[思考2] 三角形法则和平行四边形法则的适用条件有什么不同?名师指津:(1)三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)当两个向量不共线时,两个法则是一致的.如图所示, (平行四边形法则),(3)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量的起点相同.讲一讲1.(1)如图①,利用向量加法的三角形法则作出a+b;(2)如图②,利用向量加法的平行四边形法则作出a+b.[尝试解答] (1)如图ⓐ所示,设=a,∵a与b有公共点A,故过A点作=b,连接即为a+b.(2)如图ⓑ,设=a,过O点作=b,则以OA、OB为邻边作▱OACB,连接OC,则=a+b.应用三角形法则和平行四边形法则应注意的问题(1)三角形法则可以推广到n个向量求和,作图时要求“首尾相连”,即n个首尾相连的向量的和对应的向量是第一个向量的起点指向第n个向量的终点的向量.(2)平行四边形法则只适用于不共线的向量求和,作图时要求两个向量的起点重合.(3)求作三个或三个以上的向量的和时,用三角形法则更简单.练一练1.如图,已知a、b、c,求作向量a+b+c.解:作法:在平面内任取一点O,如图所示.作=a+b+c.[思考] 向量加法有哪些运算律?名师指津:向量加法的交换律:a+b=b+a;向量加法的结合律:(a+b)+c=a+(b+c).讲一讲2.化简下列各式:解决向量加法运算时应关注两点(1)可以利用向量的几何表示,画出图形进行化简或计算.(2)要灵活应用向量加法运算律,注意各向量的起、终点及向量起、终点字母的排列顺序,特别注意勿将0写成0.练一练2.如图,在△ABC中,O为重心,D、E、F分别是BC、AC、AB 的中点,化简下列三式:讲一讲3.在某地抗震救灾中,一架飞机从A地按北偏东35°的方向飞行800 km到达B地接到受伤人员,然后又从B地按南偏东55°的方向飞行800 km送往C地医院,求这架飞机飞行的路程及两次位移的和.[尝试解答] 如图所示,设分别表示飞机从A地按北偏东35°方向飞行800 km,从B地按南偏东55°的方向飞行800 km.则飞机飞行的路程指的是;两次飞行的位移的和指的是依题意,有=800+800=1 600 (km).又α=35°,β=55°,∠ABC=35°+55°=90°.=8002+8002=8002(km).其中∠BAC=45°,所以方向为北偏东35°+45°=80°.从而飞机飞行的路程是 1 600 km,两次飞行的位移和的大小为800 2 km,方向为北偏东80°.利用向量的加法解决实际应用题的三个步骤练一练3.轮船从A港沿东偏北30°方向行驶了40 km到达B处,再由B处沿正北方向行驶40 km到达C处,求此时轮船与A港的相对位置.解:如图所示,设分别是轮船的两次位移,则表示最终位移,且=+.∠CAD=60°,即此时轮船位于A港东偏北60°,且距离A港40 3 km处.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是向量和的作法以及向量和的运算,难点是向量和的应用.2.要掌握向量加法的三个问题(1)求作向量的和,见讲1;(2)向量加法运算,见讲2;(3)向量加法的应用,见讲3.3.求作向量时应注意以下两点(1)利用三角形法则求和向量时,关键要抓住“首尾相接”,并且和向量是由第一个向量的起点指向最后一个向量的终点.(2)利用平行四边形法则求和向量时,应注意“共起点”.课下能力提升(十四)[学业水平达标练]题组1 求作向量的和1.如图,已知两个不共线的非零向量a,b,求作a+b.解:在平面内任取一点O,2.已知两非零向量a,b(如图所示)求作a+b.解:如图所示:在平面内任取一点O,作题组2 向量加法运算4.下列等式错误的是( )A.a+0=0+a=aA.2 5 B.45C.12 D.66.根据图示填空.解析:由三角形法则知7.已知正方形ABCD 的边长为1,=a ,=c ,=b ,则|a +b +c |为________.解析:|a +b +c |===2 2.答案:22 8.如图,O 为正六边形ABCDEF 的中心,根据图示计算: 解:(1)因为四边形OABC 是以OA ,OC 为邻边的平行四边形,OB 为其对角线,所以题组3 向量加法的应用 9.若a 等于“向东走8 km ”,b 等于“向北走8 km ”则|a +b |=________,a +b 的方向是________. 解析:如图所示,设=a ,=b ,则=a +b ,且△ABC 为等腰直角三角形,则||=8 2 km ,∠BAC =45°.答案:8 2 km 北偏东45°10.雨滴在下落一定时间后的运动是匀速的,无风时雨滴下落的速度是4.0 m/s ,现在有风,风使雨滴以433m/s 的速度水平向东移动,求雨滴着地时的速度和方向.解:如图,用表示雨滴下落的速度,表示风使雨滴水平向东的速度.以,为邻边作平行四边形OACB ,就是雨滴下落的实际速度. 在Rt △OAC 中,||=4,||=433,∴∠AOC =30°. 故雨滴着地时的速度大小是833m/s ,方向与垂直方向成30°角向东.[能力提升综合练]1.设a =,b 是任一非零向量,则在下列结论中,正确的为( )①a∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |;⑤|a +b |=|a |+|b |.A .①②B .①③C .①③⑤D .③④⑤解析:选C a ==0,∴①③⑤是正确的.2.已知D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中不正确的是( )解析:选D 由向量加法的平行四边形法则可知,3.如图,四边形ABCD 是梯形,AD ∥BC ,则=( )4.已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足,则下列结论中正确的是( )A .P 在△ABC 的内部B .P 在△ABC 的边AB 上C .P 在AB 边所在的直线上D .P P 在△ABC 的外部解析:选D ,根据平行四边形法则,如图,则点P 在△ABC 外.答案:6.若P 为△ABC 的外心,且,则∠ACB =________. 解析:∵,则四边形APBC 是平行四边形. 又P 为△ABC 的外心,因此∠ACB =120°.答案:120°7.在四边形ABCD 中,对角线AC 、BD 交于点O 且||==0,cos ∠DAB =12.求 又cos ∠DAB =12,∠DAB ∈(0,π), ∴∠ DAB =60°,∴△ABD 为正三角形.8.已知船在静水中的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.解:作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形,在Rt△ACD中,=|v水|=10 m/min,∴α=60°,从而船与水流方向成120°的角.故船行进的方向是与水流的方向成120°的角.第2课时向量减法运算及其几何意义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P85~P86的内容,回答下列问题.(1)一个数x的相反数是什么?一个向量a有相反向量吗?若有,如何表示?提示:一个数x的相反数是-x.一个向量a有相反向量,记为-a.(2)任何一个数x与它相反数的和为0,那么向量a与它的相反向量的和是什么?提示:a+(-a)=0.(3)根据前一节所学的内容,你能作出向量a与b的差a-b 吗?提示:可以,先作-b,再按向量加法的平形四边形法则或三角形法则作出a+(-b)即可.2.归纳总结,核心必记(1)相反向量与a长度相等,方向相反的向量,叫做a的相反向量,记作-a.①规定:零向量的相反向量仍是零向量;②-(-a)=a;③a+(-a)=(-a)+a=0;④若a与b互为相反向量,则a=-b,b=-a,a+b=0.(2)向量的减法①定义:a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.②几何意义:以O为起点,作向量=a,=b,则_=a -b,如图所示,即a-b可以表示为从向量b的终点指向向量a的终点的向量.[问题思考](1)若两个非零向量a与b互为相反向量,则a与b应具备什么条件?提示:①长度相等;②方向相反.(2)相反向量与相反数一样吗?提示:不一样.相反数是两个数符号相反,绝对值相等,相反向量是指两个向量方向相反,模相等.(3)若a-b=c-d,则a+d=b+c成立吗?提示:成立.移项法则对向量的运算是成立的.[课前反思](1)相反向量的定义:;(2)向量减法的定义:;(3)向量减法的几何意义:.讲一讲(1)向量减法运算的常用方法(2)向量加减法化简的两种形式①首尾相连且为和;②起点相同且为差.做题时要注意观察是否有这两种形式,同时要注意逆向应用.练一练1.化简下列各式:[思考1] 已知两个非零向量a,b,如何作a-b?名师指津:求作两向量的差可以转化为两个向量的和,也可以直接用向量减法的三角形法则,即把两向量的始点重合,则差向量就是连接两个向量的终点,并指向被减向量.[思考2] a-b的几何意义是什么?名师指津:a-b的几何意义是:当向量a,b的始点相同时,从向量b的终点指向向量a的终点的向量.讲一讲2.(1)四边形ABCD中,若( )A.a-b+c B.b-(a+c)C.a+b+c D.b-a+c(2)如图,已知向量a,b,c不共线,求作向量a+b-c.[尝试解答] (1)=a+c-b.(2)法一:如图①所示,在平面内任取一点O,作=a,=b,则=a+b,再作=c,则=a+b-c.法二:如图②所示,在平面内任取一点O,作=a,=b,则=a+b,再作=c,连接OC,则=a+b-c.答案:(1)A求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a-b,可以先作-b,然后作a+(-b)即可.(2)也可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.练一练2.如图,O为△ABC内一点,=a,=b,=c.求作:(1)b+c-a;(2)a-b-c.如图所示.(2)由a-b-c=a-(b+c),如图,作▱OBEC,连接OE,连接AE,则=a-(b+c)=a-b-c.讲一讲3.如图,解答下列各题:利用已知向量表示其他向量的一个关键及三点注意(1)一个关键一个关键是确定已知向量与被表示向量的转化渠道.(2)三点注意①注意相等向量、相反向量、共线向量以及构成三角形三向量之间的关系;②注意应用向量加法、减法的几何意义以及它们的运算律;③注意在封闭图形中利用多边形法则.练一练—————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是相反向量、向量减法的运算以及利用已知向量表示未知向量,难点是利用已知向量表示未知向量.2.要掌握向量减法的三个问题(1)向量的减法运算,见讲1;(2)向量减法及其几何意义,见讲2;(3)利用已知向量表示未知向量,见讲3.3.掌握用已知向量表示某向量的基本步骤第一步:观察各向量的位置;第二步:寻找(或作)相应的平行四边形或三角形;第三步:运用法则找关系;第四步:化简结果.课下能力提升(十五)[学业水平达标练]题组1 向量的减法运算1.已知非零向量a与b同向,则a-b( )A.必定与a同向B.必定与b同向C.必定与a是平行向量D.与b不可能是平行向量解析:选C 若|a|>|b|,则a-b与a同向,若|a|<|b|,则a-b与-b同向,若|a|=|b|,则a-b=0,方向任意,且与任意向量共线.故A,B,D皆错,故选C.3.给出下面四个式子,其中结果为0的是( )A.①② B.①③C.①③④ D.②③题组2 向量减法及其几何意义4.若O,E,F是不共线的任意三点,则以下各式中成立的是( )解析:选B 由减法法则知B正确.A.[3,8] B.(3,8)C.[3,13] D.(3,13)6.如图,在正六边形ABCDEF中,=( )7.已知菱形ABCD边长都是2,求向量的模.题组3 利用已知向量表示未知向量8.如图,向量,则向量可以表示为( ) A.a+b-c B.a-b+cC.b-a+c D.b-a-c解析:选C =b-a+c.故选C.9.已知一点O到▱ABCD的3个顶点A,B,C的向量分别是a,b,c,则向量等于( )A.a+b+c B.a-b+cC.a+b-c D.a-b-c解析:选B 如图,点O到平行四边形ABCD的三个顶点A,B,C的向量分别是a,b,c,结合图形有=a-b+c.10.如图,已知ABCDEF是一正六边形,O是它的中心,其中=b,=c,则等于________.解析:=b-c.答案:b-c11.如图,在五边形ABCDE中,若四边形ACDE是平行四边形,且=a,=b,=c,试用a,b,c表示向量[能力提升综合练]1.有下列不等式或等式:①|a|-|b|<|a+b|<|a|+|b|;②|a|-|b|=|a+b|=|a|+|b|;③|a|-|b|=|a+b|<|a|+|b|;④|a|-|b|<|a+b|=|a|+|b|.其中,一定不成立的个数是( )A.0 B.1 C.2 D.3解析:选A ①当a与b不共线时成立;②当a=b=0,或b =0,a≠0时成立;③当a与b共线,方向相反,且|a|≥|b|时成立;④当a与b共线,且方向相同时成立.2.如图,D,E,F分别是△ABC的边AB,BC,CA的中点,则( ) A.8 B.4 C.2 D.14.平面上有三点A,B,C,设若m,n 的长度恰好相等,则有( )A.A,B,C三点必在同一直线上B.△ABC必为等腰三角形且∠B为顶角C.△ABC必为直角三角形且∠B=90°D.△ABC必为等腰直角三角形解析:选C 由|m|=|n|,知A,B,C为一矩形的三顶点,且△ABC中∠B为直角.答案:6.设平面向量a1,a2,a3满足a1-a2+a3=0,如果平面向量b1,b2,b3满足|b i|=2|a i|,且a i顺时针旋转30°后与b i同向,其中i=1,2,3,则b1-b2+b3=________.解析:将a i顺时针旋转30°后得a i′,则a1′-a2′+a3′=0.又∵b i与a i′同向,且|b i|=2|a i|,∴b1-b2+b3=0.答案:07.设O是△ABC内一点,且,若以线段OA,OB为邻边作平行四边形,第四个顶点为D,再以OC,OD为邻边作平行四边形,其第四个顶点为H.试用a,b,c表示.解:由题意可知四边形OADB为平行四边形,又四边形ODHC为平行四边形,8.已知O为四边形ABCD所在平面外一点,且向量、满足等式.作图并观察四边形ABCD的形状,并证明.解:通过作图(如图)可以发现四边形ABCD为平行四边形.证明如下:∵,∴,∴,∴AB綊DC,∴四边形ABCD为平行四边形.第3课时向量数乘运算及其几何意义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 87~P 90的内容,回答下列问题.(1)已知非零向量a ,根据向量的加法,作出a +a +a 和(-a )+(-a )+(-a ),你认为它们与a 有什么关系?提示:a +a +a =3a 的长度是a 长度的3倍,且方向相同;(-a )+(-a )+(-a )=-3a 的长度是a 长度的3倍,且方向相反.(2)λa 与a (λ≠0,a ≠0)的方向、长度之间有什么关系? 提示:当λ>0时,λa 与a 方向相同;当λ<0时,λa 与a 方向相反,且λa 的长度是a 长度的|λ|倍.(3)若a =λb ,则a 与b 共线吗?提示:共线.2.归纳总结,核心必记(1)向量数乘运算一般地,我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:①|λa |=|λ||a |;②λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同,当λ<0时,与a 方向相反W. 特别地,当λ=0或a =0时,0a =0或λ0=0.(2)向量数乘的运算律设λ,μ为实数,则①λ(μa)=(λμ)a;②(λ+μ)a=λa+μa;③λ(a+b)=λa+λb.特别地,(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.(3)共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=λa.(4)向量的线性运算向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.[问题思考](1)向量与实数可以求积,那么向量和实数可以进行加减运算吗?提示:不可以,向量与实数不能进行加减运算,如λ+a,λ-2b无法运算.(2)数乘向量与实数的乘积等同吗?提示:不等同.数乘向量的结果仍然是一个向量,既有大小又有方向.实数相乘运算的结果是一个实数,只有大小没有方向.(3)λ=0时,λa=0;a=0时,λa=0,这两种说法正确吗?提示:不正确,λa=0中的“0”应写为“0”.[课前反思](1)向量数乘的概念:;(2)向量数乘的运算律:;(3)共线向量定理:;(4)向量的线性运算:.[思考] 向量的线性运算与代数多项式的运算有什么类似之处?名师指津:向量的线性运算类似于多项式的运算,具有实数与多个向量和的乘积形式,计算时应先去括号.共线向量可以“合并同类项”“提取公因式”,这里的“同类项”“公因式”是指向量,实数看作是向量的系数.讲一讲1.化简下列各式:(1)3(6a +b )-9⎝⎛⎭⎪⎫a +13b ;(2)12⎣⎢⎡⎦⎥⎤(3a +2b )-⎝ ⎛⎭⎪⎫a +12b -2⎝ ⎛⎭⎪⎫12a +38b ; (3)2(5a -4b +c )-3(a -3b +c )-7a .[尝试解答] (1)原式=18a +3b -9a -3b =9a .(2)原式=12⎝ ⎛⎭⎪⎫2a +32b -a -34b =a +34b -a -34b =0. (3)原式=10a -8b +2c -3a +9b -3c -7a =b -c .向量数乘运算的方法(1)向量的数乘运算类似于多项式的代数运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)向量也可以通过列方程来解,把所求向量当作未知数,利用解代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.练一练1.设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝⎛⎭⎪⎫a -23b +(2b -a ).解:原式=13a -b -a +23b +2b -a=⎝ ⎛⎭⎪⎫13-1-1a +⎝⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝⎛⎭⎪⎫-103-53j =-53i -5j . 讲一讲2.已知在▱ABCD 中,M ,N 分别是DC ,BC 的中点.若,试用e 1,e 2表示[尝试解答] ∵M ,N 分别是DC ,BC 的中点,∴MN 綊12BD . 用已知向量表示未知向量的方法用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示,其实质是向量线性运算的反复应用.练一练2.如图所示,四边形OADB 是以向量OA ―→=a ,OB ―→=b 为邻边的平行四边形.又BM =13BC ,CN =13CD ,试用a ,b 表示 [思考1] 如何证明向量a 与b 共线?名师指津:要证向量a 与b 共线,只需证明存在实数λ,使得b =λa (a ≠0)即可.[思考2] 如何证明A ,B ,C 三点在同一条直线上?名师指津:讲一讲3.(1)已知e 1,e2是两个不共线的向量,若=2e1-8e2,=e1+3e2,=2e1-e2,求证:A,B,D三点共线.(2)已知A,B,P三点共线,O为直线外任意一点,若求x+y的值.∵AB与BD有交点B,∴A,B,D三点共线.(2)由于A,B,P三点共线,所以向量在同一直线上,由向量共线定理可知,必定存在实数λ使故x=1-λ,y=λ,即x+y=1.用向量共线的条件证明两条直线平行或重合的思路(1)若b=λa(a≠0),且b与a所在的直线无公共点,则这两条直线平行;(2)若b=λa(a≠0),且b与a所在的直线有公共点,则这两条直线重合.例如,若向量,则共线,又有公共点A,从而A,B,C三点共线,这是证明三点共线的重要方法.练一练3.如图所示,已知D,E分别为△ABC的边AB,AC的中点,延长CD到M使DM=CD,延长BE至N使BE=EN,求证:M,A,N 三点共线.证明:∵D为MC的中点,且D为AB的中点,∴M,A,N三点共线.—————————————[课堂归纳·感悟提升]——————————————1.本节课的重点是向量的数乘运算及共线向量定理,难点是共线向量定理的应用.2.掌握与向量数乘运算有关的三个问题(1)向量的线性运算,见讲1;(2)用已知向量表示未知向量,见讲2;(3)共线向量定理及应用,见讲3.3.本节课的易错点当A、B、C、D四点共线时,共线;反之不一定成立.4.要掌握用已知向量表示其他向量的两种方法(1)直接法.(2)方程法.当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.5.注意以下结论的运用(1)以AB,AD为邻边作▱ABCD,且则对角线所对应的向量=a+b,=a-b.课下能力提升(十六)[学业水平达标练]题组1 向量的线性运算1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( ) A .2a -b B .2b -aC .b -aD .a -b解析:选B 原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b =2b -a .2.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( ) ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ;③若m a =m b ,则a =b ;④若m a =n a ,则m =n .A .①④B .①②C .①③D .③④解析:选B ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误.题组2 用已知向量表示未知向量A .r =-12p +32q B .r =-p +2qC .r =32p -12q D .r =-q +2p=-12p +32q .4.在△ABC 中,点P 是AB 上一点,且则t 的值为( )A.13B.23C.12D.535.如图所示,在▱ABCD 中,=a ,=b ,AN =3NC ,M 为BC 的中点,则=________.(用a ,b 表示)=12b -14(a +b )=14b -14a =14(b -a ). 答案:14(b -a ) 6.如图所示,已知▱ABCD 的边BC 、CD 的中点分别为K 、L,且=e 1,=e 2,试用e 1,e 2表示⎩⎪⎨⎪⎧-y +12x =e 1, ①x -12y =e 2. ②-2×②+①得12x -2x =e 1-2e 2, 解得x =23(2e 2-e 1),即=23(2e 2-e 1)=43e 2-23e 1, 同理得y =23(-2e 1+e 2), 即=-43e 1+23e 2.题组3 共线向量定理的应用7.对于向量a ,b 有下列表示:①a =2e ,b =-2e ;②a =e 1-e 2,b =-2e 1+2e 2;③a =4e 1-25e 2,b =e 1-110e 2; ④a =e 1+e 2,b =2e 1-2e 2.其中,向量a ,b 一定共线的有( )A .①②③B .②③④C .①③④D .①②③④解析:选A 对于①,a =-b ;对于②,a =-12b ;对于③,a =4b ;对于④,若a =λb (λ≠0),则e 1+e 2=λ(2e 1-2e 2),即(1-2λ)e 1+(1+2λ)e 2=0,所以1-2λ=1+2λ=0,矛盾,故④中a 与b 不共线.8.已知向量a ,b ,且=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,CC .B ,C ,D D .A ,C ,D解析:选A=(-5a +6b )+(7a -2b )=2a +4b =2,所以A ,B ,D 三点共线.9.已知e 1,e 2是两个不共线的向量,而a =k 2e 1+⎝⎛⎭⎪⎫1-52k e 2与b =2e 1+3e 2是两个共线向量,则实数k =________.解析:由题设知k 22=1-52k 3, 所以3k 2+5k -2=0,解得k =-2或13. 答案:-2或1310.如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE =23AD ,=a ,=b .(1)用a ,b 分别表示向量(2)求证:B ,E ,F 三点共线.[能力提升综合练]2.已知向量a ,b 是两个非零向量,在下列四个条件中,一定可以使a ,b 共线的是( )①2a -3b =4e 且a +2b =-2e ;②存在相异实数λ,μ,使λa -μb =0;③x a +y b =0(其中实数x ,y 满足x +y =0);④已知梯形ABCD ,其中A .①②B .①③C .②D .③④解析:选A 由2a -3b =-2(a +2b )得到b =-4a ,故①可以;λa -μb =0,λa =μb ,故②可以;x =y =0,有x a +y b =0,但b 与a 不一定共线,故③不可以;梯形ABCD 中,没有说明哪组对边平行,故④不可以.解析:选B 如图,在△ABC 中,以BM ,CM 为邻边作平行四边形MBDC ,依据平行四边形法则可得两向量有公共点M ,则A ,M ,D 三点共线,设BC ∩MD =E ,结合MD 是平行四边形MBDC 的对角线可知,AE 是△ABC 的中线,同理可证BM ,CM 也在△ABC 的中线上,即M 是△ABC 的重心.以AB 、AC 为邻边作平行四边形ABFC ,依据向量加法的平行四边形法则可得4.如图所示,两射线OA 与OB 交于O ,则下列选项中哪些向量的终点落在阴影区域内(不含边界)( )A .①②B .①②④C .①②③D .③④到λx +(1-x )λ=λ>1;注意到1+2=3>1,34+13>34+14=1,12+13=56<1,34+15=1920<1,故选A. 答案:236.已知两个不共线向量e 1,e 2,且=e 1+λe 2,=3e 1+4e 2,=2e 1-7e 2,若A ,B ,D 三点共线,则λ的值为________.又=e 1+λe 2,且A ,B ,D 三点共线,所以存在实数μ,即e 1+λe 2=μ(5e 1-3e 2),又e 1,e 2不共线,所以⎩⎪⎨⎪⎧5μ=1,-3μ=λ,则λ=-35. 答案:-357.如图,已知在平行四边形ABCD 中,AH =HD ,BF =MC =14BC ,设=a ,=b ,试用a ,b 分别表示解:∵ABCD 是平行四边形,BF =MC =14BC , ∴FM =BC -BF -MC =12BC . ∴FM =12BC =12AD =AH . ∴FM 綊AH .∴四边形AHMF 也是平行四边形.8.已知O ,A ,M ,B 为平面上四点, (λ∈R ,λ≠0且λ≠1).(1)求证:A ,B ,M 三点共线;(2)若点B在线段AM上,求实数λ的范围.。

高中数学必修四 第2章 平面向量课件 2.2.2 向量减法运算及其几何意义

高中数学必修四 第2章 平面向量课件 2.2.2 向量减法运算及其几何意义
∴E→D+E→A=0,C→F +B→F=0.
∴E→F+E→F=A→B+D→C.
法二 如图,在平面内取点 O,连接 AO、EO、DO、CO、FO、 BO,则 E→F=E→O+O→F=E→A+A→O+O→B+B→F,A→B=A→O +O→B, D→C=D→O+O→C =D→E+E→A+A→O+O→B+B→F+F→C. ∵E、F 是 AD、BC 的中点,
5.化简:(1)(B→A-B→C)-(E→D-E→C); (2)(A→C+B→O+O→A)-(D→C-D→O-O→B). 解 (1)(B→A-B→C)-(E→D-E→C)=C→A-C→D=D→A. (2)(A→C+B→O+O→A)-(D→C-D→O-O→B)=A→C+B→A-D→C+(D→O+ O→B)=A→C+B→A-D→C+D→B=B→C-D→C+D→B=B→C+C→B=0.
类型三 向量加、减法的综合应用 【例 3】 已知任意四边形 ABCD,E 为 AD 的中点,F 为 BC 的 中点,求证:E→F+E→F=A→B+D→C.
[思路探索] 本题主要考查向量加法与相反向量的知识,可以考 虑封闭图形中所有向量的和为 0 或把E→F用不同的向量形式表示 出来,然后相加,即可得证.
证明 法一 如图,在四边形 CDEF 中,
E→F+F→C+C→D+D→E=0,
∴ E→F
=-
→ FC
- C→D
- D→E =
→ CF
+ D→C

E→D.①
在四边形 ABFE 中,
E→F+F→B+B→A+A→E=0,
∴E→F=B→F+A→B+E→A.②
①+②得 E→F+E→F=C→F+D→C+E→D+B→F+A→B+E→A=(C→F+B→F)+(E→D+ E→A)+(A→B+D→C). ∵E、F 分别是 AD、BC 的中点,

2.2.2 向量减法运算及其几何意义

2.2.2 向量减法运算及其几何意义

uuur
uuur
uuur
3.若| AB |=5,| AC |=8,则| BC |的取值范围是
( C)
A.[3,8]
B.(3,8)
C.[3,13]
D.(3,13)
4.若 a 与 b 为非零向量,且|a+b|=|a|+|b|,则( A )
A.a∥b,且 a 与 b 方向相同 B.a、b 是方向相反的向量 C.a=-b D.a、b 无论什么关系均可
ABCD
中,设
uuur AB
uuur
=a,AD
=b,uBuCur
=c,则
uuur DC
等于(
A)
A.a-b+c B.b-(a+c) C.a+b+c D.b-a+c
2.已知 O 为平行四边形 ABCD 内一点, OA =a , OB =b,OC =c,用 a,b,c 表示 OD .
【解析】 = - = - = - + =c-b+a.
B
ab
D
b a
d c
A
d b
cd
C a
c
O
作法:如图,在平面内任取一点O,作OuuAur
r a,
uuur OB
r b,
uuur OC
cr ,则OuuDur
r d,
BA a b,DC c d.
【变式练习】
如图,已知a,b, 求作 a b.
(2)
(1)a
ab
a
b
b
(3)
a
(4)
ab
a
b
r
b r ra
.
7.在平行四边形 ABCD 中,| + |=| - |,则有
()
A. =0 C.ABCD 是矩形

高中数学必修四 第2章 平面向量课件 2.2.1 向量加法运算及其几何意义

高中数学必修四 第2章 平面向量课件 2.2.1 向量加法运算及其几何意义

③A→B+A→D+C→D=________; ④A→C+B→A+D→A=________. [思路探索] 首先观察各向量字母的排列顺序,再进行恰当的组 合,利用向量加法法则运算求解. 解 (1)C→D+B→C+A→B=(A→B+B→C)+C→D=A→C+C→D=A→D. (2)A→B+D→F+C→D+B→C+F→A =(A→B+B→C)+(C→D+D→F)+FA =A→C+C→F+F→A=A→F+F→A=0.
(3)①A→D+A→B=A→C,
②C→D+A→C+D→O=C→O+A→C=A→O,
③A→B+A→D+C→D=A→C+C→D=A→D,
④A→C+B→A+D→A=D→C+B→A=0.
答案
→ (1)AD
(2)0
(3)①A→C
②A→O
③A→D
④0
[规律方法] (1)解决该类题目要灵活应用向量加法运算,注意各 向量的起、终点及向量起、终点字母排列顺序,特别注意勿将0 写成0. (2)运用向量加法求和时,在图中表示“首尾相接”时,其和向量 是从第一个向量的起点指向最后一个向量的终点.
类型一 向量的加法运算 【例 1】 化简或计算:(1)C→D+B→C+A→B=________. (2)A→B+D→F+C→D+B→C+F→A=________.
(3)在平行四边形 ABCD 中(如图),对角线 AC、BD 交于点 O. 则①A→D+A→B=________; ②C→D+A→C+D→O=________;
类型二 利用向量证明几何问题 【例 2】 在平行四边形 ABCD 的对角线 BD 的延长线及反向延长线上,取点 F、E,使 BE=DF(如图).用向量的方法证明:四边 形 AECF 也是平行四边形.
[思路探索] 本题主要考查利用向量方法证明几何问题,只需证明 一组对边对应的向量相等即可.

必修四 2.2 平面向量的线性运算(教案)

必修四 2.2  平面向量的线性运算(教案)

人教版新课标普通高中◎数学④必修2.2 平面向量的线性运算教案 A第1课时教学目标一、知识与技能1.掌握向量的加减法运算,并理解其几何意义.2.会用三角形法则和平行四边形法则作两个向量的和向量和差向量,培养数形结合解决问题的能力.3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加减法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;二、过程与方法1.位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,由此引入本课题.2.运用向量的定义和向量相等的定义得出向量加减法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解.三、情感、态度与价值观1.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识.2.体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.教学重点、难点教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量和差向量.教学难点:理解向量加减法的定义.教学关键:向量加法的三角形法则和平行四边形法则的探究引导.教学突破方法:由物理中力的合成与分解拓展延伸,引导学生探讨得到结论.教法与学法导航教学方法;启发诱导,讲练结合.学习方法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.教学准备教师准备:多媒体或实物投影仪、尺规.1教师备课系统──多媒体教案2 学生准备:练习本、尺规.教学过程一、创设情境,导入新课上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.数能进行运算,向量是否也能进行运算呢?这一节,我们将借助于物理中位移的合成、力的合成来学习向量的加法和减法.二、主题探究,合作交流提出问题:1.类比数的加法,猜想向量的加法,应怎样定义向量的加法?2.向量加法的法则是什么?3.与数的运算法则有什么不同?师生互动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图.某对象从A点经B点到C点,两次位移AB、BC的结果,与A 点直接到C点的位移AC结果相同.力也可以合成,老师引导,让学生共同探究如下的问题.图(1)表示橡皮条在两个力的作用下,沿着G C的方向伸长了EO;图(2)表示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度.改变力F1与F2的大小和方向,重复以上的实验,你能发现F与F1、F2之间的关系吗?力F对橡皮条产生的效果与力F1与F2共同作用产生的效果相同,物理学中把力F 叫做F1与F2的合力.人教版新课标普通高中◎数学④必修合力F与力F1、F2有怎样的关系呢?由图(3)发现,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:1.向量加法的定义:如下图,已知非零向量a、b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a +b,即a+b=AB+BC=AC.求两个向量和的运算,叫做向量的加法.2.向量加法的法则:(1)向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.位移的合成可以看作向量加法三角形法则的物理模型.(2)向量加法的平行四边形法则如图,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线OC就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法平行四边形法则的物理模型.对于零向量与任一向量a,我们规定a+0=0+a=a.提出问题1.两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?2.思考|a+b|,|a|,|b|存在着怎样的关系?3.数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢?师生互动:观察实际例子,教师启发学生思考,并适时点拨,诱导,探究向量的加法在特殊情况下的运算,共线向量加法与数的加法之间的关系.数的加法满足交换律与3教师备课系统──多媒体教案结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c).任意向量a,b的加法是否也满足交换律和结合律?引导学生画图进行探索.讨论结果:1.两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.2.当a,b不共线时,|a+b|<|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|).其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|.一般地,我们有|a+b|≤|a|+|b|.3.如下左图,作AB=a,AD=b,以AB、A D为邻边作ABC D,则BC=b,DC=a.因为AC=AB+AD=a+b,AC=AD+DC=b+a,所以a+b=b+a.如上右图,因为AD=AC+CD=(AB+BC)+CD=(a+b)+c,AD=AB+BD=AB+(BC+CD)=a+(b+c),所以(a+b)+c=a+(b+c).综上所述,向量的加法满足交换律和结合律.提出问题①如何理解向量的减法?②向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?师生互动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量.于是-(-a)=a.我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a+(-a)=(-a)+a=0.所以,如果a、b是互为相反的向量,那么4人教版新课标普通高中◎数学④必修a=-b,b=-a,a +b=0.A.平行四边形法则如上图,设向量AB=b,AC=a,则AD=-b,由向量减法的定义,知AE=a+(-b)=a-b.又b+BC=a,所以BC=a-b.由此,我们得到a-b的作图方法.B.三角形法则如上图,已知a、b,在平面内任取一点O,作OA=a,OB=b,则BA=a-b,即a-b 可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义.讨论结果:①向量减法的定义.我们定义a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.规定:零向量的相反向量是零向量.②向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.三、拓展创新,应用提高例1如下左图,已知向量a、b,求作向量a+b.活动:教师引导学生,让学生探究分别用向量加法的三角形法则和平行四边形法则作两个向量的和向量.在向量加法的作图中,学生体会作法中在平面内任取一点O的依据——它体现了向量起点的任意性.在向量作图时,一般都需要进行向量的平移,用平行四边形法则作图时应强调向量的起点放在一起,而用三角形法则作图则要求首尾相连.5教师备课系统──多媒体教案 6 解:作法一:在平面内任取一点O (上中图),作OA =a ,AB =b ,则OB =a +b .作法二:在平面内任取一点O (上右图),作OA =a ,OB =b .以OA 、OB 为邻边作OACB ,连接OC ,则OC =a +b . 例2 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如下图所示,一艘船从长江南岸A 点出发,以5 k m/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2 k m/h .(1)试用向量表示江水速度、船速以及船实际航行的速度(保留两个有效数字);(2)求船实际航行的速度的大小与方向(用与江水速度间的夹角表示,精确到度).活动:本例结合一个实际问题说明向量加法在实际生活中的应用.这样的问题在物理中已有涉及,这里是要学生能把它抽象为向量的加法运算,体会其中应解决的问题是向量模的大小及向量的方向(与某一方向所成角的大小).引导点拨学生正确理解题意,将实际问题反映在向量作图上,从而与初中学过的解直角三角形建立联系.解:如上右图所示,AD 表示船速,AB 表示水速,以A D 、AB 为邻边作ABC D ,则AC 表示船实际航行的速度.(2)在Rt △ABC 中,|AB |=2,|BC |=5,所以|AC |=2952|||AB |2222=+=+BC ≈5.4. 因为tan ∠CAB =229,由计算器得∠CAB =68°. 答:船实际航行速度的大小约为5.4 km/h ,方向与水的流速间的夹角为68°. 点评:用向量法解决物理问题的步骤为:先用向量表示物理量,再进行向量运算,最后回扣物理问题,解决问题.例3 如图(1)已知向量a 、b 、c 、d ,求作向量a -b ,c -d .活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需人教版新课标普通高中◎数学④ 必修 7 要选点平移作出两个同起点的向量. 作法:如图(2),在平面内任取一点O ,作OA =a ,OB =b ,OC =c ,OD =d .则BA =a -b ,DC =c -d .例4 如图,ABC D 中, AB =a ,AD =b ,你能用a 、b 表示向量AC 、DB 吗?活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道AC =a +b ,同样,由向量的减法,知DB =AB -AD =a -b .四、小结1.先由学生回顾本节学习的数学知识:向量的加法定义,向量加法的三角形法则和平行四边形法则,向量加法满足交换律和结合律,几何作图,向量加法的实际应用.2.教师与学生一起总结本节学习的数学方法:特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法.课堂作业1.下列等式中,正确的个数是( )①a +b =b +a ②a -b =b ③0-a =-a ④-(-a )=a ⑤a +(-a )=0A .5B .4C .3D .22.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则AF -DB 等于( )A .FDB .FC C .FED .BE3.下列式子中不能化简为AD 的是( )A .(AB +CD )+BC B .(AD +MB )+(BC +CM )C .BM AD MB -+ D .OC -OA +CD教师备课系统──多媒体教案8 4.已知A、B、C三点不共线,O是△ABC内一点,若OA+OB+OC=0,则O是△ABC的()A.重心B.垂心C.内心D.外心参考答案:1.C 2.D 3.C 4.A.第2课时教学目标一、知识与技能1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.二、过程与方法充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地0·a=0),它的几何意义是把向量a沿a的方向或a的反方向放大或缩小,当λ>0时,λa与a方向相同,当λ<0时,λa与a方向相反;向量共线定理用来判断两个向量是否共线.然后对所探究的结果进行运用拓展.三、情感、态度与价值观通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.教学重点、难点教学重点:实数与向量积的意义、两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.教学关键:两个向量共线的等价条件的探究过程的引导.教学突破方法:从向量共线的定义出发,引导学生分组讨论,得出结果.教法与学法导航教学方法:问题式教学,启发诱导.学习方法:合作探讨,在向量加减法的基础上进行推广.教学准备教师准备:多媒体、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课前一节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相人教版新课标普通高中◎数学④ 必修 9同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.二、主题探究,合作交流 提出问题: ① 探究:已知非零向量a ,试一试作出a +a +a 和(-a )+(-a )+(-a ).② 你能说明它们的几何意义吗?③ 引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?师生互动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a =0,而不是0·a =0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a ,λ-a 都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a =λa +μa 和λ(a +b )=λa +λb ,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.对问题①,学生通过作图可发现,OC =OA +AB +BC =a +a +a .类似数的乘法,可把a +a +a 记作3a ,即OC =3a .显然3a 的方向与a 的方向相同,3a 的长度是a 的长度的3倍,即|3a |=3|a |.同样,由下图可知,PN =MN QM PQ ++=(-a )+(-a )+(-a ),即(-a )+(-a )+(-a )=3(-a ).显然3(-a )的方向与a 的方向相反,3(-a )的长度是a 的长度的3倍,这样,3(-a )=-3a .对问题②,上述过程推广后即为实数与向量的积.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1) |λa |=|λ||a |;(2) 当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反.由(1)可知,λ=0时,λa =0.根据实数与向量的积的定义,我们可以验证下面的运算律.实数与向量的积的运算律:教师备课系统──多媒体教案10 设λ、μ为实数,那么(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb.特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a 与b同方向时,有b=μa;当a与b反方向时,有b=-μa.关于向量共线的条件,教师要点拨学生做进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a|确定.②它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.③向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.三、拓展创新,应用提高例1计算:(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).活动:本例是数乘运算的简单应用,可让学生自己完成,要求学生熟练运用向量数乘运算的运算律.教学中,点拨学生不能将本题看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点.同时向学生点出,向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.解:(1)原式=(-3×4)a=-12a;(2)原式=3a+3b-2a+2b-a=5b;(3)原式=2a+3b-c-3a+2b-c=-a+5b-2c.点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.例2如图,已知任意两个非零向量a、b,试作OA=a+b,OB=a+2b,OC=a+3b.你能判断A、B、C三点之间的位置关系吗?为什么?人教版新课标普通高中◎数学④ 必修11活动:本例给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A 、B 、C 三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a 、b 变化过程中,A 、B 、C 三点始终在同一条直线上的规律.解:分别作向量OA 、OB 、OC 过点A 、C 作直线AC (如上图).观察发现,不论向量a 、b 怎样变化,点B 始终在直线AC 上,猜想A 、B 、C 三点共线.事实上,因为AB =OB -OA =a +2b -(a +b )=b , 而AC =OC -OA =a +3b -(a +b )=2b , 于是AC =2AB .所以A 、B 、C 三点共线.点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3 如图,ABC D 的两条对角线相交于点M ,且AB =a ,AD =b ,你能用a 、b 表示MA MB MC 、、和MD 吗?活动:本例的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点.教师备课系统──多媒体教案12解:在ABC D 中,∵AC =AB +AD =a +b ,DB =AB -AD =a -b , 又∵平行四边形的两条对角线互相平分, ∴MA =21-AC =21-(a +b )=21-a -21b , MB =21DB =21(a -b )=21a -21b ,MC =21AC =21a +21b ,MD =MB -=-21DB =-21a +21b .点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.四、小结1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件.2.体会本节学习中用到的思想方法:特殊到一般、归纳、猜想、类比、分类讨论、等价转化.课堂作业1.31[21(2a +8b )-(4a -2b )]等于( ) A .2a -b B .2b -a C .b -a D .a -b2.设两非零向量e 1、e 2不共线,且k e 1+e 2与e 1+k e 2共线,则k 的值为( ) A .1 B .-1 C .±1 D .0 3.若向量方2x -3(x -2a )=0,则向量x 等于( )A .56a B .-6a C .6a D .56-a 4.在△ABC 中,AE =51AB ,EF ∥BC ,EF 交AC 于F ,设AB =a ,AC =b ,则BF用a 、b 表示的形式是BF =_________.5.在△ABC 中,M 、N 、P 分别是AB 、BC 、CA 边上的靠近A 、B 、C 的三等分点,O 是△ABC 平面上的任意一点,若OA +OC OB +=31e 1-21e 2,则OP ON OM ++=________.人教版新课标普通高中◎数学④ 必修136.已知△ABC 的重心为G ,O 为坐标原点,OA =a ,OB =b ,OC =c , 求证:OG =31(a +b +c ).参考答案:1.B2. C3. C 4.-a +51b 5.31e 1-21e 2. 6.连接A G 并延长,设A G 交BC 于M . ∵AB =b -a ,AC =c -a ,BC =c -b ,∴AM =AB +21BC =(b -a )+21(c -b )=21(c +b -2a ). ∴AG =32AM =31(c +b -2a ).∴OG =OA +AG =a +31(c +b -2a )=31(a +b +c ).教案 B第1课时教学目标一、知识与技能1.理解向量加减法的含义,并掌握加减法的三角形法则和平行四边形法则; 2.会用向量加法的交换律与结合律进行向量运算. 二、过程与方法经历向量加减法概念、法则的建构过程;通过观察、实验、类比、归纳等方法培养学生发现问题、分析问题、解决问题的能力.三、情感、态度与价值观经历运用数学来描述和刻画现实世界的过程;在动手探究、合作交流中培养学生勇于探索、敢于创新的个性品质. 教学重点、难点重点:运用向量加减法的三角形法则和平行四边形法则,作两个向量的和向量和差向量.难点: 理解向量的加减法法则及其几何意义.教师备课系统──多媒体教案14教学设想一、创设情境:类比是人类思维中最具创新的一部分,数能进行加减乘除的运算,向量也具有数的特征,那么向量也应该是可以进行运算的,那么向量的运算又如何呢?二、探究新知:(一)教师引导学生仔细阅读课本,分组讨论,归纳如下: 1.定义:求两个向量的和的运算,叫做向量的加法. 注意:两个向量的和仍旧是向量(简称和向量)2.三角形法则:强调:(1)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点. (2)可以推广到n 个向量连加.(3)a a a =+=+00.(4)不共线向量都可以采用这种法则——三角形法则. 3.已知向量a 、b ,求作向量a +b . 作法:在平面内取一点O , 作a OA = b AB =, 则b a OB +=.4.加法的交换律和平行四边形法则 上题中b +a 的结果与a +b 是否相同,验证结果相同.从而得到:(1)向量加法的平行四边形法则;(2)向量加法的交换律:a +b =b +a . 5. 向量加法的结合律:ABC Daca +b+c ba +bb+c ●A B a +b a +b a a b b a b a a +b b O ABaaa bb b人教版新课标普通高中◎数学④ 必修15(a +b ) +c =a + (b +c )证:作图:使a AB =, b BC =, c CD =,则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+,∴(a +b ) +c =a + (b +c ).从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.(二)教师引导学生仔细阅读课本,类比向量加法的定义和运算法则,分组讨论,归纳如下:1.用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a . (2) 规定:零向量的相反向量仍是零向量.-(-a )= a .任一向量与它的相反向量的和是零向量.a +(-a )= 0. 如果a 、b 互为相反向量,则a = -b , b = -a ,a + b = 0.(3) 向量减法的定义:.向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a +(-b ).求两个向量差的运算叫做向量的减法.2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b . 3.求作差向量:已知向量a 、b ,求作差向量. ∵(a -b )+ b = a +(-b )+ b = a + 0 = a .作法:在平面内取一点O , 作OA = a ,OB = b . 则BA = a - b .即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量.AOABaB ’b -bbBa + (-b )abO a bBa ba -b教师备课系统──多媒体教案16注意:(1)BA 表示a - b .强调:差向量“箭头”指向被减数.(2)用“相反向量”定义法作差向量,a - b = a + (-b ).显然,此法作图较繁,但最后作图可统一.4.探究:(1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a .(2)若a ∥b , 如何作出a - b ? 三、例题讲解例1 如图,O 为正六边形ABC D EF 的中心,作出下列向量:(1)OA +OC ;(2)BC +FE ;(3)OA +FE .解:(1)因四边形OABC 是以OA 、OC 为邻边的平行四边形,OB 是其对角线, 故OA +OC =OB .(2)因BC =FE ,故BC +EF 与BC 方向相同,长度为BC 的长度的2倍, 故BC +FE =AD . (3)因OD =FE , 故OA +FE =OA +OD =0.点评: 向量的运算结合平面几何知识,在长度和方向两个方面做文章.应深刻理解向a -b A A B B B ’ O a -b a a bb O A O B a -b a -b B A O -b。

2.2_平面向量的线性运算2.2.1_向量加法运算及其几何意义

2.2_平面向量的线性运算2.2.1_向量加法运算及其几何意义
(
答案:8 2
北偏东 45°
答案:8 2 北偏东 45° 答案:8 2 北偏东 45°
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
首页
Байду номын сангаас
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
知识要点一:准确理解向量加法的三角形法则和平行四边形法则 1.两个法则的使用条件不同 三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量 求和.
3.以同一点 O 为起点的两个已知向量 a,b 为邻边作▱OACB,则以 O 为起点的对角线 OC― →就是 a 与 b 的和,这种作两个向量和的方法叫做向量加法的平行四边形法则. 4.对任意两个向量 a、b,均有|a+b|≤|a|+|b|. 当 a、b 同向时有|a+b|=|a|+|b|;当 a、b 反向时有|a+b|=|a|-|b|(或|b|-|a|). 5.向量的加法满足交换律和结合律, 即 a+b=b+a;(a+b)+c=a+(b+c). a+0=0+a=a.
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
知识要点二:向量 a+b 与非零向量 a,b 的模及方向的关系 1.当向量 a 与 b 不共线时,a+b 的方向与 a,b 都不相同,且|a+b|<|a|+|b|,几何背 景是三角形两边之和大于第三边. 2.当 a 与 b 同向时,a+b 与 a,b 的方向相同,且|a+b|=|a|+|b|. 3.当 a 与 b 反向时,若|a|≥|b|,则 a+b 与 a 的方向相同,且|a+b|=|a|-|b|. 若|a|<|b|,则 a+b 与 b 的方向相同,且|a+b|=|b|-|a|. 知识要点三:向量加法的运算律 1.向量加法的交换律:将 a 的起点移至 A 点,将 b 的起点移至 a 的终点,则由 a 的起 点 A 指向 b 的终点 C 的向量 AC― →=a+b;同样将 b 的起点移至 A 点,将 a 的起点移至 b 的终点,则由 b 的起点 A 指向 a 的终点 C′的向量 AC′― →=b+a,由平行四边形法则知 C 必然和 C′重合,即 a+b=b+a. 2.向量的加法满足交换律和结合律,因此在进行多个向量的加法运算时,就可以按照 任意的次序和任意的组合去进行.如(a+b)+(c+d)=(a+d)+(b+c). 3.向量加法运算满足:A1A2―→+A2A3― →+„+An- 1An― →=A1An―→.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、向量减法的几何意义:
向量减法的三角形法则:
b
B a bb a
b
a
O
A
a
思考:如果从a
的终点到b的终 点作向量,那么 所得向量是什么 ?
“共起点,连终点,指向被减向量”
a b 表 示 从 减 向 量 b 的 终 点 指 向 被 减 向 量 a 的 终 点 的 向 量 , 这 就 是 向 量 减 法 的 几 何 意 义 .
你能用 a , b 表示向量AB和AD吗?
解:AB=a + b; AD=a - b.
D
a
A
C
O
b
B
2020/8/18
例:2.已知如图向量 a, ,b c 求作 abc.
abc
ab
c
a
练习:P91.8
b
2020/8/18
例:3
(1)化A 简 B AC BD CD 解 : 原 式 = C B B D C D = C D C D = 0
2.2 平面向量的加减运算
2020/8/18
1.向量加法的三角形法则: 2.向量加法的平行四边形法则
首尾相连,起点指向终点
起点相同,对角为和
C
ab b
A
a
B
Ba
b
ab
C b
O
a
A
3.向量加法的交换律
4.向量加法的结合律
:
a
:
(a
b
b
=
b
a.
)
c
=
a
(b
c)
2020/8/18
2020/8/18
例 1.已知平行 AB四 C ,A边 D B =a,形 AD =b,
用 a,b表示A 向 C ,D量 B
D
C
b
解:由向量加法的平行四边形法则,

AC=ab;
AaBຫໍສະໝຸດ 由向量的减法可得,D B = A B A D = a b .
2020/8/18
变式训练1. 如图, ABCD中,AO=a,OB=b,
三点是一个三角形的定点 ( )
5、 0a=a ( )
6、两个向量是互为相反向量,则两个向量共线.
2020/8/18
(√ )
3、相反向量
定义:与 a 长度相等,方向相反的向量,
叫做 a 的相反向量,记作: a
a
a
AB= BA,在计算中常用
结论: (1) (a) = a
(2)零向量的相反向量仍是零向量, 0 = 0
(3)a(a)=(a)a= 0
(4)如果是a,b互为相反的向量,那么
2020/8/18
a= b ,b= a ,ab=0
(2)化O 简 AO CBO CO
解 :原 式 =(O ABO)(O CCO ) =(O AO B)0=BA
2020/8/18
练习、1.判断下列命题是否正确,若不正确,说明理由
1、 ABBA=0 (√ )
2、 AB=OAOB( )
3、相反向量就是方向相反的量 ( )
4、若 AB BC C= A0 ,则A、B、C
相关文档
最新文档