特征阻抗那点事
特征阻抗
特征阻抗特征阻抗(Characteristic Impedance)也称为本征阻抗,它是高频电路,无线通信应用中的重要参数。
在高频信号传递的过程中,要实现所谓的阻抗匹配,那么就必须对特征阻抗足够了解。
I.量纲分析在前面的文章中我们看到利用量纲分析能够很方便地帮组我们理解一些物理量具体的物理意义。
同样为了方便我们由浅入深地理解特征阻抗的物理意义,先进行量纲分析。
在电路分析课程中我们已经知道容抗和感抗同电阻一样具有欧姆的量纲,即显然两者相乘,再开根号得到的物理量仍旧具有欧姆的量纲,即那么作这样的处理有什么物理意义呢?首先在最简单的LC谐振回路中,电磁能量为其中大写的V和I分别是谐振回路电容电压的振幅和电感电流的振幅。
显然有电压对应着电场,而电流对应着磁场。
因为电场的量纲为V/m,磁场的量纲为A/m。
这个从麦克斯韦方程也可以验证。
因为体电流密度J具有A/m2的量纲,对磁场取一次旋度,偏导的次数只有一次,因此磁场H具有A/m的量纲。
而电场,由麦克斯韦方程求它的量纲反而麻烦。
但是对于静电场,它是电势的梯度,因此电场有V/m的量纲。
再来看L和C的量纲,L的量纲为H(Henry亨利),C的量纲为F(Faraday法拉第)。
这让我们想到什么呢?磁导率μ和介电常数ε,它们的量纲分别为H/m和F/m。
这样就把“路”和“场”对应起来了。
当然还有另外一个参数,电导率σ,由J=σE知,电导率的量纲为S/m(Siemens per meter西门子每米),对应于电阻。
但是注意,对于集总参数电路没有特征阻抗的概念。
后面将揭示.II.传输线的特征阻抗前面的文章中讲到,均匀平面波在介质中传播,介质的特征阻抗为是电波的振幅比上磁波的振幅,故特征阻抗也称波阻抗(Wave Impedance),若波阻抗是复数,则说明两者的振动在时间上有相位差。
在自由空间中,电导率为0,特征阻抗变为一实数。
根据测得的真空中的介电常数和磁导率,可知自由空间的特征阻抗为120π欧姆,约为377欧姆。
线路的特征阻抗和传播系数
线路的特征阻抗和传播系数线路是电力系统中不可或缺的组成部分,其特征阻抗和传播系数是线路设计和运行中的重要参数。
本文将从特征阻抗和传播系数两个方面进行阐述。
一、特征阻抗特征阻抗是指在电力系统中,线路上单位长度的电阻和电抗的比值。
它是描述线路电气特性的重要参数,对于线路的设计和运行具有重要意义。
在电力系统中,特征阻抗的大小与线路的电气特性密切相关。
一般来说,特征阻抗越大,线路的电气特性越好,其输电能力也越强。
因此,在线路设计中,需要根据实际情况选择合适的导线截面和线路结构,以达到最佳的特征阻抗。
此外,特征阻抗还与线路的电压损耗和电流损耗有关。
在线路运行中,特征阻抗的大小会影响线路的电压和电流分布,从而影响线路的输电效率和稳定性。
因此,在线路运行中,需要根据实际情况对特征阻抗进行调整,以保证线路的正常运行。
二、传播系数传播系数是指电磁波在线路中传播的速度与真空中传播速度的比值。
它是描述线路传输特性的重要参数,对于线路的设计和运行具有重要意义。
在电力系统中,传播系数的大小与线路的传输特性密切相关。
一般来说,传播系数越小,线路的传输特性越好,其传输能力也越强。
因此,在线路设计中,需要根据实际情况选择合适的导线材料和线路结构,以达到最佳的传播系数。
此外,传播系数还与线路的信号传输速度和传输距离有关。
在线路运行中,传播系数的大小会影响线路的信号传输速度和传输距离,从而影响线路的传输效率和稳定性。
因此,在线路运行中,需要根据实际情况对传播系数进行调整,以保证线路的正常传输。
综上所述,特征阻抗和传播系数是线路设计和运行中的重要参数,对于线路的电气特性和传输特性具有重要意义。
在线路设计和运行中,需要根据实际情况对特征阻抗和传播系数进行合理选择和调整,以保证线路的正常运行和传输。
pcb 特征阻抗
pcb 特征阻抗PCB(Printed Circuit Board,印刷电路板)是现代电子产品中常见的一种电路载体。
在PCB设计中,特征阻抗(Characteristic Impedance)是一个重要的参数,对于保证信号传输质量和电路稳定性起着关键作用。
特征阻抗是指信号在传输过程中所面临的电阻和电感的总和,通常用单位长度的电阻和电感来表示。
在PCB设计中,特征阻抗的准确控制对于高速信号的传输至关重要。
特征阻抗的不匹配会导致信号的反射和衰减,从而影响电路的性能和稳定性。
PCB的特征阻抗受到多种因素的影响,其中包括PCB的材料特性、线宽和线距、板厚等。
首先,PCB的材料特性对特征阻抗有直接影响。
不同材料的介电常数和介电损耗因子不同,会导致特征阻抗的变化。
因此,在PCB设计中选择合适的材料对于控制特征阻抗至关重要。
线宽和线距也是影响特征阻抗的重要因素。
一般来说,线宽和线距越小,特征阻抗越高。
因此,在高速信号传输中,通常需要采用较小的线宽和线距来控制特征阻抗。
此外,线宽和线距的不均匀性也会导致特征阻抗的变化,因此在PCB设计中需要考虑到这一点。
板厚也会对特征阻抗产生影响。
板厚越大,特征阻抗越低,板厚越小,特征阻抗越高。
因此,在PCB设计中需要根据特定的特征阻抗要求选择合适的板厚。
为了准确控制PCB的特征阻抗,设计人员通常需要根据特定的信号要求进行计算和仿真。
在PCB设计软件中,可以通过输入相关参数,如线宽、线距、板厚等,来计算特征阻抗。
通过仿真分析,可以得到准确的特征阻抗数值,并根据需要进行调整。
在PCB制造过程中,特征阻抗的控制也是一个关键的环节。
制造厂商通常会使用特殊的工艺来确保特征阻抗的准确控制。
例如,通过控制线宽和线距的精度,采用特殊的印刷方法,使用合适的材料等,都可以提高特征阻抗的制造精度。
PCB设计中的特征阻抗是一个重要的参数,对于保证高速信号传输的质量和电路的稳定性起着关键作用。
通过合理选择材料、控制线宽和线距、调整板厚等手段,可以有效地控制特征阻抗。
什么是特性阻抗?影响特性阻抗的因素有哪些?
什么是特性阻抗?影响特性阻抗的因素有哪些?
阻抗为区别直流电(DC)的电阻,把交流电所遇到的阻力称为阻抗(Z0),包括电阻(R)、感抗(XC)和容抗(XL)。
1特性阻抗
又称“特征阻抗”。
在高频范围内,信号传输过程中,信号沿到达的地方,信号线和参考平面间由于电场的建立,会产生一个瞬间电流I,而如果信号的输出电平为V,在信号传输过程中,传输线就会等效成一个电阻,大小为
V/I,把这个等效的电阻称为传输线的特性阻抗Z0。
特性阻抗受介电常数、介质厚度、线宽等因素影响。
是指在某一频率下,传输信号线中(也就是我们制作的线路板的铜线),相对某一参考层(也就是常说的屏蔽层、影射层或参考层),其高频信号或电磁波在传播过程中所受的阻力称之为特性阻抗,它实际上是电阻抗、电感抗、电容抗等一个矢量总和。
2控制PCB特性阻抗的意义。
一段特征阻抗
一段特征阻抗特征阻抗是指电路中的某个元件或网络对电流和电压的响应关系。
它是描述电路对电流和电压的阻抗特性的一种参数。
特征阻抗在电路分析和设计中起着重要的作用,对于电路的稳定性、性能和效果有着决定性的影响。
特征阻抗可以分为实部和虚部两个部分。
实部描述了电路对电流的阻碍程度,而虚部则描述了电路对电压的相位延迟或超前程度。
实部一般以欧姆(Ω)为单位,虚部一般以欧姆(Ω)或亦称为无量纲。
特征阻抗的大小和相位角度决定了电路的特性。
在电路分析中,我们常常通过特征阻抗来判断电路的稳定性和工作状态。
特征阻抗的大小和相位角度可以通过复数的形式表示,其中实部表示幅度,虚部表示相位。
根据复数的性质,特征阻抗可以进行加减乘除等运算,方便了电路分析和计算。
特征阻抗可以用于描述各种电路元件和网络的特性。
例如,电容器的特征阻抗与频率成反比,随着频率的增加,特征阻抗逐渐减小;电感器的特征阻抗与频率成正比,随着频率的增加,特征阻抗逐渐增大。
特征阻抗还可以用于描述传输线路、滤波器、放大器等电路的特性。
特征阻抗的计算方法有多种,根据电路的不同结构和特性,可以采用不同的计算方法。
例如,对于简单的电容器和电感器,可以直接使用基本电路分析方法计算特征阻抗;对于复杂的电路网络,可以采用电路分析软件进行仿真计算。
特征阻抗在电路设计和优化中起着重要的作用。
通过对特征阻抗的分析和计算,可以优化电路的性能和效果,提高电路的稳定性和可靠性。
特征阻抗的选择和调整可以根据电路需求进行优化,以达到设计目标。
特征阻抗是描述电路对电流和电压响应的一种参数。
它可以用于描述电路的稳定性、性能和效果。
特征阻抗的大小和相位角度决定了电路的特性,通过对特征阻抗的分析和计算,可以优化电路的设计和性能。
特征阻抗在电路分析和设计中具有重要的作用,对于电路的稳定性和性能有着决定性的影响。
微带线的特征阻抗
微带线的特征阻抗微带线是一种常用于射频和微波传输中的传输线结构,具有许多优点,如尺寸小、重量轻、制造简单等。
特征阻抗是微带线的一个重要参数,它决定了线路的传输性能和适用范围。
本文将详细介绍微带线的特征阻抗及其影响因素。
一、特征阻抗的定义和意义特征阻抗是指在微带线的传输中,电源看到的线路阻抗。
它是一个复数,通常表示为Z0。
特征阻抗决定了线路中的电流和电压之间的关系,以及信号的传输效率。
特征阻抗对微带线的传输性能具有重要影响。
首先,特征阻抗可以影响信号的耦合和传播。
当信号在微带线上传播时,特征阻抗决定了线路的传输速度和衰减程度。
其次,特征阻抗影响线路的阻抗匹配。
当微带线与其他设备或线路连接时,特征阻抗的匹配将决定信号的传输效果。
二、特征阻抗的计算公式计算微带线的特征阻抗可以使用多种方法,具体选择方法取决于线路几何形状、介质材料和工作频率等因素。
常见的计算公式包括谐振腔模型、有限地平面模型、有限高度地平面模型等。
谐振腔模型是微带线特征阻抗计算的一种经典方法。
该模型假设微带线被视为一个导体边界和地平面之间的电场的谐振腔。
根据微波谐振腔理论,可以使用以下公式计算特征阻抗:Z0 = [(87.1 / εr + 1.41) / w] * ln(5.98h/w + 1)其中,Z0为特征阻抗,εr为介电常数,w为线宽,h为线路高度。
该公式适用于标准微带线,即具有无限大接地平面和厚度远小于波长的线路。
有限地平面模型和有限高度地平面模型是改进的谐振腔模型,考虑了有限大小的地平面以及微带线高度对特征阻抗的影响。
这些模型的计算公式更加准确,但相应的计算比较复杂。
三、影响特征阻抗的因素特征阻抗受到许多因素的影响,包括线宽、线路高度、介质常数、介质损耗、金属厚度等。
1.线宽:线宽是微带线中导体条的宽度,直接影响特征阻抗。
较宽的线宽会导致较低的特征阻抗,而较窄的线宽会导致较高的特征阻抗。
2.线路高度:线路高度是微带线导体条与地平面之间的距离,也会对特征阻抗产生影响。
特征阻抗公式
特征阻抗公式【导言】在电磁学领域,特征阻抗是一个非常重要的概念。
它用于描述传输线中的电磁波传播特性,是分析传输线性能的关键参数。
本文将介绍特征阻抗的定义、推导与应用,以期帮助读者更好地理解和应用这一概念。
【特征阻抗的定义与意义】特征阻抗,又称输入阻抗,是指在传输线上,入射波与反射波之间的比例关系。
它反映了传输线对电磁波的吸收和衰减能力,定义为单位长度上的电压与电流之比。
用数学公式表示为:Zc = V/I,其中Zc为特征阻抗,V为电压,I为电流。
【特征阻抗公式的推导】为了推导特征阻抗公式,我们先假设传输线两端的电压分别为V1和V2,电流分别为I1和I2。
根据欧姆定律,我们有:Z1 = V1/I1 (1)Z2 = V2/I2 (2)当传输线上存在反射波时,反射波电压与入射波电压之比等于反射波电流与入射波电流之比,即:V_ref = V1 + V2I_ref = I1 + I2根据反射波的定义,反射波电压与入射波电压之和等于入射波在传输线上的电压,即:V_inc = V1 + V2将(1)和(2)式代入上式,得到:Z1 + Z2 = (V1 + V2)/(I1 + I2)由于Z1和Z2分别表示传输线两端的阻抗,它们与特征阻抗Zc之间的关系为:Zc = Z1 + Z2于是,我们可以得到特征阻抗公式:Zc = (V1 + V2)/(I1 + I2)【特征阻抗公式的应用】特征阻抗公式在分析传输线性能时具有重要意义。
通过测量传输线两端的电压和电流,我们可以计算出特征阻抗,进而分析传输线的损耗、反射系数等性能参数。
此外,特征阻抗还可以用于设计匹配器、滤波器等射频电路,以实现最佳性能。
【结论】总之,特征阻抗是电磁学领域中一个重要的概念,掌握其定义、推导和应用对于分析和设计传输线及射频电路具有实用价值。
特征阻抗 波阻抗
特征阻抗波阻抗
特征阻抗和波阻抗都是与电磁波传输密切相关的参数,有助于帮助我
们理解电磁波在介质中传输的本质。
特征阻抗是指电磁波在介质中传输时,该介质所表现的电磁性能与真
空中的电磁性能相比的比例关系。
它是电磁波传输中一个常见的参数,也是得到其他各种参数的基础。
特征阻抗包括电磁波在介质中的电阻
抗和磁阻抗两个部分,分别与介质内部的电和磁场强度相关。
波阻抗是指电磁波在介质界面上传输时,该界面传递电磁波的方式与
真空中传递电磁波的方式相比的比例关系。
波阻抗是介质特征阻抗的
一种表现形式,是衡量电磁波在介质中传输的重要参数之一。
在电磁波传输领域,特征阻抗和波阻抗具有重要的应用价值。
例如,
在天线设计中,特征阻抗可以帮助我们计算电磁波在天线中的传输特性,从而实现优化天线的设计,提高天线性能;在光纤通讯中,波阻
抗可以帮助我们计算光纤接口的传递误差,从而改善光纤通讯的传输
质量。
总之,特征阻抗和波阻抗是电磁波传输中不可或缺的两个参数。
它们
帮助我们理解电磁波在介质中传输的基本原理,也在工程应用中发挥
着重要的作用。
对于电磁波传输领域的研究人员来说,深入掌握这两个参数的原理和应用是至关重要的。
特征阻抗和传输阻抗
特征阻抗和传输阻抗
特征阻抗和传输阻抗是电路中两个重要的概念。
特征阻抗是指在传输线或电缆上,当信号在传输线上通过时所呈现的阻抗。
它是传输线本身的特性参数,通常用Z0表示。
特征阻抗是由传输线的物理结构和材料决定的,对于同一种传输线,其特征阻抗的数值是恒定的。
传输阻抗是指在传输线上传输信号时,信号源与线路之间的阻抗匹配情况。
传输阻抗可以通过改变传输线两端的负载来调整,以保证信号的最大能量传输。
例如,如果传输线的特征阻抗为
Z0,那么为了实现最大功率传输,传输线的负载阻抗应该与
Z0相等。
特征阻抗和传输阻抗之间的关系是,当负载阻抗等于传输线的特征阻抗时,传输线上的电压和电流能够完全传输,不会反射。
如果负载阻抗不等于特征阻抗,就会产生反射,导致信号的衰减和失真。
因此,为了保证信号的质量和可靠性,在设计电路时需要考虑特征阻抗和传输阻抗的匹配。
什么是特征阻抗
高速设计领域一个越来越重要也是越来越为设计工程师所关注议题就是受控阻抗的电路板设计以及电路板上互联线的特征阻抗。
然而,对于非电子的设计工程师来说,这也是一个最容易混淆也最不直观的问题。
甚至很多的电子设计工程师对此也同样感到困惑。
这篇资料将对特征阻抗作一个简要而直观的介绍,希望帮助大家了解传输线最基本的品质。
什么是传输线?什么是传输线?两个具有一定长度的导体就构成传输线。
其中的一个导体成为信号传播的通道,而另外的一个导体则构成信号的返回通路(在这里我们提到信号的返回通路,实际上就是大家通常理解的地,但是为了叙述的方便,暂且忘掉地这一概念。
)。
在一个多层的电路板设计中,每一个PCB互联线都构成传输线中的一个导体,该传输线都将临近的参考平面作为传输线的的第二个导体或者叫做信号的返回通路。
什么样的PCB互联线是一个好的传输线呢?通常如果在同一个PCB互联线上特征阻抗处处保持一致,这样的传输线就成为高质量的传输线。
什么样的电路板叫做受控阻抗的电路板?受控阻抗的电路板是指PCB板上所有传输线的特征阻抗符合统一的目标规范,通常是指所有传输线的特征阻抗的值在25Ω到70Ω之间。
从信号的角度来考察考虑特征阻抗最行之有效的办法是考察信号沿着传输线传播时信号本身看到了什么。
为简化问题的讨论起见,假定传输线为微波传输带(microstrip)类型,并且信号沿传输线传播时传输线各处的横断面保持一致。
给该传输线加入幅度为1V 的阶跃信号。
阶跃信号是一个1V的电池,由前端接入,分别连接在信号线和返回通路之间。
在接通电池的瞬间,信号电压波形将以光速在电介质中行进,速度通常约为6英寸/ns(信号为什么行进如此快速,而不是接近电子传播的速度大约1cm/s,这是另外一个话题,这里不做进一步介绍)。
当然在这里信号仍然具有常规的定义,信号定义为信号线与返回通路上的电压差,总是通过测量传输线上任何一点与之临近的信号返回通路之间的电压差值来获得。
什么是特性阻抗特性阻抗的说明
什么是特性阻抗特性阻抗的说明特性阻抗又称特征阻抗,它不是直流电阻,属于长线传输中的概念。
那么你对特性阻抗了解多少呢?以下是由店铺整理关于什么是特性阻抗的内容,希望大家喜欢!特性阻抗的简介在高频范围内,信号传输过程中,信号沿到达的地方,信号线和参考平面(电源或地平面)间由于电场的建立,会产生一个瞬间电流,如果传输线是各向同性的,那么只要信号在传输,就始终存在一个电流I,而如果信号的输出电平为V,在信号传输过程中,传输线就会等效成一个电阻,大小为V/I,把这个等效的电阻称为传输线的特性阻抗Z。
信号在传输的过程中,如果传输路径上的特性阻抗发生变化,信号就会在阻抗不连续的结点产生反射。
影响特性阻抗的因素有:介电常数、介质厚度、线宽、铜箔厚度。
特性阻抗的类比说明现象类比:运输线的糟糕路况(类似传输线里的特性阻抗)会影响运输车队的速度,路越窄,路的阻碍作用越大(特性阻抗大,通过的无线电波能量就小);路越宽、路况越好,通过的车队速度越快(通过的无线电波能量越多)。
假若一段路况特别好,另一段路况特别差,从路况好的路段进入差的路段,车队就需要放慢速度。
这就说明两段路的路况不匹配(阻抗不匹配)。
特性阻抗是射频传输线影响无线电波电压、电流的幅值和相位变化的固有特性,等于各处的电压与电流的比值,用表示。
在射频电路中,电阻、电容、电感都会阻碍交变电流的流动,合称阻抗。
电阻是吸收电磁能量的,理想电容和电感不消耗电磁能量。
阻抗合起来影响无线电波电压、电流的幅值和相位。
同轴电缆的特性阻抗和导体内、外直径大小及导体间介质的介电常数有关,而与工作频率传输线所接的射频器件以及传输线长短无关。
也就是说,射频传输线各处的电压和电流的比值是一定的,特征阻抗是不变的。
目前无线通信系统射频器件有两种特性阻抗,一种是50W,用于军用微波、GSM、WCDMA等系统;另一种是75W,用于有线电视系统,一般应用较少。
特性阻抗的测量方法测量特性阻抗时,可在电缆的另一端用特性阻抗的等值电阻终接,其测量结果会跟输入信号的频率有关。
特征阻抗推导
特征阻抗推导
特征阻抗是指电磁波在介质或导体中传播时遇到的阻力。
在推导特征阻抗时,通常使用两种方法:波动法和微分法。
1. 波动法:通过考虑电磁波在传播过程中的波动性质,可以推导出特征阻抗。
具体步骤如下:
- 假设电磁波以速度v在介质中传播,其波长为λ。
- 在介质中选择一个面积为A的截面,通过该截面的电磁波功率为P。
- 根据能量守恒原理,电磁波功率P应与通过截面的能流密度有关,即P = v · A · S,其中S为能流密度。
- 特征阻抗Z为通过截面的电磁波功率和截面上电场强度E 之间的比值,即Z = P / (E^2 / 2μ) = 2μvS / E^2,其中μ为介质的磁导率。
- 由此可得到特征阻抗和能流密度之间的关系Z = 2μvS = E / H,其中E为电场强度,H为磁场强度。
2. 微分法:通过应用麦克斯韦方程组,可以推导出特征阻抗。
具体步骤如下:
- 根据麦克斯韦方程组,有旋度定律∇ × E = -∂B / ∂t和∇ × H = ∂D / ∂t,其中E为电场强度,B为磁感应强度,H为磁场强度,D为电位移矢量。
- 在无耗介质中,电场强度E和磁场强度H满足E = ZH,其中Z为特征阻抗。
- 将∇ × E和∇ × H展开,利用麦克斯韦方程组,可以将特征阻抗表示为Z = √(μ / ε),其中μ为介质的磁导率,ε为介质的电容率。
以上是两种常用的推导特征阻抗的方法,具体推导过程可能根据不同情况和假设略有差异。
pcb 特征阻抗
pcb 特征阻抗PCB(Printed Circuit Board)特征阻抗是指在PCB设计和制造过程中需要特别关注的一个参数。
在PCB中,特征阻抗通常涉及到信号传输线路的阻抗匹配,以确保信号能够以最佳的性能传输。
特征阻抗在PCB设计中起着至关重要的作用。
如果信号传输线路的阻抗不匹配,会导致信号反射、损耗增加以及信号完整性下降。
因此,在PCB设计中,特征阻抗的控制是非常重要的。
要控制特征阻抗,需要从以下几个方面考虑:1. 材料选择:选择适合特定阻抗要求的基板材料。
不同材料具有不同的介电常数和导电性能,这会影响到特征阻抗的控制。
常见的材料有FR-4、高频板材等。
2. 几何结构:特征阻抗与信号传输线路的几何结构密切相关。
线宽、线距、线路层间距等参数都会影响到特征阻抗的控制。
通常情况下,特征阻抗要求较高的信号线会采用较宽的线宽和较小的线距,以达到所需的阻抗值。
3. 线路层堆叠:PCB通常由多层线路组成,不同层之间的阻抗也需要匹配。
在PCB设计中,需要合理选择和布局线路层,以满足特征阻抗的要求。
4. 阻抗控制技术:在PCB制造过程中,可以采用一些特殊的工艺来控制特征阻抗。
例如,通过调整线路的铜厚度、调整线路的宽度等方法来控制特征阻抗。
特征阻抗的控制对于高速信号传输和高频电路尤为重要。
在高速信号传输中,特征阻抗的不匹配会导致信号的反射和干扰,从而影响到信号的传输质量。
而在高频电路中,特征阻抗的控制可以减小信号的损耗,提高信号的传输效率。
在PCB设计中,特征阻抗的控制是一个复杂而细致的过程。
需要综合考虑材料、几何结构、线路层堆叠和工艺等多个因素。
只有在这些方面做到合理控制和优化,才能够实现特征阻抗的要求。
总结起来,PCB特征阻抗是PCB设计中需要特别关注的一个参数。
通过合理的材料选择、几何结构设计、线路层堆叠和工艺控制等手段,可以实现特征阻抗的控制,保证信号的传输质量。
在高速信号传输和高频电路中,特征阻抗的控制尤为重要,能够提高信号的传输效率和可靠性。
什么是特性阻抗
什么是特性阻抗,什么叫特性阻抗特征阻抗(也有人称特性阻抗),它是在甚高频、超高频范围内的概念,它不是直流电阻。
属于长线传输中的概念。
在信号的传输过程中,在信号沿到达的地方,信号线和参考平面(电源平面或地平面)之间由于电场的建立,就会产生一个瞬间的电流,如果传输线是各向同性的,那么只要信号在传输,就会始终存在一个电流I,而如果信号的输出电平为V,则在信号传输过程中(注意是传输过程中),传输线就会等效成一个电阻,大小为V/I,我们把这个等效的电阻称为传输线的特征阻抗(characteristic Impedance)Z。
要格外注意的是,这个特征阻抗是对交流(AC)信号而言的,对直流(DC)信号,传输线的电阻并不是Z,而是远小于这个值。
信号在传输的过程中,如果传输路径上的特征阻抗发生变化,信号就会在阻抗不连续的结点产生反射。
传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。
传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。
传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。
分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。
一个传输线的微分线段可以用等效电路描述如下:传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示:从传输线的等效电路可知,每一小段线的阻抗都是相等的。
传输线的特性阻抗就是微分线段的特性阻抗。
传输线可等效为:Z0 就是传输线的特性阻抗。
Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。
实际应用中,必须具体分析。
传输线分类当今的快速切换速度或高速时钟速率的PCB 迹线必须被视为传输线。
特性阻抗的专业解释
高速设计中的特性阻抗问题
在高速设计中,可控阻抗板和线路的特性阻抗是最重要和最普遍的问题之一。首先了解一下传输线的定义:传输线由两个具有一定长度的导体组成,一个导体用来发送信号,另一个用来接收信号(切记“回路”取代“地”的概念)。在一个多层板中,每一条线路都是传输线的组成部分,邻近的参考平面可作为第二条线路或回路。一条线路成为“性能良好”传输线的关键是使它的特性阻抗在整个线路中保持恒定。
瞬时阻抗或特性阻抗,对信号传递质量而言非常重要。在传递过程中,如果下一步的阻抗和上一步的阻抗相等,工作可顺利进行,但若阻抗发生变化,那会出现一些问题。
为了达到最佳信号质量,内部连接的设计目标是在信号传递过程中尽量保持阻抗稳定,首先必须保持传输线特性阻抗的稳定,因此,可控阻抗板的生产变得越来越重要。另外,其它的方法如余线长度最短化、末端去除和整线使用,也用来保持信号传递中瞬时阻抗的稳定。
线路板成为“可控阻抗板”的关键是使所有线路的特性阻抗满足一个规定值,通常在25欧姆和70欧姆之间。在多层线路板中,传输线性能良好的关键是使它的特性阻抗在整条线路中保持恒定。
但是,究竟什么是特性阻抗?理解特性阻抗最简单的方法是看信号在传输中碰到了什么。当沿着一条具有同样横截面传输线移动时,这类似图1所示的微波传输。假定把1伏特的电压阶梯波加到这条传输线中,如把1伏特的电池连接到传输线的前端(它位于发送线路和回路之间),一旦连接,这个电压波信号沿着该线以光速传播,它的速度通常约为6英寸/纳秒。当然,这个信号确实是发送线路和回路之间的电压差,它可以从发送线路的任何一点和回路的相临点来衡量。图2是该电压信号的传输示意图。
从电池的角度看时,如果信号以一种稳定的速度沿着传输线传播,并且传输线具有相同的横截面,那么在0.01纳秒中每前进一步需要相同的电荷量,以产生相同的信号电压。当沿着这条线前进时,会产生同样的瞬时阻抗,这被视为传输线的一种特性,被称为特性阻抗。如果信号在传递过程的每一步的特性阻抗相同,那么该传输线可认为Biblioteka 可控阻抗传输线。 线路的阻抗
波导的特征阻抗
波导的特征阻抗
嘿,朋友们!今天咱来聊聊波导的特征阻抗这个有意思的玩意儿。
你说这波导的特征阻抗,它就像是一条道路的宽窄规定一样。
你想啊,要是道路一会儿宽一会儿窄,那车开起来得多别扭啊!波导里的信号就跟车似的,特征阻抗要是不稳定,那信号传输不就乱套啦!
特征阻抗就好像是波导的一个脾气,它得稳定,信号才能顺顺溜溜地通过。
要是它总变来变去,那信号不得被折腾得晕头转向啊!这就好比你走路,路一会儿平一会儿坑坑洼洼,你走起来能舒服吗?
咱平时用的那些电子产品,里面都有波导。
这特征阻抗要是没弄好,那你的手机信号可能就时好时坏,电视画面说不定也会一闪一闪的。
这多闹心啊!
你再想想,要是波导的特征阻抗不一致,就像接力赛中交接棒不顺畅一样,那信息传递能快吗?能准确吗?肯定不行啊!所以说,研究和把握好波导的特征阻抗可太重要啦!
它可不是随随便便就能搞定的事儿。
得精心设计、仔细调试,就跟雕琢一件艺术品似的。
要是马虎一点,那后果可能不堪设想哦!
而且啊,这特征阻抗还和其他好多因素有关系呢!就像人在社会中会受到各种影响一样。
比如说波导的尺寸、形状,还有里面填充的介质啥的,都会影响到特征阻抗。
这多复杂啊!但咱可不能怕,得迎难而上,把它搞清楚弄明白。
你说要是没有对波导特征阻抗的深入研究和准确把握,咱现在能享受到这么便捷的通信和各种高科技产品吗?肯定不能啊!所以啊,可别小瞧了这看似不起眼的特征阻抗。
总之,波导的特征阻抗是个非常关键的东西,它关系到信号传输的质量和效率。
我们得重视它,好好研究它,让它为我们的生活带来更多的便利和精彩!。
特征阻抗 阻抗匹配 共轭匹配原理详解
特征阻抗、阻抗匹配、共轭匹配讲解特征阻抗、阻抗匹配、共轭匹配定义及原理详解如下:1.特征阻抗特征阻抗,也称特性阻抗,是传输线理论中的重要概念。
特征阻抗推导过程见附录1,位置x为传输线的任意处,特征阻抗为位置x处入射波的入射电压和入射电流之比,即:-------------------------------------------------------------公式1.1在公式1.1中,特征阻抗只与传输线单位长度的寄生电阻R、寄生电感L、寄生电导G和寄生电容C有关系,而与位置x无关。
特征阻抗推导过程假设前提是传输线单位长度特性是一样的,且是无限长的。
特征阻抗是瞬时阻抗,是传输线位置为x处在没有反射的情况下瞬时电压和瞬时电流的比值。
而直流阻抗也可以理解为瞬时阻抗,只是其任何时候的瞬时电压和瞬时电流比值都是一样的,但是直流阻抗与传输线位置x是有关系的,位置x越靠近原点,阻抗越大。
若频率w很低,则公式1.1表示的特征阻抗可以等效为:-------------------------------------------------------------公式1.2如果有一根导线无限长,且可等效为无穷个单位长度的寄生电阻R和寄生电导串并的分布式,那求解的阻抗是不是同公式1.2呢?显然不是,电阻是有损耗的,长度越大,等效阻抗越大,损耗越大。
推导过程哪里出问题了?待补充。
若频率w很高,则公式1.1表示的特征阻抗可以等效为:-------------------------------------------------------------公式1.3若传输线可以照公式1.3这样等效,则称为无损传输线。
而特征阻抗概念是针对无损传输线而言,或者近似无损传输线,主要针对无损寄生参数(寄生电感和寄生电容)?万用表测量的是直流阻抗,而非交流阻抗,所以若用万用表测量一个特征阻抗为50ohm的导线,将会发现它是短路的。
特征阻抗、VSWR和反射系数的那点事!
特征阻抗、VSWR和反射系数的那点事!在学习射频和微波的基本原理过程中,也许没有比理解特性阻抗的概念更为重要了。
当我们在谈论50欧姆或75欧姆电缆时,其实我们是在说电缆的特征阻抗为50欧姆,75欧姆等等。
也许您还记得,在关于特性阻抗常见的介绍里,总是成片的数学公式和各种参数,以及几句聊胜于无的文字介绍,实在令人沮丧。
于是本文,我们尝试用一种更为直观的方式来做一下阐释。
首先我们要明确,在今天的RF /微波系统中使用50欧姆或者75欧姆是人为的选择。
其实比如说像43欧姆或者其他数值的阻抗也是可以的,但考虑到实际同轴电缆的物理尺寸,这个范围被限制在20至200欧姆以内。
对于传输线而言,尽可能低的损耗和高的功率容量自然是我们期待的,从下图我们可以看出,考虑到方便计算,损耗和功率容量等等因素之后,50欧姆确实是最完美的折中了(针对空气介质)。
至于75欧姆,则常见于不需要大功率传输的情况,例如有线电视线缆。
图1但有一点要提醒的是特性阻抗的概念其实很广,包括所有的同轴线,印制电路板传输线、微带、带状线、双引线和双绞线。
如果您自己设计PCB的传输线的话,您可以选择自己需要的值,而不必非得是50或者75欧姆。
甚至自由空间本身也具有阻抗特性,在自由空间和其他无界介质的情况下,该阻抗我们称为固有阻抗。
使用50欧姆同轴电缆的一个实验如果有人拿着一根1000英尺长的电缆对你说“这是50欧姆阻抗的电缆,好好用吧”,然后你决定拿着欧姆表来验证一下是否真的如此。
你将欧姆表的两根引线分别连到电缆的内导体和外导体,而线缆的尾端保持着开路,你会惊讶地看到它读到接近无限阻抗!然后你再把尾端处的内外导体短接,然后从这一头的开口端再测,现在读数变成接近零欧姆了,怎么会这样!然后你赶紧安慰自己‘不要慌,其实它真的应该是50欧姆的……’您的仪表没有告诉您电缆为50欧姆的原因是它无法读取瞬时电压/电流比(V = IR)。
其实普通的欧姆表具有非常高的内阻,欧姆表中的任何电容将与内部电阻结合会形成非常大的时间常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征阻抗那点事
关键词:特征阻抗 PCB 电缆
传输线的特征阻抗,又称为特性阻抗,是我们在进行高速电路设计的时候经常会提到的一个概念。
但是很多人对这个概念并不理解,有时还会错误的理解为直流阻抗。
弄明白这个概念对我们更好的进行高速电路设计很有必要。
高速电路的很多设计规则都和特征阻抗有关。
要理解特征阻抗的概念,我们先要弄清楚什么是传输线。
简单的说,传输线就是能够传输信号的连接线。
电源线,视频线,USB连接线,PCB板上的走线,都可以称为传输线。
如果传输线上传输的信号是低频信号,假设是1KHz,那么信号的波长就是300公里(假设信号速度为光速),即使传输线的长度有1米长,相对于信号来说还是很短的,对信号来说传输线可以看成短路,传输线对信号的影响是很小的。
但是对于高速信号来说,假设信号频率提高到300MHz,信号波长就减小到1米,这时候1米的传输线和信号的波长已经完全可以比较,在传输线上就会存在波动效应,在传输线上的不同点上的电压电流就会不同。
在这种情况下,我们就不能忽略传输线对信号造成的影响。
传输线相对信号来说就是一段长线,我们要用长线传输里的理论来解决问题。
特征阻抗就属于长线传输中的一个概念。
信号在传输线中传输的过程中,在信号到达的一个点,传输线和参考平面之间会形成电场,由于电场的存在,会产生一个瞬间的小电流,这个小电流在传输线中的每一点都存在。
同时信号也存在一定的电压,这样在信号传输过程中,传输线的每一点就会等效成一个电阻,这个电阻就是我们提到的传输线的特征阻抗。
这里一定要区分一个概念,就是特征阻抗是对于交流信号(或者说高频信号)来说的,对于直流信号,传输线有一个直流阻抗,这个值可能会远小于传输线的特征阻抗。
一旦传输线的特性确定了(线宽,与参考平面的距离等特性),那么传输线的特征阻抗就确定了.此处省略一万字的公式推导过程,直接给出PCB走线的特征阻抗计算公式:
其中L是单位长度传输线的固有电感,C是单位长度传输线的固有电容。
肯定有人会问,什么是单位长度?是1cm,1mm,还是1mil?其实这里的单位长度是多少并不重要。
单位越小精度越高,学过微积分对这个概念应该就更清楚了。
通过这个简单的计算公式我们能看出来,要改变传输线的特征阻抗就要改变单位长度传输线的固有电感和电容。
这样我们就能更好的理解影响传输线特征阻抗的几个因素:
a. 线宽与特征阻抗成反比。
增加线宽相当于增大电容,也就减小了特征阻抗,反之亦然
b. 介电常数与特征阻抗成反比。
同样提高介电常数相当于增大电容
c. 传输线到参考平面的距离与特征阻抗成正比。
增加传输线与参考平面的距离相当于减小了电容,这样也就减小了特征阻抗,反之亦然
d. 传输线的长度与特征阻抗没有关系。
通过公式可以看出来L和C都是单位长度传输线的参数,与传输线的长度并没有关系
e. 线径与特征阻抗成反比。
由于高频信号的趋肤效应,影响较其他因素小
下面简单说说我们经常听到的传输线特征阻抗是75欧姆和50欧姆。
为什么是这两个值,而不是其他值呢?这两个数值是人们在工程实践中选择的。
就同轴电缆来说,内外导体直径比为1.65时导线具有最大的功率传输能力,这个时候对应的阻抗大约为30欧姆。
但是阻抗过低引起的信号衰减比较大,考虑到电缆的衰减因素,在阻抗为77欧姆的时候衰减系数最小,所以在工程上为了方便计算,就取特征阻抗的计算值为75欧姆,能达到比较好的衰减系数减少信号衰减。
如果取功率传输能力和衰减系数做折中考虑的话,就得到了50欧姆,这也是在工程上方便计算的取值。
也就是说无论是75欧姆还是50欧姆都是人为规定的,考虑各方面因素的一个折中选择。
在实际的PCB设计中,计算特征阻抗有很多种方法。
大部分EDA设计工具都会自带特征阻抗计算工具。
另外,推荐一款Polar SI9000,这个小软件能很方便的进行传输线特征阻抗的计算,包括单端走线和差分走线等等,计算精度较高,很多PCB制板厂都会用这个工具进行特征阻抗的计算。