动量守恒定律与能量守恒定律

合集下载

物理学中的动量和能量守恒定律

物理学中的动量和能量守恒定律

物理学中的动量和能量守恒定律物理学中有两个重要的守恒定律,分别是动量守恒定律和能量守恒定律。

它们是描述自然界物体在各种相互作用下的运动和转化过程的基本原理。

本文将对这两个守恒定律进行详细探讨,并展示它们在物理学中的重要作用。

一、动量守恒定律动量守恒定律是指在一个孤立系统中,总动量保持不变。

即在没有外力作用的情况下,物体或物体系统的总动量守恒。

动量的定义是一个物体的质量乘以其速度。

对于一个物体的动量改变,需要有外力的作用。

根据牛顿第二定律F=ma,可以得到物体动量的变化率等于作用力。

动量守恒定律可以应用于多种情况,例如碰撞、爆炸等。

在碰撞过程中,当两个物体以一定速度相向运动时,它们会发生碰撞,根据动量守恒定律,碰撞前后两个物体的总动量保持不变。

这个特点使得动量守恒定律成为解决碰撞问题的有力工具。

二、能量守恒定律能量守恒定律是指在一个孤立系统中,总能量保持不变。

无论是机械能、热能、电能还是化学能等各种形式的能量,在一个封闭的系统中,总能量守恒。

能量的转化是物理学中研究的重要内容。

在能量守恒定律的作用下,能量可以从一种形式转化为另一种形式,但总能量始终保持不变。

以机械能守恒为例,机械能包括动能和势能。

当只考虑重力场时,一个物体的机械能等于它的动能与势能之和。

在没有外力做功和能量损耗的情况下,一个物体的机械能保持不变。

能量守恒定律在很多领域中都有应用。

例如在机械系统中,能量守恒定律常常用于解决机械能转化和利用的问题。

在能量转化的过程中,能量的损耗是无法避免的,而能量守恒定律提供了一种理论工具来分析能量转化的效率和损失。

三、动量和能量守恒定律的关系动量守恒定律和能量守恒定律在物理学中密切相关,但并不完全等同。

动量是一个矢量量,与物体的质量和速度有关;而能量是一个标量量,与物体的质量和速度的平方有关。

在一些情况下,动量和能量守恒定律可以同时适用。

例如在完全弹性碰撞中,动能守恒和动量守恒同时成立。

在碰撞前后,物体的动能保持不变,同时总动量也保持不变。

动量守恒定律与能量守恒定律

动量守恒定律与能量守恒定律

动量守恒定律与能量守恒定律动量守恒定律和能量守恒定律是物理学中两个重要的基本定律。

它们通过描述物体运动或相互作用过程中的一些规律,帮助我们更深入地理解并解释自然界中发生的现象。

动量守恒定律,也被称为牛顿第三定律,指出在一个封闭系统中,如果没有外力作用,系统内的总动量将保持不变。

换句话说,系统内的物体之间相对运动的总动量始终保持恒定。

这个定律可以用数学公式表示为:Σmv = 0,其中Σmv表示系统中物体的总动量。

这意味着当一个物体获得了一定的动量时,其他物体的动量必然发生相应的改变,以保持系统的总动量为零。

动量守恒定律对于解释运动过程中的碰撞、反弹和推力等现象非常重要。

以碰撞为例,当两个物体发生碰撞时,它们之间会相互传递动量,但总动量始终保持不变。

这就是我们常见的“动量守恒”的原理。

相比之下,能量守恒定律强调的是能量在一个封闭系统中的守恒。

能量是物体的基本属性,它可以是动能、势能、热能等形式存在。

能量守恒定律指出在一个封闭系统中,如果没有外部能量输入或输出,系统内的能量总量将保持不变。

换句话说,能量既不能创造也不能消失,只能从一种形式转化为另一种形式。

我们通常用数学公式ΣE = 0表示能量守恒定律,其中ΣE表示系统的总能量。

这意味着在一个封闭系统中,能量转化的过程可以是动能转化为势能,势能转化为热能等,但总能量始终保持不变。

能量守恒定律可以解释很多物理现象,例如机械能守恒、光能转化为电能等。

以机械能守恒为例,当一个物体从高处自由落下时,它的势能逐渐转化为动能,但总的机械能(势能加动能)保持不变。

在实际应用中,动量守恒定律和能量守恒定律常常相互关联。

在碰撞过程中,动量守恒定律用于描述物体运动前后的变化,而能量守恒定律则用于考虑动能转化和损失等能量变化。

动量守恒定律和能量守恒定律是物理学中两个基本的守恒定律。

它们不仅帮助我们理解和解释许多自然界中的现象,还为工程学和技术应用提供了重要的理论基础。

通过深入研究和应用这两个定律,我们可以更好地认识和探索自然界的奥秘。

大学物理动量守恒定律和能量守恒定律

大学物理动量守恒定律和能量守恒定律

04
动量守恒定律和能量守恒定 律的意义与影响
在物理学中的地位
基础定律
动量守恒定律和能量守恒定律是物理学中的两个基础定律,它们 在理论物理学和实验物理学中都占据着重要的地位。
理论基石
这两个定律为物理学理论体系提供了基石,许多物理理论和公式都 是基于这两个定律推导出来的。
验证实验
许多实验通过验证动量守恒定律和能量守恒定律的正确性,来检验 实验的准确性和可靠性。
适用条件
系统不受外力或外力合力为零
动量守恒定律只有在系统不受外力或外力合力为零的情况下才成立。如果系统受到外力作 用,则总动量将发生变化。
系统内力的作用相互抵消
系统内力的作用只会改变系统内各物体的速度,而不会改变系统的总动量。如果系统内力 的作用相互抵消,则总动量保持不变。
理想气体和刚体的动量守恒
未来能源利用的发展需要解决环 境问题和能源短缺问题,动量守 恒定律和能量守恒定律将在新能 源技术、节能技术等领域发挥关
键作用。
感谢您的观看
THANKS
在理想气体和刚体的研究中,由于气体分子之间的相互作用力和刚体之间的碰撞力都可以 忽略不计,因此它们的动量守恒。
实例分析
弹性碰撞
当两个小球发生弹性碰撞时,根据动量守恒定律,它们碰撞后 的速度满足m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'。由于弹性碰撞中能 量没有损失,因此碰撞前后两小球的速度变化量相等。
动量与能量的关系
动量是质量与速度的乘积,表 示物体的运动状态;能量是物 体运动状态的度量,包括动能
和势能。
动量和能量都是矢量,具有 方向性,遵循矢量合成法则。
动量和能量可以相互转化,但 总量保持不变,这是动量守恒 和能量守恒定律的内在联系。

动量守恒定律和能量守恒定律解析

动量守恒定律和能量守恒定律解析

第三章 动量守恒定律和能量守恒定律概述:1、牛顿第二定律描述了力对物体作用的瞬间关系,物体瞬间获得响应的加速度,物体的运动状态已经开始发生变化,要使物体的运动状态继续变化,需要力的作用有一个过程。

本章从力的空间累积效应和时间累积效应出发,用动量和能量对机械运动进行分析。

2、由对一个质点的研究过渡到质点系的研究。

3、守恒定律是完美、和谐的自然界的体现。

动量守恒和能量守恒源于牛顿力学,但在牛顿定律不适用的领域,例如微观粒子及高能物理领域仍然适用,故它是自然界的一条基本定律。

3-1质点和质点系的动量定理一、 冲量 质点的动量定理牛顿第二定律的微分形式d d t =pF d d t =F p 22112121d t d t t m m ==-⎰⎰p p F p p p =υ-υ1.冲量:力对时间的积分,常以I 表示,并称⎰=21d t t t F I为在1t ~2t 时间内、力F 对质点的冲量,或简单说成F 的冲量。

说明:(1).冲量,是一个矢量,大小为21d t t t =⎰I F ,方向是速度或动量的变化方向。

(2).由于冲量是作用力的时间积分,必须知道力在这段时间中的全部情况,才能求出冲量。

实际上要知道力的大小和方向随时间变化是很困难的,必须采取近似处理。

F 为恒力(方向也不变)时,t =∆I F ;(高中的冲量定义) F 作用时间很短时,可用力的平均值F 来代替。

211d t t t t =∆⎰F F ,21t t t ∆=-2.动量(p )是描述物体运动状态的物理量,有大小和方向,是一个矢量。

方向和运动速度的方向相同。

单位:㎏·m/s量纲:MLT -1。

3.质点的动量定理:在给定的时间间隔内,质点所受合力的冲量,等于该质点动量的增量。

22112121d t d t t m m ==-⎰⎰p p F p p p =υ-υ在直角坐标系中,质点的动量定理的分量形式:212121212121---t x x x xt t y y y y t t z zz zt I F dt m υm υI F dt m υm υI F dt m υm υ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰动量定理在打击和碰撞等情形中特别有用。

大学物理第三章动量守恒定律和能量守恒定律

大学物理第三章动量守恒定律和能量守恒定律

动量守恒定律的表述
总结词
动量守恒定律表述为系统不受外力或所 受外力之和为零时,系统总动量保持不 变。
VS
详细描述
动量守恒定律是自然界中最基本的定律之 一,它表述为在一个封闭系统中,如果没 有外力作用或者外力之和为零,则系统总 动量保持不变。也就是说,系统的初始动 量和最终动量是相等的。
动量守恒定律的适用条件
能量守恒定律可以通过电磁学 的基本公式推导出来。
能量守恒定律可以通过相对论 的质能方程推导出来。
能量守恒定律的应用实例
01
02
03
04
机械能守恒
在无外力作用的系统中,动能 和势能可以相互转化,但总和
保持不变。
热能守恒
在一个孤立系统中,热量只能 从高温物体传递到低温物体,
最终达到热平衡状态。
电磁能守恒
详细描述
根据牛顿第三定律,作用力和反作用力大小相等、方向相反。如果将一个物体施加一个力F,则该力会产生一个 加速度a,进而改变物体的速度v。由于力的作用是相互的,反作用力也会对另一个物体产生相同大小、相反方向 的加速度和速度变化。因此,在系统内力的相互作用下,系统总动量保持不变。
02
能量守恒定律
能量守恒定律的表述
感谢观看
01
能量守恒定律表述为:在一个封闭系统中,能量不能被创造或消灭, 只能从一种形式转化为另一种形式。
02
能量守恒定律是自然界的基本定律之一,适用于宇宙中的一切物理过 程。
03
能量守恒定律是定量的,可以用数学公式表示。
04
能量守恒定律是绝对的,不受任何物理定律的限制。
能量守恒定律的适用条件
能量守恒定律适用于孤立系统,即系统与外界没有能量 交换。

动力学三大守恒定律

动力学三大守恒定律

动力学三大守恒定律【知识专栏】动力学三大守恒定律1. 引言及概述动力学三大守恒定律是物理学中非常重要的概念,它们为我们理解和描述物体运动提供了基础规律。

这三大守恒定律分别是动量守恒定律、角动量守恒定律和能量守恒定律。

本文将以从简到繁、由浅入深的方式来逐步探讨这三大守恒定律的背后原理和应用,以帮助读者更全面地理解这一主题。

2. 动量守恒定律2.1 动量的基本概念为了更好地理解动量守恒定律,首先需要了解动量的基本概念。

动量是物体运动的数量度,表示物体在运动过程中所具有的惯性。

动量的大小与物体的质量和速度相关,可以用数学公式 p = m * v 表示,其中 p 为动量,m 为物体的质量,v 为物体的速度。

2.2 动量守恒定律的表述根据动量守恒定律,一个封闭系统中物体的总动量在没有外力作用的情况下保持不变。

也就是说,如果一个物体的动量发生改变,那么系统中其他物体的动量总和将相应地发生改变,以保持系统的总动量守恒。

2.3 动量守恒定律的应用动量守恒定律在多个领域中都有应用,例如力学、流体力学和电磁学等。

在碰撞问题中,我们可以利用动量守恒定律来分析碰撞前后物体的速度和质量变化。

在交通事故中,通过应用动量守恒定律,我们可以了解事故发生时车辆的速度和冲击力对乘客的影响,并提出相应的安全建议。

3. 角动量守恒定律3.1 角动量的基本概念角动量是物体绕某一轴旋转时所具有的运动状态,它是描述物体旋转惯性的量度。

角动量的大小与物体的惯性和旋转速度相关,可以用数学公式L = I * ω 表示,其中 L 为角动量,I 为物体的转动惯量,ω 为物体的角速度。

3.2 角动量守恒定律的表述根据角动量守恒定律,一个封闭系统中物体的总角动量在没有外力矩作用的情况下保持不变。

即使系统中发生了旋转速度的改变,但系统的总角动量仍然保持恒定。

3.3 角动量守恒定律的应用角动量守恒定律在天体物理学、自然界中的旋转现象等领域中具有广泛的应用。

它被用来解释行星和卫星的自转、陀螺的稳定性以及漩涡旋转等自然现象。

动量守恒定律和能量守恒定律

动量守恒定律和能量守恒定律

W保守 Ep Ep1 Ep2
第三章动量守恒定律和能量守恒定律基本概念及规律
(5) 力学中常见的三种势能:
重力势能 引力势能
弹性势能
6.功能原理,机械能守恒定律 质点系的功能原理:外力与非保守内力所作的功 等于系统机械能的增量。
E p mgy m m E p G r 1 2 E p kx 2
t1
t2
(2)冲量的方向是动量增量的方向。
第三章动量守恒定律和能量守恒定律基本概念及规律
(3)系统的内力只能改变系统内个别物体的动量,而 不能改变整个系统的动量。 (4)对变力或恒力均适用,在碰撞、打击问题中经常 用到。
dp (5)动量和力的微分关系式为F d t d p F dt 2.质点系的动量守恒定律
1.动量、冲量、动量定理 动量:是量度物体机械运动的物理量.动量是矢量、 状态量。定义式: p mv 质点系的动量:
n p mi vi
i 1
力的冲量:表征力在时间过程中累积效应的物理量 称为冲量,冲量是矢量、过程量。
定义式:
t2 I F (t ) d t
第三章动量守恒定律和能量守恒定律 一、基本要求
1.掌握功的定义及变力做功的计算方法。
基本要求
2.掌握质点的动能定理、动量定理,并能灵活 运用解决力学问题。
3.掌握保守力做功的特点及势能概念。
4.掌握动量守恒定律、功能原理,机械能守恒定 律的适用条件及解题思路和方法。
第三章动量守恒定律和能量守恒定律基本概念及规律 二、基本概念及规律
t1
第三章动量守恒定律和能量守恒定律基本概念及规律
说明: (1)质点(或质点系)的动量定理是矢量式,计算时要 把它投影为标量式。在直角坐标系中,其分量式:

动量与能量的守恒定律

动量与能量的守恒定律

动量与能量的守恒定律动量守恒定律和能量守恒定律是物理学中两个基本的守恒定律。

本文将从概念、原理和应用等方面阐述动量与能量的守恒定律。

一、动量守恒定律动量是物体运动的量度,与物体的质量和速度有关。

动量守恒定律指出,在没有外力作用时,一个系统的总动量保持不变。

动量守恒定律的数学表达式为:对于一个孤立系统,其初态和末态动量之间的差等于系统内部作用力的冲量。

动量守恒定律可以应用于众多实际问题,例如碰撞、爆炸等。

在碰撞问题中,如果系统内部没有外力作用,那么两个物体的总动量在碰撞前后保持不变。

这意味着一个物体的速度增加,另一个物体的速度必然减小。

二、能量守恒定律能量是物体或系统进行工作或产生热的能力。

能量守恒定律指出,在一个封闭系统中,能量不会凭空产生或消失,只会从一种形式转化为另一种形式。

能量守恒定律的数学表达式为:对于一个封闭系统,其初态和末态的能量之差等于系统所做的功与系统所接受的热之和。

能量守恒定律适用于各种能量转化的过程,包括机械能转化、热能转化和化学能转化等。

例如,一个物体从高处自由下落,其势能逐渐转化为动能,而且在空气阻力下逐渐转化为热能。

三、动量守恒与能量守恒的关系动量守恒和能量守恒是物理世界中两个独立而又相互关联的守恒定律。

动量守恒定律和能量守恒定律都描述了物理系统在各种变化中某一物理量的守恒情况,但两者关注的物理量不同。

动量守恒侧重于物体的运动状态,而能量守恒则侧重于物体的能量变化。

在某些情况下,动量守恒和能量守恒可以相互影响和转化。

例如,在完全弹性碰撞中,动能守恒和动量守恒同时适用。

在这种碰撞中,物体之间没有能量损失,同时总动量也保持不变。

四、应用举例动量守恒和能量守恒定律在实际问题中有广泛的应用。

下面以两个具体例子作进一步说明。

例一:弹性碰撞考虑两个质量分别为m1和m2的物体碰撞的情况。

由于没有外力作用,根据动量守恒定律,我们可以得到:m1v1i + m2v2i = m1v1f + m2v2f其中,m1v1i和m2v2i分别表示碰撞前两个物体的动量,m1v1f和m2v2f表示碰撞后两个物体的动量。

能量守恒与动量守恒

能量守恒与动量守恒

能量守恒与动量守恒自从能量守恒定律和动量守恒定律被引入物理学以来,它们已经成为了研究自然界各种现象的重要基石。

能量守恒定律和动量守恒定律指导着我们对物理世界的认识和理解。

本文将探讨能量守恒定律与动量守恒定律的原理及其在实际问题中的应用。

一、能量守恒定律能量守恒定律是指一个系统(在动能、势能和内能之间)的总能量在任何情况下都保持不变。

换言之,能量既不能创造也不能毁灭,只能转化形式。

能量守恒定律可以通过以下公式表达:能量的初始总和 = 能量的最终总和在实际应用中,我们常常以车辆碰撞为例来说明能量守恒定律的原理。

假设两辆车以相等的速度相向而行,当它们发生碰撞时,能量守恒定律说明了碰撞前后系统总能量的不变性。

具体而言,能量转化为变形能、声能和热能,但总能量保持不变。

能量守恒定律的应用不仅仅局限于碰撞问题。

它还可以应用于热力学、光学、电磁学等多个领域。

在化学反应中,能量守恒定律可以用来分析反应热、焓变等问题。

在机械系统中,能量守恒定律可以用来分析机械能转化与利用的问题。

总的来说,能量守恒定律是自然界中各种物理现象的基本定律,对我们了解和研究物质与能量的转化过程起着重要作用。

二、动量守恒定律动量守恒定律是指一个系统的总动量在任何情况下都保持不变。

动量的定义是物体的质量乘以其速度。

动量守恒定律可以通过以下公式表达:动量的初始总和 = 动量的最终总和在实际应用中,我们常常以弹性碰撞为例来说明动量守恒定律的原理。

当两个物体发生弹性碰撞时,其总动量在碰撞前后保持不变。

这意味着碰撞前两个物体的动量之和等于碰撞后两个物体的动量之和。

动量守恒定律不仅适用于弹性碰撞问题,还可广泛应用于其他领域。

在流体力学中,动量守恒定律可以用来分析流体的运动和流体力学现象。

在电磁学中,动量守恒定律可以用来研究电荷的运动和相互作用。

总的来说,动量守恒定律在物理学中起着重要的作用,深化了我们对运动和相互作用的理解。

综上所述,能量守恒定律和动量守恒定律是物理学中两个基本的守恒定律。

第3章-动量守恒定律和能量守恒定律

第3章-动量守恒定律和能量守恒定律

质点的位移在力方向的分量和力的大小的乘积。
dW
F
cos
dr
F cos
ds
dW F dr
B
*
0 90, dW 0 90 180 , dW 0
dr
*A
F
90 F dr dW 0
20
3-4 动能定理
• 变力的功
W
B F dr
B
F
cos
ds
A
A
dri
i
B
*
端 , 绳的上端固定在天花板上 . 起初把绳子放在与竖
直线成 30 角处, 然后放手使小球沿圆弧下落 . 试求
绳解与: 竖d直W线成F
10角时 小球 的速率 d s FT d s P d s
.
P d s mgl d cos
mgl sin d
W mgl sin d 0
mgl (cos cos0 )
I
t2 t1
Fdt
p2
p1
mv2
mv1
问:冲量是矢量,它的方向就是力的方向吗 ?
分量形 式 I Ixi Iy j Izk
单位和量纲 1N·s = 1kgm/s dimI = M·L-1·T-1
Ix
t2 t1
Fxdt
mv2 x
mv1x
I y
t2 t1
Fydt
mv2 y
mv1y
Iz
14
3-2 动量守恒定律
例 1 设有一静止的原子核, 衰变辐射出一个电子和一
个中微子后成为一个新的原子核. 已知电子和中微子的
运动方向互相垂直, 电子动量为1.210-22 kg·m·s-1,中微
子的动量为 6.410-23 kg·m·s-1 . 问新的原子核的动量的

动量守恒定律和能量守恒定律公式

动量守恒定律和能量守恒定律公式

动量守恒定律和能量守恒定律公式
动量守恒定律和能量守恒定律是物理学中最重要的定律之一,它们对于了解宇宙原理和物理过程有着重要的意义。

动量守恒定律指的是系统的总动量是不变的,这意味着在一个物理系统中,物体从一个地方移动到另一个地方,它的总动量不会改变。

动量守恒定律可以用公式表示:P = M * V,其中P是物体总动量,M是物体的质量,V是物体的速度。

能量守恒定律的内容是,物理系统的总能量是不变的。

也就是说,在物理系统中,物体的总能量不会改变,只能从一种形式转变为另一种形式。

能量守恒定律可以用公式表示:E = m * c^2,其中E是物体的总能量,m是物体的质量,c是光速。

动量守恒定律和能量守恒定律对物理学有着重要的意义,它们是研究物理系统的基本定律,也是宇宙原理的基础。

它们揭示了物理系统中运动物体的总动量和总能量是不变的,只能从一种形式转变为另一种形式。

它们的公式也提供了实现宇宙原理的数学支持,可以用来分析物理系统中运动物体的总动量和总能量。

大学物理动量守恒定律和能量守恒定律

大学物理动量守恒定律和能量守恒定律
比 外力做正功等于相应动能的增加; 较 外力做负功等于相应动能的减少。
注意:
1、计算势能必须规定零势能参考点。势能是相对量, 其量值与零势能点的选取有关。
2、势能函数的形式与保守力的性质相关,对应于一种 保守力的函数就可以引进一种相关的势能函数。
3、势能是属于以保守力形式相互作用的物体系统所共 有的。
第三章 动量守恒定律和能量守恒定律
守恒定律
动量守恒定律 机械能守恒定律 能量守恒定律
物理学大厦 的基石
3-1 质点和质点系的动量定理
一、冲量 质点的动量定理
F dpd(mv) dt dt
牛顿第二定律 动量 pm v
F d td pd(m v)
I t 1 t2 F d t p p 1 2 d p p 2 p 1 m v 2 m v 1
vv 21 vv 2m m 1v 1 rvm r 23 .1 2 7 .1 71 0 1 3 0m 3m /s /s
3-4 动能定理
一、功、功率
1、功
r
i
F
B
i
恒力功: W F s c o s F s
变力功
A
元功:
d W Fd r
取得有限位移 W dW r2Fdr r1
冲量: I t2 Fdt t1
力对时间的累积效应
作用于物体上的合外力的冲量等于物体动量的增量
——质点的动量定理
分量表示式
t1t2FxdtIx mv2xmv1x t1 t2FydtIymv2ymv1y t1t2FzdtIz mv2zmv1z
问题:动量增量方向?
o v0
x
冲量的方向?动量增量的 方向,一般与力的方向不一致。
功的单位:焦耳(J)

动量与能量守恒定律

动量与能量守恒定律

动量与能量守恒定律动量与能量守恒定律是物理学中两个重要的基本定律。

它们描述了物体在相互作用过程中的性质和规律。

本文将详细介绍动量守恒定律和能量守恒定律的基本概念、原理以及在实际应用中的重要性。

一、动量守恒定律动量是描述物体运动状态的物理量,它的大小等于物体的质量与速度的乘积。

动量守恒定律指出,在相互作用过程中,物体的总动量保持不变。

具体而言,如果没有外力作用,物体的动量守恒。

动量守恒定律可以用以下公式表示:∑p初= ∑p末其中,∑p初表示相互作用前物体的总动量,∑p末表示相互作用后物体的总动量。

根据这个公式,我们可以得出,在一个封闭系统中,物体A和物体B发生弹性碰撞时,它们的动量分别由质量和速度共同决定。

在碰撞前后,两个物体的总动量保持不变。

动量守恒定律的一个重要应用是矢量分析。

矢量的方向和大小都要考虑,这使得矢量分析在描述运动过程中的物体受力和运动方向等方面非常有用。

二、能量守恒定律能量是物体进行物理活动时所具有的物理量。

能量守恒定律指出,在一个封闭系统中,物体的总能量保持不变。

能量可以从一种形式转化为另一种形式,但总能量的大小保持不变。

能量守恒定律可以用以下公式表示:∑E初= ∑E末其中,∑E初表示相互作用前物体的总能量,∑E末表示相互作用后物体的总能量。

物体的总能量由其动能和势能共同决定。

动能是物体运动时所具有的能量,势能则是物体处于某个位置时所具有的能量。

能量守恒定律的应用非常广泛。

例如,在机械能守恒定律中,我们可以利用物体的动能和势能之间的转化关系来分析和解释物体的运动。

在热力学中,能量守恒定律也常常用于分析物体的热量传递和工作过程等问题。

三、动量与能量守恒定律的应用动量守恒定律和能量守恒定律是物理学中非常重要的定律,广泛应用于各个领域。

在工程领域,动量守恒定律被用于设计和分析各种机械设备和工程结构,例如汽车碰撞的安全评估、水泵的设计等。

通过应用动量守恒定律,我们可以预测物体在相互作用过程中的受力情况和运动状态,从而帮助工程师制定更合适的设计方案。

动量守恒和能量守恒定律

动量守恒和能量守恒定律

核反应堆
核反应过程中将核能转化 为热能和光能等其他形式 的能量。
03
动量与能量的关系
BIG DATA EMPOWERS TO CREATE A NEW
ERA
动能与动量的关系
动能
物体由于运动而具有的能量,用公式 E_{k} = frac{1}{2}mv^{2}表示,其
中m是质量,v是速度。
动量
物体运动时的量,用公式p = mv表 示,其中m是质量,v是速度。
ERA
能量的定义
能量
01
表示物体做功的能力,是物体运动状态的量度。
形式
02
包括动能、势能、内能等,其中内能是物体内部粒子运动和相
互作用的总和。
单位
03
国际单位制中的能量单位是焦耳(J)。
能量守恒定律的表述
能量守恒定律
一个封闭系统中的总能量保持不变, 即系统能量的变化等于零。
表述方式
能量既不会凭空产生,也不会凭空消 失,它只能从一种形式转化为另一种 形式,或者从一个物体转移到另一个 物体,在转化或转移的过程中其总量 保持不变。
详细描述
动量守恒定律是自然界中最基本的定律之一,它指出在没有 外力作用的情况下,系统内的总动量保持不变。也就是说, 在一个封闭系统中,无论发生何种相互作用,系统的总动量 不会改变。
动量守恒定律的适用范围
总结词
动量守恒定律适用于宏观低速领域,即物体的速度远低于光速的情况。
详细描述
动量守恒定律是经典力学的基本原理之一,适用于宏观低速领域。在相对论条件 下(即物体速度接近或达到光速时),动量守恒定律不再适用,需要使用相对论 力学的基本原理进行描述。
动量守恒定律的实例
总结词
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题答案 P51 2-18 已知 m r
解:对小球进行受力分析,如图.
N m gcosm v2/r
第二章牛顿定律
A
O r
αN
B v
mgsin mdv
C
mg
dt
gsind dv td dv td d vrd d v v 2grcos
v vdvgr
0
sind
2
= v
r
2gcos
r
习题答案 P51 2-18 已知 m r
S
由图可得 v 2v
v
从而可得水流对管壁作用力的大小为
vB v
F ' F 2S v2 1 4 1 6 1 0 2 0 (3 0 )2 v
2 5 1 0 3N
作用力的方向则沿直角平分线指向管外侧.
3-5 保守力与非保守力 势能 3-6 功能原理 机械能守恒定律
3-5 保守力与非保守力 势能
r
转一周作功: W 蜒 frdr rmm v r2ds2mm v2
引力功 W ( G m r'B m )( G m r'A m )
弹力功 W(1 2kxB 21 2kxA 2) 重力功 W (mBg m zA) gz
三 势能
势能 与物体间相互作用及相对位置有关的能量 .
重力功
重力势能
=
m
v
dv dx
F x
dx= mo
012vmv(1vvm 22)1dv
x mvm2 ln 4 2F 3
习题答案
第三章动量守恒定律和能量守恒定律
P94 3-10
解:
vv
依据动量定理 I P
在t=0到t=/(2) 时间内小球动量的增量
p I 2 F d t 2 k x d t
0
0
2 k A co s td t 0
解:对小球进行受力分析,如图.
N m gcosm v2/r
mgsin mdv
dt
v 2grcos
第二章牛顿定律
A
O r
αN
B v
C
mg
Nm (v2gcos)3m gcos
r
小球对轨道的作用力 N N 3 m g c o s
方向: 沿0C
习题答案
第二章牛顿定律
P51 2-22
解:(1) 设摩托车沿x 轴正向运动,在牵引力F和阻力
引力功 弹力功
W ( G m r'B m )( G m r'A m )
W(1 2kxB 2 1 2kxA 2)
重力功 W (mBg m zA) gz
F d r F d r A ACB ADB
lF d r AF C d B r BF D d r A D
WA BF vdrvA BGm r'2 me vrdrvrA
e v rd r ve v rd r vcos d r m
W
rB rA
m'm G r2 dr
A
er
'
rmdr
rdrdr
rB
B
W Gmm( 1 1 ) rB rA
二 保守力与非保守力 保守力作功的数学表达式
➢ 保守力: 所作的功与路径无关,仅决定 于始、末位置.
W
rB rA
m'm G r2 dr
A
er
'
rmdr
rdrd r
rB
B
W Gmm( 1 1 ) rB rA
(2) 弹性力作功
F
F'
x
o W A B F v d r v x x 1 2 k x d x (1 2 k x 2 2 1 2 k x 1 2 )
(1) 万有引力作功
W A B E P (E p B E p A )
若 EpB 0
E pAW A BA B (E pB0)F vdrv
C
WlF dr0
B
质点沿任意闭合路径运动一周时, 保守力对它所作的功为零.
➢非保守力:力所作的功与路径有关.(如摩擦力)
例:光滑的水平桌面上有一环
带,环带与小物体的摩擦系数
r
m ,在外力作用下小物体(质量
m)以速率v做匀速圆周运动.
求转一周摩擦力做的功。
解:小物体对环带压力 Nmv2 r 摩擦力: f mNmmv2
一 万有引力和弹性力作功的特点
(1) 万有引力作功
m '对m的万有引力为
FGmr'2mer m移动dr时,F作元功为
rAmerAr rdrdr
m ' rB
B
dW F dr Gmr'2mer dr
m从A到B的过程中F作功:
WA BF vdrvA BGm r'2 me vrdrvrA
e v rd r ve v rd r vcos d r m
W (mBg m zA)gz
Ep mgz
引力功
引力势能
W (G m r'B m )(G m r'A m )
Ep
Gm'm r
弹力功
弹性势能
W(1 2kxB 2 1 2kxA 2)
Ep
1 2
k x2
特别指出
势能是状态函数 EpEp(x,y,z)
引入势能条件:物体间相互作用力-保守力.
➢ 保守力的功 W A B E P (E p B E p A )
Fr的作用下,由牛顿定律
F - kv2 = m dv dt
dv
Qa= dt
=0,v=vm
F
k
v
2 m
v2
dv
F(1 vm2 ) = m dt
F t
dt = mo
012vm(1vvm 22 )1dv
t mvm ln 3 2F
习题答案
P51 2-22
第二章牛顿定律
v2
dv
F(1 vm2 ) = m dt
v
P v m ( v v B v v A ) v S t ( v v B v v A )
B
vv
依据动量定理 I P 得管壁对这部分水的平均冲力
v
F v It Sv(vvBvvA)
习题答案
第三章动量守恒定律和能量守恒定律
v
管壁对这部分水的平均冲力
v
F v It Sv(vvBvvA)
A
kA
习题答案
第三章动量守恒定律和能量守恒定律
3-11 如图所示, 在水平地面上,有一横截面 S = 0. 20m2
的直角弯管, 管中有流速为v =3. 0m.s-1 的水通过, 求弯管所
受力的大小和方向.
v
解: 在时间△t 内, 从管一端流入 ( 或流出)水的质量为
mvSt
A
S
弯管部分AB 段内水动量的增量为
——保守力作正功,势能减少.
势能是属于系统的. 保守力-保守内力 势能具有相对性,势能大小与势能零点的选取有关 .
势能具有相对性,势能大小与势能零点的选取有关 .
重力势能 Ep mgz
势能零点:Z=0
引力势能
Ep
Gm'm r
势能零点:无穷远
弹性势能
Ep
1 kx2 2
势能零点:弹簧原长位置
势能具有相对性,势能大小与势能零点的选取有关 .
相关文档
最新文档