广州市2019年高中物理力学竞赛辅导资料专题03牛顿力学中的传送带问题含解析2019071213
2019年高考物理 试题分项解析 专题03 牛顿运动定律(第02期)
专题3 牛顿运动定律一.选择题1. (2019年1月云南昆明复习诊断测试)如图甲所示,一块质量为m A=2kg的木板A静止在水平地面上,一个质量为m B=1kg的滑块B静止在木板的左端,对B施加一向右的水平恒力F,一段时间后B从A右端滑出,A继续在地面上运动一段距离后停止,此过程中A的速度随时间变化的图像如图乙所示。
设最大静摩擦力等于滑动摩擦力,重力加速度取g=10m/s2。
则下列说法正确的是A.滑块与木板之间的动摩擦因数为0.6B.木板与地面之间的动摩擦因数为0.1C.F的大小可能为9ND.F的大小与板长L有关【参考答案】BD【命题意图】本题考查对速度----时间图像的理解、叠加体受力分析、牛顿运动定律和匀变速直线运动规律的运用。
【方法归纳】对于速度图像给出解题信息问题,从速度图像的斜率得出加速度,由速度图像面积得出位移。
对于叠加体问题,采用隔离法分析受力,利用牛顿运动定律列方程解答。
2. (2019广东惠州第三次调研)如图所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动,在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tanθ,则图中能客观地反映小木块的速度随时间变化关系的是【参考答案】D【命题意图】本题考查传送带、牛顿运动定律、速度图像及其相关知识点。
【方法归纳】物体在倾斜传送带上运动,要注意当物体速度小于传送带速度时,滑动摩擦力是动力,大于传送带速度时,滑动摩擦力是阻力。
3.绰号“威龙”的第五代制空战机歼-20具备高隐身性、高机动性能力,为防止极速提速过程中飞行员因缺氧晕厥,歼-20新型的抗荷服能帮助飞行员承受最大9倍重力加速度。
假设某次垂直飞行测试实验中,歼-20加速达到50 m/s后离地,而后开始竖直向上飞行试验。
该飞机在10 s内匀加速到3 060 km/h,匀速飞行一段时间后到达最大飞行高度18.5 km。
假设加速阶段所受阻力恒定,约为重力的0.2。
牛顿运动定律与直线运动 二轮专题复习:牛顿运动定律的传送带问题 含解析 精品
牛顿运动定律的传送带问题一.滑块在水平传送带上运动常见的三个情景情景一(1)可能一直加速(2)可能先加速后匀速情景二(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景三(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v 返回时速度为v0例题1.如图所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示.已知v2>v1,则( )A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用解析:选B.物块滑上传送带后将做匀减速运动,t1时刻速度为零,此时小物块离A处的距离达到最大,选项A错误;然后在传送带滑动摩擦力的作用下向右做匀加速运动,t 2时刻与传送带达到共同速度,此时小物块相对传送带滑动的距离最大,选项B 正确;0~t 2时间内,小物块受到的摩擦力方向始终向右,选项C 错误;t 2~t 3时间内小物块不受摩擦力,选项D 错误.例题2. (多选)如图所示,质量为m 的物体用细绳拴住放在粗糙的水平传送带上,物体距传送带左端的距离为L .当传送带分别以v 1、v 2的速度逆时针转动(v 1<v 2),稳定时绳与水平方向的夹角为θ,绳中的拉力分别为F 1,F 2;若剪断细绳时,物体到达左端的时间分别为t 1、t 2,则下列说法正确的是( )A .F 1<F 2B .F 1=F 2C .t 1一定大于t 2D .t 1可能等于t 2解析:选BD.绳剪断前物体的受力情况如图所示,由平衡条件得F N +F sin θ=mg ,F f =μF N =F cos θ,解得F =μmg μsin θ+cos θ,F 的大小与传送带的速度无关,选项A 错误,B 正确;绳剪断后m 在两速度的传送带上的加速度相同,若L ≤v 212μg ,则两次都是匀加速到达左端,t 1=t 2,若L >v 212μg ,则物体在传送带上先加速再匀速到达左端,在速度小的传送带上需要的时间更长,t 1>t 2,选项C 错误,D 正确.例题3、 (多选)如图所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P 速度随时间变化的图象可能是( )解析若v1>v2,且P受到的滑动摩擦力大于Q的重力,则可能先向右匀加速,加速至v1后随传送带一起向右匀速,此过程如图B所示,故B正确.若v1>v2,且P 受到的滑动摩擦力小于Q的重力,此时P一直向右减速,减速到零后反向加速.若v 2>v1,P受到的滑动摩擦力向左,开始时加速度a1=FT+μmgm,当减速至速度为v1时,摩擦力反向,若有F T>μmg,此后加速度a2=FT-μmgm,故C正确,A、D错误.答案BC二、倾斜传送带问题滑块在倾斜传送带上运动常见的四个情景情景一①可能一直加速②可能先加速后匀速情景二①可能一直加速②可能先加速后匀速③可能先以a1加速后以a2加速情景三①可能一直加速②可能先加速后匀速③可能一直匀速④可能先以a1加速后以a2加速情景四①可能一直加速②可能一直匀速③可能先减速后反向加速例题4 如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,在传送带顶端A处无初速度的释放一个质量为m=0.5 kg的物体,已知物体与传送带间的动摩擦因数μ=0.5,g取10 m/s2.求:(sin 37°=0.6,cos 37°=0.8)(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.解析(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有mg(sin 37°-μcos 37°)=ma则a=g sin 37°-μg cos 37°=2 m/s2,根据l=12at2得t=4 s.(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a1,由牛顿第二定律得mg sin 37°+μmg cos 37°=ma1则有a1=mg sin 37°+μmg cos 37°m=10 m/s2.设当物体运动速度等于传送带转动速度时经历的时间为t1,位移为x1,则有t1=va1=1010s=1 s,x1=12a1t21=5 m<l=16 m.当物体运动速度等于传送带速度瞬间,有mg sin 37°>μmg cos 37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力——摩擦力发生突变.设当物体下滑速度大于传送带转动速度时物体的加速度为a2,则a2=mg sin 37°-μmg cos 37°m=2 m/s2x2=l-x1=11 m又因为x2=vt2+12a2t22,则有10t2+t22=11解得t2=1 s(t2=-11 s舍去)所以t总=t1+t2=2 s.答案(1)4 s (2)2 s例题5.如图所示,A、B两个皮带轮被紧绷的传送皮带包裹,传送皮带与水平面的夹角为θ,在电动机的带动下,可利用传送皮带传送货物.已知皮带轮与皮带之间无相对滑动,皮带轮不转动时,某物体从皮带顶端由静止开始下滑到皮带底端所用的时间是t,则( )A.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定大于tB.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于tC .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间可能等于tD .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t解析:选D.传送带不动物体下滑时,物体受摩擦力向上,故加速度a =g sin θ-μg cos θ; 当传送带向上运动时,摩擦力一定也是向上,而摩擦力的大小不变,故a 不变,所以物体运动到B 的时间不变,故A 、B 错误;当皮带向下运动时,物体受摩擦力开始是向下的,故加速度开始一定增大,位移不变,故由A 滑到B 的时间小于t ,故C 错误,D 正确.例题6.如图所示为上、下两端相距 L =5 m 、倾角α=30°、始终以v =3 m/s 的速率顺时针转动的传送带(传送带始终绷紧).将一物体放在传送带的上端由静止释放滑下,经过t =2 s 到达下端,重力加速度g 取10 m/s 2,求:(1)传送带与物体间的动摩擦因数多大?(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端?解析:(1)物体在传送带上受力如图所示,物体沿传送带向下匀加速运动,设加速度为a .由题意得L =12at 2解得a =2.5 m/s 2 由牛顿第二定律得mg sin α-F f =ma 又F f =μmg cos α故μ=0.29.(2)如果传送带逆时针转动,要使物体从传送带上端由静止释放能最快地到达下端,则需要物体有沿传送带向下的最大加速度即所受摩擦力沿传送带向下,设此时传送带速度为v m,物体加速度为a′.由牛顿第二定律得mg sin α+F f=ma′又v2m=2La′故v m=2La′=8.66 m/s.答案:(1)0.29 (2)8.66 m/s例题7.(多选)如图所示是某工厂所采用的小型生产流水线示意图,机器生产出的物体源源不断地从出口处以水平速度v0滑向一粗糙的水平传送带,最后从传送带上落下装箱打包.假设传送带静止不动时,物体滑到传送带右端的速度为v,最后物体落在P处的箱包中.下列说法正确的是( )A.若传送带随皮带轮顺时针方向转动起来,且传送带速度小于v,物体仍落在P 点B.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v0,物体仍落在P点C.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v,物体仍落在P 点D.若由于操作不慎,传送带随皮带轮逆时针方向转动起来,物体仍落在P点解析:选AD.若传送带静止,物体滑到传送带右端的过程中,物体一直减速,其加速度a=μg,v2-v20=2aL,当传送带顺时针转且速度小于v时,物体仍一直减速,到达传送带右端速度仍为v,因而物体仍落在P点,A正确;当传送带顺时针转且速度大于v0时,物体应先加速,因而到达右端时速度一定大于v,应落在P点右侧,B 错误;当传送带顺时针转且速度大于v时,物体在传送带上应先减速,当速度达到传送带速度时便和传送带一起匀速运动,到达右端时速度大于v,应落在P点右侧,C 错误;当传送带逆时针转时,物体一直减速,到达右端时速度为v,仍落在P点,D 正确.。
运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析
牛顿第二定律的运用之传送带问题一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求:(1)经过多长时间才与皮带保持相对静止?(2)传送带上留下一条多长的摩擦痕迹?【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动(2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律:皮箱加速度:a==m/s2=6m/s2由v=at 得t==s=0.1s(2)到相对静止时,传送带带的位移为s1=vt=0.06m皮箱的位移s2==0.03m摩擦痕迹长L=s1--s2=0.03m(10分)所以,(1)经0.1s行李与传送带相对静止(2)摩擦痕迹长0.0.03m二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。
此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示:可知,物体所受合力F合=f-Gsinθ又因为f=μN=μmgcosθ所以根据牛顿第二定律可得:此时物体的加速度a===m/s2=1.2m/s2当物体速度增加到10m/s时产生的位移x===41.67m因为x<50m所以=8.33s所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动故匀速运动的位移为50m-x,所用时间所以物体运动的总时间t=t1+t2=8.33+0.83s=9.16s答:物体从A到B所需要的时间为9.16s.三、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的顶端,物体被向下传送。
高考物理难点解读:牛顿运动定律在传送带类问题
难点19牛顿运动定律在传送带类问题中的运用
1.有关传送带在动力学中需要求解的问题
物体在传送带上运动的时间、物体在传送带上能达到的速度、物体相对传送带滑过的位移等.
2.解决方法
牛顿第二定律与运动学规律相结合,
警示
解典例26时有些同学也往往不具体分析,认为物体也经历先加速后匀速的过程.实际上由于重力的分力大于滑动摩擦力,物体达到传送带速度后仍然做加速运动,只是加速度的大小发生了变化.深化
想一想,典例26中若υ≥0. 75( tan 37。
),又将如何求解?
答案:物体先匀加、速运动后匀速运动.
深化
物体运动的性质和轨迹的确定
(1)物体运动的性质由合外力(或加速度)决定:加速度为零
时物体静止或做匀速运动:加速度恒定时物体做匀变速运动:加速度变化时物体做变加速运动.
(2)物体运动的轨迹
(直线还是曲线)的判定:由物体的速度和合力(或加速度)的方向关系决定,速度与加速度方向在同一条直线上时物体做直线运动速度和加速度方向成角度时物体。
牛顿第二定律的运用—传送带问题
解:物体做匀加速运动过程中,由牛顿第二定律
μmg cos37°-mg sin37°=ma ① 得a=0.4m/s2
②
加速至10m/s位移为x1=v2/2a=20m 接着做匀速运动,因此物体先做匀加速直线运动,再做匀速
直线运动。
(2)匀加速运动的时间t1=
t2=(L-x1)/v=(8-5)/4s=0.75s 总时间t=t1+t2=1.75s
FN v0
mg
同步练习 4. 如下图所示,一水平方向足够长的传送带以恒定的速度v1沿逆时 针方向运动,传送带左端有一与传送带等高的光滑水平面,一物体 以恒定的速度v2沿直线向右滑上传送带后,经过一段时间后又返回 光滑水平面上,其速率为v3,下列说法正确的是( ) A.若v1<v2,则v3=v1 B.若v1>v2,则v3=v2 C.不管v2多大,总有v3=v2 D.若v1=v2,才有v3=v1
解:过程一.物体放在传送带后,受到滑动摩擦力的方 向沿斜面向下,物体沿传送带向下做初速度为零的匀加 速运动
mg sin 37 0 mg cos37 0 ma1
a1 g(sin 37 0 cos37 0 ) 10m / s2
物体加速到与传送带速度相等所用的时间
t1
v a1
送带间的动摩擦因数μ=0.5.
求物体从A运动到B需要的时 间.(sin37°=0.6,cos37°=0.8,取g=10 m/s2)
【思路】(1)物体刚放上传送带时的受力情况如何? (2)物体放在传送带最初一段时间做什么运动? 在什么情况下结束这种运动? (3)当物体速度达到v0=10 m/s之后,将随传送带 一起匀速运动吗?
高考物理计算题复习《用牛顿运动定律分析传送带问题》(解析版)
《用牛顿运动定律分析传送带问题》一、计算题1.如图所示,光滑水平面MN左端足够远的地方有一弹性挡板碰撞时无能量损失,右端N与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ的长度,传送带逆时针匀速转动,其速度上放置着两个可视为质点的质量、的小物块A、B,开始时A、B都静止,A、B间压缩一锁定的轻质弹簧,其弹性势能现解除锁定,弹簧弹开A、B后迅速移走弹簧,求:物块A、B被弹开时各自的速度大小;要使两物块能在水平面MN上发生碰撞,则小物块B与传送带间的动摩擦因数至少为多大;若物块A、B与传送带间的动摩擦因数都等于第问中的临界值,且两物块碰撞后结合成整体.在此后物块A、B三次离开传送的运动过程中,两物块与传送带间产生的总热量.2.如图1所示,水平传送带保持以速度向右运动,传送带长。
时刻,将质量为的木块轻放在传送带左端,木块向右运动的速度—时间图象图象如图2所示。
当木块刚运动到传送带最右端时,一颗质量为的子弹以大小为水平向左的速度正对射入木块并穿出,子弹穿出时速度大小为,以后每隔时间就有一颗相同的子弹射向木块。
设子弹与木块的作用时间极短,且每次射入点各不相同,木块长度比传送带长度小得多,可忽略不计,子弹穿过木块前后木块质量不变,重力加速度取。
求:木块在传送带上最多能被多少颗子弹击中。
3.现在传送带传送货物已被广泛地应用,如图所示为一水平传送带装置示意图。
紧绷的传送带AB始终保持恒定的速率沿顺时针运行,一质量为的物体被无初速度地放在A处,传送带对物体的滑动摩擦力使物体开始做匀加速直线运动,随后物体又以与传送带相等的速率做匀速直线运动。
设物体与传送带之间的动摩擦因数,A、B间的距离,g取。
物体可视为质点求:如果提高传送带的运行速率,物体就能被较快地传送到B处。
求要最快地传送物体,传送带对应的最小运行速率4.如图所示,质量的物块可视为质点以的速度从右侧皮带轮最高点向左滑上足够长的水平薄传送带,传送带以的速度顺时针匀速运动,物块与传送带之间的动摩擦因数倾角为的固定斜面上静置一质量为的薄木板,木板的长度为,物块与木板之间的动摩擦因数,木板与斜面之间的动摩擦因数斜面的底端固定一垂直于斜面的挡板,木板的下端距离挡板为,木板与挡板碰撞后立即粘在一起停止运动.物块离开传送时做平抛运动,并且恰好沿斜面落在木板的顶端.设物块与木板之间、木板与斜面之间的滑动摩擦力等于最大静摩擦力,则重力加速度:物块在传送带上运动的过程中,物块与传送带的相对位移的大小是多少?皮带轮的最大半径是多少?物块滑上传送带以后,经过多长时间木板与挡板相碰?5.如图所示,水平传送带AB向右匀速运动,倾角为的倾斜轨道与水平轨道平滑连接于C点,小物块与传送带AB及倾斜轨道和水平轨道之间均存在摩擦,动摩擦因数都为,倾斜轨道长度,C与竖直圆轨道最低点D处的距离为,圆轨道光滑,其半径。
广州市2020年高中物理 力学竞赛辅导资料 专题03 牛顿力学中的传送带问题(含解析)
专题03 牛顿力学中的传送带问题一、内容解读1.传送带的基本类型(1)按放置可分为:水平(如图a)、倾斜(如图b,图c)、水平与倾斜组合;(2)按转向可分为:顺时针、逆时针。
2.传送带的基本问题分类(1)运动学问题:运动时间、痕迹问题、运动图象问题(运动学的角度分析);(2)动力学问题:物块速度和加速度、相对位移,运动时间(动力学角度分析);(3)功和能问题:做功,能量转化(第五章讲)。
二、传送带模型分类(一)水平传送带模型项目图示滑块可能的运动情况情景1 (1)可能一直加速(2)可能先加速后匀速情景2 (1)v>v时,可能一直减速,也可能先减速再匀速(2)v<v时,可能一直加速,也可能先加速再匀速情景3 (1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v>v返回时速度为v,当v<v返回时速度为v1.(多选)如图所示,水平传送带A、B两端点相距x=4 m,以v=2 m/s的速度(始终保持不变)顺时针运转。
今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g取10 m/s2。
由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕。
则小煤块从A运动到B的过程中 ( )图1A.小煤块从A运动到B的时间时 2 sB.小煤块从A运动到B的时间是2.25 sC.划痕长度是4 mD.划痕长度是0.5 m【解析】选BD 小煤块刚放上传送带后,加速度a=μg=4 m/s2,由v0=at1可知,小煤块加速到与传送带同速的时间为t1=va=0.5 s,此时小煤块运动的位移x1=v2t 1=0.5 m,而传送带的位移为x2=vt1=1 m,故小煤块在带上的划痕长度为l=x2-x1=0.5 m,D正确,C错误;之后的x-x1=3.5 m,小煤块匀速运动,故t2=x-x1v=1.75 s,故小煤块从A运动到B的时间t=t1+t2=2.25 s,A错误,B正确。
牛顿运动定律之滑块与传送带问题(含解析)
牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。
高考物理计算题复习《用牛顿运动定律分析传送带问题》(解析版)
《用牛顿运动定律分析传送带问题》一、计算题1.如图所示,光滑水平面MN左端足够远的地方有一弹性挡板(碰撞时无能量损失)P,右端N与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ的长度L=2m,传送带逆时针匀速转动,其速度v=2m/s.MN上放置着两个可视为质点的质量m A=4kg、m B=1kg的小物块A、B,开始时A、B都静止,A、B间压缩一锁定的轻质弹簧,其弹性势能E P=10J.现解除锁定,弹簧弹开A、B后迅速移走弹簧,g=10m/s2.求:(1)物块A、B被弹开时各自的速度大小;(2)要使两物块能在水平面MN上发生碰撞,则小物块B与传送带间的动摩擦因数至少为多大;(3)若物块A、B与传送带间的动摩擦因数都等于第(2)问中的临界值,且两物块碰撞后结合成整体.在此后物块A、B三次离开传送的运动过程中,两物块与传送带间产生的总热量.2.如图1所示,水平传送带保持以速度v0向右运动,传送带长L=10m。
t=0时刻,将质量为M=1kg的木块轻放在传送带左端,木块向右运动的速度—时间图象(v−t图象)如图2所示。
当木块刚运动到传送带最右端时,一颗质量为m=20g的子弹以大小为v1=250m/s水平向左的速度正对射入木块并穿出,子弹穿出时速度大小为v2=50m/s,以后每隔时间Δt=1s就有一颗相同的子弹射向木块。
设子弹与木块的作用时间极短,且每次射入点各不相同,木块长度比传送带长度小得多,可忽略不计,子弹穿过木块前后木块质量不变,重力加速度取g=10m/s2。
求:(1)传送带运行速度大小v0及木块与传送带间动摩擦因数μ;(2)木块在传送带上最多能被多少颗子弹击中。
3.现在传送带传送货物已被广泛地应用,如图所示为一水平传送带装置示意图。
紧绷的传送带AB始终保持恒定的速率v=1m/s沿顺时针运行,一质量为m=4kg的物体被无初速度地放在A处,传送带对物体的滑动摩擦力使物体开始做匀加速直线运动,随后物体又以与传送带相等的速率做匀速直线运动。
2019届高三二轮复习:用牛顿运动定律解决问题中的传送带问题
1、一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
答案:2000()2v a g l a gμμ-= 解析:方法一:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a 小于传送带的加速度0a ,根据牛顿运动定律,可得a g μ=,设经历时间t ,传送带由静止开始加速到速度等于0v ,煤块则由静止加速到v ,有00v a t =, v at = 由于0a a <故0v v <煤块继续受到滑动摩擦力的作用,再经过时间't ,煤块的速度由v 增加到1v ,有'0v v at =+此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹。
设在煤块的速度从0增加到1v 的整个过程中,传送带和煤块移动的距离分别为0s 和s ,有:2'00012s a t v t =+ 202v s a =,传送带上留下的黑色痕迹的长度0l s s =-由以上各式得 2000()2v a g l a gμμ-= 方法二:用图象法求解画出传送带和煤块的V —t 图象,如图所示。
其中010v t a =,02v t g μ=,黑色痕迹的长度即为阴影部分三角形的面积,有:20000021000()11()()222v v v a g l v t t v g a a g μμμ-=-=-=2、如图2—13所示,倾角为37º的传送带以4m/s 的速度沿图示方向匀速运动。
已知传送带的上、下两端间的距离为L =7m 。
现将一质量m=0.4kg 的小木块放到传送带的顶端,使它从静止开始沿传送带下滑,已知木块与传送带间的动摩擦因数为μ=0.25,取g =10m/s 2。
高中物理牛顿定律应用-传送带问题(选择题+解答题)
高中物理牛顿定律应用-传送带问题(选择题+解答题)一.选择题(共13小题)1.如图所示,一水平方向足够长的传送带以恒定的速率v1沿顺时针方向转动,传送带右端有一个与传送带等高的光滑水平面.一物体以恒定速率v2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,速度为v2′,则下列说法中正确的是()A.只有v1=v2时,才有v2′=v1B.若v1>v2时,则v2′=v1C.若v1<v2时,则v2′=v1D.不管v2多大,总有v2′=v22.如图所示,一水平方向足够长的传送带以恒定的速率v1沿顺时针转动,传送带右侧有一与传送带等高的光滑水平面,一物块以初速度v2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,此时其速率为v3,则下列说法正确的是()A.若v1<v2,则v3=v1B.若v1>v2,则v3=v1C.只有v1=v2时,才有v3=v1D.不管v2多大,总有v3=v13.质量为m的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是()A.电动机多做的功为mv2B.传送带克服摩擦力做的功为mv2C.电动机增加的功率为2μmgvD.物体在传送带上的划痕长为4.如图所示,一水平方向足够长的传送带以恒定的速率v1沿顺时针转动,传送带右侧有一与传送带登高的光滑水平面,一物块以初速度v2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面、此时其速率为v3,则下列说法正确的是()A.只有v1=v2时,才有v3=v1B.若v1>v2,则v3>v2C.若v1<v2,则v3=v2D.不管v2多大,总有v3=v15.如图,水平传送带由电动机带动,始终保持以速度v匀速运动,质量为m的物体在水平传送带上由静止释放,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是()A.电动机多做的功为mv2B.物体在传送带上的划痕长C.传送带克服摩擦力做的功为mv2D.电动机增加的功率为μmgv6.如图所示,一水平传送带以速度v1向右匀速传动,某时刻有一物块以水平速度v2从右端滑上传送带,物块与传送带间的动摩擦因数为μ,则()A.如果物块能从左端离开传送带,它在传送带上运动的时间一定比传送带不转动时运动的时间长B.如果物块还从右端离开传送带,则整个过程中,传送带对物块所做的总功一定不会为正值C.如果物块还从右端离开传送带,则物块的速度为零时,传送带上产生的滑痕长度达到最长D.物块在离开传送带之前,一定不会做匀速直线运动7.如图所示,一水平方向足够长的传送带以恒定的速率v1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面.一物块以初速度v2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,此时其速率为v2′,则下列说法正确的是()A.只有v1=v2时,才有v2′=v1B.若v1<v2,则v2=v2′C.若v1<v2,则v2′=v1D.不管多大,总有v2′=v28.负重奔跑是体能训练的常用方式之一,如图所示的装置是运动员负重奔跑的跑步机.已知运动员质量为m1,绳拴在腰间沿水平方向跨过定滑轮(不计滑轮摩擦、质量)悬挂质量为m2的重物,人用力向后蹬,使传送带沿顺时针方向转动,下面说法正确的是()A.若m2静止不动,运动员对传送带的摩擦力大小为m1gB.若m2静止不动,传送带转动越快,运动员对传送带的摩擦力也越大C.若m2匀速上升时,上升速度越大,运动员对传送带的摩擦力也越大D.若m2匀加速上升时,m1越大,运动员对传送带的摩擦力也越大9.如图所示,传送带装置保持2m/s的速度顺时针转动,现将一质量m=0.5kg的物体从离皮带很近的a点,轻轻的放上,设物体与皮带间的摩擦因数μ=0.2,a、b间的距离L=4m,则物体从a点运动到b点所经历的时间为()A.2.5s B.3s C.2s D.1s10.如图所示,倾角为θ的传送带沿逆时针方向以加速度a加速转动时,小物体A与传送带相对静止.重力加速度为g.则()A.只有a>gsinθ,A才受沿传送带向上的静摩擦力作用B.只有a<gsinθ,A才受沿传送带向上的静摩擦力作用C.只有a=gsinθ,A才受沿传送带向上的静摩擦力作用D.无论a为多大,A都受沿传送带向上的静摩擦力作用11.质量为m的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是()A.电动机多做的功为mv2B.传送带克服摩擦力做的功为mv2C.电动机增加的功率为μmgvD.物体在传送带上的划痕长为12.如图,传送带不转动时,轻放的木块从顶端匀加速下滑到底端所需的时间为t0,传送带顺时针转动时,轻放的木块从顶端下滑到底端所需的时间为t,那么,t与t0的关系是()A.t一定等于t0B.t可能大于t0C.t可能小于t0D.t不可能等于t013.如图所示,物体由静止开始从传送带顶端下滑到底端.若传送带静止,所用的时间为t;若在物体下滑过程中,传送带开始顺时针转动,所用时间为t′.则t和t′的关系一定是()A.t′>t B.t′=t C.t′<t D.不能确定二.解答题(共22小题)14.如图甲所示,可视为质点的小物块B处于长度L=2m的长木板A的最右端,A、B的质量分别为m A=1kg与m B=2kg,A与地面间动摩擦因数μ1=0.2,初始时AB均静止。
【新教材】人教版(2019)高中物理必修一 专题:牛顿运动定律综合应用(传送带问题)
牛顿运动定律综合应用水平传送带问题水平传送带1. 传送带的基本类型一个物体以初速度v0(v0≥0)在另一个匀速运动的物体上运动的力学系统可看成传送带模型。
传送带模型按放置方向分为水平传送带和倾斜传送带两种,如图所示。
2. 水平传送带(1)当传送带水平转动时,应特别注意摩擦力的突变和物体运动状态的变化。
(2)求解的关键在于对物体所受的摩擦力进行正确的分析判断。
静摩擦力达到最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力只存在于发生相对运动的物体之间,因此两物体的速度相同时,滑动摩擦力要发生突变。
图示如图所示,水平传送带以不变的速度v=10m/s向右运动,将工件轻轻放在传送带的左端,由于摩擦力的作用,工件做匀加速运动,经过时间t=2s,速度达到v;再经过时间t′=4 s,工件到达传送带的右端,g取10 m/s2,求:(1)工件在水平传送带上滑动时的加速度的大小;(2)工件与水平传送带间的动摩擦因数;(3)工件从水平传送带的左端到达右端通过的距离。
【答案】(1)5 m/s2(2)0.5(3)50 m【解析】(1)工件的加速度a=tv解得a=5 m/s2(2)设工件的质量为m,则由牛顿第二定律得:μmg=ma所以动摩擦因数μ=mgma=ga=0.5(3)工件加速运动距离x 1=2v t 工件匀速运动距离x 2=vt ′工件从左端到达右端通过的距离x =x 1+x 2 联立解得x =50 m 。
1. 水平传送带解题关键:先根据初始条件找出摩擦力的方向,进而得出加速度的方向,再根据传送带的长度判断物体的运动情况。
2. 在匀速运动的水平传送带上,只要物体和传送带不共速,两者之间就有滑动摩擦力。
两者共速时,滑动摩擦力消失,物体与传送带一起匀速运动。
3. 解题时注意,公式中涉及到的加速度、位移等都是相对于地面的。
(答题时间:30分钟)1. 如图所示,物块m 在传送带上向右运动,两者保持相对静止。
则下列关于m 所受摩擦力的说法中正确的是( )A. 皮带传送速度越大,m 受到的摩擦力越大B. 皮带传送的加速度越大,m 受到的摩擦力越大C. 皮带速度恒定,m 质量越大,所受摩擦力越大D. 无论皮带做何种运动,m 都一定受摩擦力作用2. 如图所示,一水平方向足够长的传送带以恒定的速度v 1沿顺时针方向运动,一物体以水平速度v 2从右端滑上传送带后,经过一段时间又返回光滑水平面,此时速率为v 2′,则下列说法正确的是( )A. 若v 1<v 2,则v 2′=v 1B. 若v 1>v 2,则v 2′=v 2C. 不管v 2多大,总有v 2′=v 2D. 只有v 1=v 2时,才有v 2′=v 23. 如图所示,水平传送带以v =12 m/s 的速度顺时针做匀速运动,其上表面的动摩擦因数μ1=0.1,把质量m =20 kg 的行李包轻放上传送带,释放位置距传送带右端4.5 m 处。
牛顿运动定律之滑块与传送带问题(含解析)
牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。
高考物理知识讲解 涉及到传送带问题解析
涉及到传送带问题解析`【学习目标】能用动力学观点分析解决多传送带问题【要点梳理】要点一、传送带问题的一般解法1.确立研究对象;2.受力分析和运动分析,逐一摩擦力f大小与方向的突变对运动的影响;⑴受力分析:F的突变发生在物体与传送带共速的时刻,可能出现f消失、变向或变为静摩擦力,要注意这个时刻。
⑵运动分析:注意参考系的选择,传送带模型中选地面为参考系;注意判断共速时刻并判断此后物体与带之间的f变化从而判定物体的受力情况,确定物体是匀速运动、匀加速运动还是匀减速运动;注意判断带的长度,临界之前是否滑出传送带。
⑶注意画图分析:准确画出受力分析图、运动草图、v-t图像。
3.由准确受力分析、清楚的运动形式判断,再结合牛顿运动定律和运动学规律求解。
要点二、分析物体在传送带上如何运动的方法1、分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。
具体方法是:(1)分析物体的受力情况在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。
在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。
(2)明确物体运动的初速度分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。
(3)弄清速度方向和物体所受合力方向之间的关系物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。
2、常见的几种初始情况和运动情况分析(1)物体对地初速度为零,传送带匀速运动,(也就是将物体由静止放在运动的传送带上)物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。
传送带问题专题讲解
传送带问题专题讲解知识特点传送带上随行物受力复杂,运动情况复杂,功能转换关系复杂。
基本方法解决传送带问题要特别注重物理过程的分析和理解,关键是分析传送带上随行物时一般以地面为参照系。
1、对物体受力情况进行正确的分析,分清摩擦力的方向、摩擦力的突变。
当传送带和随行物相对静止时,两者之间的摩擦力为恒定的静摩擦力或零;当两者由相对运动变为速度相等时,摩擦力往往会发生突变,即由滑动摩擦力变为静摩擦力或变为零,或者滑动摩擦力的方向发生改变。
2、对运动情况进行分析分清物体的运动过程,明确传送带的运转方向。
3、对功能转换关系进行分析,弄清能量的转换关系,明白摩擦力的做功情况,特别是物体与传送带间的相对位移。
一、 基础练习【示例1】一水平传送带长度为20m ,以2m /s 的速度做匀速运动,已知某物体与传送带间动摩擦因数为0.1,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少?【讨论】1、在物体和传送带达到共同速度时物体的位移,传送带的位移,物体和传送带的相对位移分别是多少?2、若物体质量m=2Kg ,在物体和传送带达到共同速度的过程中传送带对物体所做的功,因摩擦而产生的热量分别是多少?情景变换一、当传送带不做匀速运动时【示例2】一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
情景变换二、当传送带倾斜时【示例3】如图所示倾斜的传送带以一定的速度逆时针运转,现将一物体轻放在传送带的顶端,此后物体在向下运动的过程中。
( ) A 物体可能一直向下做匀加速运动,加速度不变 B.物体可能一直向下做匀速直线运动 C.物体可能一直向下做匀加速运动,运动过程中加速度改变 D.物体可能先向下做加速运动,后做匀速运动V情景变换三、与功和能知识的联系 【示例4】、如图所示,电动机带着绷紧的传送带始终保持v0=2m/s 的速度运行,传送带与水平面间的夹角为30︒,现把一个质量为m=10kg 的工件轻放在传送带上,传送到h=2m 的平台上,已知工件与传送带之间的动摩擦因数为μ=3/2,除此之外,不计其它损耗。
高中物理传送带问题知识难点讲解汇总(带答案)
图2—1 高中传送带问题(经典)一、难点形成的原因:1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。
二、难点突破策略: (1)突破难点1在以上三个难点中,第1个难点应属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。
通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。
摩擦力的产生条件是:第一,物体间相互接触、挤压; 第二,接触面不光滑; 第三,物体间有相对运动趋势或相对运动。
前两个产生条件对于学生来说没有困难,第三个条件就比较容易出问题了。
若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。
关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。
若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。
高中物理专题训练含答案-13--牛顿运动定律应用之传送带问题
13 牛顿运动定律应用之传送带问题【核心方法提示】1. 涉及传送带的动力学问题分析时抓住两个时刻(1)初始时刻,比较物块速度与传送带速度关系,判断物块所受的摩擦力性质与方向,进而判断物块开始阶段的运动性质。
(2)物块与传送带速度相同时刻,再次判断物块所受的摩擦力性质与方向,进而判断下阶段物块的运动性质。
2. 涉及传送带的动力学问题分析时注意一个问题:要判断物块速度与传送带速度相同时,物块有没有完成整个运动过程。
【训练】(多选)如图所示,水平传送带A 、B 两端相距x =4 m ,以v 0=4 m/s 的速度(始终保持不变)顺时针运转,今将一小煤块(可视为质点)无初速度地轻放至A 端,由于煤块与传送带之间有相对滑动,会在传送带上留下划痕.已知煤块与传送带间的动摩擦因数μ=0.4,取重力加速度大小g =10 m/s 2,则煤块从A 运动到B 的过程中( )A .煤块到A 运动到B 的时间是2.25 sB .煤块从A 运动到B 的时间是1.5 sC .划痕长度是0.5 mD .划痕长度是2 m【解析】根据牛顿第二定律,煤块的加速度a =μmg m=4 m/s 2, 煤块运动到速度与传送带速度相等时的时间t 1=v 0a=1 s , 位移大小x 1=12at 21=2 m <x , 此后煤块与传送带以相同的速度匀速运动直至B 端,所以划痕长度即为煤块相对于传送带的位移大小,即Δx =v 0t 1-x 1=2 m ,选项D 正确,C 错误;x 2=x -x 1=2 m ,匀速运动的时间t 2=x 2v 0=0.5 s , 运动的总时间t =t 1+t 2=1.5 s ,选项B 正确,A 错误.【答案】BD(2016·河南洛阳高三一检)如图所示,足够长的传送带与水平面夹角为θ,以速度v 0逆时针匀速转动,在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则下图中能客观地反映小木块的速度随时间变化关系的是()【解析】初状态时,物体所受重力的分力与摩擦力均沿着斜面向下,且都是恒力,所以物体先沿斜面匀加速直线运动,由牛顿第二定律得,mg sin θ+μmg cos θ=ma1,解得a1=g sin θ+μg cos θ;当小木块的速度与传送带速度相等时,由μ<tan θ可知,木块继续沿传送带加速向下,但是此时摩擦力的方向沿斜面向上,再由牛顿第二定律得,mg sin θ-μmg cos θ=ma2,解得a2=g sin θ-μg cos θ,则a1>a2,由图象的斜率表示加速度可知,D正确。
广州市2019年高中物理力学竞赛辅导资料专题03牛顿力学中的传送带问题(含解析)
专题03 牛顿力学中的传送带问题一、内容解读1.传送带的基本类型(1)按放置可分为:水平(如图a)、倾斜(如图b,图c)、水平与倾斜组合;(2)按转向可分为:顺时针、逆时针。
2.传送带的基本问题分类(1)运动学问题:运动时间、痕迹问题、运动图象问题(运动学的角度分析);(2)动力学问题:物块速度和加速度、相对位移,运动时间(动力学角度分析);(3)功和能问题:做功,能量转化(第五章讲)。
二、传送带模型分类(一)水平传送带模型1.(多选)如图所示,水平传送带A、B两端点相距x=4 m,以v0=2 m/s的速度(始终保持不变)顺时针运转。
今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g 取10 m/s2。
由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕。
则小煤块从A运动到B的过程中 ( )图1A.小煤块从A运动到B的时间时 2 sB .小煤块从A 运动到B 的时间是2.25 sC .划痕长度是4 mD .划痕长度是0.5 m【解析】选BD 小煤块刚放上传送带后,加速度a =μg =4 m/s 2,由v 0=at 1可知,小煤块加速到与传送带同速的时间为t 1=v 0a =0.5 s ,此时小煤块运动的位移x 1=v 02t 1=0.5 m ,而传送带的位移为x 2=v 0t 1=1 m ,故小煤块在带上的划痕长度为l =x 2-x 1=0.5 m ,D 正确,C 错误;之后的x -x 1=3.5 m ,小煤块匀速运动,故t 2=x -x 1v 0=1.75 s ,故小煤块从A 运动到B 的时间t =t 1+t 2=2.25 s ,A 错误,B 正确。
2、(多选)如图2所示,水平传送带A 、B 两端相距x =3.5m ,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A 端的瞬时速度v A =4m/s ,到达B 端的瞬时速度设为v B .下列说法中正确的是( )图2A .若传送带逆时针匀速转动,vB 一定等于3m/sB .若传送带逆时针匀速转动越快,v B 越小C .若传送带顺时针匀速转动,v B 有可能等于3m/sD .若传送带顺时针匀速转动,物体刚开始滑上传送带A 端时一定做匀加速运动【解析】若传送带不动,物体的加速度:a =μg =1m/s 2,由v 2A -v 2B =2ax, 得:v B =3m/s.若传送带逆时针匀速转动,物体的受力情况不变,由牛顿第二定律得知,物体的加速度仍为a =μg ,物体的运动情况跟传送带不动时的一样,则v B =3 m/s.故A 正确,B 错误;若传送带以小于3m/s 的速度顺时针匀速转动,物体滑上传送带时所受的滑动摩擦力方向水平向左,做匀减速运动,物体的加速度仍为a =μg ,物体的运动情况跟传送带不动时的一样,则v B =3 m/s.若传送带以大于3m/s 且小于4 m/s 的速度顺时针匀速转动,则开始时物体受到的摩擦力向左,物体做减速运动,最后物体随传送带一起做匀速运动.若传送带以大于4m/s 的速度顺时针匀速转动,则开始时物体受到的摩擦力向右,物体做加速运动,v B 可能大于4 m/s.故C 正确,D 错误.3、如图3甲所示的水平传送带AB 逆时针匀速转动,一物块沿曲面从一定高度处由静止开始下滑,以某一初速度从传送带左端滑上,在传送带上由速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块刚滑上传送带时为计时起点)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题03 牛顿力学中的传送带问题一、内容解读1.传送带的基本类型(1)按放置可分为:水平(如图a)、倾斜(如图b,图c)、水平与倾斜组合;(2)按转向可分为:顺时针、逆时针。
2.传送带的基本问题分类(1)运动学问题:运动时间、痕迹问题、运动图象问题(运动学的角度分析);(2)动力学问题:物块速度和加速度、相对位移,运动时间(动力学角度分析);(3)功和能问题:做功,能量转化(第五章讲)。
二、传送带模型分类(一)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v01.(多选)如图所示,水平传送带A、B两端点相距x=4 m,以v0=2 m/s的速度(始终保持不变)顺时针运转。
今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g 取10 m/s2。
由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕。
则小煤块从A运动到B的过程中 ( )图1A.小煤块从A运动到B的时间时 2 sB .小煤块从A 运动到B 的时间是2.25 sC .划痕长度是4 mD .划痕长度是0.5 m【解析】选BD 小煤块刚放上传送带后,加速度a =μg =4 m/s 2,由v 0=at 1可知,小煤块加速到与传送带同速的时间为t 1=v 0a =0.5 s ,此时小煤块运动的位移x 1=v 02t 1=0.5 m ,而传送带的位移为x 2=v 0t 1=1 m ,故小煤块在带上的划痕长度为l =x 2-x 1=0.5 m ,D 正确,C 错误;之后的x -x 1=3.5 m ,小煤块匀速运动,故t 2=x -x 1v 0=1.75 s ,故小煤块从A 运动到B 的时间t =t 1+t 2=2.25 s ,A 错误,B 正确。
2、(多选)如图2所示,水平传送带A 、B 两端相距x =3.5m ,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A 端的瞬时速度v A =4m/s ,到达B 端的瞬时速度设为v B .下列说法中正确的是( )图2A .若传送带逆时针匀速转动,vB 一定等于3m/s B .若传送带逆时针匀速转动越快,v B 越小C .若传送带顺时针匀速转动,v B 有可能等于3m/sD .若传送带顺时针匀速转动,物体刚开始滑上传送带A 端时一定做匀加速运动【解析】若传送带不动,物体的加速度:a =μg =1m/s 2,由v 2A -v 2B =2ax, 得:v B =3m/s.若传送带逆时针匀速转动,物体的受力情况不变,由牛顿第二定律得知,物体的加速度仍为a =μg ,物体的运动情况跟传送带不动时的一样,则v B =3 m/s.故A 正确,B 错误;若传送带以小于3m/s 的速度顺时针匀速转动,物体滑上传送带时所受的滑动摩擦力方向水平向左,做匀减速运动,物体的加速度仍为a =μg ,物体的运动情况跟传送带不动时的一样,则v B =3 m/s.若传送带以大于3m/s 且小于4 m/s 的速度顺时针匀速转动,则开始时物体受到的摩擦力向左,物体做减速运动,最后物体随传送带一起做匀速运动.若传送带以大于4m/s 的速度顺时针匀速转动,则开始时物体受到的摩擦力向右,物体做加速运动,v B 可能大于4 m/s.故C 正确,D 错误.3、如图3甲所示的水平传送带AB 逆时针匀速转动,一物块沿曲面从一定高度处由静止开始下滑,以某一初速度从传送带左端滑上,在传送带上由速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块刚滑上传送带时为计时起点)。
已知传送带的速度保持不变,重力加速度g 取10 m/s 2。
关于物块与传送带间的动摩擦因数μ及物块在传送带上运动第一次回到传送带左端的时间t ,下列计算结果正确的是( )图3A .μ=0.4B .μ=0.2C .t =4.5 sD .t =3 s【解析】由题图乙可得,物块做匀变速运动的加速度大小为a =Δv Δt =2.0 m/s 2,由牛顿第二定律得F f =ma=μmg ,则可得物块与传送带间的动摩擦因数μ=0.2,A 错误,B 正确;在v -t 图象中,图线与t 轴所围面积表示物块的位移,则物块经减速、反向加速到与传送带相对静止,最后匀速运动回到传送带左端时,物块的位移为0,由题图乙可得物块在传送带上运动的总时间为4.5 s ,C 正确,D 错误。
答案 BC 4、如图所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带。
不计定滑轮质量和摩擦,绳足够长。
正确描述小物体P 速度随时间变化的图像可能是( )【解析】选BC 本题需考虑速度之间的关系及摩擦力与Q 重力之间的关系,分别讨论求解。
若v 1>v 2,且P 受到的滑动摩擦力大于Q 的重力,则可能先向右匀加速,加速至v 1后随传送带一起向右匀速,此过程如图B 所示,故B 正确。
若v 1>v 2,且P 受到的滑动摩擦力小于Q 的重力,此时P 一直向右减速,减速到零后反向加速。
若v 2>v 1,P 受到的滑动摩擦力向左,开始时加速度a 1=F T +μmgm,当减速至速度为v 1时,摩擦力反向,若有F T >μmg ,此后加速度a 2=F T -μmgm,故C 正确,A 、D 错误。
5、如图4所示,水平传送带两端相距x =8 m ,工件与传送带间的动摩擦因数μ=0.6,工件滑上A 端时速度v A =10 m/s ,设工件到达B 端时的速度为v B 。
(取g =10 m/s 2)图4(1)若传送带静止不动,求v B ;(2)若传送带顺时针转动,工件还能到达B 端吗?若不能,说明理由;若能,求到达B 点的速度v B ; (3)若传送带以v =13 m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。
【解析】(1)根据牛顿第二定律可知μmg =ma ,则a =μg =6 m/s 2, 又v 2A -v 2B =2ax ,代入数值得v B =2 m/s 。
(2)能。
当传送带顺时针转动时,工件受力不变,其加速度不发生变化,仍然始终减速,故工件到达B 端的速度v B =2 m/s 。
(3)工件速度达到13 m/s 时所用时间为t 1=v -v Aa=0.5 s , 运动的位移为x 1=v A t 1+12at 21=5.75 m <8 m ,则工件在到达B 端前速度就达到了13 m/s ,此后工件与传送带相对静止,因此工件先加速后匀速。
匀速运动的位移x 2=x -x 1=2.25 m ,t 2=x 2v≈0.17 s,t =t 1+t 2=0.67 s 。
6、如图所示,一足够长的水平传送带以速度v 0匀速运动,质量均为m 的小物块P 和小物块Q 由通过滑轮组的轻绳连接,轻绳足够长且不可伸长.某时刻物块P 从传送带左端以速度2v 0冲上传送带,P 与定滑轮间的绳子水平.已知物块P 与传送带间的动摩擦因数μ=0.25,重力加速度为g ,不计滑轮的质量与摩擦.求: (1)运动过程中小物块P 、Q 的加速度大小之比;(2)物块P 刚冲上传送带到右方最远处的过程中,PQ 系统机械能的改变量;若传送带以不同的速度v (0<v<2v 0)匀速运动,当v 取多大时物块P 向右冲到最远处时,P 与传送带间产生的摩擦热最小?最小值为多大?【解析】(1)设P 的位移、加速度大小分别为s 1、a 1,Q 的位移、加速度大小分别为s 2、a 2, 因s 1=2 s 2,故a 1=2a 22121 a a (2)对P 有:μmg+T=m a 1 对Q 有:mg ﹣2T=ma 2 得:a 1=0.6g P 先减速到与传送带速度相同,设位移为x 1,共速后,由于f=μmg<21mg,P 不可能随传送带一起匀速运动,继续向右减速, 设此时P 加速度为a 1′,Q 的加速度为/1/221a a =对P 有:T ﹣μmg=ma 1′,对Q 有:mg ﹣2T=ma 2’解得:a 1′=0.2g设减速到0位移为x 2,PQ 系统机械能的改变量等于摩擦力对P 做的功,△E=﹣μmgx 1+μmgx 2=0(3)第一阶段P 相对皮带向前,相对路程:第二阶段相对皮带向后,相对路程:/1222a v S =摩擦产生的热Q=μmg(S 1+S 2)=当021v v =时,摩擦热最小--2085mv Q =7、如图5甲所示,水平传送带沿顺时针方向匀速运转。
从传送带左端P 先后由静止轻轻放上三个物体A 、B 、C ,物体A 经t A =9.5 s 到达传送带另一端Q ,物体B 经t B =10 s 到达传送带另一端Q ,若释放物体时刻作为t =0时刻,分别作出三物体的v -t 图象如图乙、丙、丁所示,求:图5(1)传送带的速度大小v 0; (2)传送带的长度L ;(3)物体A 、B 、C 与传送带间的动摩擦因数;(4)物体C 从传送带左端P 到右端Q 所用的时间t C 。
【解析】(1)物体A 与B 先做匀加速直线运动,然后做匀速直线运动,说明物体的速度与传送带的最终速度相等,所以由图乙、丙可知传送带的速度大小是4 m/s 。
(2)v -t 图线与t 轴围成图形的面积表示物体的位移,所以A 的位移x A =36 m , 传送带的长度L 与A 的位移相等,也是36 m 。
(3)(4)A 的加速度a A =Δv A t 1=4 m/s 2由牛顿第二定律得μA mg =ma A ,所以μA =a Ag=0.4 同理,B 的加速度a B =Δv B t 2=2 m/s 2,μB =a B g=0.2设物体C 从传送带左端P 到右端Q 所用的时间为t C ,则L =0+v C 2t C t C =2L v C =24 s C 的加速度a C =Δv C t C =18 m/s 2,μC =a C g=0.012 5。
8、一水平传送带以2.0 m/s 的速度顺时针传动,水平部分长为2.0 m 。
其右端与一倾角为θ=37°的光滑斜面平滑相连,斜面长为0.4 m ,一个可视为质点的物块无初速度地放在传送带最左端,已知物块与传送带间动摩擦因数μ=0.2, 试问:(1)物块能否到达斜面顶端?若能则说明理由,若不能则求出物块沿斜面上升的最大距离。