液晶显示器驱动板电路下册 接着上册!
液晶电视TCON板驱动电路及维修
IT 大视野数码世界 P .63液晶电视TCON 板驱动电路及维修张博 四川长虹电器股份有限公司摘要:随着现代技术的发展,现代液晶电视已经取代传统的CRT 电视为社会大众所接受。
作为整个液晶电视的核心组件,时序控制电路无疑是整个液晶电视可靠运行的关键,同时也是维修的主要难点。
故此次就液晶电视时序控制驱动电路运行原理等进行分析。
关键词:液晶电视 驱动电路 TCON 板引言相较于传统的CRT 电视,液晶电视不但在体积以及外观方面有了较大的改变,同时还在现代液晶电视中增加了时序控制电路即TCON 电路。
现代液晶电视主要采用TFT 液晶图像显示技术,相较于CRT 显示技术,该技术运行更为简单、显示效果也更为理想。
而TCON 板在整个的液晶电视中则主要起到控制图像显示的重要作用,因此对于液晶电视技术发展尤为重要。
故有必要对TCON 板进行相关讨论。
1.TCON 驱动电路构成目前,液晶电视的显示驱动部分主要囊括了时序控制电路、DC-DC 转换电路、灰阶电压产生电路、屏栅极驱动电路以及其它电路等等。
如下图所示图1液晶电视显示驱动电路组成如上图所示,图中虚线部分主要囊括了电视整个显示驱动部分的时序控制电路、DC-DC 转换电路、灰阶电压产生电路等几个部分。
通常该部分被独立的排布在同一个PCB 板上,而这整个部分就是通常意义上的T -CON 电路板,也称为TCON 驱动电路板。
在整个液晶电视系统中,TCON 板主要将来自前端的视频信号转换为能驱动液晶屏周边源极驱动与栅极驱动集成电路工作的图像数据信号,并提供匹配的控制信号,此外还输出液晶屏正常工作需要的电压信号。
所有的信号均传递至屏周边的驱动电路中,从而实现整个液晶成像过程。
2.TCON 板驱动电路分析2.1 TCON 板供电电压类型区分通常TCON 板主要输出五种供电电压。
分别为:用于整个逻辑板集成块供电的VDD 电压,用于TFT 薄膜开关MOS 管的关断电压VGL,用于TFT 薄膜开关MOS 管开启电压VGH、用于屏幕相关数据驱动的电压VAA,以及屏公共电极电压VCOM。
名师论道康佳液晶电视35017517型四合一驱动板开关电源、背光电路分析与故障检修(下)
\J i r a道] N C•飞H I L U N D A O(上接4期)康佳液晶电榥35017517型四含一趣动tS 幵关电濂、背光电路分析与故障检修(下)g常见故障检修1.开机三无,待机指示灯不亮检查此类故障,应首先测量保险丝F911是否 熔断。
(1) 保险丝F911已熔断若F911已熔断,说明开关电源存在短路或严 重漏电故障,常见原因有:市电整流桥(VD901~ VD904)中某些二极管短路、300V滤波电容C901漏电、电源开关管V W901击穿等,可通过测量在 路电阻的方法来判断。
若开关管V W901击穿,则 需检查开关管S极所接的电流检测电阻R W908 是否烧毁,并检查尖峰吸收电路中的各元件有无 虚焊或损坏的现象,避免换上的新管再次被击穿。
(2) 保险丝F911未断若F911未断,可通电测量开关电源有无电压 输出。
若无电压输出,主要原因是幵关电源未工 作。
接下来测量开关管V W901 D极的+300V电压是否正常。
若幵关管的D极无电压或电压较 低,则检查市电输入和市电整流滤波电路中是否 有元器件开路,重点检查整流桥的四只二极管和 限流电阻R T901是否损坏。
若+300V电压正常,则检查电源控制芯片 FAN6755及外围元件。
测量FAN6755⑦脚(H V)有无启动电压,若无启动电压,检查启动电阻 R W905、R W906是否开路。
测量①脚(VINS)电压 是否正常,若该脚电压过低,一是检查市电取样检 测电路分压电阻是否变质或开路,滤波电容 C W904是否漏电,稳压管V D W904是否损坏;二□贺学金是检查由V966、N W966、V W930等组成的过压保 护电路,常见为稳压管VD963漏电、击穿。
同时注 意检查⑥脚(V D D)外接电容C W922是否短路,②脚(FB)外接光耦合器N W950、稳压管V D W907是否损坏,开关管S极所接的电流检测 电阻R W908是否烧毁或阻值增大。
液晶电源板工作原理
液晶电源板工作原理
液晶电源板是液晶显示器中的一个关键组件,它主要负责向液晶屏幕提供适当的电力供应。
液晶电源板的工作原理可以大致分为以下几个步骤:
1. 交流电输入:液晶电源板从电源源头接收到交流电(AC)
输入,一般为220V电压。
2. 整流和滤波:液晶电源板将接收到的交流电信号通过整流电路转换为直流电(DC)。
然后,滤波电路会去除直流电中的
杂波和噪声,使电流更加稳定。
3. 逆变和放大:接下来,电源板会使用逆变电路将直流电转换为高频交流电。
这是因为液晶屏幕需要高频电流才能正常工作。
4. 驱动信号生成:液晶电源板会生成一系列特定的驱动信号,用于激活和控制液晶屏幕上的像素点。
这些驱动信号的频率和幅值会根据不同的显示需求进行调节。
5. 电源输出:经过信号生成和调整后,液晶电源板将适当的电力供应到液晶屏幕的背光模块和驱动电路上。
这样,液晶屏幕上的像素点便能够按照设定的方式显示出图像。
总体而言,液晶电源板通过将输入的交流电转换为适量且稳定的直流电,并生成适当的驱动信号,从而为液晶显示器提供所需的电力和控制信号。
这样,液晶屏幕便能够正常工作,并显示出高质量的图像。
大屏幕液晶显示屏背光高压驱动电路原理及电路分析(一)
大屏幕液晶显示屏背光高压驱动电路原理及电路分析(一)2015-07-06 15:29:09作者:中华维修整理5181我要评论目前,液晶电视的销量和社会拥有量非常大,液晶电视的维修资料奇缺,而液晶电视的背光灯高压驱动电路又是液晶电视中极易发生故障的部位,它类似于CRT电视的行扫描电路,是高压大电流电路,其故障率不低于CRT电视的行扫描电路。
对该部分电路原理分析维修的资料很少,本文对于背光高压驱动电路的电路原理进行详尽分析,以帮助维修人员更加深刻的理解液晶电视背光灯驱动电路,为下一步维修打好基础。
海信32英寸液晶电视主要采用韩国三星屏和LG屏,现以三星屏背光驱动电路为例对该电路的组成形式、工作原理、控制方式进行介绍。
背光灯高压驱动电路在液晶电视机中,是一个单独工作,且启动/停止及亮度受控于CPu的电路组件。
其主要作用是点亮液晶屏内的背光灯管。
由于液晶屏的尺寸、灯管的数量、点亮电压、启动特性不相同,而背光灯高压驱动电路的输出特性必须与所驱动的液晶屏相匹配,因此,目前液晶屏背光灯高压驱动电路组件基本都是随屏配套提供。
同一尺寸的液晶屏型号不同,其背光灯高压驱动电路组件不同,不能互相换用。
背光灯高压驱动电路组件部分主要由振荡器、调制器、功率输出电路及保护检测电路组成。
在三星32英寸屏中,背光灯高压驱动电路中除功率输出部分和检测保护部分外,振荡器、调制器及控制部分采用一块ROHM公司(罗姆)的单片集成电路BD9884FV来完成(图1虚线框内),功率输出采用N沟道和P沟道组合的MOSFET功率模块SP8M3来完成,保护检测由集成电路10393完成,输出电路有高压变压器、谐振电容、输出电流取样电路及背光灯管(CCFL)。
以上这几部分安装在一块电路板上,基本电路框图及工作过程如图1所示。
知识链接背光灯管:液晶电视的显示屏是属于被动发光型的显示器件,液晶屏自身不发光,它需要借助背光灯来实现屏的发光,所以液晶屏要显示色彩丰富的优质图像,要求背光灯的光谱范围要宽,接近日光色以便最大限度地展现自然界的各种色彩。
液晶显示器MCU介绍
扩存储器和输入/输出接口芯片。在液晶显示器中, 时,才能显示出最佳的效果。如果输入到液晶显示器的分
开关量控制电路和模拟量控制电路都是并行输入/ 辨率高于或低于最佳分辨率,则要在主控电路中进行图
输出端口。
像的缩放处理。例如,液晶屏的固有分辨率是 1024×
②串行输入/输出接口:串行输入/输出接口是 768,当输入 800×600/ 60 Hz 的信号时,经转换后,输出
提供给显示器生产厂家,厂家可根据应用的需要来设
b.MCU 外部设置一片 EEPROM 存储器。对于此类微
计接口和编制程序,因此适应性较强,应用较广泛。图 控制器电路,程序存储在 MCU 内部的 ROM 中,数据(用
2 所示是微控制器硬件组成框图。
户数据、工厂模式数据等)存储在 MCU 外部的 EEPROM
液晶显示器驱动板 MCU 电路介绍(上)
笙朴德慧 衣英刚
微 控 制 器 (MCU),不 是 完 成 某 一 个 逻 辑 功 能 的 屏幕上显示出相应的 OSD 显示,并按照这些指令来
芯片,而是把一个计算机系统集成到一个芯片上,具 修改寄存器的值,然后把修改后的值写入 EEPROM 中
体说,就是把中央处理器(CPU)、随机存储器 RAM、只读 保存下来,并且把新的数据或者指令传送到液晶显
微控制器内部的存储器包括两个部分:
成的,如存/取数据、模拟量存储等操作,否则,微控
①随机存储器 RAM:用来存储程序运行时的中间
制器不能正常工作。
数据。在微控制器工作过程中,这些数据可能被改写,
微控制器的振荡电路一般由外接的晶体、电容和 所以 RAM 中存放的内容是随时可以改变的。
微控制器内电路共同组成。晶体多采用 12 MHz 或 24 MHz,
液晶显示器的驱动板高压板维修教程
液晶显示器的驱动板、高压板维修教程液晶显示器电路板元件密度大、贴片元件型号不易辨认、配件难买,而替代板容易买到,价格适宜,所以在很多时候都是通过更换相应功能电路板来进行维修的,即所谓板级维修。
板级维修主要包括驱动板的代换、高压板的代换和电源板的代换。
有些机型的电源板和高压板是做在一起的,既可以分别代换,也可以用电源高压一体板整个代换。
由于电源部分电路简单,维修容易,很少进行板级维修,因此本文仅就驱动板和高压板的代换方法及注意事项进行阐述。
一、驱动板的代换.驱动板是指液晶显示器整个小信号处理电路板,包括VGA(DVI)信号输人、MCU 系统控制、二次电源稳压、液晶屏接口电路等。
一般来说,一块驱动板接通电源,配好屏线和OSD按键板,再接上高压板,就是一个完整的液晶显示器电路。
通过烧录不同程序,这种驱动板可适应各种型号的液晶屏。
选配驱动板主要看驱动板的接口是否和待修显示器相符。
下面通过对其接口的功能解释,说明如何选定驱动板。
1.屏线接口屏线接口必须和液晶屏配合。
液晶显示器所用的屏主要有TTL接口和LVDS接口两种,TTL接口主要集中于15英寸以下的液晶屏.LVDS接口则涵盖了 13.3英寸以上90%的液晶屏。
两种接口的驱动方式不一样,屏线形状不一样,是不兼容的。
判断液晶屏是哪种接口,主要是通过查阅此型号液晶屏的技术手册。
有经验的维修员也可以通过接口形状或者液晶屏的型号直接判断。
例如,M150X3-L01是LVDS接口的液晶屏,而M150X3-T03则是TTL接口的液晶屏,二者的区别就在型号后缀的一L 和一T上。
所以,如果自己不能明确判断液晶屏的型号,一定要把液晶屏上与型号有关的所有字母和数字告诉驱动板经销商。
LVDS接口引脚数在30个以下,数据线名称为DO一、DO+、D1一、D1+、D2一、D2+、 CK~、CK+、D3-、D3+等。
如果是6位屏,就没有D3-、D3+这一组信号c常见的有20 脚和30脚的接口,早期的10英寸~12英寸的屏也有14脚接口的。
TCL液晶电视屏驱动板的维修方法(图)
TCL液晶电视屏驱动板的维修方法(图)制冷电器行业维修群,电视机行业维修群,洗衣机行业维修群,手机维修群,电脑维修群,电器销售商群,净水器行业群,电器配件商群等等。
或者长按二维码加群主微信。
空调维修技术教学群纯教学群。
全部视频讲课,每节课都有实物演示。
一休哥主讲。
空调维修技术在线教育最佳的选择,从定频空调基础知识讲到变频空调维修知识,循序渐进讲解。
让你在短时间内掌握空调维修技能。
教学时常一年。
每周五节课,会陆陆续续有一些一休哥实际操作同时解说的视频。
有意者联系群主一休哥。
LCD 电视机屏驱动板是由屏厂家和屏配套提供的,屏驱动板又称为中心控制板,逻辑板等,它的作用是把从数字板送过来的LVDS 信号转换成TTL 信号。
屏驱动板损坏造成的故障现象有:黑屏、白屏、灰屏、负像、噪波点、竖带、图像太亮或太暗等。
屏驱动板图片:LCD 电视机屏驱动板工作条件:正确的供电:电压有:+3.3V、+5V、+12V,这个电压是从主板供过来的,在主板上靠近LVDS 插座处附近会有一个切换LVDS 供电的MOS 管开关,靠近MOS 管处有选择LVDS 电压的磁珠或跳线。
根据具体使用的液晶屏的型号确定供电电压是多少伏来选择对应的磁珠或跳线。
正确的LVDS 信号:LCD 电视机屏分为高清屏(1366*768)和全高清屏(1920X1080)高清屏(1366*768)均为单8 位LVDS 传输,包括8 位数据,2 位时钟共10 条数据线;全高清屏(1920X1080)均为双路LVDS 传输,包括8 位奇数据,8 位偶数据,2 位奇时钟和2 位偶时钟,共20 条数据线,所以从数字板过来的LVDS 线的根数是不一样的。
因为LVDS 信号电平为1V 左右,通过万用表可以测出来。
液晶屏信号格式选择电压:LVDS 信号格式有两种:VESA 格式和JEIDA 格式。
在靠近LVDS 插座处会有2 个选择LVDS 格式的电阻,根据液晶屏的要求来选择其阻值。
详解液晶彩电背光灯驱动电路
详解液晶彩电背光灯驱动电路为了让冷阴极灯管安全、高效稳定地工作,其供电与激励必须符合灯管的特性。
具体而言,灯管的供电必须是频率为30kHz~100kHz的正弦交流电。
如果给灯管两端加上直流电压,会使部分气体聚集在灯管的一端,则灯管就会一端亮一端暗。
在液晶彩电中,电源板输出的电压为+24V或+12V直流电压,显然不能直接驱动背光灯管,因此需要一个升压电路把电源板输出较低的直流电转换为背光灯管启动及正常工作所需的高频正弦交流电。
这个升压电路组件就是常说的背光灯驱动板(Inverter),又称逆变器、升压板或高压板。
在液晶电视机中,背光灯驱动板是一个单独工作且受控于CPU的电路组件,其主要作用是点亮液晶屏内的背光灯管,并在CPU的控制下进行启动、停止(on/off)及亮度调节。
背光灯驱动板主要由振荡器、调制器、功率输出电路及保护检测电路组成,如1图所示。
在实际电路中,除功率输出部分和检测保护部分外,振荡器、调制器及控制部分通常由一块单片集成电路完成,这类集成电路常用的主要有BD(Rohm公司生产,如BD9884FV、BD9766等)及OZ系列(凹凸微电子公司生产,如02960、02964等);功率输出管多采用互补的功率型场效应管,有的采用3脚和8脚(①~③脚为S极,④脚为G 极,⑤-⑧脚为D极)贴片封装型,常见型号有D454、RSS085、D413、TPC8110、FDD6635.FDD6637等,如图2所示;还有的采用由N沟道和P沟道组合的5脚或8脚MOSFET功率块(①脚为Sl极,②脚为Gl极,③脚为S2极,④脚为G2极,⑤~⑧脚为D1、D2极),如SP8M3、TPC8406、4614、APM40520、P2804ND5G等,如图3所示。
保护检测多由集成电路10393、358、393或LM324及其外围元件来完成。
输出电路主要由高压变压器、谐振电容及背光灯管组成,并设有输出电压、输出电流取样电路。
康佳液晶电视35017517型四合一驱动板开关电源、背光电路分析与故障检修(中)
丨道:D A O康佳液晶电视35017517型四含_驱动极ff 关电源、背光电路分析与故障裣修(中)(上接3期)H! L E D 背k 驱动电路分析L E D 背光驱动电路由三部分电路组成,一是由OCP 8121(N 701)为核心组成的升压和恒流驱 动控制电路;二是由储能电感L 705、升压开关管V 701、升压二极管VD 753、滤波电容C 753组成的升压电路;三是由开关管V 752为核心构成的L ED 背光灯恒流控制电路。
L ED 背光驱动电路如图4所示。
1.0CP 8121 简介OCI>8121是灿瑞半导体有限公司开发生产的专用于液晶电视的LED 背光驱动1C ,内部集成P W M 升压变换控制和L E D 灯串恒流驱动两种功能电路。
O C P 8121引脚功能与实测电压见表2。
2. L E D 驱动芯片启动电路二次开机后,开关电源输出的VBL _100V (实 测为24V )为升压输出电路供电,同时经R 709、R 701与R 702分压取样后为N 701①脚提供3V以上高电平检测电压;VCC _12V 经R 703限流为N 701②脚供电;主芯片送来的BKLT _E N 点灯电压,经R 704送到N 701③脚(E N A )后驱动控制芯 片启动工作。
3. L E D 升压电路O C P 8121启动后,从其⑮脚(D R V )输出升压驱动脉冲,经R 721送到升压开关管V 701的G 极,使V 701工作于开关状态。
当D R V 升压驱动 脉冲为高电平时,V 701导通,电感L 705储能;当 驱动脉冲为低电平时,V 701截止,L 705产生反向 的电感电压与输入的24V 电压叠加,通过二极管□贺学金VD 753续流和电容C 753滤波后得到约45V 的直流电压,送给屏内L E D 灯条。
该机屏内有两根灯 条,两根灯条串联。
4.恒流控制、调光电路开机后,主芯片送来的调光控制脉冲信号 (BKLT_ADJ )经 R 705 送到 OCP 8121 ⑥脚 P W M 调光信号输入端。
TFT_LCD液晶显示器的驱动原理详解
TFT LCD液晶显示器的驱动原理TFT LCD液晶显示器的驱动原理(一)我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理.Cs(storage capacitor)储存电容的架构一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate 的方式的原因.至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显的就是位在另一片玻璃之上. 如此一来, 由液晶所形成的平行板电容Clc, 便是由上下两片玻璃的显示电极与common电极所形成. 而位于Cs储存电容上的common电极, 则是另外利用位于与显示电极同一片玻璃上的走线, 这跟Clc上的common电极是不一样的, 只不过它们最后都是接到相同的电压就是了.整块面板的电路架构从图3中我们可以看到整片面板的等效电路, 其中每一个TFT与Clc跟Cs所并联的电容, 代表一个显示的点. 而一个基本的显示单元pixel,则需要三个这样显示的点,分别来代表RGB三原色. 以一个1024*768分辨率的TFT LCD来说, 共需要1024*768*3个这样的点组合而成. 整片面板的大致结构就是这样, 然后再藉由如图3中 gate driver所送出的波形, 依序将每一行的TFT打开, 好让整排的source driver同时将一整行的显示点, 充电到各自所需的电压, 显示不同的灰阶. 当这一行充好电时, gate driver便将电压关闭, 然后下一行的gate driver便将电压打开, 再由相同的一排source driver对下一行的显示点进行充放电. 如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电. 以一个1024*768 SVGA分辨率的液晶显示器来说, 总共会有768行的g ate走线, 而source走线则共需要1024*3=3072条. 以一般的液晶显示器多为60Hz的更新频率来说, 每一个画面的显示时间约为1/6 0=16.67ms. 由于画面的组成为768行的gate走线, 所以分配给每一条gate走线的开关时间约为16.67ms/768=21.7us. 所以在图3 g ate driver送出的波形中, 我们就可以看到, 这些波形为一个接着一个宽度为21.7us的脉波, 依序打开每一行的TFT. 而sourcedriver则在这21.7us的时间内, 经由source走线, 将显示电极充放电到所需的电压, 好显示出相对应的灰阶.面板的各种极性变换方式由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏. 但是如果画面一直不动, 也就是说画面一直显示同一个灰阶的时候怎么办? 所以液晶显示器内的显示电压就分成了两种极性, 一个是正极性, 而另一个是负极性. 当显示电极的电压高于common电极电压时, 就称之为正极性. 而当显示电极的电压低于c ommon电极的电压时, 就称之为负极性. 不管是正极性或是负极性, 都会有一组相同亮度的灰阶. 所以当上下两层玻璃的压差绝对值是固定时, 不管是显示电极的电压高, 或是common电极的电压高, 所表现出来的灰阶是一模一样的. 不过这两种情况下, 液晶分子的转向却是完全相反, 也就可以避免掉上述当液晶分子转向一直固定在一个方向时, 所造成的特性破坏. 也就是说, 当显示画面一直不动时, 我们仍然可以藉由正负极性不停的交替, 达到显示画面不动, 同时液晶分子不被破坏掉特性的结果. 所以当您所看到的液晶显示器画面虽然静止不动, 其实里面的电压正在不停的作更换, 而其中的液晶分子正不停的一次往这边转, 另一次往反方向转呢!图4就是面板各种不同极性的变换方式, 虽然有这么多种的转换方式, 它们有一个共通点, 都是在下一次更换画面数据的时候来改变极性. 以60Hz的更新频率来说, 也就是每16ms, 更改一次画面的极性. 也就是说, 对于同一点而言, 它的极性是不停的变换的. 而相邻的点是否拥有相同的极性, 那可就依照不同的极性转换方式来决定了. 首先是frame inversion, 它整个画面所有相邻的点, 都是拥有相同的极性. 而row inversion与column inversion则各自在相邻的行与列上拥有相同的极性. 另外在dot inversion上, 则是每个点与自己相邻的上下左右四个点, 是不一样的极性. 最后是delta inversion, 由于它的排列比较不一样, 所以它是以RGB 三个点所形成的pixel作为一个基本单位, 当以pixel为单位时, 它就与dot inversion很相似了, 也就是每个pixel与自己上下左右相邻的pixel,是使用不同的极性来显示的.Common电极的驱动方式图5及图6为两种不同的Common电极的电压驱动方式, 图5中Common电极的电压是一直固定不动的, 而显示电极的电压却是依照其灰阶的不同, 不停的上下变动. 图5中是256灰阶的显示电极波形变化, 以V0这个灰阶而言, 如果您要在面板上一直显示V0这个灰阶的话, 则显示电极的电压就必须一次很高, 但是另一次却很低的这种方式来变化. 为什么要这么复杂呢? 就如同我们前面所提到的原因一样, 就是为了让液晶分子不会一直保持在同一个转向, 而导致物理特性的永久破坏. 因此在不同的frame中, 以V0这个灰阶来说, 它的显示电极与common电极的压差绝对值是固定的, 所以它的灰阶也一直不曾更动. 只不过位在Clc两端的电压, 一次是正的, 称之为正极性, 而另一次是负的, 称之为负极性. 而为了达到极性不停变换这个目的, 我们也可以让common电压不停的变动, 同样也可以达到让Clc两端的压差绝对值固定不变, 而灰阶也不会变化的效果, 而这种方法, 就是图6所显示的波形变化. 这个方法只是将common电压 一次很大, 一次很小的变化. 当然啦, 它一定要比灰阶中最大的电压还大, 而电压小的时候则要比灰阶中最小的电压还要小才行. 而各灰阶的电压与图5中的一样, 仍然要一次大一次小的变化.这两种不同的Common驱动方式影响最大的就是source driver的使用. 以图7中的不同Common电压驱动方式的穿透率来说, 我们可以看到, 当common电极的电压是固定不变的时候, 显示电极的最高电压, 需要到达common电极电压的两倍以上. 而显示电极电压的提供, 则是来自于source driver. 以图七中common电极电压若是固定于5伏特的话, 则source driver所能提供的工作电压范围就要到10伏特以上. 但是如果common电极的电压是变动的话, 假使common电极电压最大为5伏特, 则source driver的最大工作电压也只要为5伏特就可以了. 就source driver的设计制造来说, 需要越高电压的工作范围, 制程与电路的复杂度相对会提高, 成本也会因此而加高.面板极性变换与common电极驱动方式的选用并不是所有的面板极性转换方式都可以搭配上述两种common电极的驱动方式. 当common电极电压固定不变时, 可以使用所有的面板极性转换. 但是如果common电压是变动的话, 则面板极性转换就只能选用frame inversion与row inversion.(请见表1) 也就是说, 如果你想使用column inversion或是dot inversion的话, 你就只能选用 common电极电压固定不动的驱动方式. 为什么呢? 之前我们曾经提到 common电极是位于跟显示电极不同的玻璃上, 在实际的制作上时, 其实这一整片玻璃都是common电极. 也就是说, 在面板上所有的显示点, 它们的common电压是全部接在一起的. 其次由于gate driver的操作方式是将同一行的所有TFT打开,好让source driver去充电, 而这一行的所有显示点, 它的common电极都是接在一起的, 所以如果你是选用common电极电压是可变动的方式的话, 是无法在一行TFT上, 来同时做到显示正极性与负极性的. 而column inversion与dot inversion的极性变换方式, 在一行的显示点上, 是要求每个相邻的点拥有不同的正负极性的. 这也就是为什么 common电极电压变动的方式仅能适用于frame inv ersion与row inversion的缘故. 而common电极电压固定的方式, 就没有这些限制. 因为其common电压一直固定, 只要source dri ver能将电压充到比common大就可以得到正极性, 比common电压小就可以得到负极性, 所以common电极电压固定的方式, 可以适用于各种面板极性的变换方式.表1面板极性变换方式 可使用的common电极驱动方式Frame inversion固定与变动Row inversion固定与变动Column inversion只能使用固定的common电极电压Dot inversion只能使用固定的common电极电压各种面板极性变换的比较现在常见使用在个人计算机上的液晶显示器, 所使用的面板极性变换方式, 大部分都是dot inversion. 为什么呢? 原因无它, 只因为dot inversion的显示品质相对于其它的面板极性变换方式, 要来的好太多了. 表2是各种面板极性变换方式的比较表. 所谓F licker的现象, 就是当你看液晶显示器的画面上时, 你会感觉到画面会有闪烁的感觉. 它并不是故意让显示画面一亮一灭来做出闪烁的视觉效果, 而是因为显示的画面灰阶在每次更新画面时, 会有些微的变动, 让人眼感受到画面在闪烁. 这种情况最容易发生在使用frame inversion的极性变换方式, 因为frame inversion整个画面都是同一极性, 当这次画面是正极性时, 下次整个画面就都变成了是负极性. 假若你是使用common电压固定的方式来驱动, 而common电压又有了一点误差(请见图8),这时候正负极性的同一灰阶电压便会有差别, 当然灰阶的感觉也就不一样. 在不停切换画面的情况下, 由于正负极性画面交替出现,你就会感觉到Flicker的存在. 而其它面板的极性变换方式, 虽然也会有此flicker的现象, 但由于它不像frame inversion 是同时整个画面一齐变换极性, 只有一行或是一列, 甚至于是一个点变化极性而已. 以人眼的感觉来说, 就会比较不明显. 至于crosstalk 的现象, 它指的就是相邻的点之间, 要显示的资料会影响到对方, 以致于显示的画面会有不正确的状况. 虽然crosstalk的现象成因有很多种, 只要相邻点的极性不一样, 便可以减低此一现象的发生. 综合这些特性, 我们就可以知道, 为何大多数人都使用dot inve rsion了. 表2面板极性变换方式 Flicker的现象 Crosstalk的现象Frame inversion明显 垂直与水平方向都易发生Row inversion不明显 水平方向容易发生Column inversion不明显 垂直方向容易发生Dot inversion几乎没有 不易发生面板极性变换方式, 对于耗电也有不同的影响. 不过它在耗电上需要考量其搭配的common电极驱动方式. 一般来说 common电极电压若是固定, 其驱动common电极的耗电会比较小. 但是由于搭配common电压固定方式的source driver其所需的电压比较高, 反而在source driver的耗电会比较大. 但是如果使用相同的common电极驱动方式, 在source driver的耗电来说,就要考量其输出电压的变动频率与变动电压大小. 一般来说, 在此种情形下, source driver的耗电,会有 dot inversion > row inversion > column inversion > frame inversion的状况. 不过现今由于dot inversion的source driver多是使用PN型的OP, 而不是像row inversi on是使用rail to rail OP, 在source driver中OP的耗电就会比较小. 也就是说由于source driver在结构及电路上的改进, 虽然先天上它的输出电压变动频率最高也最大(变动电压最大接近10伏特,而row inversion面板由于多是使用common电极电压变动的方式,其source driver的变动电压最大只有5伏特,耗电上会比较小), 但dot inversion面板的整体耗电已经减低很多了. 这也就是为什么大多数的液晶显示器都是使用dot inversion的方式.TFT LCD液晶显示器的驱动原理(二)上次跟大家介绍液晶显示器的驱动原理中有关储存电容架构,面板极性变换方式,以及common电压的驱动方式.这次我们延续上次的内容,继续针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver 所送出波形的timing图.SVGA分辨率的二阶驱动波形我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=7864 32个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel 的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着76 8个gate driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate driver打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压.而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的timing介绍过一次呢?因为我们接下来要讨论的feed thr ough电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD 面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc).Cs on common架构且common电压固定不动的feed through电压我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成feed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed through电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame的时间比例是不正确的.在此我们是为了能仔细解释每个f rame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将768个gate driver走线打开的.所以每个gate走线打开的时间,相对于一个frame的时间,是很短的.当gate走线打开或关闭的那一瞬间,电压的变化是最激烈的,大约会有30~40伏特,再经由Cgd的寄生电容,影响到显示电极的电压.在图3中,我们可以看到Cgd寄生电容的存在位置.其实Cgd的发生,跟一般的CMOS电路一样,是位于MOS的gate 与drain端的寄生电容.但是由于在TFT LCD面板上gate端是接到gate driver输出的走线,因此一但在gate driver输出走在线的电压有了激烈变化,便会影响到显示电极上的电压.在图2之中,当Frame N的gate走线打开时,会产生一个向上的feed through电压到显示电极之上.不过此时由于gate走线打开的缘故,source driver会对显示电极开始充电,因此即便一开始的电压不对(因为feed through电压的影响),source driver仍会将显示电极充电到正确的电压,影响便不会太大.但是如果当gate走线关闭的时候,由于source driver已经不再对显示电极充电,所以gate driver关闭时的电压压降(30~40伏特),便会经由Cgd寄生电容feed through到显示电极之上,造成显示电极电压有一个feed through的电压压降,而影响到灰阶显示的正确性.而且这个feed through电压不像gate走线打开时的feed through电压一样,只影响一下子,由于此时source driver已经不再对显示电极充放电,feed through电压压降会一值影响显示电极的电压,直到下一次gate driver走在线的电压再打开的时后.所以这个feed through电压对于显示画面的灰阶的影响,人眼是可以明确的感觉到它的存在的.而在Frame N+1的时候,刚开始当gate driver走线打开的那一瞬间,也会对显示电极产生一个向上的feed through电压,不过这时候由于gate已经打开的缘故,source driver会开始对显示电极充电,因此这个向上的feed through电压影响的时间便不会太长.但是当gate走线再度关闭的时候,向下的feed through电压便会让处在负极性的显示电极电压再往下降,而且受到影响的负极性显示电压会一直维持到下一次gate走线再打开的时候.所以整体来说,显示电极上的有效电压,会比source driver的输出电压要低.而减少的电压大小刚好为gate走线电压变化经由Cgd的feed through电压.这个电压有多大呢?在图4中,我们以电荷不灭定律,可以推导出feed through电压为 (Vg2 – Vg1) * Cgd / (Cgd + Clc + Cs) .假设Cg d=0.05pF,而Clc=0.1pF, Cs=0.5pF且gate走线从打开到关闭的电压为 –35伏特的话. 则feed through电压为 –35*0.0 5 / (0.05+0.1+0.5) = 2.69伏特. 一般一个灰阶与另一个灰阶的电压差约仅有30到50 mV而已(这是以6 bit的分辨率而言,若是8 bit分辨率则仅有3到5 mV而已).因此feed through电压影响灰阶是很严重的.以normal white的偏光板配置来说,会造成正极性的灰阶会比原先预期的来得更亮,而负极型的灰阶会比原先预期的来得更暗.不过恰好feed through电压的方向有一致性,所以我们只要将common电压向下调整即可.从图2中我们可以看到,修正后的common电压与原先的comm on电压的压差恰好等于feed through电压.Cs on common架构且common电压变动的feed through电压图5为Cs on common且common电压变动的电压波形,由于其common电压是随着每一个frame而变动的,因此跟common 电压固定的波形比较起来.其产生的feed through电压来源会再多增加一个,那就是common电压的变化.这个common电压的变化,经由Clc+Cs的电容,便会影响到显示电极的电压.且由于整个LCD面板上所有显示点的Clc与Cs都是接到common电压,所以一但common电压有了变化,受影响的就是整个面板的所有点.跟前面gate电压变化不一样的是,gate电压变化影响到的只是一整行的显示点而已.不过Common电压变化虽然对显示电极的电压有影响,但是对于灰阶的影响却没有像gate电压变化来的大.怎么说呢?如果我们使用跟前面一样的电容参数值,再套用图6所推导出来的公式,再假设Common电压由0伏特变到5伏特,则common电压变化所产生的feed through电压为(5 -0)*(0.1pF+ 0.5pF) / (0.05pF + 0.1pF +0.5pF) = 5 * 0.6 /0.65=4.62伏特.虽然显示电极增加这么多电压,但是common电极也增加了5伏特.因此在Clc两端,也就是液晶的两端,所看到的压差变化,就只有4.62-5=0.38伏特而已.跟之前gate走线电压变化所产生的feed through电压2.69伏特比较起来要小的多了,所以对灰阶的影响也小多了.且由于它所产生的feed through电压有对称性,不像Gate走线所产生的feedthrough电压是一律往下,所以就同一个显示点来说,在视觉对灰阶的表现影响会比较小.当然啦,虽然比较小,但是由于对整个LCD面板的横向的768行来说, common电压变化所发生的时间点,跟gate走线打开的时间间隔并不一致,所以对整个画面的灰阶影响是不一样的.这样一来,就很难做调整以便改进画面品质,这也是为什么common电压变动的驱动方式,越来越少人使用的缘故.Cs on gate架构且common电压固定不动的feed through电压图7是Cs on gate且common电压固定不动的电压波形图.它并没有common电压变化所造成的feed through电压,它只有由于gate电压变化所造成的feed through电压.不过它跟Cs on common不一样的是,由gate电压变化所造成的feed th rough电压来源有两个地方,一个是自己这一条gate走线打开经由Cgd产生的feed through电压,另一个则是上一条gate 走线打开时,经由Cs所产生的feed through电压.经由Cgd的feed through电压跟前面所讨论过的状况是一样的,在这边就不再提了.但是经由Cs的feed through电压,是因为Cs on gate的关系,如图3所示.Cs on gate的架构,它的储存电容另一端并不是接到common电压,而是接到前一条gate走线,因此在我们这一条gate走线打开之前,也就是前一条gate走线打开时,在前一条gate走线的电压变化,便会经由Cs对我们的显示电极造成feed through电压.依照图8的公式,同时套用前面的电容参数与gate电压变化值,我们可得到此一feed through电压约为 35*0.5pF/(0.5pF+0.1pF+0.05pF)=26.92伏特.这样的feed through电压是很大的,不过当前一条gate走线关闭时,这个feed through电压也会随之消失.而且前一条gat e走线从打开到关闭,以SVGA分辨率的屏幕来说,约只有21.7us的时间而已.相对于一个frame的时间16.67ms是很短的.再者当前一条gate走线的feed through电压影响显示电极后,我们这一条的gate走线也随之打开,source driver立刻将显示电极的电压充放电到所要的目标值.从这种种的结果看来,前一条gate走线的电压变化,对于我们的显示电极所表现的灰阶,几乎是没有影响的.因此对于Cs on gate且common电压固定不动的驱动方式来说,影响最大的仍然是gate走在线电压变化经由Cgd产生的feed through电压,而其解决方式跟前面几个一样,只需将common电压往下调整即可.Cs on gate架构且common电压变动的feed through电压图9是Cs on gate架构且common电压变动的feed through电压波形图.这样子的架构,刚好有了前面3种架构的所有缺点,那就是 gate走线经由Cgd的feed through电压,和前一条gate走线经由Cs的feed through电压,以及Common电压变化经由Clc的feed through电压.可想而知,在实际的面板设计上几乎是没有人使用这种架构的.而这4种架构中最常用的就是 Cs on gate架构且common电压固定不动的架构.因为它只需要考虑经由Cgd的feed through电压,而Cs on gate的架构可得到较大的开口率的缘故.。
液晶驱动电路与面板修复线路架构
TCON
Control signal for Data driver STH
Control signal for Scan driver
STV
Scan driver 所需的控制讯号: (1) CKV: 告知 scan driver 扫描的频率 (2) OE:告知 scan driver 何时开启TFT (3) STV:告知 scan driver何时开始动作
暗
光源 垂直偏光板 玻璃电极 液晶 玻璃电极 水平偏光板
亮
光源 垂直偏光板 玻璃電極 液晶 玻璃電極 水平偏光板
施加不同电压,光的穿透率也会不同
液晶与亮度的关系
光穿透率
暗
亮
控制电压 控制液晶 负电压 正电压 控制亮度 控制色彩 产生图像
(1) 对应相同的穿透率与压差相关与极性无关 (2) 电压压差大到一个程度,光穿透率就会有极限
液晶驱动电路与面板修复线路架构介绍
目 录
1. 电在液晶上的应用
2. 驱动电路架构
3. 修复线路架构
电在液晶上的应用
液晶特性
液晶是具有流动特性的物质
(1) 在液晶两端施加电压会使得液晶旋转 (2) 液晶旋转程度与电压大小相关 (3) 不同液晶材料旋转特性不同
未加电场前
施加电场后
液晶驱动
实际应用会固定一边的电压
Q=CV
1 frame
ΔV
ΔV = (Vgh - Vgl) * Cgs / (Cgs + Cst + Clc)
(1) 调整Vcom电压 (2) 降低Vgh与Vgl压差
驱动电路架构
电路驱动各部单元
Control board: 接收系统端的输入讯号,并输出数据 讯号与控制讯号给 Data driver 与 Scan driver,其上还有电源线路与元 件。 X board: 传输从 Control board发出的数据讯 号与控制讯号给 Data driver 与 Scan driver。 Data driver: 经由 cell 上的 data line 输出电 压,直接决定施加于液晶上的电压 值。 Cell Scan driver: 经由 cell 上的 scan line 输出电 压,控制TFT的开与关。
夏32寸普LED液晶电视电源板及背光电路工作原理祥解
夏32寸普LED液晶电视电源板及背光电路工作原理祥解夏普32寸LED电视机电源板及背光电路实测实绘电路图,电路图工作原理祥解与故障实例。
夏普LED彩电型号:32LX335、32A15DA、32LX235、32BX350、32NX155A、32NX230A、32LX150A,彩用的电源板基本相同,该电源板在社会上拥用量大,检修数量多,但在夏普维修手册中因为没有该电源板的电路图,使得维修极为困难,为此,笔者特地根据实物实测实绘,画出该电源板及背光的电路图。
该机的电源板是主开关电源与LED背光电路二合一板,因为该机是32寸小屏幕LCD 彩电,整机耗电量小,因此220V整流之后没有PFC电路,220V整流得到的300V脉动电压直接加给主开关电源电路。
主开关电源芯片的型号的是8脚双列直插MIP004 ,LED背光电路采用的是14脚双列帖片MP24830。
一、主开关电源电路:电路见图1所示:1、主开关电源芯片MIP004内部图:各脚功能:5脚:振荡启动电压输入,220V整流滤波成300V后经大阻值电阻限流降压电阻加到此脚。
供IC内部的恒流源电路为IC供电,以进行开关电源的启动振荡。
因为串联的限流电阻阻值大使此启动电路供给的电能很小,仅能维持芯片振荡1秒左右,如果芯片2脚不能得到来自外部电路更大的电能供电,仅凭5输入的启动电压,IC会处在微弱的间歇振荡状态。
正常工作时,实测5脚电压320V。
2脚:在开关电源没有启动工作前,5脚进入芯片的启动电压,经IC内部的恒流源-------开关后,在IC内部加到2脚内部的振荡电路,开关电源因此得以启动振荡。
在开关电源进入正常工作状态后,开关电源变压器辅助绕组产生的感应电压,经整流后得到20V的直流电压,加到2脚,为2脚内部振荡电路提供足够的供电,使芯片持续的工作在稳定状态。
正常工作时,实测2脚电压为20V。
4脚:有两个功能,一是开关电源的误差电压输入端。
2是开关电源AC检测电路产生的保护电压也加到该脚,当220V市电电压下降到100V以下时,为了防止开关电源管过流损坏,此时把高电平加到4脚,关闭开关电源的振荡。
液晶屏驱动板的原理与维修代换方法
液晶屏驱动板的原理与维修代换方法1、液晶屏驱动板的原理介绍液晶屏驱动板常被称为A/D(模拟/数字)板,这从某种意义上反应出驱动板实现的主要功能所在。
液晶屏要显示图像需要数字化过的视频信号,液晶屏驱动板正是完成从模拟信号到数字信号(或者从一种数字信号到另外一种数字信号)转换的功能模块,并同时在图像控制单元的控制下去驱动液晶屏显示图像。
液晶显示器的驱动板如图1、图2所示。
图1 品牌液晶显示器采用的驱动板图2部分液晶显示器采用的是通用驱动板如图3所示,液晶屏驱动板上通常包含主控芯片、MCU微控制器、ROM存储器、电源模块、电源接口、VGA视频信号输入接口、OSD按键板接口、高压板接口、LVDS/TTL驱屏信号接口等部分。
液晶屏驱动板的原理框图如图4所示,从计算机主机显示卡送来的视频信号,通过驱动板上的VGA视频信号输入接口送入驱动板的主控芯片,主控芯片根据MCU微控制器中有关液晶屏的资料控制液晶屏呈现图像。
同时,MCU微控制器实现对整机的电源控制、功能操作等。
因此,液晶屏驱动板又被称为液晶显示器的主板。
图3 驱动板上的芯片和接口液晶屏驱动板损坏,可能造成无法开机、开机黑屏、白屏、花屏、纹波干扰、按键失效等故障现象,在液晶显示器故障中占有较大的比例。
液晶屏驱动板广泛采用了大规模的集成电路和贴片器件,电路元器件布局紧凑,给查找具体元器件或跑线都造成了很大的困难。
在非工厂条件下,它的可修性较小,若驱动板由于供电部分、VGA视频输入接口电路部分损坏等造成的故障,只要有电路知识我们可以轻松解决,对于那些由于MCU微控制器内部的数据损坏造成无法正常工作的驱动板,在拥有数据文件(驱动程序)的前提下,我们可以用液晶显示器编程器对MCU微控制器进行数据烧写,以修复固件损坏引起的故障。
早期的驱动板,需要把MCU微控制器拆卸下来进行操作,有一定的难度。
目前的驱动板已经普遍开始采用支持ISP(在线编程)的MCU微控制器,这样我们就可以通过ISP工具在线对MCU微控制器内部的数据进行烧写。
液晶显示器维修方法
液晶显示器维修方法1.首先为液晶显示器单独加电,观察故障现象,是否有上述的故障表现。
再与主机连接好信号线,打开显示器,观察显示器的电源指示灯是否始终为绿色,液晶屏有没有图像显示。
如果仔细辨认,是否会发现有淡淡的图像显现,不过始终没有背光出现。
2.把桌面清理干净,用一块软布垫在桌面上,把显示器液晶屏朝下倒扣在桌面上。
一定要注意桌面干净,不能有任何杂物,否则损失惨重。
3.拧下两个护盖的螺丝,取下护盖。
4.拧下四个紧固螺丝,取下支架。
5.按下图所示,拧下显示器后盖上四角的固定螺丝。
在取下后盖时,注意两个左右声道的音频输入莲花插头的位置,需要向下用力拉后,再向上抬起后盖,才能正常取下。
金属屏蔽罩是为了防止外界的电磁干扰对内部的电路正常工作造成破坏。
其中的两个多圈圆形孔是散热孔。
6.拧下屏蔽罩下边的两个固定螺丝,向下滑移屏蔽罩,再向上抬起屏蔽罩,即可取下。
注意:这两个螺线要记好其安装位置,防止螺丝上错位置,造成严重后果。
螺丝过长时,会拧穿液晶屏!7.液晶显示器的内部结构如下图所示,有四块电路板组成,主板,音频处理板,背光高压板,按键控制板。
在拆卸之前,最后用手接触一下自来水管或其他接地装置,防止身上的静电对液晶显示器造成损坏。
8.液晶显示器的高压板,用来产生液晶显示器背光灯管所需的2000V高压,其中的黑色方块就是所谓的高压线圈,一般情况下高压线圈的线径很细,工作在高电压环境下,其故障率最高,其配件也最难买到。
我们要检修的元件是电感线圈L1。
造成这种故障的原因可能是生产工艺的问题,在焊接安装时,没有对绕制电感线圈的漆包线做去漆处理,而直接焊接。
因为漆层是绝缘材料,不导电,真正的焊接点只有漆包线的断接处一点,所以才造成了使用一段时间后,就会出现无高压情况,造成无图像显示。
9.用小刀对电感L1的两个引脚轻轻刮去绝缘漆层,直至露出祡红色的铜层,暴露面积越大,焊接就越结实,越牢靠。
10.待电烙铁加热后,一手拿焊锡丝,一手拿烙铁,把电感的两个引脚焊接结实。
液晶电视背光驱动板的原理与维修
液晶电视背光驱动板的原理与维修一、液晶电视背光驱动板的原理液晶电视的背光驱动板主要由背光源、LED驱动芯片和电源组成。
其工作原理如下:1.电源供电:首先,背光驱动板需要接收电源的供电,通常为12V或24V直流电源。
电源会将交流电转换成直流电,并经过滤波和稳压等处理,确保供电稳定可靠。
2.亮度控制:背光驱动板通过亮度控制信号来控制LED背光的亮度。
亮度控制信号可以通过外部按钮或遥控器发送给背光驱动板,然后驱动芯片将信号转换成对应的电流或电压输出,以控制背光的亮度。
3.LED工作方式:LED背光可以分为两种方式,一种是直接驱动模式,另一种是串并联驱动模式。
在直接驱动模式中,LED背光同时接通,背光亮度由电流大小控制。
在串并联驱动模式中,多组LED串联并与驱动电源并联,则电流相同而电压叠加,背光亮度由电压大小控制。
4.驱动芯片:驱动芯片是背光驱动板的核心部件,它能根据输入的信号来控制背光的亮度。
驱动芯片一般使用PWM调整激活时间来控制电流或电压大小,从而实现对背光亮度的调节。
5.保护电路:背光驱动板会设计一些保护电路,以保证电路的稳定性和安全性。
例如过流保护电路和过压保护电路等,一旦出现异常情况,会自动切断电源供电,避免对其他电路和液晶屏产生损坏。
二、液晶电视背光驱动板的维修方法1.检查电源供电:首先,检查背光驱动板的电源供电是否正常,是否存在电压过高或过低的情况。
如发现电源供电异常,建议更换稳压器或滤波电容等元件。
2.检查亮度控制信号:用万用表或示波器检测亮度控制信号的波形和电压情况,确保信号正常。
如发现亮度控制信号异常,可以检查外部按钮、遥控器或背光驱动板上的控制芯片。
3.检查驱动芯片:检查驱动芯片是否损坏或焊接不良。
如发现芯片损坏,建议更换芯片。
如果发现焊接不良,可以重新焊接芯片。
4.检查背光灯:检查背光灯是否亮或故障。
可以使用万用表进行背光灯的电阻、电压测试,或直接用电源给背光灯供电,观察背光灯是否亮。
(整理)彩色液晶屏接口及其驱动电路
(整理)彩色液晶屏接口及其驱动电路彩色液晶屏接口及其驱动电路市场上有大批的各种型号的液晶屏,广大用户及电子爱好者都想利用二手屏开发液晶电视或制作投影机,但目前有关这方面的资料和书籍比较少,很多人拿到液晶屏却找不到相关资料,而束手无策。
本人从事彩色液晶行业多年,愿将相关资料和经验与广大电子爱好者共享。
一、市场流行二手屏简介目前市场上主要是STN 型彩色液晶屏(俗称伪彩屏)和TFT 型彩色液晶屏(俗称真彩屏)。
从接口方式上分有数字屏和模拟屏。
目前在我国市场上电子爱好者通常能买到的大部分是二手屏,一般以日本公司的产品为主,品种很多。
但由于此类液晶屏大都为日本的PACHINKO (俗称柏青哥,一种小钢珠的赌博游戏)机的拆机屏。
由于此类屏数量多,价格便宜,市场拥有量大,所以本文重点介绍此类液晶屏的接口及其驱动电路。
日本PACHINKO(柏青哥)游戏机用液晶屏一览表如附表所示。
需说明的是:关于液晶屏的图象分辨率,许多厂家的标注方法不同,象320×234,有的液晶屏资料上标注为960×234,这实际上是将R、G、B 三基色乘上了320。
即3×320=960。
同样地,7" 16:9 的屏有的标为480×234,有的标为1440×234,它也是将3×480=1440 而得出的。
图象的分辨率指标主要是看垂直方向的线数,比如,两个分别标有800×480 和1440×234的7"液晶屏,哪个像素点多,分辨率高呢?显然应该是800×480的分辨率高,它是数字屏,可以支持VGA输入。
那么是不是数字屏就分辨率高呢?也不尽然。
象附表中的夏普LM32C041,EPSON 4"、 5.6"、 6.5",ALPS LFUBK9111A/LFUBK3041A 虽然是数字屏,但其分辨率也只有320×234。
液晶显示器驱动板电路下册 接着上册!
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 ቤተ መጻሕፍቲ ባይዱ : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申
TPVDW-分析员培训教材
教 材 整 理 : 肖 孝 申