初中数学二次函数真题汇编及解析
初中数学二次函数难题汇编附答案
解得:2≤t≤10.
故应选 B
【点睛】
此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关
于 t 的不等式是解题关键.
2.如图,二次函数 y ax2 bx c 0a 0的图象与 x 轴正半轴相交于 A 、 B 两点,
与 y 轴相交于点 C ,对称轴为直线 x 2 ,且 OA OC ,则下列结论:
x ···
1 0 1 3 ···
y ···
1 3 5 3 ···
下列结论错误的是( )
A. ac 0
B. 3 是关于 x 的方程 ax2 b 1 x c 0
的一个根;
C.当 x 1时, y 的值随 x 值的增大而减小; D.当 1 x 3 时,
ax2 b 1 x c 0.
【答案】C 【解析】 【分析】 根据函数中的 x 与 y 的部分对应值表,可以求得 a、b、c 的值 然后在根据函数解析式及其 图象即可对各个选项做出判断.
∴其顶点坐标为:(2,−1), ∴若使其平移后的顶点为(−2,4)则先向左平移 4 个单位,再向上平移 5 个单位. 故选 C. 【点睛】 本题考查二次函数图像,熟练掌握平移是性质是解题关键.
6.二次函数 y ax2 bx c(a,b, c 为常数,且 a 0 )中的 x 与 y 的部分对应值如表:
9.在平面直角坐标系内,已知点 A(﹣1,0),点 B(1,1)都在直线 y 1 x 1 上, 22
若抛物线 y=ax2﹣x+1(a≠0)与线段 AB 有两个不同的交点,则 a 的取值范围是( )
A.a≤﹣2 【答案】C
B.a< 9 8
C.1≤a< 9 或 a≤﹣2 D.﹣2≤a< 9
8
8
初中数学二次函数难题汇编附答案解析
初中数学二次函数难题汇编附答案解析一、选择题1.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误;根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.3.如图,二次函数()200y ax bx c a =++=≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:①0abc >;②930a b c ++<;③1c >-;④关于x 的方程()200ax bx c a ++=≠有一个根为1a-,其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由二次图像开口方向、对称轴与y 轴的交点可判断出a 、b 、c 的符号,从而可判断①;由图像可知当x =3时,y <0,可判断②;由OA =OC ,且OA <1,可判断③;把﹣1a 代入方程整理得ac 2-bc +c =0,结合③可判断④;从而得出答案.【详解】由图像开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,∴﹣2b a>0,∴b >0,∴abc >0,故①正确;由图像可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图像可知OA <1,∵OA =OC ,∴OC <1,即﹣c <1,故③正确;假设方程的一个根为x =﹣1a ,把﹣1a 代入方程,整理得ac 2-bc +c =0, 即方程有一个根为x =﹣c ,由②知﹣c =OA ,而当x =OA 是方程的根,∴x =﹣c 是方程的根,即假设成立,故④正确.故选C.【点睛】本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此题的关键.4.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( )A .-12<t ≤3B .-12<t <4C .-12<t ≤4D .-12<t <3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解.【详解】解:∵y =-x 2+bx +3的对称轴为直线x =-1,∴b =−2,∴y =-x 2−2x +3,∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4,∴-12<t≤4,故选:C .【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.5.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解.【详解】∵函数的图象开口向上,与y 轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ),∴244ac b a- =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.6.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D【解析】【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1,∴抛物线与x 轴的另一交点坐标是(﹣3,0),∴当y >0时,x 的取值范围是﹣3<x <1.所以答案为:D .【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.7.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()21 1226,2y t t t t =⋅-=-+y 是t 的二次函数故符合y 与t 的函数图象是B .故选:B .【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.9.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A.16 B.15 C.12 D.11【答案】B【解析】【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA , ∴ ,HF HE EF AE AB BE == G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.11.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.12.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【解析】 根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a=2,即b=-4a ,变形为4a+b=0,所以(1)正确; 由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<x 2,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.13.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D .【点睛】 本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.14.已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a -<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a -=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.15.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误【答案】A【解析】【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.【详解】解:①∵顶点坐标为1,2m ⎛⎫ ⎪⎝⎭,12n < ∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫- ⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q 3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确; ②把1,2m ⎛⎫ ⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++, ∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-< ⎪⎝⎭ ∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确;故选A .【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.16.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.17.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)【答案】C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质.18.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有( ) A .0B .1C .2D .3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.19.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于(-1,0),(3,0)两点,则下列说法:①abc<0;②a-b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C (x3,y3)为抛物线上三点,且-1<x1<x2<1,x3>3,则y2<y1<y3,其中正确的结论是()A.①⑤B.②④C.②③④D.②③⑤【答案】D【解析】【分析】①abc<0,由图象知c<0,a、b异号,所以,①错误;②a-b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确;④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确.【详解】解:①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确; ④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确;故选D .【点睛】考查图象与二次函数系数之间的关系,要会求对称轴、x=±1等特殊点y 的值.20.已知二次函数y =a (x ﹣h )2+k 的图象如图所示,直线y =ax +hk 的图象经第几象限( )A .一、二、三B .一、二、四C .一、三、四D .二、三、四【答案】D【解析】【分析】 根据二次函数的图象和性质可得a <0,h <0,k >0,以此判断一次函数的图象所经过的象限即可.【详解】解:由函数图象可知,y =a (x ﹣h )2+k 中的a <0,h <0,k >0,∴直线y =ax +hk 中的a <0,hk <0,∴直线y =ax +hk 经过第二、三、四象限,故选:D .【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.。
中考数学二次函数-经典压轴题含详细答案
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210. (3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称,∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10. ∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()22EF m 2m 32m 6m 4m 3=--+-+=---.∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---. ②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).2.如图,抛物线y =﹣x 2﹣2x+3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求点A 、B 、C 的坐标;(2)点M(m ,0)为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N ,可得矩形PQNM .如图,点P 在点Q 左边,试用含m 的式子表示矩形PQNM 的周长;(3)当矩形PQNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积; (4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G(点G 在点F 的上方).若FG =2,求点F 的坐标.【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周长=﹣2m2﹣8m+2;(3) m=﹣2;S=12;(4)F(﹣4,﹣5)或(1,0).【解析】【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A,B,C的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=2,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.【详解】(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴303k bb-+=⎧⎨=⎩解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S =12AM×EM =12. (4)∵M(﹣2,0),抛物线的对称轴为x =﹣l , ∴N 应与原点重合,Q 点与C 点重合, ∴DQ =DC ,把x =﹣1代入y =﹣x 2﹣2x+3,解得y =4, ∴D(﹣1,4), ∴DQ =DC =2. ∵FG =22DQ , ∴FG =4.设F(n ,﹣n 2﹣2n+3),则G(n ,n+3), ∵点G 在点F 的上方且FG =4, ∴(n+3)﹣(﹣n 2﹣2n+3)=4. 解得n =﹣4或n =1, ∴F(﹣4,﹣5)或(1,0). 【点睛】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m 表示出矩形PMNQ 的周长.3.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式; (2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ POAC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b ,把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩,∴直线AB 的解析式为y =2x ﹣12, ∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n , 把M (t ,0)代入得2t+n =0,解得n =﹣2t , ∴直线MN 的解析式为y =2x ﹣2t ,解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+21(t 3)33=--+,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0); (3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO , ∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=,解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0); 解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.4.已知抛物线2(5)6y x m x m =-+-+-. (1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或 【解析】 【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论. 【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥ ∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:x =即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+ ∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0), 它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -), 由题意,可得:6166m m m 或-+=-+=- 56m m ∴==或 【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.5.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=,()22AM [11](m 0)=--+-,分AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中,得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.抛物线的解析式为2223(1)4y x x x =-++=--+,∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+.当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=,()22[11](0)AM m =--+-.分三种情况考虑:①当90AMC ∠=时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,列出关于m 的方程.6.如图,抛物线y=ax 2+bx 过点B (1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点A .(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P ,当PA ⊥BA 时,求△PAB 的面积.【答案】(1)抛物线的解析式为y=x 2﹣4x ,自变量x 的取值范图是0≤x≤4;(2)△PAB 的面积=15. 【解析】 【分析】(1)将函数图象经过的点B 坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a 和b ;(2)如图,过点B 作BE ⊥x 轴,垂足为点E ,过点P 作PE ⊥x 轴,垂足为F ,设P (x ,x 2-4x ),证明△PFA ∽△AEB,求出点P 的坐标,将△PAB 的面积构造成长方形去掉三个三角形的面积. 【详解】(1)由题意得,322a b b a+-⎧⎪⎨-⎪⎩==,解得14a b -⎧⎨⎩==,∴抛物线的解析式为y=x 2-4x , 令y=0,得x 2-2x=0,解得x=0或4, 结合图象知,A 的坐标为(4,0),根据图象开口向上,则y≤0时,自变量x 的取值范围是0≤x≤4;(2)如图,过点B 作BE ⊥x 轴,垂足为点E ,过点P 作PE ⊥x 轴,垂足为F ,设P (x ,x 2-4x ), ∵PA ⊥BA ∴∠PAF+∠BAE=90°, ∵∠PAF+∠FPA=90°, ∴∠FPA=∠BAE 又∠PFA=∠AEB=90° ∴△PFA ∽△AEB,∴PF AF AE BE =,即244213x x x--=-, 解得,x= −1,x=4(舍去) ∴x 2-4x=-5∴点P 的坐标为(-1,-5),又∵B 点坐标为(1,-3),易得到BP 直线为y=-4x+1 所以BP 与x 轴交点为(14,0) ∴S △PAB=115531524⨯⨯+= 【点睛】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.7.如图,(图1,图2),四边形ABCD 是边长为4的正方形,点E 在线段BC 上,∠AEF=90°,且EF 交正方形外角平分线CP 于点F ,交BC 的延长线于点N, FN ⊥BC . (1)若点E 是BC 的中点(如图1),AE 与EF 相等吗?(2)点E 在BC 间运动时(如图2),设BE=x ,△ECF 的面积为y . ①求y 与x 的函数关系式;②当x 取何值时,y 有最大值,并求出这个最大值.【答案】(1)AE=EF ;(2)①y=-12x 2+2x (0<x <4),②当x=2,y 最大值=2. 【解析】 【分析】(1)在AB 上取一点G ,使AG=EC ,连接GE ,利用ASA ,易证得:△AGE ≌△ECF ,则可证得:AE=EF ;(2)同(1)可证明AE=EF ,利用AAS 证明△ABE ≌△ENF ,根据全等三角形对应边相等可得FN=BE ,再表示出EC ,然后利用三角形的面积公式即可列式表示出△ECF 的面积为y ,然后整理再根据二次函数求解最值问题. 【详解】(1)如图,在AB 上取AG=EC , ∵四边形ABCD 是正方形, ∴AB=BC ,有∵AG=EC ,∴BG=BE , 又∵∠B=90°, ∴∠AGE=135°,又∵∠BCD=90°,CP 平分∠DCN , ∴∠ECF=135°,∵∠BAE +∠AEB=90°,∠AEB +∠FEC=90°, ∴∠BAE=∠FEC , 在△AGE 和△ECF 中,AGE ECF AG ECGAE CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGE ≌△ECF , ∴AE=EF ;(2)①∵由(1)证明可知当E 不是中点时同理可证AE=EF , ∵∠BAE=∠NEF ,∠B=∠ENF=90°, ∴△ABE ≌△ENF , ∴FN=BE=x , ∴S △ECF =12(BC-BE)·FN , 即y=12x(4-x ), ∴y=-12x 2+2x (0<x <4), ②()()222111y x 2x x 4x x 22222=-+=--=--+, 当x=2,y 最大值=2. 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,二次函数的最值问题,综合性较强,正确添加辅助线、熟练掌握相关知识是解题的关键.8.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点. (1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x 2+2x+3;直线AC 的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P 的坐标为(73,209)或(103,﹣139), 【解析】分析:(1)设交点式y=a (x+1)(x-3),展开得到-2a=2,然后求出a 即可得到抛物线解析式;再确定C (0,3),然后利用待定系数法求直线AC 的解析式;(2)利用二次函数的性质确定D 的坐标为(1,4),作B 点关于y 轴的对称点B′,连接DB′交y 轴于M ,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD 的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.9.已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.【答案】(1)(﹣1,0)或(5,0)(2)①(0,﹣5),(4,﹣5)②y=﹣ax2+4ax﹣5(3)a=或【解析】试题分析:(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个点定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题试题解析:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为y=2;∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,整理得:y=ax(x﹣4)﹣5;∵当ax(x﹣4)=0时,y恒定为﹣5;∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);②这两个点连线为y=﹣5;将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者﹣2;当y=2时,2=﹣4a+8a﹣5,解得,a=;当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;∴a=或;考点:1、抛物线与x轴的交点;2、二次函数图象与几何变换10.抛物线,若a,b,c满足b=a+c,则称抛物线为“恒定”抛物线.(1)求证:“恒定”抛物线必过x轴上的一个定点A;(2)已知“恒定”抛物线的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.【答案】(1)证明见试题解析;(2),或.【解析】试题分析:(1)由“恒定”抛物线的定义,即可得出抛物线恒过定点(﹣1,0);(2)求出抛物线的顶点坐标和B的坐标,由题意得出PA∥CQ,PA=CQ;存在两种情况:①作QM⊥AC于M,则QM=OP=,证明Rt△QMC≌Rt△POA,MC=OA=1,得出点Q的坐标,设抛物线的解析式为,把点A坐标代入求出a的值即可;②顶点Q在y轴上,此时点C与点B重合;证明△OQC≌△OPA,得出OQ=OP=,得出点Q坐标,设抛物线的解析式为,把点C坐标代入求出a的值即可.试题解析:(1)由“恒定”抛物线,得:b=a+c,即a﹣b+c=0,∵抛物线,当x=﹣1时,y=0,∴“恒定”抛物线必过x轴上的一个定点A(﹣1,0);(2)存在;理由如下:∵“恒定”抛物线,当y=0时,,解得:x=±1,∵A(﹣1,0),∴B(1,0);∵x=0时,y=,∴顶点P的坐标为(0,),以PA,CQ为边的平行四边形,PA、CQ是对边,∴PA∥CQ,PA=CQ,∴存在两种情况:①如图1所示:作QM⊥AC于M,则QM=OP=,∠QMC=90°=∠POA,在Rt△QMC和Rt△POA中,∵CQ=PA,QM=OP,∴Rt△QMC≌Rt△POA(HL),∴MC=OA=1,∴OM=2,∵点A和点C是抛物线上的对称点,∴AM=MC=1,∴点Q的坐标为(﹣2,),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为,把点A(﹣1,0)代入得:a=,∴抛物线的解析式为:,即;②如图2所示:顶点Q在y轴上,此时点C与点B重合,∴点C坐标为(1,0),∵CQ∥PA,∴∠OQC=∠OPA,在△OQC和△OPA中,∵∠OQC=∠OPA,∠COQ=∠AOP,CQ=PA,∴△OQC≌△OPA(AAS),∴OQ=OP=,∴点Q坐标为(0,),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为,把点C(1,0)代入得:a=,∴抛物线的解析式为:;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形,抛物线的解析式为:,或.考点:1.二次函数综合题;2.压轴题;3.新定义;4.存在型;5.分类讨论.。
初中数学《二次函数》重难点题型汇编含解析
二次函数重难点题型汇编【题型01:二次函数的概念】【题型02:二次函数的条件】【题型03:列处二次函数关系式】【题型04:特殊二次函数的图像和性质】【题型05:与特殊二次函数有关的几何知识】【题型06:二次函数y=ax2+bx+c的图像和性质】【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】【题型09:二次函数的平移变换】【题型10:二次函数的交点个数问题】【题型01:二次函数的概念】1下列函数是关于x的二次函数的是()A.y=x2+1x2B.y=x1-xC.y=x+12-x2 D.y=ax2+bx+c【答案】B【分析】本题考查了二次函数的定义,根据形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数是二次函数,判断即可,熟练掌握二次函数的一般形式是解题的关键.【详解】解:A、y=x2+1x2的分母含有自变量,不是y关于x的二次函数,故A不符合题意;B、y=x1-x=-x2+x,是y关于x的二次函数,故B符合题意;C、y=x+12-x2=2x+1,不是y关于x的二次函数,故C不符合题意;D、y=ax2+bx+c,当a=0时不是二次函数,故D不符合题意;故选:B.2下列各式中,是二次函数的是()A.y=2x+1B.y=-2x+1C.y=x2+2D.y=2x2-1x【答案】C【分析】本题主要考查了二次函数的定义,解题的关键是掌握一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【详解】解:A、y=2x+1,是一次函数,故本选项不合题意;B、y=-2x+1,是一次函数,故本选项不合题意;C、y=x2+2,是二次函数,故本选项符合题意;D、y=2x2-1x,右边中-1x不是整式,不是二次函数,故本选项不合题意.故选:C.3下列函数解析式中,y是x的二次函数的是()A.y=ax2+bx+cB.y=-5x+1C.y=-23x2+x-34D.y=2x2-1x【答案】C【分析】根据:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,进行判断即可.【详解】解:A、当a=0时,y=ax2+bx+c不是二次函数,不符合题意;B、y=-5x+1,是一次函数,不是二次函数,不符合题意;C、y=-23x2+x-34,是二次函数,符合题意;D、y=2x2-1x,不是二次函数,不符合题意;故选C.4如图,分别在正方形ABCD边AB、AD上取E、F点,并以AE、AF的长分别作正方形.已知DF= 3,BE=5.设正方形ABCD的边长为x,阴影部分的面积为y,则y与x满足的函数关系是()A.一次函数关系B.二次函数关系C.正比例函数关系D.反比例函数关系【答案】A【分析】本题考查函数关系的识别,完全平方公式,列函数关系式,根据题意表示出AE、AF的长度,再结合阴影部分的面积等于以AE、AF的长的正方形的面积之差可得y=4x-16,理解题意,列出函数关系式是解决问题的关键.【详解】解:由题意可得:AE=AB-BE=x-5,AF=AD-DF=x-3,则阴影部分的面积为y=x-32-x-52=x2-6x+9-x2+10x-25=4x-16,即:y=4x-16,为一次函数,故选:A.【题型02:二次函数的条件】5抛物线y=ax2+a-2x-a-1经过原点,那么a的值等于()A.0B.1C.-1D.35【答案】C【分析】本题考查了抛物线与点的关系,熟练掌握把(0,0)代入函数解析式,求解关于a的一元一次方程是解题的关键.【详解】解:∵抛物线y=ax2+a-2x-a-1经过原点,∴a≠0-a-1=0,解得:a=-1,故选C.6已知y=m-1x m2+1-2x+5是二次函数,则m的值为()A.1或-1B.1C.-1D.0【答案】C【分析】本题考查了二次函数的定义,根据二次函数y=ax2+bx+c的定义条件是:a、b、c为常数,a≠0,自变量最高次数为2即可求解.【详解】解:根据二次函数的定义:m2+1=2,且m-1≠0,解得:m=1或m=-1,又∵m≠1,∴m=-1,故选:C.7已知二次函数y=m-2x m2-2+3x+1,则m=.【答案】-2【分析】此题考查了二次函数的定义,根据二次函数的定义:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,得到m-2≠0,m2-2=2,进行求解即可.解题的关键是熟练掌握二次函数的定义.【详解】解:∵函数y=m-2x m2-2+3x+1是二次函数,∴m-2≠0,m2-2=2,∴m=-2.故答案为:-2.【题型03:列处二次函数关系式】8某厂今年一月份新产品的研发资金为9万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为()A.y=91+x2 B.y=9+9x+x2C.y=9+91+x+91+x2 D.y=91+x2【答案】C【分析】此题主要考查了根据实际问题抽象出二次函数解析式.根据题意得到二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,再求和即可,正确表示出三月份的研发资金.【详解】解:根据题意可得二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,今年一季度新产品的研发资金y=9+91+x+91+x2,故选:C.9已知一正方体的棱长是3cm,设棱长增加xcm时,正方体的表面积增加ycm2,则y与x之间的函数关系式是()A.y=6x2-36xB.y=-6x2+36xC.y=x2+36xD.y=6x2+36x【答案】D【分析】本题考查了二次函数的应用,根据题意直接列式即可作答.【详解】根据题意有:y=6x+32-6×32=6x2+36x,故选:D.10某商店购进某种商品的价格是7.5元/件,在一段时间里,单价是13.5元,销售量是500件,而单价每降低1元就可多售出200件,当销售价为x元/件(7.5<x<13.5)时,获取利润y元,则y与x的函数关系为()A.y=x-7.5500+xB.y=13.5-x500+200xC.y=x-7.5500+200xD.以上答案都不对【答案】D【分析】当销售价为x元/件时,每件利润为(x-7.5)元,销售量为[500+200×(13.5-x)],根据利润=每件利润×销售量列出函数关系式即可.【详解】解:由题意得w=(x-7.5)×[500+200×(13.5-x)],故选:D.【点睛】题考查了根据实际问题列二次函数关系式,用含x的代数式分别表示出每件利润及销售量是解题的关键.11正方形边长3,若边长增加x,增加后正方形的面积为y,y与x的函数关系式为.【答案】y=x+32/y=3+x2【分析】本题考查了列二次函数关系式,根据正方形面积等于边长的平方,即可求解.【详解】解:依题意,y=x+32,故答案为:y=x+32.【题型04:特殊二次函数的图像和性质】12已知函数y=-(x-2)2的图象上有A-32,y1,B3,y2,C4,y3三点,则y1,y2,y3的大小关系是()A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 1<y 3<y 2D.y 2<y 3<y 1【答案】C【分析】本题考查二次函数的性质,当开口向上时,距离对称轴越近,函数值越小;当开口向下时,距离对称轴越近,函数值越大,解题的关键是熟练掌握二次函数的图象与性质.先找到对称轴和开口方向,根据点到对称轴的距离比较函数值的大小即可.【详解】解:∵函数y =-(x -2)2,∴图象开口向下,对称轴为直线x =2,∴图象上的点距离对称轴越近,函数值越大,2--32=72,3-2 =1,4-2 =2,∵1<2<72,∴y 1<y 3<y 2,故选:C .13对于二次函数y =2x -1 2+3,下列说法正确的是()A.开口方向向下B.顶点坐标(1,-3)C.对称轴是y 轴D.当x =1时,y 有最小值【答案】D【分析】本题考查了二次函数的性质:根据抛物线的性质,由a =2得到图象开口向上,根据顶点式得到顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3,再进行判断即可.【详解】解:二次函数y =2(x -1)2+3的图象开口向上,顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3.故选项D 正确,故选:D14下列抛物线中,对称轴为直线x =12的是()A.y =x -122B.y =12x 2C.y =x 2+12D.y =x +122-3【答案】A【分析】本题考查了抛物线求对称轴方程的公式:x =-b2a.利用抛物线对称轴的公式即可确定每一个函数的对称轴,然后即可确定选项.【详解】解:A 、y =x -122的对称轴为直线x =12,故选项符合题意.B 、y =12x 2的对称轴为直线x =0,故选项不符合题意.C 、y =x 2+12的对称轴为直线x =0,故选项不符合题意.D、y=x+122-3的对称轴为直线x=-12,故选项不符合题意.故选:A.15在二次函数y=-x-12+3的图象中,若y随x的增大而减小,则x的取值范围是()A.x>-1B.x<-1C.x>1D.x<1【答案】C【分析】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键;由题可知,函数图象开口向下,对称轴为x=1,在对称轴右侧,y随x的增大而减小;在对称轴左侧,y随x 的增大而增大,据此即可得到答案.【详解】解:由二次函数的解析式得,抛物线开口向下,对称轴为x=1,当x>1时,y 随 x 的增大而减小.故选:C .16抛物线y=-2x+12+2的顶点的坐标是.【答案】(-1,2)【分析】本题考查了二次函数的性质,根据顶点式y=a(x-h)2+k的顶点坐标为h,k,即可求解.【详解】解:抛物线y=-2x+12+2的顶点坐标是(-1,2),故答案为:(-1,2).17点A-3,y1,B2,y2均在二次函数y=-x2+2的图象上,则y1y2.(填“>”或“<”)【答案】<【分析】本题主要考查了二次函数的图象和性质.根据开口向下的二次函数,离对称轴越远函数值越小进行求解即可.【详解】解:∵二次函数解析式为y=-x2+2,∴二次函数开口向下,对称轴为y轴,∴离对称轴越远函数值越小,∵0--3=3>2-0=2,∴y1<y2,故答案为:<.【题型05:与特殊二次函数有关的几何知识】18如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则阴影部分的面积是()A.4πB.2πC.πD.无法确定【答案】B【分析】据函数y =12x 2与函数y =-12x 2的图象关于x 轴对称,得出阴影部分面积即是半圆面积求出即可.【详解】解:∵C 1是函数y =-12x 2的图象,C 2是函数y =-12x 2的图象,且当x 相等时,两个函数的函数值互为相反数,∴函数y =12x 2的图象与函数y =-12x 2的图象关于x 轴对称,∴阴影部分面积即是半圆面积,∴面积为:12π×22=2π.故选:B .【点睛】此题主要考查了二次函数的图象,根据已知得出阴影部分面积即是半圆面积是解题关键.19如图,已知点A 1,A 2,...,A 2024在函数y =2x 2位于第二象限的图像上,点B 1,B 2,...,B 2024在函数y =2x 2位于第一象限的图像上,点C 1,C 2,...,C 2024在y 轴的正半轴上,若四边形O 1A 1C 1B 1,C 1A 2C 2B 2,...,C 2023A 2024C 2024B 2024都是正方形,则正方形C 2023A 2024C 2024B 2024的边长为()A.1012B.10122C.20232D.202322【答案】B【分析】根据正方形对角线平分一组对角可得OB 1与y 轴的夹角为45°,然后表示出OB 1的解析式,再与抛物线解析式联立求出点B 1的坐标,然后求出OB 1的长,再根据正方形的性质求出OC 1,表示出C 1B 2的解析式,与抛物线联立求出B 2的坐标,然后求出C 1B 2的长,再求出C 1C 2的长,然后表示出C 2B 3的解析式,与抛物线联立求出B 3的坐标,然后求出C 2B 3的长,从而根据边长的变化规律解答即可.【详解】解:∵OA 1C 1B 1是正方形,∴OB 1与y 轴的夹角为45°,∴OB 1的解析式为y =x ,联立方程组得:y =xy =2x 2 ,解得x 1=0y 1=0 ,x 2=12y 2=12.∴B 点的坐标是:12,12,∴OB 1=122+122=22=1×22;同理可得:正方形C 1A 2C 2B 2的边长C 1B 2=2×22;⋯依此类推,正方形C 2023A 2024C 2024B 2024的边长是为2024×22=10122.故选B .【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.20如图,正方形OABC 有三个顶点在抛物线y =14x 2上,点O 是原点,顶点B 在y 轴上则顶点A 的坐标是()A.2,2B.2,2C.4,4D.22,22【答案】C【分析】连接AC 交y 轴于点D ,设点B 坐标为0,m ,根据正方形的性质可得OD =12m ,AD =12m ,从而得到A 12m ,12m,再代入y =14x 2,即可求解.【详解】解:如图,连接AC 交y 轴于点D ,设点B 坐标为0,m ,∵四边形OABC 是正方形,∴OD =12OB ,CD =AD ,AC ⊥y 轴,∴OD =12m ,AD =12m ,∴A 12m ,12m,∵A 在抛物线y =14x 2上,∴12m =14×12m 2,解得m =0(舍去)或8,∴点A 的坐标为4,4 .故选:C .【点睛】本题主要考查了二次函数的性质,正方形的性质,利用数形结合思想解答是解题的关键.21如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .若抛物线y =ax 2的图象与正方形ABCD 有公共点,则a 的取值范围是.【答案】116≤α≤4【分析】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,求出抛物线经过两个特殊点时的a 的值即可解决问题.【详解】解:∵正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .∴D 4,1 ,当抛物线经过点B 1,4 时,则a =4,当抛物线经过D4,1时,a=1 16,观察图象可知,抛物线y=ax2的图象与正方形ABCD有公共点,则a的取值范围是116≤α≤4,故答案为:116≤α≤4.【题型06:二次函数y=ax2+bx+c的图像和性质】22将抛物线y=x2-4x+3绕原点O顺时针旋转180°,则旋转后的函数表达式为()A.y=x2+4x-3B.y=-x2+4x+3C.y=-x2-4x-3D.y=-x2+4x-3【答案】C【分析】本题考查了二次函数的旋转变换,熟练掌握二次函数的性质和旋转的性质是解题的关键.设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,则P 是在旋转后的抛物线上,然后代入化简即可解答.【详解】解:设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,由题意可知:P -x,-y是在抛物线y=x2-4x+3上,即:-y=x2+4x+3,化简得:y=-x2-4x-3.故选C.23直线y=ax+b与抛物线y=ax2+bx+b在同一坐标系里的大致图象正确的是()A. B. C. D.【答案】D【分析】本题考查二次函数的图象、一次函数的图象,根据题意和各个选项中的函数图象,可以得到一次函数中a和b的正负情况和二次函数图象中a、b的正负情况,然后即可判断哪个选项中的图象符合题意,解题的关键是明确题意,利用数形结合的思想解答.【详解】解:A、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;B、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;C、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,ab>0,而抛物线对称轴位于y轴右侧,则ab<0,故选项不符合题意;D、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,对称轴位于y轴左侧,则ab>0,故选项符合题意;故选:D.24已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表,x⋯-4-2035⋯y ⋯-24-80-3-15⋯则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当x >0时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x =1【答案】D【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可.【详解】解:由题意得4a -2b +c =-8c =09a +3b +c =-3 ,解得a =-1c =0b =2,∴二次函数的解析式为y =-x 2+2x =-x -1 2+1,∵a =-1<0,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线x =1,故选项D 符合题意;当0<x <1时,y 的值随x 的值增大而增大,当x >1时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为1,1 且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D .25如图,平面直角坐标系中有两条抛物线,它们的顶点P ,Q 都在x 轴上,平行于x 轴的直线与两条抛物线相交于A ,B ,C ,D 四点,若AB =10,BC =5,CD =6,则PQ 的长度为()A.7B.8C.9D.10【答案】B【分析】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,得四边形PMNQ 是矩形,利用抛物线的对称性计算即可.本题考查了抛物线的性质,矩形的性质,熟练掌握抛物线的性质是解题的关键.【详解】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,∴四边形PMNQ 是矩形,∴MN =PQ ,∵AB=10,BC=5,CD=6,∴MA=MC=12AC=12AB+BC=152,BN=ND=12BD=12CD+BC=112,∴MN=AD-AM-ND=AB+BC+CD-AM-ND,=21-112-152=8,∴PQ=8,故选B.26二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程x2-bx+a=0的根的情况是()A.只有一个实数根B.没有实数根C.有两个不相等的实数根D.有两个相等的实数根【答案】C【分析】此题考查了二次函数的图象和性质,一元二次方程的判别式,首先根据二次函数的图象得到a<0,b>0,然后判断一元二次方程的判别式求解即可.【详解】∵二次函数图象开口向下,对称轴大于零,∴a<0,-b2a>0∴b>0∴方程x2-bx+a=0的判别式Δ=b2-4ac=-b2-4×1×a=b2-4a>0∴关于x的一元二次方程x2-bx+a=0的根的情况是有两个不相等的实数根.故选:C.27抛物线y=x2+14x+54的顶点坐标是()A.7,5B.7,-5C.-7,5D.-7,-5【答案】C【分析】依据题意,由抛物线为y=x2+14x+54=(x+7)2+5,从而可以判断得解.本题主要考查了二次函数图象与性质,解题时要熟练掌握并能利用顶点式进行判断是关键.【详解】解:由题意,∵抛物线为y=x2+14x+54=(x+7)2+5,∴顶点为-7,5.故选:C.28用配方法将二次函数y=-x2-2x-3化为y=a x-h2+k的形式为()A.y=-x-12-2 D.y=x-12+22-4 C.y=-x+12+3 B.y=x+1【答案】C【分析】本题考查了二次函数的三种表达形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.运用配方法即可将其化为顶点式.【详解】解:y=-x2-2x-3=-x2+2x+1-2=-x+12-2故选:C.29如图,抛物线y=ax2+bx+c的对称轴为x=1,点P、点Q是抛物线与x轴的两个交点,若点P的坐标为-1,0,则点Q的坐标为()A.0,-1D.3,0C.4,0B.2,0【答案】D【分析】本题考查二次函数的图象和性质,由题意可得点P、点Q关于对称轴对称即可求解.【详解】解:由题意得:点P、点Q关于对称轴对称,∴点Q的坐标为3,0,故选:D.【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】30已知抛物线y=-x2+2x+1在自变量x的值满足t≤x≤t+2时,与其对应的函数值y的最小值为-7,求此时t的值为()A.1或-2B.2或-2C.3或-1D.-1或-2【答案】B【分析】本题考查二次函数的图象和性质,根据二次函数的性质,分2种情况进行讨论求解即可.【详解】解:∵y=-x2+2x+1=-x-12+2,∴抛物线的开口向下,对称轴为直线x=1,∴抛物线的上的点离对称轴越远,函数值越小,∵t≤x≤t+2时,与其对应的函数值y的最小值为-7,分两种情况:①当t-1≤t+2-1时,即:t≥0时,当x=t+2时,y=-t+22+2t+2+1=-7,解得:t=-4(舍去)或t=2;②当t-1>t+2-1时,即:t<0时,当x=t时,y=-t2+2t+1=-7,解得:t=4(舍去)或t=-2;综上:t的值为2或-2;故选B.31已知二次函数y=x2-2x-1≤x≤t-1,当x=-1时,函数取得最大值;当x=1时,函数取得最小值,则t的取值范围是()A.0<t≤2B.0<t≤4C.2≤t≤4D.t≥2【答案】C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由y=x2-2x=x-12-1,可知图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y =3,即-1,3关于对称轴对称的点坐标为3,3,由当x=-1时,函数取得最大值;当x=1时,函数取得最小值,可得1≤t-1≤3,计算求解,然后作答即可.【详解】解:∵y=x2-2x=x-12-1,∴图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y=3,∴-1,3关于对称轴对称的点坐标为3,3,∵当x=-1时,函数取得最大值;当x=1时,函数取得最小值,∴1≤t-1≤3,解得,2≤t≤4,故选:C.32已知抛物线y=x2+(2a-1)x-3,当-1≤x≤3时,函数最大值为1,则a值为()A.-12B.-13C.-12或-13D.-1或-13【答案】D【分析】根据顶点的位置分两种情况讨论即可.【详解】解:∵y=x2+(2a-1)x-3,∴图象开口向上,对称轴为直线x=-2a-12,∵-1≤x≤3,∴当-2a-12≤1时,即a≥-12,x=3时有最大值1,∴9+(2a-1)×3-3=1,∴a=-13,当-2a-12≥1时,即a≤-12,x=-1时有最大值1,∴1+(2a-1)×(-1)-3=1,∴a=-1,∴a=-1或-13,故选:D.【点睛】本题考查了二次函数性质以及二次函数的最值,分类讨论是解题的关键.33已知二次函数y=x-m2-1(m为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y 的最小值为3,则m的值为()A.0或3B.0或7C.3或4D.4或7【答案】B【分析】利用二次函数的性质,分三种情况求解即可.【详解】解:∵y=x-m2-1,∴当x=m时,y的最小值为-1.当m<2时,在2≤x≤5中,y随x的增大而增大,∴2-m2-1=3,解得:m1=0,m2=4(舍去);当2≤m≤5时,y的最小值为-1,舍去;当m>5时,在2≤x≤5中,y随x的增大而减小,∴5-m2-1=3,解得:m1=3(舍去),m2=7.∴m的值为0或7.故选:B.【点睛】本题考查了二次函数的性质,以及二次函数图象上点的坐标特征,分三种情况求解是解题的关键.34已知二次函数y=mx2-2mx+2(m≠0)在-2≤x≤2时有最小值-2,则m=()A.-4或-12B.4或-12C.-4或12D.4或12【答案】B【分析】本题考查了二次函数的性质,根据解析式可得对称轴为直线x=1,进而分m>0和m<0两种情况讨论,根据二次函数的性质,即可求解.【详解】解:∵二次函数解析式为y=mx2-2mx+2(m≠0),∴二次函数对称轴为直线x=-2m-2m=1,当m>0时,∵在-2≤x≤2时有最小值-2,∴当x=1时,y=m-2m+2=-2,∴m=4;当m<0时,∵在-2≤x≤2时有最小值-2,∴当x=-2时,y=4m+4m+2=-2,∴m=-12;综上所述,m=4或m=-1 2,故选:B.35已知二次函数y=-x2-2x+2,当m≤x≤m+2时,函数y的最大值是3,则m的取值范围是()A.m≥-1B.m≤2C.-3≤m≤-1D.0≤m≤2【答案】C【分析】本题主要考查二次函数的性质,依据题意,由y=-x2-2x+2=-x+12+3,可得当x=-1时,y取最大值是3,又当m≤x≤m+2时,函数y的最大值是3,故m≤-1≤m+2,进而计算可以得解.【详解】解:由题意,∵y=-x2-2x+2=-x+12+3,∴当x=-1时,y取最大值是3.又当m≤x≤m+2时,函数y的最大值是3,∴m≤-1≤m+2.∴-3≤m≤-1.故选:C.【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】36已知二次函数y=ax2+bx+c a≠0的图象如图所示,对称轴为x=32,且经过点-1,0,下列结论:①ab<0;②8b-3c=0;③若y≤c,则0≤x≤3.其中正确的有()A.0个B.1个C.2个D.3个【答案】C【分析】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.由对称轴为x =32即可判断①,由抛物线经过点-1,0 ,得出a -b +c =0,对称轴x =-b 2a =32,得出a =-13b ,代入即可判断②;根据二次函数的性质以及抛物线的对称性即可判断③.【详解】解:∵对称轴x =-b 2a =32,∴b =-3a ,∴ab =-3a 2<0,①正确;∵经过点-1,0 ,∴a -b +c =0,∵对称轴x =-b 2a =32,∴a =-13b ,∴-13b -b +c =0,∴3c =4b ,∴4b -3c =0,故②错误;∵对称轴x =32,∴点0,c 的对称点为3,c ,∵开口向上,∴y ≤c 时,0≤x ≤3.故③正确;综上所述,正确的有2个.故选:C .37二次函数y =ax 2+bx +c 的图像如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0C.a+b+c>0D.当x<-1时,y随x的增大而减小【答案】C【分析】本题考查了抛物线的图像及其性质,根据性质,结合图像判断解答即可.【详解】解:A、由图像可知函数有最小值,故正确;B、由抛物线可知当-1<x<2时,y<0,故正确;C、当x=1时,y<0,即a+b+c<0,故错误;D、由图像可知在对称轴的左侧y随x的增大而减小,故正确.故选:C.38二次函数y=ax2+bx+c的图象如图所示,与x轴左侧交点为-1,0,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③a+c2-b2<0;④a+b≤m am+b(m为实数).其中结论正确的为()A.①④B.②③④C.①②④D.①②③④【答案】A【分析】本题考查了二次函数图象与系数的关系,掌握二次函数的性质是解题关键.根据抛物线开口方向,对称轴位置,以及与y轴交点位置,可判断①结论;由抛物线对称轴得到b=-2a,再结合当x=-1时,y= 0,可判断②结论;根据平方差公式展开,可判断③结论;根据抛物线的最小值,可判断④结论.【详解】解:由图象可知,抛物线开口向上,对称轴在y轴右侧,与y轴交点在负半轴,∴a>0,a、b异号,c<0,∴b<0,∴abc>0,①结论正确;∵抛物线对称轴是直线x=1,=1,∴-b2a∴b=-2a,由图象可知,当x=-1时,y=0,∴a-b+c=a--2a+c=3a+c=0,②结论错误;由图象可知,当x=1时,y<0,∴a+b+c<0,又∵a-b+c=0,∴a+ca+c-b=0,③结论错误;2-b2=a+c+b∵当x=1时,y=a+b+c为最小值,∴a+b+c≤am2+bm+c,∴a+b≤m am+b,④结论正确,故选:A.39已知二次函数y=ax2+bx+c的部分图象如图所示,则下列结论正确的是()A.abc>0B.关于x的一元二次方程ax2+bx+c=0的根是x1=-2,x2=3C.a+b=c-bD.a+4b=3c【答案】C【分析】本题考查了二次函数的图象和性质;熟练掌握二次函数的图象和性质是解题的关键.根据二次函数的图象先判定a,b,c的符号,再结合对称轴求解抛物线与x轴的交点坐标,再进一步逐一分析即可.【详解】解:由函数图像可知开口向下,与y轴交于正半轴,∴a<0,c>0,∵对称轴为x=-b=1,2a∴b>0,∴abc <0,故A 不符合题意;∵抛物线与x 轴交于3,0 ,对称轴为直线x =1,∴抛物线与x 轴的另一个交点为-1,0 ,∴关于x 的一元二次方程ax 2+bx +c =0的根是x 1=-1,x 2=3;故B 不符合题意;∵抛物线与x 轴交于3,0 ,-1,0 ,对称轴为直线x =1,∴b =-2aa -b +c =09a +3b +c =0,解得:b =-2ac =-3a ,∴∵a +b =a -2a =-a ,c -b =-3a --2a =-a ∴a +b =c -b ,故C 符合题意;∴a +4b =a +-8a =-7a ≠-9a ;∴a +4b =3c 错误,故D 不符合题意;故选:C .40如图,二次函数y =ax 2+bx +c a ≠0 的图象与x 轴交于点A 3,0 ,与y 轴交于点B ,对称轴为直线x =1,下列四个结论:①bc <0;②3a +2c <0;③ax 2+bx ≥a +b ;④若-2<c <-1,则-83<a +b +c <-43,其中正确结论的个数为()A.1个B.2个C.3个D.4【答案】C【分析】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出c =-3a ,进一步得到13<a <23,又根据b =-2a 得到a +b +c =a -2a -3a =-4a ,即可判断④.【详解】解:①∵函数图象开口方向向上,∴a >0;∵对称轴在y 轴右侧,∴a 、b 异号,∴b <0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴bc>0,故①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于点A3,0,与y轴交于点B,对称轴为直线x=1,∴-b2a=1,∵b=-2a,∴x=-1时,y=0,∴a-b+c=0,∴3a+c=0,∴3a+2c<0,故②正确;③∵对称轴为直线x=1,a>0,∴y=a+b+c最小值,ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故③正确;④∵-2<c<-1,∴根据抛物线与相应方程的根与系数的关系可得x1x2=-1×3=-3=c a,∴c=-3a,∴-2<-3a<-1,∴1 3<a<23,∵b=-2a,∴a+b+c=a-2a-3a=-4a,∴-83<a+b+c<-43,故④正确;综上所述,正确的有②③④,故选:C【题型09:二次函数的平移变换】41将抛物线y=2(x+1)2-3向右平移2个单位,再向上平移1个单位得到的抛物线解析式为()A.y=2(x+3)2-4B.y=2(x+3)2-2C.y=2(x-1)2-2D.y=2x-1【答案】C【分析】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2(x+1)2-3向右平移2个单位,向上平移1个单位得到的抛物线解析式是:y=2 (x+1-2)2-3+1,即y=2(x-1)2-2.故选:C.42将抛物线y=-3x2+2向左平移1个单位,再向下平移3个单位后所得到的抛物线为()A.y=-3(x-1)2-3B.y=-3(x-1)2-1C.y=-3(x+1)2-3D.y=-3(x+1)2-1【答案】D【分析】此题主要考查了二次函数图象的平移,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-3x2+2向左平移1个单位所得直线解析式为:y=-3(x+1)2+2;再向下平移3个单位为:y=-3(x+1)2+2-3,即y=-3(x+1)2-1.故选:D.【题型10:二次函数交点的个数问题】43如图所示,已知函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点,则b的取值范围是()A.-14≤b≤2 B.b>-14C.-14≤b<2 D.-14<b<2【答案】D【分析】此题考查了一次函数和二次函数图象交点问题,一元二次方程的判别式,首先根据题意画出图象,然后求出A2,4,代入y2=x+b求出b=2;然后得到当一次函数y2=x+b的图象与y=x2相切时,得到x2-x-b=0的Δ=b2-4ac=0,进而求出b=-14,然后根据图象求解即可.【详解】解:如图所示,当x=2时,函数y=x2=22=4,∴A2,4,当一次函数y2=x+b的图象经过点A时,∴4=2+b,解得b=2;当一次函数y2=x+b的图象与y=x2相切时,∴x2=x+b,即x2-x-b=0,∴Δ=b2-4ac=0,∴-12-4×1×-b=0,解得b=-1 4,∴由图象可得,当-14<b<2时,函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点.故选:D.44如图,二次函数y=-x2+x+2及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=x+m与新图象有4个交点时,m的取值范围是()A.14<m<-3 B.254<m≤1 C.-2<m<1 D.-3<m<-2【答案】D【分析】如图所示,过点B作直线y=x+m,将直线向下平移到恰在点C处相切,则一次函数y=x+m在两条直线之间时,两个图象有4个交点,即可求解【详解】解:在y=-x2+x+2中,当y=0,0=-x2+x+2,解得x1=-1,x2=2,A-1,0,B2,0,当x=0时,y=2,∴原抛物线与y轴交点坐标为0,2,∴翻折后与y轴的交点坐标为0,-2,如图,当直线y=x+m经过点B时,直线y=x+m与新图有3个交点,把B2,0代入y=x+m中,得m=-2,∵抛物线y=-x2+x+2翻折到x轴下方的部分的解析式为:-y=-x2+x+2,∴翻折后的部分解析式为:y=x2-x-2-1<x<2,当直线y=x+m与抛物线y=x2-x-2-1<x<2只有一个交点C时,直线y=x+m与图象有3个交点,把y=x+m代入y=x2-x-2-1<x<2中,得到方程x+m=x2-x-2有两个相等的实数根,整理得x2-2x-2-m=0,∴Δ=-22-4×1×-2-m=0,解得m=-3,∴当直线y=x+m与新图象有4个交点时,m的取值范围是-3<m<-2.故选:D.【点睛】本题主要考查了二次函数与一次函数综合应用,理解题意,找准临界点是解题关键.45抛物线y=-x2+kx+k-54与x轴的一个交点为A(m,0),若-2≤m≤1,则实数k的取值范围是()A.-214≤k≤1 B.k≤-214或k≥1 C.-5≤k≤98D.k≤-5或k≥98【答案】B【分析】根据抛物线有交点,则-x2+kx+k-54=0有实数根,得出k≤-5或k≥1,分类讨论,分别求得当x=-2和x=1时k的范围,即可求解.。
嘉兴市初中数学二次函数真题汇编附解析
嘉兴市初中数学二次函数真题汇编附解析一、选择题1.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .aB .bC .cD .d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时,(4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.3.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点;②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a <-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误 0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.4.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A【解析】【分析】 ①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误;③对称轴:直线12b x a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.【详解】解:①∵抛物线与x 轴由两个交点,∴240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,∴0abc >,故②错误;③∵对称轴:直线12b x a=-=-, ∴2b a =,∴24a b c a c +-=-,∵0a <,40a <, 0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.5.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .BC .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.6.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()21 1226,2y t t t t =⋅-=-+y 是t 的二次函数故符合y与t的函数图象是B.故选:B.【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.7.将抛物线y=x2﹣4x+1向左平移至顶点落在y轴上,如图所示,则两条抛物线.直线y=﹣3和x轴围成的图形的面积S(图中阴影部分)是()A.5 B.6 C.7 D.8【答案】B【解析】【分析】B,C分别是顶点,A是抛物线与x轴的一个交点,连接OC,AB,阴影部分的面积就是平行四边形ABCO的面积.【详解】抛物线y=x2﹣4x+1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y轴上,此时顶点B(0,-3),点A是抛物线与x轴的一个交点,连接OC,AB,如图,阴影部分的面积就是ABCO的面积,S=2×3=6;故选:B.【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.8.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .12≤m <1B .12<m ≤1C .1<m ≤2D .1<m <2 【答案】B【解析】【分析】 画出图象,利用图象可得m 的取值范围【详解】 ∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m =1时) 答案图2( m =时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12. 此时抛物线解析式为y =12x 2﹣2x . 当x =1时,得13121122y =⨯-⨯=-<-.∴点(1,﹣1)符合题意.当x =3时,得13923122y =⨯-⨯=-<-.∴点(3,﹣1)符合题意. 综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m =12不符合题. ∴m >12. 综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围成的区域(含边界)内有七个整点,故选:B .【点睛】 考查二次函数图象与系数的关系,抛物线与x 轴的交点,画出图象,数形结合是解题的关键.9.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.10.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.11.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a>0,∴m +n <2a ; ∴D 正确,故选:C .【点睛】 本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.12.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线12b x a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下,∴当x 1<时,y 随x 的增大而增大 ∵103132-<-< 点13,2y ⎛⎫- ⎪⎝⎭ 到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确.故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.13.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( ) A . B .C .D .【答案】B【解析】【分析】由题意可求m <﹣2,即可求解.【详解】∵抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,∴△=4﹣4(﹣m ﹣1)<0∴m <﹣2∴函数y =的图象在第二、第四象限,故选B .【点睛】本题考查了反比例函数的图象,二次函数性质,求m 的取值范围是本题的关键.14.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D .【点睛】 本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.15.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1 【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <, ∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.16.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.17.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h <2时,有-(2-h )2=-1,解得:h 1=1,h 2=3(舍去);当2≤h≤5时,y=-(x-h )2的最大值为0,不符合题意;当h >5时,有-(5-h )2=-1,解得:h 3=4(舍去),h 4=6.综上所述:h 的值为1或6.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.18.在函数2yx=,3y x=+,2y x=的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.19.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3aT,故点P、Q的速度比为3:3,故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=33,则HQ=CH﹣CQ=33﹣23=3,PQ=22PH HQ+=39+=23,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.20.已知二次函数y=a(x﹣h)2+k的图象如图所示,直线y=ax+hk的图象经第几象限()A.一、二、三B.一、二、四C.一、三、四D.二、三、四【答案】D【解析】【分析】根据二次函数的图象和性质可得a<0,h<0,k>0,以此判断一次函数的图象所经过的象限即可.【详解】解:由函数图象可知,y=a(x﹣h)2+k中的a<0,h<0,k>0,∴直线y=ax+hk中的a<0,hk<0,∴直线y=ax+hk经过第二、三、四象限,故选:D.【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.。
初三数学二次函数分类题型及解析[整理版]-12页文档资料
初三数学二次函数分类题型及解析一.解答题(共10小题)1.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.2.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.3.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.4.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.5.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.6.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?7.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?8.2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?9.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y 与x的函数关系图象.(1)求y与x的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.10.襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.2016年12月09日天津优胜教育二次函数组卷参考答案与试题解析一.解答题(共10小题)1.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0), 解得:, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).2.(2016•菏泽)在平面直角坐标系xOy 中,抛物线y=ax 2+bx+2过B (﹣2,6),C (2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y=﹣x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.【解答】解:(1)由题意解得,∴抛物线解析式为y=x 2﹣x+2.(2)∵y=x 2﹣x+2=(x ﹣1)2+.∴顶点坐标(1,),∵直线BC 为y=﹣x+4,∴对称轴与BC 的交点H (1,3),∴S △BDC =S △BDH +S △DHC =•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.3.(2016•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.【解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得,解得,∴直线AB的解析式为y=2x+2.4.(2016•大连)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,∴当m==时,d 最大===,∴D 点的坐标为(,). 5.(2016•黔南州)已知二次函数y=x 2+bx+c 的图象与y 轴交于点C (0,﹣6),与x 轴的一个交点坐标是A (﹣2,0).(1)求二次函数的解析式,并写出顶点D 的坐标;(2)将二次函数的图象沿x 轴向左平移个单位长度,当 y <0时,求x 的取值范围.【解答】解:(1)∵把C (0,﹣6)代入抛物线的解析式得:C=﹣6,把A (﹣2,0)代入y=x 2+bx ﹣6得:b=﹣1,∴抛物线的解析式为y=x 2﹣x ﹣6.∴y=(x ﹣)2﹣.∴抛物线的顶点坐标D (,﹣).(2)二次函数的图形沿x 轴向左平移个单位长度得:y=(x+2)2﹣. 令y=0得:(x+2)2﹣=0,解得:x 1=,x 2=﹣.∵a >0,∴当y <0时,x 的取值范围是﹣<x <. 6.(2016•咸宁)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.∴x=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.7.(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.8.(2016•铜仁市)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y (个)与售价x (元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?【解答】解:(1)设蝙蝠型风筝售价为x 元时,销售量为y 个,根据题意可知:y=180﹣10(x ﹣12)=﹣10x+300(12≤x ≤30).(2)设王大伯获得的利润为W ,则W=(x ﹣10)y=﹣10x 2+400x ﹣3000,令W=840,则﹣10x 2+400x ﹣3000=840,解得:x 1=16,x 2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x 2+400x ﹣3000=﹣10(x ﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W 取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.9.(2016•云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,如图是y 与x 的函数关系图象.(1)求y 与x 的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.10.(2016•湖北襄阳)襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.【解答】解:(1)当40≤x<60时,W=(x﹣30)(﹣2x+140)=﹣2x2+200x﹣4200,当60≤x≤70时,W=(x﹣30)(﹣x+80)=﹣x2+110x﹣2400;(2)当40≤x<60时,W=﹣2x2+200x﹣4200=﹣2(x﹣50)2+800,∴当x=50时,W取得最大值,最大值为800万元;当60≤x≤70时,W=﹣x2+110x﹣2400=﹣(x﹣55)2+625,∴当x>55时,W随x的增大而减小,∴当x=60时,W取得最大值,最大值为:﹣(60﹣55)2+625=600,∵800>600,∴当x=50时,W取得最大值800,答:该产品的售价x为50元/件时,企业销售该产品获得的年利润最大,最大年利润是800万元;(3)当40≤x<60时,由W≥750得:﹣2(x﹣50)2+800≥750,解得:45≤x≤55,当60≤x≤70时,W的最大值为600<750,∴要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)的取值范围为45≤x≤55.希望以上资料对你有所帮助,附励志名言3条:1、常自认为是福薄的人,任何不好的事情发生都合情合理,有这样平常心态,将会战胜很多困难。
中考数学真题分项汇编(四川专用)专题10 二次函数(解析版)
专题10二次函数一、选择题1.(2023·四川绵阳·统考中考真题)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是()A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8【答案】D【分析】先根据平移原则:上加下减,左加右减写出解析式,再列方程组,有公共点则△≥0,则可求出b 的取值.【详解】解:由题意得:平移后得到的二次函数的解析式为:2=(3)1y x --,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12--=+x x b ,2880-+-=x x b ,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选:D .【点睛】主要考查的是二次函数图象的平移和两函数的交点问题,二次函数与一次函数图象有公共点.2.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0,对称轴为直线=1x -,下列四个结论:①<0abc ;②420a b c -+<;③30a c +=;④当31x -<<时,20ax bx c ++<;其中正确结论的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】根据二次函数开口向上,与y 轴交于y 轴负半轴,00a c ><,,根据对称轴为直线=1x -可得20b a =>,由此即可判断①;求出二次函数与x 轴的另一个交点坐标为()3,0-,进而得到当2x =-时,0y <,由此即可判断②;根据1x =时,0y =,即可判断③;利用图象法即可判断④.A.4个B【答案】B【分析】由抛物线的开口方向、与正确;由抛物线的对称轴为判断③正确;由图知x=A .1个B .【答案】B 【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与可.【详解】解:由图可知,二次函数开口方向向下,与 图象与x 轴交于点(3,0A -10420a b c ∴-+=.5a ∴- 12b a-=-,2b a ∴=.当30a c ∴+=,3c a ∴=-,∴A .1个B .2【答案】C 【分析】开口方向,对称轴,与④即可.【详解】∵抛物线的开口向下,对称轴为直线0,0,0a b c <<<∴()11,A x y 和点()22,B x y 关于对称轴对称,∴abc B.A.<0【答案】C【分析】根据开口方向,与即可判断A;根据对称性可得当线开口向上,对称轴为直线【详解】解:∵抛物线开口向上,与A.抛物线的对称轴为直线C.A,B两点之间的距离为【答案】C【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.【详解】解:∵二次函数∴二次函数解析式为y故A,B选项不正确,不符合题意;a=>,抛物线开口向上,当∵10y=时,2x x+意;当0A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,5⎛ ⎝【答案】C 【分析】如图所示,过点C 作CD AB ⊥于D ,连接CP 三角形,即90C ∠=︒,进而利用等面积法求出24CD =【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.11.(2023·四川雅安·统考中考真题)如图,二次函数A.①②【答案】C【分析】根据抛物线开口方向可得函数的对称性可得∴-【点睛】本题考查圆的的性质,二次函数图象的性质,19.(2022·四川广元·统考中考真题)二次函数1,0),对称轴为直线x=2,下列结论:2,y1)、点B(﹣12,y2)、点C(72,为常数).其中正确的结论有()【详解】解:A 、根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),且对称轴在y 轴的左侧可知0a >,该说法正确,故该选项不符合题意;B 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3)可知03a b c c ++=⎧⎨=-⎩,解得3a b +=,该说法正确,故该选项不符合题意;C 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),对称轴在y 轴的左侧,则抛物线不经过(-1,0),该说法错误,故该选项符合题意;D 、关于x 的一元二次方程ax 2+bx +c =-1根的情况,可以转化为抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的交点情况,根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),310-<-<,结合抛物线开口向上,且对称轴在y 轴的左侧可知抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的有两个不同的交点,该说法正确,故该选项不符合题意;故选:C .【点睛】本题考查二次函数的图像与性质,涉及到开口方向的判定、二次函数系数之间的关系、方程的根与函数图像交点的关系等知识点,根据题中条件得到抛物线草图是解决问题的关键.21.(2022·四川成都·统考中考真题)如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是()A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>【答案】D 【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即a<0,故该选项不符合题意;B 、根据图像开口向下,对称轴为1x =,当1x >,y 随x 的增大而减小;当1x <,y 随x 的增大而增大,故当11x -<<时,y 随x 的增大而增大;当1x >,y 随x 的增大而减小,故该选项不符合题意;C 、根据二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,可得对8A.4B.92∵P 与OB 、AB 均相切,∴△OBP 边OB 上的高为∵P (m ,-m +6);∴△AOP 边OA 上的高为-m +6,∵AOB AOP APB BOP S S S S =++ ,∴1168622⨯⨯=⨯⨯2y ax =过点P ,∴5a =.故选D .二、填空题①当31x -≤≤时,1y ≤;AOB 内存在唯一点P ,使得其中正确的结论是___________【答案】②③【分析】根据条件可求抛物线与∴12ABM AMF BMF S S S MF =+=⨯V V V 把()0,3B a -,()30A -,代入得:当=1x -是,2y a =-,∴(F -∵点B 是抛物线与y 轴的交点,∴当则'AOA ,'POP 为等边三角形,∴∵'AOA 为等边三角形,(A -当320,2B ⎛⎫- ⎪ ⎪⎝⎭时,∵'2A B 骣琪=琪琪桫当()0,3B -时,2'232A B 骣骣琪琪琪=+琪琪琪琪桫桫【答案】149/519【分析】根据已知得出直角坐标系,通过代入x =4代入抛物线解析式得出下降高度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴通过以上条件可设顶点式y =ax 2+2,把点A 点坐标(∴920a +=,∴29a =-,∴抛物线解析式为:当水面下降,水面宽为8米时,有把4x =代入解析式,得∴水面下降149米;故答案为:149;【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题【答案】8【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高设y=ax2+bx+2.5,将(2.5,0)代入解析式得出0)代入解析式得9a+3b+4=0,联立可求出时的解析式为y=ax2+bx+h,将(4,0)代入可求出【详解】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,【答案】17【分析】根据题意可知,当直线经过点(线只有一个交点时,(x-5)2+8=kx-3,可得出【详解】解:当直线经过点(1,12)时,当直线与抛物线只有一个交点时,(x-5)∴10+k=±12,解得k=2或k=-22(舍去),∴∴k的最大值与最小值的和为15+2=17.故答案为:【答案】1【分析】根据抛物线22y x x k =++与x 轴只有一个交点可知方程22x x k ++=0根的判别式△=0,解方程求出k 值即可得答案.【详解】∵抛物线22y x x k =++与x 轴只有一个交点,∴方程22x x k ++=0根的判别式△=0,即22-4k =0,解得:k =1,故答案为:1【点睛】本题考查二次函数与x 轴的交点问题,对于二次函数2y ax bx c =++(k≠0),当判别式△>0时,抛物线与x 轴有两个交点;当k=0时,抛物线与x 轴有一个交点;当x <0时,抛物线与x 轴没有交点;熟练掌握相关知识是解题关键.三、解答题支付专利费y 元,y (元)与每日产销x (件)满足关系式 2.800.01y x =+(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价-成本)⨯产销数量-专利费】【答案】(1)()()18300500w m x x =--<≤,()220.018800300w x x x =-+-<≤(2)()15003970w m =-+最大元,1420w =2最大(3)当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润,理由见解析【分析】(1)根据题木所给的利润计算公式求解即可;(2)根据(1)所求利用一次函数和二次函数的性质求解即可;(3)比较(2)中所求A 、B 两种产品的最大利润即可得到答案.【详解】(1)解:由题意得,()()18300500w m x x =--<≤,()()()2222012800.010.018800300w x x x x x =--+=-+-<≤(2)解:∵46m ≤≤,∴80m ->,∴1w 随x 增大而增大,∴当500x =时,1w 最大,最大为()()8500305003970m m -⨯-=-+元;()2220.018800.014001520w x x x =-+-=--+,∵0.010-<,∴当400x <时,2w 随x 增大而增大,∴当300x =时,2w 最大,最大为()20.0130040015201420-⨯-+=元;(3)解:当50039701420m -+>,即4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点【答案】(1)223y x x =-++(2)PBC 的最大面积为278,32P ⎛ ⎝(3)存在,()4,17或()4,17-或()2,143-+,(2,143--+【分析】(1)利用待定系数法代入求解即可;(2)利用待定系数法先确定直线BC 的解析式为3y x =-+作PD x ⊥轴于点D ,交BC 于点E ,得出23PE x x =-+,然后得出三角形面积的函数即可得出结果;(3)分两种情况进行分析:若BC 为菱形的边长,利用菱形的性质求解即可.【详解】(1)解:将点()()()1,0,3,,00,3A B C -代入解析式得:0930a b c a b c -+=⎧⎪12a b =-⎧⎪∴(),3E x x -+,∴2PE x =-+∴(1122PBCS PE OB ∆=⨯⨯=⨯-∴当32x =时,PBC 的最大面积为(3)存在,()2,2N 或(4,17∵()()3,0,0,3B C ,∵抛物线的解析式为设点()()1,,M t N x y ,,若BC 则22BC CM =,即(2181t =+∵31003x t y +=+⎧⎨+=+⎩,∴4,x y t ==-【答案】(1)21262y x x =-++(2)①【分析】(1)根据抛物线对称轴为待定系数法求得c ,即可解答;(设CD a =,则()0,6D a -,求得即可求出CD 的长;②过,E F1322S S S += ,2AD EF ∴+=设21,262F h h h ⎛⎫-++ ⎪⎝⎭,则AH ,EG AB FH AB ⊥⊥ ,EG ∴∥DI EG ⊥ ,90DIE ∴∠=︒,∴112333DI AB h ∴==+,即点D(1)求抛物线的表达式.(2)若直线值时,使得AN MN +有最大值,并求出最大值.一动点,将抛物线向左平移点M ,是否能与A 、P 、Q 【答案】(1)223y x x =-++(2)①当以AM 为对角线时,22Q P A M x x x x ++∴=,即-Q 在抛物线24y x =-+上AQ(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ 、PO ,其中于点E ,设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.【答案】(1)214y x x =-(2)()6,3N (3)1【分析】(1)待定系数法求解析式即可求解;(2),过点M 作2MD x ⊥=,垂足为D 根据已知条件得出:BD CD =:3:5BM MQ =,进而列出方程,解方程,即可求解;1⎛⎫⎛设21,4M m m m ⎛⎫- ⎪⎝⎭,则212,4D m m ⎛⎫- ⎪⎝⎭,∵MD QC ∥,∴:BD CD =:3:BM MQ =∵()2,2C -,∴()2210341524m m m m ⎛⎫-- ⎪⎝⎭=---,解得:∵其中点MQ 在抛物线对称轴的左侧.∴k b ⎧+⎪(1)求该运动员从跳出到着陆垂直下降了多少(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s【答案】(1)该运动员从跳出到着陆垂直下降了过点B 作BD y ⊥轴于点D .在Rt OBD △中,sin 37OD AB =⋅︒=答:该运动员从跳出到着陆垂直下降了(2)解:在Rt OBD △中,BD =【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.【详解】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.47.(2022·四川广元·统考中考真题)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?【答案】(1)科技类图书的单价为38元,文学类图书的单价为26元.(2)社区至少要准备2700元购书款.【分析】(1)设科技类图书的单价为x 元,文学类图书的单价为y 元,然后根据题意可列出方程组进行求解;(2)设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)及题意可分当3040m ≤<时,当4050m ≤≤时及当5060m <≤时,进而问题可分类求解即可.【详解】(1)解:设科技类图书的单价为x 元,文学类图书的单价为y 元,由题意得:2315445282x y x y +=⎧⎨+=⎩,解得:3826x y =⎧⎨=⎩;答:科技类图书的单价为38元,文学类图书的单价为26元.(2)解:设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)可得:①当3040m ≤<时,则有:()3826100122600w m m m =+-=+,∵12>0,∴当m =30时,w 有最小值,即为36026002960w =+=;②当4050m ≤≤时,则有:()()2384026100522600w m m m m m =-++-=-++,∵-1<0,对称轴为直线26m =,∴当4050m ≤≤时,w 随m 的增大而减小,∴当m =50时,w 有最小值,即为250525026002700w =-+⨯+=;③当5060m <≤时,此时科技类图书的单价为785028-=(元),则有()282610022600w m m m =+-=+,∵2>0,∴当m =51时,w 有最小值,即为10226002702w =+=;综上所述:社区至少要准备2700元的购书款.【点睛】本题主要考查二元一次方程组的应用、一次函数与二次函数的应用,解题的关键是找准等量关系,注意分类讨论.48.(2021·四川雅安·统考中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.【答案】(1)5150y x =-+;(2)当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点为t ,PAB 的面积为S ,求S 与t 的函数关系式;(3)在二次函数图象上是否存在点M 、N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点说明理由.【答案】(1)22y x x =-(2)2312S t t =-++(3)存在,(1,1)-N 或(3,3)【分析】(1)由二次函数的最小值为1-,点(1,)M m 是其对称轴上一点,得二次函数顶点为顶点式2(1)1y a x =--,将点(0,0)O 代入即可求出函数解析式;(2)连接OP ,根据AOB OAP OBP S S S S =+-△△△求出S 与t 的函数关系式;当0y =时,220x x -=,0x ∴=或 点P 在抛物线22y x x =-上,∴AOB OAP OBP S S S S ∴=+-△△△12=⨯(3)设()2,2N n n n -,当AB 为对角线时,由中点坐标公式得,当AM 为对角线时,由中点坐标公式得,当AN 为对角线时,由中点坐标公式得,综上:(1,1)-N 或(3,3)或(1,3)-.。
(易错题精选)初中数学二次函数真题汇编附答案解析
(易错题精选)初中数学二次函数真题汇编附答案解析一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a;∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.3.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确; Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.4.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.5.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.6.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
2024年中考数学《二次函数的实际应用》真题含解析版
二次函数的实际应用(21题)一、单选题1(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t20≤t≤6.有下列结论:①小球从抛出到落地需要6 s;②小球运动中的高度可以是30 m;③小球运动2 s时的高度小于运动5 s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【分析】本题考查二次函数的图像和性质,令�=0解方程即可判断①;配方成顶点式即可判断②;把t=2和t=5代入计算即可判断③.【详解】解:令�=0,则30t-5t2=0,解得:t1=0,t2=6,∴小球从抛出到落地需要6 s,故①正确;∵�=30t-5t2=-5x-32+45,∴最大高度为45m,∴小球运动中的高度可以是30 m,故②正确;当t=2时,�=30×2-5×22=40;当t=5时,�=30×5-5×52=25;∴小球运动2 s时的高度大于运动5 s时的高度,故③错误;故选C.2(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt△ABC中,∠BAC=90°,AB=12,动点E,F同时从点A出发,分别沿射线AB和射线AC的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接EF,以EF为边向下做正方形EFGH,设点E运动的路程为x0<x<12,正方形EFGH和等腰Rt△ABC重合部分的面积为下列图像能反映y与x之间函数关系的是()A. B.C. D.【答案】A 【分析】本题考查动态问题与函数图象,能够明确y 与x 分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当HG 与BC 重合时,及当x ≤4时图象的走势,和当x >4时图象的走势即可得到答案.【详解】解:当HG 与BC 重合时,设AE =x ,由题可得:∴EF =EH =2x ,BE =12-x ,在Rt △EHB 中,由勾股定理可得:BE 2=BH 2+EH 2,∴2x 2+2x 2=12-x 2,∴x =4,∴当0<x ≤4时,y =2x 2=2x 2,∵2>0,∴图象为开口向上的抛物线的一部分,当HG 在BC 下方时,设AE =x ,由题可得:∴EF =2x ,BE =12-x ,∵∠AEF =∠B =45°,∠A =∠EOB =90°,∴△FAE ∽△EOB ,∴AE EF =EO EB ,∴x 2x=EO 12-x ,∴EO =12-x 2,∴当4<x <12时,y =2x ·12-x 2=12-x x =-x 2+12x ,∵-1<0,∴图象为开口向下的抛物线的一部分,综上所述:A 正确,故选:A .3(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,AB =6cm ,BC =8cm ,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =23cm ,∠E =60°,现将菱形EFGH 以1cm/s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD重叠部分的面积S cm 2 与运动时间t s 之间的函数关系图象大致是()A. B.C. D.【答案】D 【分析】本题考查了解直角三角形的应用,菱形的性质,动点问题的函数图象,二次函数的图象的性质,先求得菱形的面积为63,进而分三种情形讨论,重合部分为三角形,重合部分为五边形,重合部分为菱形,分别求得面积与运动时间的函数关系式,结合选项,即可求解.【详解】解:如图所示,设EG ,HF 交于点O ,∵菱形EFGH ,∠E =60°,∴HG =GF又∵∠E =60°,∴△HFG 是等边三角形,∵EF =23cm ,∠HEF =60°,∴∠OEF =30°∴EG =2EO =2×EF cos30°=3EF =6∴S 菱形EFG H =12EG ⋅FH =12×6×23=63当0≤x ≤3时,重合部分为△MNG ,如图所示,依题意,△MNG 为等边三角形,运动时间为t ,则NG =t cos30°=233t ,∴S =12×NG ×NG ×sin60°=34233t 2=33t 2当3<x≤6时,如图所示,依题意,EM=EG-t=6-t,则EK=EMsin60°=6-t32=2336-t∴S△EKJ=12EJ⋅EM=12×2336-t2=336-t2∴S=S菱形EFGH-S△EKJ=6-336-t2=-33t2+43t-123+6∵EG=6<BC∴当6<x≤8时,S=63当8<x≤11时,同理可得,S=6-33t-82当11<x≤14时,同理可得,S=336-t-82=3314-t2综上所述,当0≤x≤3时,函数图象为开口向上的一段抛物线,当3<x≤6时,函数图象为开口向下的一段抛物线,当6<x≤8时,函数图象为一条线段,当8<x≤11时,函数图象为开口向下的一段抛物线,当11<x≤14时,函数图象为开口向上的一段抛物线;故选:D.二、填空题4(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是74m ,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .【答案】353【分析】本题考查的是二次函数的实际应用,设抛物线为y =a x -5 2+4,把点0,74,代入即可求出解析式;当y =0时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:y =a x -5 2+4,把点0,74 代入得:25a +4=74,解得:a =-9100,∴抛物线解析式为:y =-9100x -5 2+4;当y =0时,-9100x -5 2+4=0,解得,x 1=-53(舍去),x 2=353,即此次实心球被推出的水平距离OM 为353m .故答案为:3535(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系y =-0.02x 2+0.3x +1.6的图象,点B 6,2.68 在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长CD =4m ,高DE =1.8m 的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).【答案】能【分析】本题主要考查了二次函数的实际应用,根据题意求出当x =2时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵CD =4m ,B 6,2.68 ,∴6-4=2,在y =-0.02x 2+0.3x +1.6中,当x =2时,y =-0.02×22+0.3×2+1.6=2.12,∵2.12>1.8,∴可判定货车能完全停到车棚内,故答案为:能.6(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.三、解答题7(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L 1与缆索L 2均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF 为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离OC =100m ,AO =BC =17m ,缆索L 1的最低点P 到FF 的距离PD =2m (桥塔的粗细忽略不计)(1)求缆索L 1所在抛物线的函数表达式;(2)点E 在缆索L 2上,EF ⊥FF ,且EF =2.6m ,FO <OD ,求FO 的长.【答案】(1)y =3500x -50 2+2;(2)FO 的长为40m .【分析】本题考查了二次函数的应用,待定系数法求二次函数解析式,根据题意求得函数解析式是解题的关键.(1)根据题意设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入求解即可;(2)根据轴对称的性质得到缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,由EF =2.6m ,把y =2.6代入求得x 1=-40,x 2=-60,据此求解即可.【详解】(1)解:由题意得顶点P 的坐标为50,2 ,点A 的坐标为0,17 ,设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入得17=a 0-50 2+2,解得a =3500,∴缆索L 1所在抛物线的函数表达式为y =3500x -50 2+2;(2)解:∵缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,∴缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,∵EF =2.6,∴把y =2.6代入得,2.6=3500x +50 2+2,解得x 1=-40,x 2=-60,∴FO=40m或FO=60m,∵FO<OD,∴FO的长为40m.8(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为Scm2.(1)求y与x,s与x的关系式.(2)围成的矩形花圃面积能否为750cm2,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.【答案】(1)y=80-2x19≤x<40;s=-2x2+80x(2)能,x=25(3)s的最大值为800,此时x=20【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据AB+BC+CD=80可求出y与x之间的关系,根据墙的长度可确定x的范围;根据面积公式可确立二次函数关系式;(2)令s=750,得一元二次方程,判断此方程有解,再解方程即可;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【详解】(1)解:∵篱笆长80m,∴AB+BC+CD=80,∵AB=CD=x,BC=y,∴x+y+x=80,∴y=80-2x∵墙长42m,∴0<80-2x≤42,解得,19≤x<40,∴y=80-2x19≤x<40;又矩形面积s=BC⋅AB=y⋅x=80-2xx=-2x2+80x;(2)解:令s=750,则-2x2+80x=750,整理得:x2-40x+375=0,此时,Δ=b 2-4ac =-40 2-4×375=1600-1500=100>0,所以,一元二次方程x 2-40x +375=0有两个不相等的实数根,∴围成的矩形花圃面积能为750cm 2;∴x =--40 ±1002,∴x 1=25,x 2=15,∵19≤x <40,∴x =25;(3)解:s =-2x 2+80x =-2x -20 2+800∵-2<0,∴s 有最大值,又19≤x <40,∴当x =20时,s 取得最大值,此时s =800,即当x =20时,s 的最大值为8009(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度h m 满足关系式h =-5t 2+v 0t ,其中t s 是物体运动的时间,v 0m/s 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后s 时离地面的高度最大(用含v 0的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【答案】(1)v 010(2)20m/s (3)小明的说法不正确,理由见解析【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可;(2)把t =v 010,h =20代入h =-5t 2+v 0t 求解即可;(3)由(2),得h =-5t 2+20t ,把h =15代入,求出t 的值,即可作出判断.【详解】(1)解:h =-5t 2+v 0t=-5t -v 010 2+v 0220,∴当t =v 010时,h 最大,故答案为:v 010;(2)解:根据题意,得当t =v 010时,h =20,∴-5×v 0102+v 0×v 010=20,∴v 0=20m/s (负值舍去);(3)解:小明的说法不正确.理由如下:由(2),得h =-5t 2+20t ,当h =15时,15=-5t 2+20t ,解方程,得t 1=1,t 2=3,∴两次间隔的时间为3-1=2s ,∴小明的说法不正确.10(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线y =ax 2+x 和直线y =-12x +b .其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①a =-115,b =8.1;②8.4km (2)-227<a <0【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将9,3.6 代入即可求解;②将y =-115x 2+x 变为y =-115x -152 2+154,即可确定顶点坐标,得出y =2.4km ,进而求得当y =2.4km 时,对应的x 的值,然后进行比较再计算即可;(2)若火箭落地点与发射点的水平距离为15km ,求得a =-227,即可求解.【详解】(1)解:①∵火箭第二级的引发点的高度为3.6km∴抛物线y=ax2+x和直线y=-12x+b均经过点9,3.6∴3.6=81a+9,3.6=-12×9+b解得a=-115,b=8.1.②由①知,y=-12x+8.1,y=-115x2+x∴y=-115x2+x=-115x-1522+154∴最大值y=154km当y=154-1.35=2.4km时,则-115x2+x=2.4解得x1=12,x2=3又∵x=9时,y=3.6>2.4∴当y=2.4km时,则-12x+8.1=2.4解得x=11.44-3=8.4km∴这两个位置之间的距离8.4km.(2)解:当水平距离超过15km时,火箭第二级的引发点为9,81a+9,将9,81a+9,15,0代入y=-12x+b,得81a+9=-12×9+b,0=-12×15+b解得b=7.5,a=-2 27∴-227<a<0.11(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),求y关于x的函数表达式并求出y的最大值.【答案】(1)猪肉粽每盒50元,豆沙粽每盒30元(2)y=-10x2+1200x-35000或y=-10x-602+1000,当x=60时,y取得最大值为1000元【分析】本题考查列分式方程解应用题和二次函数求最值,解决本题的关键是正确寻找本题的等量关系及二次函数配方求最值问题.(1)设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元.根据“用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同”即可列出方程,求解并检验即可;(2)根据题意可列出y关于x的函数解析式,再根据二次函数的性质即可解答.【详解】(1)解:设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元由题意得:5000n+20=3000n解得:n=30经检验:n=30是原方程的解且符合题意∴n+20=50答:猪肉粽每盒50元,豆沙粽每盒30元.(2)解:设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),则y=x-50180-10x-52=-10x2+1200x-35000=-10x-602+1000∵52≤x≤70,-10<0,∴当x=60时,y取得最大值为1000元.12(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元⋯1214161820⋯销售量y/盒⋯5652484440⋯(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.【答案】(1)y=-2x+80(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w元,根据利润=单件利润×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w元,根据利润=单件利润×销售量-m×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可.【详解】(1)解∶设y与x的函数表达式为y=kx+b,把x=12,y=56;x=20,y=40代入,得12k+b=56 20k+b=40 ,解得k =-2b =80 ,∴y 与x 的函数表达式为y =-2x +80;(2)解:设日销售利润为w 元,根据题意,得w =x -10 ⋅y=x -10 -2x +80=-2x 2+100x -800=-2x -25 2+450,∴当x =25时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;(3)解:设日销售利润为w 元,根据题意,得w =x -10-m ⋅y=x -10-m -2x +80=-2x 2+100+2m x -800-80m ,∴当x =-100+2m 2×-2=50+m 2时,w 有最大值为-250+m 2 2+100+2m 50+m 2 -800-80m ,∵糖果日销售获得的最大利润为392元,∴-250+m 22+100+2m 50+m 2 -800-80m =392,化简得m 2-60m +116=0解得m 1=2,m 2=58当m =58时,x =-b 2a=54,则每盒的利润为:54-10-58<0,舍去,∴m 的值为2.13(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润×销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,w =5-x -2 100+50x=-50x 2+50x +300=-50x-122+312.5,∵-50<0,∴当x=12时,w有最大值,最大值为312.5,∴5-x=4.5,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.14(2024·四川遂宁·中考真题)某酒店有A、B两种客房、其中A种24间,B种20间.若全部入住,一天营业额为7200元;若A、B两种客房均有10间入住,一天营业额为3200元.(1)求A、B两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?【答案】(1)A种客房每间定价为200元,B种客房每间定价为为120元;(2)当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.【分析】(1)设A种客房每间定价为x元,B种客房每间定价为为y元,根据题意,列出方程组即可求解;(2)设A种客房每间定价为a元,根据题意,列出W与a的二次函数解析式,根据二次函数的性质即可求解;本题考查了二元一次方程组的应用,二次函数的应用,根据题意,正确列出二元一次方程组和二次函数解析式是解题的关键.【详解】(1)解:设A种客房每间定价为x元,B种客房每间定价为为y元,由题意可得,24x+20y=7200 10x+10y=3200,解得x=200 y=120 ,答:A种客房每间定价为200元,B种客房每间定价为为120元;(2)解:设A种客房每间定价为a元,则W=24-a-200 10a=-110a2+44a=-110a-2202+4840,∵-110<0,∴当a=220时,W取最大值,W最大值=4840元,答:当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.15(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A类特产的售价为60元/件,B类特产的售价为72元/件(2)y=10x+60(0≤x≤10)(3)A类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,1 根据题意设每件A类特产的售价为x元,则每件B类特产的售价为132-x元,进一步得到关于x的一元一次方程求解即可;2 根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;3 结合(2)中A类特产降价x元与每天的销售量y件,得到A类特产的利润,同时求得B类特产的利润,整理得到关于x的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A类特产的售价为x元,则每件B类特产的售价为132-x元.根据题意得3x+5132-x=540.解得x=60.则每件B类特产的售价132-60=72(元).答:A类特产的售价为60元/件,B类特产的售价为72元/件.(2)由题意得y=10x+60∵A类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴0≤x≤10.答:y=10x+60(0≤x≤10).(3)w=(60-50-x)(10x+60)+100×(72-60)=-10x2+40x+1800=-10(x-2)2+1840.∵-10<0,∴当x=2时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.16(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.【答案】任务1:y=-13x+703;任务2:w=-2x2+72x+3360(x>10);任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有70-x-y人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有70-x-y人,∵“正”服装总件数和“风”服装相等,∴70-x-y×1=2y,整理得:y=-13x+703;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,∴w=2y×24+70-x-y×48+x100-2x-10,整理得:w=-16x+1120+-32x+2240+-2x2+120x∴w=-2x2+72x+3360(x>10)任务3:由任务2得w=-2x2+72x+3360=-2x-182+4008,∴当x=18时,获得最大利润,y=-13×18+703=523,∴x≠18,∵开口向下,∴取x=17或x=19,当x=17时,y=533,不符合题意;当x=19时,y=513=17,符合题意;∴70-x-y=34,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.17(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?【答案】(1)y=-25x2+20x+12000,每辆轮椅降价20元时,每天的利润最大,为12240元(2)这天售出了64辆轮椅【分析】本题考查二次函数的实际应用,正确的列出函数关系式,是解题的关键:(1)根据总利润等于单件利润乘以销量,列出二次函数关系式,再根据二次函数的性质求最值即可;(2)令y=12160,得到关于x的一元二次方程,进行求解即可.【详解】(1)解:由题意,得:y=200-x60+x10×4=-25x2+20x+12000;∵每辆轮椅的利润不低于180元,∴200-x≥180,∴x≤20,∵y=-25x2+20x+12000=-25x-252+12250,∴当x<25时,y随x的增大而增大,∴当x=20时,每天的利润最大,为-25×20-252+12250=12240元;答:每辆轮椅降价20元时,每天的利润最大,为12240元;(2)当y=12160时,-25x2+20x+12000=12160,解得:x1=10,x2=40(不合题意,舍去);∴60+1010×4=64(辆);答:这天售出了64辆轮椅.18(2024·江西·中考真题)如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数y=ax2+bx a<0刻画,斜坡可以用一次函数y=14x刻画,小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律如下表:x012m4567⋯y07261528152n72⋯(1)①m =,n =;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系y =-5t 2+vt .①小球飞行的最大高度为米;②求v 的值.【答案】(1)①3,6;②152,158;(2)①8,②v =410【分析】本题主要考查二次函数的应用以及从图象和表格中获取数据,(1)①由抛物线的顶点坐标为4,8 可建立过于a ,b 的二元一次方程组,求出a ,b 的值即可;②联立两函数解析式求解,可求出交点A 的坐标;(2)①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v 值.【详解】(1)解:①根据小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律表可知:抛物线顶点坐标为4,8 ,∴-b 2a =4-b 24a =8 ,解得:a =-12b =4 ,∴二次函数解析式为y =-12x 2+4x ,当y =152时,-12x 2+4x =152,解得:x =3或x =5(舍去),∴m =3,当x =6时,n =y =-12×62+4×6=6,故答案为:3,6.②联立得:y =-12x 2+4x y =14x ,解得:x =0y =0 或x =152y =158,∴点A 的坐标是152,158,(2)①由题干可知小球飞行最大高度为8米,故答案为:8;②y =-5t 2+vt =-5t -v 10 2+v 220,则v 220=8,解得v =410(负值舍去).19(2024·江苏苏州·中考真题)如图,△ABC 中,AC =BC ,∠ACB =90°,A -2,0 ,C 6,0 ,反比例函数y =k xk ≠0,x >0 的图象与AB 交于点D m ,4 ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数y =k xk ≠0,x >0 图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM ∥AB ,交y 轴于点M ,过点P 作PN ∥x 轴,交BC 于点N ,连接MN ,求△PMN 面积的最大值,并求出此时点P 的坐标.【答案】(1)m =2,k =8(2)S △PMN 最大值是92,此时P 3,83【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B 的坐标,然后利用待定系数法求出直线AB 的函数表达式,把D 的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM =QP ,设点P 的坐标为t ,8t ,2<t <6 ,则可求出S △PMN =12⋅6-t ⋅t ,然后利用二次函数的性质求解即可.【详解】(1)解:∵A -2,0 ,C 6,0 ,∴AC =8.又∵AC =BC ,∴BC =8.∵∠ACB =90°,∴点B 6,8 .设直线AB 的函数表达式为y =ax +b ,将A -2,0 ,B 6,8 代入y =ax +b ,得-2a +b =06a +b =8 ,。
初中数学《二次函数》十大题型汇编含解析
二次函数【十大题型】【题型1 辨别二次函数】 (1)【题型2 由二次函数的定义求字母的值】 (3)【题型3 由二次函数的定义求字母的取值范围】 (4)【题型4 二次函数的一般形式】 (6)【题型5 求二次函数的值】 (7)【题型6 判断函数关系】 (9)【题型7 列二次函数关系式(几何图形)】 (11)【题型8 列二次函数关系式(增长率)】 (14)【题型9 列二次函数关系式(循环)】 (15)【题型10 列二次函数关系式(销售)】 (16)知识点1:二次函数的定义一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.【题型1 辨别二次函数】【例1】(23-24九年级上·江西南昌·阶段练习)下列函数解析式中,yy一定是xx的二次函数的是()A.yy=2aaxx2B.yy=2xx+aa2C.yy=2xx2−1D.yy=xx2+1xx【答案】C【分析】本题考查二次函数的识别,形如yy=aaxx2+bbxx+cc(aa≠0)的函数是二次函数,根据定义逐一判断即可得到答案.【详解】解:A,当aa=0时,yy=2aaxx2=0,不是二次函数,不合题意;B,yy=2xx+aa2,yy是xx的一次函数,不合题意;C,yy=2xx2−1,yy一定是xx的二次函数,符合题意;D,yy=xx2+1xx中含有分式,不是二次函数,不合题意;故选C.【变式1-1】(23-24九年级上·安徽安庆·阶段练习)下列函数是二次函数的是()A.yy=2xx−1B.yy=√xx2−1C.yy=xx2−1D.yy=12xx【答案】C【分析】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,注意:形如yy=aaxx2+bbxx+cc (aa、b、c为常数,aa≠0)的函数叫二次函数.根据二次函数的定义逐个判断即可.【详解】解:A、函数yy=2xx−1是一次函数,不是二次函数,故本选项不符合题意;B、函数yy=√xx2−1根号内含有x,不是二次函数,故本选项不符合题意;C、函数yy=xx2−1是二次函数,故本选项符合题意;D、函数yy=12xx分母中含有x,不是二次函数,故本选项不符合题意.故选:C.【变式1-2】(23-24九年级下·江苏·专题练习)下列函数关系式中,二次函数的个数有()(1)yy=3(xx−1)2+1;(2)yy=1xx2−xx;(3)SS=3−2tt2;(4)yy=xx4+2xx2−1;(5)yy=3xx(2−xx)+3xx2;(6)yy=mmxx2+8.A.1个B.2个C.3个D.4个【答案】B【分析】本题考查了二次函数的定义,一般地,形如yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的函数叫做二次函数.判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】解:(1)yy=3(xx−1)2+1是二次函数,故符合题意;(2)yy=1xx2−xx,不是二次函数,故不符合题意;(3)SS=3−2tt2是二次函数,故符合题意;(4)yy=xx4+2xx2−1不是二次函数,故不符合题意;(5)yy=3xx(2−xx)+3xx2=6xx不是二次函数,故不符合题意;(6)yy=mmxx2+8,不确定m是否为0,不一定是二次函数,故不符合题意;综上所述,二次函数有2个.故选:B.【变式1-3】(23-24九年级上·湖南长沙·期末)下列函数①yy=5xx−5;②yy=3xx2−1;③yy=4xx3−3xx2;④yy=2xx2−2xx+1;⑤yy=1xx2.其中是二次函数的是.【答案】②④/④②【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①yy=5xx−5为一次函数;②yy=3xx2−1为二次函数;③yy=4xx3−3xx3自变量次数为3,不是二次函数;④yy=2xx2−2xx+1为二次函数;⑤yy=1xx2函数式为分式,不是二次函数.故答案为②④.【点睛】本题考查二次函数的定义,能够根据二次函数的定义判断函数是否属于二次函数是解决本题的关键.【题型2 由二次函数的定义求字母的值】【例2】(23-24九年级下·广东东莞·期中)已知函数yy=(mm−1)xx mm2+1是二次函数,则mm=.【答案】−1【分析】根据定义得:形如yy=aaxx2+bbxx+cc(aa、bb、cc是常数,且aa≠0)的函数是二次函数,列方程可求得答案.【详解】解:依题意得:mm2+1=2且mm−1≠0,解得mm=−1.故答案为:−1.【点睛】本题考查了二次函数的定义.注意:二次函数yy=aaxx2+bbxx+cc中,aa是常数,本题关键点为aa≠0.【变式2-1】(23-24九年级上·江苏扬州·阶段练习)如果yy=2xx|mm|+3xx−1是关于xx的二次函数,则mm=.【答案】±2【分析】本题主要考查了二次函数的定义,直接利用二次函数的定义得出答案.【详解】解:∵yy=2xx|mm|+3xx−1是关于x的二次函数,∴|mm|=2,解得:mm=±2.故答案为:±2.【变式2-2】(23-24九年级上·湖北·周测)如果函数yy=(kk−1)xx kk2−kk+2+kkxx−1是关于x的二次函数,则kk=.【答案】0【分析】本题考查了二次函数的定义.根据二次函数的定义得到kk−1≠0且kk2−kk+2=2,然后解不等式和方程即可得到k的值.【详解】解:根据题意,得kk−1≠0且kk2−kk+2=2,解得kk=0.故答案为:0.【变式2-3】(23-24九年级下·广东广州·期末)如果yy=(kk−3)xx�kk-1�+xx−3是二次函数,佳佳求出k的值为3,敏敏求出k的值为-1,她们俩中求得结果正确的是.【答案】敏敏【分析】本题考查了二次函数的定义,由定义得|kk−1|=2,kk−3≠0,即可求解;理解定义:“一般地,形如yy=aaxx2+bbxx+cc(a、b、c是常数,aa≠0)的函数叫做二次函数.” 是解题的关键.【详解】解:∵yy=(kk−3)xx�kk-1�+xx−3是二次函数,∴|kk−1|=2,解得kk1=3,kk2=−1,又∵kk−3≠0,即kk≠3,∴kk=−1,故敏敏正确.【题型3 由二次函数的定义求字母的取值范围】【例3】(23-24九年级上·上海嘉定·期末)如果函数yy=(kk−1)xx2+kkxx−1(kk是常数)是二次函数,那么kk的取值范围是.【答案】kk≠1【分析】根据:“形如yy=aaxx2+bbxx+cc(aa≠0),这样的函数叫做二次函数”,得到kk−1≠0,即可.【详解】解:由题意,得:kk−1≠0,∴kk≠1;故答案为:kk≠1.【变式3-1】(23-24九年级上·浙江嘉兴·开学考试)已知函数yy=(mm2−mm)xx2+(mm−1)xx−2(m为常数).(1)若这个函数是关于x的一次函数,求m的值.(2)若这个函数是关于x的二次函数,求m的取值范围.【答案】(1)mm=0;(2)mm≠1且mm≠0.【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题.【详解】(1)解:依题意mm2−mm=0且mm−1≠0,所以mm=0;(2)解:依题意mm2−mm≠0,所以mm≠1且mm≠0.【点睛】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,属于中考常考题型.【变式3-2】(23-24九年级上·广东江门·阶段练习)已知关于xx的二次函数yy=(aa2−1)xx2+xx−2,则aa的取值范围是()A.aa≠1B.aa≠−1C.aa≠±1D.为任意实数【答案】C【分析】根据二次函数定义可得aa2−1≠0,解出答案即可.【详解】因为关于xx的二次函数yy=(aa2−1)xx2+xx−2,∴aa2−1≠0,解得:aa≠±1.故选:C.【点睛】本题考查的是二次函数yy=aaxx2+bbxx+cc(aa≠0)概念,熟练掌握二次函数定义是解题关键.【变式3-3】(23-24九年级下·四川遂宁·期中)已知函数yy=(mm2-2)xx2+(mm+√2)xx+8.若这个函数是二次函数,求mm的取值范围【答案】mm≠√2且mm≠-√2【分析】根据二次函数的定义,即可得不等式mm2-2≠0,解不等式即可求得.【详解】解:∵函数yy=(mm2-2)xx2+(mm+√2)xx+8是二次函数,∴mm2-2≠0,解得mm≠±√2,故答案为:mm≠√2且mm≠-√2.【点睛】本题考查了二次函数的定义,熟练掌握和运用二次函数的定义是解决本题的关键.【题型4 二次函数的一般形式】【例4】(23-24九年级上·四川南充·阶段练习)二次函数yy=xx2−3xx+5的二次项是,一次项系数是,常数项是.【答案】xx2−3 5【分析】根据二次函数的定义判断即可。
初中数学二次函数压轴题集锦(50道含解析)
1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C 坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.5.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.6.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.7.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.8.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.9.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.10.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C 的右侧,请利用图②,求cos∠APD的大小.11.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.12.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.13.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标14.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n,其顶点为A n…(n为正整数).求A n A n+1的长(用含n的式子表示).15.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;=S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.(3)抛物线上是否存在点Q,使得S△AOC16.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y 轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB ﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD 的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.21.如图1,抛物线y 1=ax 2﹣x +c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,),抛物线y 1的顶点为G ,GM ⊥x 轴于点M .将抛物线y 1平移后得到顶点为B 且对称轴为直线l 的抛物线y 2.(1)求抛物线y 2的解析式;(2)如图2,在直线l 上是否存在点T ,使△TAC 是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由;(3)点P 为抛物线y 1上一动点,过点P 作y 轴的平行线交抛物线y 2于点Q ,点Q 关于直线l 的对称点为R ,若以P ,Q ,R 为顶点的三角形与△AMG 全等,求直线PR 的解析式.22.如图,已知直线y=﹣2x +4分别交x 轴、y 轴于点A 、B ,抛物线过A ,B 两点,点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D .(1)若抛物线的解析式为y=﹣2x 2+2x +4,设其顶点为M ,其对称轴交AB 于点N .①求点M 、N 的坐标;②是否存在点P ,使四边形MNPD 为菱形?并说明理由;(2)当点P 的横坐标为1时,是否存在这样的抛物线,使得以B 、P 、D 为顶点的三角形与△AOB 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.23.如图,抛物线y=ax 2+bx 经过△OAB 的三个顶点,其中点A (1,),点B (3,﹣),O 为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P (4,m ),Q (t ,n )为该抛物线上的两点,且n <m ,求t 的取值范围;(3)若C 为线段AB 上的一个动点,当点A ,点B 到直线OC 的距离之和最大时,求∠BOC 的大小及点C 的坐标.24.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.25.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x 与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F 的距离总是相等,求定点F的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C (0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.28.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.29.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C 绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M30.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.31.如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.32A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.33.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.34.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.35.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.36.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.37.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx﹣3m经过点A,交x 轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t 秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.38.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.39.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.40.如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt △AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.41.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.42.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.43.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.44.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF 的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.45.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y 轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.46.如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H 作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.47.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.48.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y 轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.49.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM 面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.50.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.答案解析一.解答题(共50小题)1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C 坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求=S△ABN﹣S△BMN得MD=(n+2),然后根据S△AMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣=∵S△AMN=AM•MN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,。
中考数学二次函数综合经典题含详细答案
一、二次函数 真题与模拟题分类汇编(难题易错题)1.对于二次函数 y=ax 2+(b+1)x+(b ﹣1),若存在实数 x 0,使得当 x=x 0,函数 y=x 0,则称x 0 为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b ,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A 、B 两点的横坐标是该函数的“不变值”,且 A 、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值. 【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】 【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得. 【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a=- A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b ba a-- ) A 、B 两点关于直线y=kx-2a+3对称, 又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上.∴b a -=ba-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.2.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y xy x=+⎧⎨=-+⎩,得45215xy⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E,(0,1)F∵点M在AOB∆内,∴45b<<当点,C D关于抛物线对称轴(直线x b=)对称时,1344b b-=-,∴12b=且二次函数图象的开口向下,顶点M在直线41y x=+上综上:①当12b<<时,12y y>;②当12b=时,12y y=;③当1425b<<时,12y y<.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.3.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m =﹣m 2﹣3m , 解得,m =0或m =﹣4, ∴n =0﹣(﹣4)=4, ∴﹣2<m ≤2,由上可得,当m >2或m ≤﹣2时,n =2, 当﹣2<m ≤2时,n =4. 【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.4.如图1,二次函数234y ax ax a =--的图像与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点()0,3C-.(1)求二次函数的表达式及点A 、点B 的坐标;(2)若点D 在二次函数图像上,且45DBC ABC S S =△△,求点D 的横坐标;(3)将直线BC 向下平移,与二次函数图像交于,M N 两点(M 在N 左侧),如图2,过M 作ME y ∥轴,与直线BC 交于点E ,过N 作NF y ∥轴,与直线BC 交于点F ,当MN ME +的值最大时,求点M 的坐标.【答案】(1)y =239344x x --,A (﹣1,0),B (4,0);(2)D 点的横坐标为22﹣2,2;(3)M (13,﹣113) 【解析】 【分析】(1)求出a ,即可求解;(2)求出直线BC 的解析式,过点D 作DH ∥y 轴,与直线BC 交于点H ,根据三角形面积的关系求解;(3)过点M 作MG ∥x 轴,交FN 的延长线于点G ,设M (m ,34m 2﹣94m ﹣3),N(n,34n2﹣94n﹣3),判断四边形MNFE是平行四边形,根据ME=NF,求出m+n=4,再确定ME+MN=﹣34m2+3m+5﹣52m=﹣34(m﹣13)2+6112,即可求M;【详解】(1)y=ax2﹣3ax﹣4a与y轴交于点C(0,﹣3),∴a=34,∴y=34x2﹣94x﹣3,与x轴交点A(﹣1,0),B(4,0);(2)设直线BC的解析式为y=kx+b,∴403k bb+=⎧⎨=-⎩,∴343kb⎧=-⎪⎨⎪=-⎩,∴y=34x﹣3;过点D作DH∥y轴,与直线BC交于点H,设H(x,34x﹣3),D(x,34x2﹣94x﹣3),∴DH=|34x2﹣3x|,∵S△ABC=1155323⨯⨯=,∴S△DBC=41552⨯=6,∴S△DBC=2×|34x2﹣3x|=6,∴x=2+22,x=2﹣22,x=2;∴D点的横坐标为2+22,2﹣22,2;(3)过点M作MG∥x轴,交FN的延长线于点G,设M(m,34m2﹣94m﹣3),N(n,34n2﹣94n﹣3),则E(m,34m﹣3),F(n,34n﹣3),∴ME=﹣34m2+3m,NF=﹣34n2+3n,∵EF∥MN,ME∥NF,∴四边形MNFE是平行四边形,∴ME=NF,∴﹣34m2+3m=﹣34n2+3n,∴m+n=4,∴MG=n﹣m=4﹣2m,∴∠NMG=∠OBC,∴cos∠NMG=cos∠OBC=MG OBMN BC,∵B(4,0),C(0,﹣3),∴OB=4,OC=3,在Rt△BOC中,BC=5,∴MN=54(n﹣m)=54(4﹣2m)=5﹣52m,∴ME+MN=﹣34m2+3m+5﹣52m=﹣34(m﹣13)2+6112,∵﹣34<0,∴当m=13时,ME+MN有最大值,∴M(13,﹣113)【点睛】本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握待定系数法求函数解析式的方法,结合三角形的性质解题.5.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+;(2)2a =. 【解析】 【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-20-a )(-10x+500)=-10x 2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a=2. 【详解】解:(1)根据题意得,()()2501025105003038y x x x =--=-+; (2)设每天扣除捐赠后可获得利润为w 元.()()()()220105001010700500100003038w x a x x a x a x =---+=-++--对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38, 则当1352x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛⎫+---++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴122,58a a ==(不合题意舍去),∴2a =. 【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.6.某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x (元)之间的关系如图所示.(1)根据图象直接写出y 与x 之间的函数关系式.(2)设这种商品月利润为W (元),求W 与x 之间的函数关系式. (3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少? 【答案】(1)y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是3675. 【解析】 【分析】(1)当40≤x≤60时,设y 与x 之间的函数关系式为y=kx+b ,当60<x≤90时,设y 与x 之间的函数关系式为y=mx+n ,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x 2+210x-5400,得到当x=60时,W 最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x 2+390x-9000,得到当x=65时,W 最大=-3×652+390×65-9000=3675,于是得到结论. 【详解】解:(1)当40≤x ≤60时,设y 与x 之间的函数关系式为y =kx +b , 将(40,140),(60,120)代入得4014060120k b k b +=⎧⎨+=⎩,解得:1180k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为y =﹣x +180;当60<x ≤90时,设y 与x 之间的函数关系式为y =mx +n ,将(90,30),(60,120)代入得903060120m n m n +=⎧⎨+=⎩,解得:3300m n =-⎧⎨=⎩,∴y =﹣3x +300;综上所述,y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)当40≤x ≤60时,W =(x ﹣30)y =(x ﹣30)(﹣x +180)=﹣x 2+210x ﹣5400, 当60<x ≤90时,W =(x ﹣30)(﹣3x +300)=﹣3x 2+390x ﹣9000,综上所述,W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩; (3)当40≤x ≤60时,W =﹣x 2+210x ﹣5400,∵﹣1<0,对称轴x =2102--=105,∴当40≤x ≤60时,W 随x 的增大而增大,∴当x =60时,W 最大=﹣602+210×60﹣5400=3600, 当60<x ≤90时,W =﹣3x 2+390x ﹣9000,∵﹣3<0,对称轴x =3906--=65,∵60<x ≤90,∴当x =65时,W 最大=﹣3×652+390×65﹣9000=3675, ∵3675>3600,∴当x =65时,W 最大=3675,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是3675. 【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.根据题意分情况建立二次函数的模型是解题的关键.7.如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180,得到新的抛物线'C .(1)求抛物线C 的函数解析式及顶点G 的坐标; (2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (2m <-),连接DO 并延长,交抛物线'C 于点E ,交直线l 于点M ,2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P 的横坐标为:74+-74. 【解析】【分析】 (1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标; (2)根据抛物线C 绕点O 旋转180,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可; (3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠=,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可.【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩ 解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--,配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -; (2)∵抛物线C 绕点O 旋转180,得到新的抛物线'C .∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a =∴新抛物线'C 的解析式为:22(2)44y x x x =--=-将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-,∴直线l 解析式为31255y x =--, ∵2(,4)D m m m --, ∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、V 关于原点对称,∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K , 则312(,)55H m m --,312(,)55K m m --, ∴2231217124()5555DH m m m m m =-----=--+,2231217124()5555EK m m m m m =+--=++, ∵2DE EM = ∴13ME MD =, ∵//DH y 轴,//EK y 轴 ∴//DH EK∴MEK ∆∽MDH ∆ ∴13EK ME DH MD ==,即3DH EK = ∴22171217123()5555m m m m --+=++ 解得:13m =-,225m =-, ∵2m <-∴m 的值为:﹣3;(3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE =如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠=,∴1tan 3BG GAB AB ∠===, ∵DEP GAB ∠=∠∴1tan tan 3DEP GAB ∠=∠=, 在x轴下方过点O 作OH OE ⊥,在OH 上截取123OH OE ==, 过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点; ∵(3,3)E -,∴45EOT ∠=∵90EOH ∠=∴45HOT ∠=∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--, 解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得11773735x y ⎧--=⎪⎪⎨-⎪=⎪⎩,22773735x y ⎧-+=⎪⎪⎨+⎪=-⎪⎩, ∴点P 的横坐标为:773+-或737-.【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大.8.如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x 2+32x ﹣2;(2)9;(3)点Q 的坐标为(﹣2,4)或(﹣2,﹣1).【解析】 (1)如答图1所示,利用已知条件求出点B 的坐标,然后用待定系数法求出抛物线的解析式.(2)如答图1所示,首先求出四边形BMCA 面积的表达式,然后利用二次函数的性质求出其最大值.(3)如答图2所示,首先求出直线AC 与直线x=2的交点F 的坐标,从而确定了Rt △AGF 的各个边长;然后证明Rt △AGF ∽Rt △QEF ,利用相似线段比例关系列出方程,求出点Q 的坐标.考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.9.如图,已知二次函数y=ax 2+bx+3 的图象与x 轴分别交于A(1,0),B(3,0)两点,与y 轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值.【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN 为直角三角形时,t 的值为1或4.【解析】【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形; (3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论.【详解】(1)将()1,0A 、()3,0B 代入23y ax bx =++,得:309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x =-+=--,∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=, ∴点C 的坐标为()0,3.点B 的坐标为()3,0,BC ∴==,BD ==,CD ==22220BC BD CD +==,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠,将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x t y x x =-++⎧⎨=-+⎩,解得:11322x t y ⎧=⎪⎪⎨+-⎪=⎪⎩,22322x t y ⎧=⎪⎪⎨+⎪=⎪⎩,∴点M的坐标为,点N的坐标为,. 点A 的坐标为()1,0,(222210571AM t t t ⎫⎫∴=+-=++-+⎪⎪⎪⎪⎝⎭⎝⎭(222210571AN t t t ⎫⎫=-+-=++++⎪⎪⎪⎪⎝⎭⎝⎭,222188MN t =+=+⎝⎭⎝⎭.AMN ∆为直角三角形,∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN +=,即((22571571188t t t t t t t ++-+++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去);②当90AMN ∠=︒时,有222AM MN AN +=,即((22571188571t t t t t t t ++-++=++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去);③当90ANM ∠=︒时,有222AN MN AN +=,即((22571188571t t t t t t t +++++=++-+,10t ++=. 0t >,∴该方程无解(或解均为增解).综上所述:当AMN ∆为直角三角形时,t 的值为1或4.【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC 2+BD 2=CD 2;(3)分∠MAN =90°、∠AMN =90°及∠ANM =90°三种情况考虑.10.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c=++中,得:0{9303a b c a b c c -+=++==-,解得:1{23a b c ==-=-,故抛物线的解析式:223y x x =--.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2b a-=1,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2b a -=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:2MA =24m +,2MC =2(3)1m ++=2610m m ++,2AC =10;①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1;②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6±;③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,6)(1,6-)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.。
中考数学二次函数压轴题集锦(50道含解析)
中考二次函数专项训练1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.5.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.6.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.7.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.8.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx ﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.9.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.10.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.11.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.12.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.13.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标14.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n,其顶点为A n…(n为正整数).求A n A n+1的长(用含n的式子表示).15.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC =S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.16.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.21.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.22.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.23.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B (3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.24.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.25.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.28.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.29.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC 交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC 的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.30.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.31.如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.32.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C 作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.33.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y 轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.34.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.35.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD 的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.36.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.37.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx ﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q 在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.38.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.39.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.40.如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.41.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C (0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.42.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y 轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.43.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.44.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y 轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.45.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.46.如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.47.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.48.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.49.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.50.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.一.解答题(共50小题)1.如图1,已知二次函数y=ax 2+x +c (a ≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数y=ax 2+x +c 的表达式;(2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B 的坐标,然后根据勾股定理分别求得AB 2=20,AC 2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC 是直角三角形. (3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一个点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,根据三角形相似对应边成比例求得MD=(n +2),然后根据S △AMN =S △ABN ﹣S △BMN 得出关于n 的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax 2+x +c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0), ∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;。
2022年中考数学试题汇编:二次函数(解答题)(含解析)
2022年中考数学试题汇编:二次函数(解答题)1.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?2.(2022•盘锦)精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:x(天)123 (x)每天的销售量(千克)101214…设第x天的售价为y元/千克,y关于x的函数关系满足如上图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入﹣成本)(1)将表格中的最后一列补充完整;(2)求y关于x的函数关系式;(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?3.(2022•营口)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)……22232425……每天销售量(本)……80787674……(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?4.(2022•贵阳)已知二次函数y=ax2+4ax+b.(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;(3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.5.(2022•营口)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(,)和点B(4,0),与y轴交于点C,点P为为物线上一动点.(1)求抛物线和直线AB的解析式;(2)如图,点P为第一象限内抛物线上的点,过点P作PD⊥AB,垂足为D,作PE⊥x 轴,垂足为E,交AB于点F,设△PDF的面积为S1,△BEF的面积为S2,当=时,求点P坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N坐标,若不存在,请说明理由.6.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B 两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D 沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.7.(2022•盘锦)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B两点(A在B的左侧),与y轴交于点C(0,9),点D在y轴正半轴上,OD=4,点P是线段OB上的一点,过点B作BE⊥DP,BE交DP的延长线于点E.(1)求抛物线解析式;(2)若=,求点P的坐标;(3)点F为第一象限抛物线上一点,在(2)的条件下,当∠FPD=∠DPO时,求点F 的坐标.8.(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.9.(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)的图象与x轴交于A(1,0),B (4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E 运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线图象上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.10.(2022•铜仁市)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于 5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?11.(2022•辽宁)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,部分数据如表:……202224……每千克售价x(元)日销售量y(千……666054……克)(1)求y与x之间的函数关系式;(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?12.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M ,使△MDF 为等腰三角形?若不存在,请说明理由;若存在,求ME 的长.13.(2022•北京)在平面直角坐标系xOy 中,点(1,m ),(3,n )在抛物线y =ax 2+bx +c (a >0)上,设抛物线的对称轴为x =t .(1)当c =2,m =n 时,求抛物线与y 轴交点的坐标及t 的值;(2)点(x 0,m )(x 0≠1)在抛物线上.若m <n <c ,求t 的取值范围及x 0的取值范围.14.(2022•北京)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y =a (x ﹣h )2+k (a <0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:水平距离x /m0 2 5 8 11 14竖直高度y /m20.00 21.40 22.75 23.20 22.75 21.40 根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y =a (x﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.04(x﹣9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1d2(填“>”“=”或“<”).15.(2022•呼和浩特)如图,抛物线y=﹣x2+bx+c经过点B(4,0)和点C(0,2),与x轴的另一个交点为A,连接AC、BC.(1)求抛物线的解析式及点A的坐标;(2)如图1,若点D是线段AC的中点,连接BD,在y轴上是否存在点E,使得△BDE 是以BD为斜边的直角三角形?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点P是第一象限内抛物线上的动点,过点P作PQ∥y轴,分别交BC、x 轴于点M、N,当△PMC中有某个角的度数等于∠OBC度数的2倍时,请求出满足条件的点P的横坐标.16.(2022•辽宁)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b 经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC 于点F.(1)求抛物线的解析式;(2)如图①,点P为直线AC下方抛物线上的点,连接P A,PC,△BAF的面积记为S1,△P AC的面积记为S2,当S2=S1时.求点P的横坐标;(3)如图②,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.17.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P的坐标.18.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:x…﹣10123…y…430﹣5﹣12…(1)求二次函数y=ax2+bx+3的表达式;(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=,实数k的取值范围是;(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.19.(2022•辽宁)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?20.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.21.(2022•临沂)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x 轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距离x(m)具备二次函数关系,其解析式为y=﹣x2+bx+c.(1)求b,c的值;(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.①求x关于t的函数解析式;②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少?22.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x 轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.23.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为1:5两部分,求点P的坐标.24.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c 称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.25.(2022•海南)如图1,抛物线y=ax2+2x+c经过点A(﹣1,0)、C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D.(1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当的值最大且△APQ是直角三角形时,求点Q的横坐标;(4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI∥y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y轴上时,请直接写出点G的坐标.26.(2022•包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x 取整数)时,日销售量y(单位:千克)与x之间的函数关系式为y=,草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x≤12时,草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?27.(2022•大庆)某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg.在确保每棵果树平均产量不低于40kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为ykg,它们之间的函数关系满足如图所示的图象.(1)图中点P所表示的实际意义是,每增种1棵果树时,每棵果树平均产量减少kg;(2)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(3)当增种果树多少棵时,果园的总产量w(kg)最大?最大产量是多少?28.(2022•梧州)如图,在平面直角坐标系中,直线y=﹣x﹣4分别与x,y轴交于点A,B,抛物线y=x2+bx+c恰好经过这两点.(1)求此抛物线的解析式;(2)若点C的坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A 的对应点是点E.①写出点E的坐标,并判断点E是否在此抛物线上;②若点P是y轴上的任一点,求BP+EP取最小值时,点P的坐标.29.(2022•吉林)如图,在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A (1,0),点B(0,3).点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式.(2)当点P在x轴上方时,结合图象,直接写出m的取值范围.(3)若此抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2﹣m.①求m的值.②以P A为边作等腰直角三角形P AQ,当点Q在此抛物线的对称轴上时,直接写出点Q的坐标.30.(2022•包头)如图,在平面直角坐标系中,抛物线y=ax2+c(a≠0)与x轴交于A,B 两点,点B的坐标是(2,0),顶点C的坐标是(0,4),M是抛物线上一动点,且位于第一象限,直线AM与y轴交于点G.(1)求该抛物线的解析式;(2)如图1,N是抛物线上一点,且位于第二象限,连接OM,记△AOG,△MOG的面积分别为S1,S2.当S1=2S2,且直线CN∥AM时,求证:点N与点M关于y轴对称;(3)如图2,直线BM与y轴交于点H,是否存在点M,使得2OH﹣OG=7.若存在,求出点M的坐标;若不存在,请说明理由.31.(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.32.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.33.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.34.(2022•贺州)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?35.(2022•威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.36.(2022•湖北)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y(千克)与销售单价x(元/千克)有如下表所示的关系:销售单价x(元/千克)…2022.52537.540…销售量y(千克)…3027.52512.510…(1)根据表中的数据在如图中描点(x,y),并用平滑曲线连接这些点,请用所学知识求出y关于x的函数关系式;(2)设该超市每天销售这种商品的利润为w(元)(不计其它成本).①求出w关于x的函数关系式,并求出获得最大利润时,销售单价为多少;②超市本着“尽量让顾客享受实惠”的销售原则,求w=240(元)时的销售单价.37.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y 轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.38.(2022•无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?39.(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.40.(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B 的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.41.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B 两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.42.(2022•荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x (元/件)之间满足函数关系式y=24﹣x,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?43.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.44.(2022•湘潭)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?45.(2022•随州)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)第x天12...6...11 (15)150150+m…150+5m…150+10m…150+14m 供应量y1(个)220229...245...220 (164)需求量y2(个)(1)直接写出y1与x和y2与x的函数关系式;(不要求写出x的取值范围)(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)(3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.46.(2022•湖北)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.参考答案与试题解析1.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?。
(专题精选)初中数学二次函数难题汇编含答案
【详解】
A.由图象可知:a<0,c>0,
∴ac<0,故 A 错误;
B.由对称轴可知:x= b <0, 2a
∴b<0,故 B 错误;
C.由对称轴可知:x= b =﹣1, 2a
∴b=2a,
∵x=1 时,y=0,
D.a+b+c=0
∴a+b+c=0, ∴c=﹣3a, ∴a+c=a﹣3a=﹣2a>0,故 C 错误; 故选 D. 【点睛】 本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.
∵x1+x2= 2 ,x1x2=﹣1, a
∴|x1﹣x2|=2
1 1 >2, a2
∴B 正确;
二次函数 y=ax2+bx+c(a>0)的对称轴 x=﹣ b = 1 , 2a a
当 a>0 时,不能判定 x< 1 时,y 随 x 的增大而减小; 10
∴C 错误;
∵﹣1<m<n<0,a>0,
∴m+n<0, 2 >0, a
故选 A.
2.如图,抛物线 y=ax2+bx+c(a≠0)与 x 轴交于点 A(1,0),对称轴为直线 x=﹣1,当 y>0 时,x 的取值范围是( )
A.﹣1<x<1
B.﹣3<x<﹣1
C.x<1
D.﹣3<x<1
【答案】D
【解析】
【分析】
根据已知条件求出抛物线与 x 轴的另一个交点坐标,即可得到答案.
x ···
1 0 1 3 ···
y ···
1 3 5 3 ···
下列结论错误的是( )
A. ac 0
B. 3 是关于 x 的方程 ax2 b 1 x c 0
最新初中数学二次函数难题汇编及解析
最新初中数学二次函数难题汇编及解析一、选择题1.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D【解析】【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1, ∴抛物线与x 轴的另一交点坐标是(﹣3,0),∴当y >0时,x 的取值范围是﹣3<x <1.所以答案为:D .【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.2.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y则2211100100y mm m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.3.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )A .﹣4<P <0B .﹣4<P <﹣2C .﹣2<P <0D .﹣1<P <0【答案】A【解析】【分析】【详解】 解:∵二次函数的图象开口向上,∴a >0.∵对称轴在y 轴的左边,∴b 2a-<0.∴b >0. ∵图象与y 轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b ﹣2=0. ∴a=2﹣b ,b=2﹣a .∴y=ax 2+(2﹣a )x ﹣2.把x=﹣1代入得:y=a ﹣(2﹣a )﹣2=2a ﹣4,∵b >0,∴b=2﹣a >0.∴a <2.∵a >0,∴0<a <2.∴0<2a <4.∴﹣4<2a ﹣4<0,即﹣4<P <0.故选A .【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.4.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点;②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】 对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a<-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小即说法③错误0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.5.已知抛物线2y ax bx c =++与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点;②方程()200++=≠ax bx c a 的解为0x =或4;③0a b c -+<;④当04x <<时,20ax bx c ++<;⑤当2x <时,y 随x 增大而增大.其中结论正确的个数有( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据题意,求得,,a b c ,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断.【详解】由题可知22b a-=,与x 轴的一个交点坐标为(4,0),则另一个交点坐标为()0,0, 故可得1640a b c ++=,0c =,故可得4,0a b c -==①因为0c =,故①正确;②因为二次函数过点()()0,0,4,0,故②正确;③当1x =-时,函数值为0a b c -+<,故③正确;④由图可知,当04x <<时,0y <,故④正确;⑤由图可知,当2x <时,y 随x 增大而减小,故⑤错误;故选:D.【点睛】本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.6.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A【解析】【分析】 ①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误;③对称轴:直线12b x a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.【详解】解:①∵抛物线与x 轴由两个交点,∴240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,∴0abc >,故②错误;③∵对称轴:直线12b x a=-=-, ∴2b a =,∴24a b c a c +-=-,∵0a <,40a <,0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.7.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位【答案】A【解析】【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A .【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.8.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.9.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .10.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .3B 3C .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.11.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.12.如图,坐标平面上,二次函数y =﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A .1B .12C .43D .45【答案】D【解析】【分析】 求出顶点和C 的坐标,由三角形的面积关系得出关于k 的方程,解方程即可.【详解】解:∵y =﹣x 2+4x ﹣k =﹣(x ﹣2)2+4﹣k ,∴顶点D(2,4﹣k),C(0,﹣k),∴OC =k ,∵△ABC 的面积=12AB•OC =12AB•k ,△ABD 的面积=12AB(4﹣k),△ABC 与△ABD 的面积比为1:4, ∴k =14(4﹣k), 解得:k =45. 故选:D .【点睛】 本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.13.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲B .乙C .丙D .丁 【答案】B【解析】【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论.【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确由乙、丁同学的结论可得01442b c b c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x ∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=2时,解得y=4,当x=-1时,y=7≠0∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确由甲乙的结论可得 1201b b c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩ ∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B .【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.14.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0, ∵抛物线的对称轴为直线12b x a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下,∴当x 1<时,y 随x 的增大而增大 ∵103132-<-< 点13,2y ⎛⎫-⎪⎝⎭到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确. 故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.15.若A (-4,1y ),B (-3,2y ),C (1,3y )为二次函数y =x 2+4x -m 的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .1y <2y <3yB .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C【解析】【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可.【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -,y 2=(-3)2+4×(-3)m - =9-12m - =3m --,y 3=12+4×m - 1=1+4m - =5m -,∵-3m -<m -<5m -,∴y 2<y 1<y 3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.16.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D【解析】【分析】 先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4.【详解】∵抛物线的对称轴为x =2, ∴22m -=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D .【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直线)有交点.17.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h <2时,有-(2-h )2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.18.在函数2yx=,3y x=+,2y x=的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.19.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有() A.0B.1C.2D.3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.20.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫-- ⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.。
(专题精选)初中数学二次函数难题汇编及答案解析
【解析】
【分析】
原抛物线顶点坐标为( 0, 0),平移后抛物线顶点坐标为( -1, 2),由此确定平移办法.
【详解】 y=x2+2x+3=( x+1) 2+2,该抛物线的顶点坐标是(
-1, 2),抛物线 y=x2 的顶点坐标是( 0,
0), 则平移的方法可以是:将抛物线
y=x2 向左平移 1 个单位长度,再向上平移 2 个单位长度.
故选: A.
【点睛】
此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,
寻找平移方法.
4.方程
2
x
3x
1
0 的根可视为函数
y = x+ 3的图象与函数 y
标,则方程 x 3 2x 1 0 的实根 x0 所在的范围是( )
1 的图象交点的横坐
x
1 A. 0<x 0 <
4
1
1
B. <x 0 <
对称轴 x=﹣ = 1,故 b< 0, bc< 0,即可判断一次函数 y= x+bc 的图象 .
【详解】 ① 由 x= 2 时, y= 4a+2b+c,由图象知: y= 4a+2b+c< 0,故正确; ② 方程 ax2+bx+c=0 两根分别为 1, 3,都大于 0,故正确; ③ 当 x< 2 时,由图象知: y 随 x 的增大而减小,故错误;
3
2
故选 C.
【点睛】
此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析
其中的 “关键点 ”,还要善于分析各图象的变化趋势.
5.将抛物线 y x2 4x 3平移,使它平移后图象的顶点为
(易错题精选)初中数学二次函数难题汇编及答案解析
【分析】
设出原数,表示出新数,利用解方程和函数性质即可求解.
【详解】
解:设原数为m,则新数为 ,
设新数与原数的差为y
则 ,
易得,当m=0时,y=0,则A错误
∵
当 时,y有最大值.则B错误,D正确.
当y=21时, =21
解得 =30, =70,则C错误.
故答案选:D.
【点睛】
本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.
∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,
∴足球距离地面的最大高度为20.25m,故①错误,
∴抛物线的对称轴t=4.5,故②正确,
∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,
∵t=1.5时,y=11.25,故④错误,∴正确的有②③,
故选B.
11.如图是二次函数 的图象,有下面四个结论: ; ; ; ,其中正确的结论是
(易错题精选)初中数学二次函数难题汇编及答案解析
一、选择题
1.若二次函数y=x2﹣2x+2在自变量x满足m≤x≤m+1时的最小值为6,则m的值为( )
A. B.
C.1D.
【答案】B
【解析】
【分析】
由抛物线解析式确定出其对称轴为x=1,分m>1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m的方程,可求得m的值.
【详解】
①由抛物线交y轴于负半轴,则c<0,故①错误;
②由抛物线的开口方向向上可推出a>0;
∵对称轴在y轴右侧,对称轴为x= >0,
又∵a>0,
∴b<0;
人教全国中考数学二次函数的综合中考真题汇总含答案解析
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.2.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 0),抛物线的对称轴为x 2)点P 的坐标为04);(3)2. 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:290ax a --=,∵a ≠0,∴290x --=,解得:x =x =∴点A 0),B (0),∴抛物线的对称轴为x(2)∵OA OC =3,∴tan ∠CAO ∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =1,∴点D 的坐标为(0,1).设点P a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 0).当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P ,﹣4).综上所述,点P 04).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:30+=,解得:m ∴直线AC 的解析式为3y =+. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k-,0),∴AN =1k-.将3y =+与y =kx +1联立解得:x,∴点M .过点M 作MG ⊥x 轴,垂足为G .则AG =33k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG 33k +-2323k k --,∴11AM AN +323231k k --3232k -3(32(31)k k - =32. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.3.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
33
33
确;
B、当 m>0 时,令 y=0,有 2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣ 1 ﹣ 2
1, 2m
|x2﹣x1|= 3 + 1 > 3 ,所以当 m>0 时,函数图象截 x 轴所得的线段长度大于 3 ,此结
2 2m 2
2
论正确;
C、当 x=1 时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意 m,函数图象都经过点(1,0)那么同样的:当 m=0 时,函数图象都经过同一个点(1, 0),当 m≠0 时,函数图象经过同一个点(1,0),故当 m≠0 时,函数图象经过 x 轴上一 个定点此结论正确.
A.1
B.2
C.3
D.4
【答案】C
【解析】
【分析】
根据抛物线的开口方向和与坐标轴的交点及对称轴可判别 a,b,c 的正负;根据抛物线的
对称轴位置可判别在 x 轴上另一个交点;根据抛物线与直线 y=m 的交点可判定方程的解.
【详解】
∵函数的图象开口向上,与 y 轴交于负半轴
∴a>0,c<0
∵抛物线的对称轴为直线 x=- b =1 2a
初中数学二次函数真题汇编及解析
一、选择题
1.如图,坐标平面上,二次函数 y=﹣x2+4x﹣k 的图形与 x 轴交于 A、B 两点,与 y 轴交 于 C 点,其顶点为 D,且 k>0.若△ABC 与△ABD 的面积比为 1:4,则 k 值为何?( )
A.1
B. 1
C. 4
D. 4
2
3
5
【答案】D
【解析】
【分析】
先求出 A(2,c-4),B(0,c), A'(2,4 c),, B '(0, c) ,结合矩形的性质,列出关于 c 的方
程,即可求解.
【详解】
∵抛物线W : y x2 4x c ,其顶点为 A ,与 y 轴交于点 B ,
∴A(2,c-4),B(0,c),
∵将抛物线W 绕原点旋转180 得到抛物线W ' ,点 A, B 的对应点分别为 A', B ' , ∴ A'(2,4 c),, B '(0, c) ,
2
2
2
比为 1:4,
∴k= 1 (4﹣k), 4
解得:k= 4 . 5
故选:D.
【点睛】
本题考查了抛物线与 x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解
决问题的关键.
2.抛物线 y= x2+bx+3 的对称轴为直线 x= 1.若关于 x 的一元二次方程 x2+bx+3﹣t=
0(t 为实数)在﹣2<x<3 的范围内有实数根,则 t 的取值范围是( )
∴b=﹣2a, ∴2a+b=0,故②正确. ③∵(0,c)关于直线 x=1 的对称点为(2,c), 而 x=0 时,y=c>0, ∴x=2 时,y=c>0, ∴y=4a+2b+c>0,故③正确; ④由图象可知:△>0, ∴b2﹣4ac>0,故②正确; 故选:D. 【点睛】 本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质, 属于中考常考题型.
A.当 m=-3 时,函数图象的顶点坐标是( 1 , 8 ) 33
B.当 m>0 时,函数图象截 x 轴所得的线段长度大于 3 2
C.当 m≠0 时,函数图象经过同一个点
D.当 m<0 时,函数在 x> 1 时,y 随 x 的增大而减小 4
【答案】D 【解析】
分析:A、把 m=-3 代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公 式解答即可;
数 y=x2﹣4x 与直线 y=t 的交点,﹣1<x<4 时﹣4≤y<5,进而求解;
【详解】
解:∵对称轴为直线 x=2,
∴b=﹣4,
∴y=x2﹣4x,
关于 x 的一元二次方程 x2+bx﹣t=0 的解可以看成二次函数 y=x2﹣4x 与直线 y=t 的交点,
∵﹣1<x<4,
∴二次函数 y 的取值为﹣4≤y<5,
∴﹣4≤t<5;
故选:B.
【点睛】
本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数
与直线交点问题,数形结合的解决问题是解题的关键.
8.定义[a,b,c]为函数 y=ax2+bx+c 的特征数,下面给出特征数为[2m,1-m,-1-m]的函数 的一些结论,其中不正确的是( )
【分析】
求出顶点和 C 的坐标,由三角形的面积关系得出关于 k 的方程,解方程即可.
【详解】
解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,
∴顶点 D(2,4﹣k),C(0,﹣k),
∴OC=k,
∵△ABC 的面积= 1 AB•OC= 1 AB•k,△ABD 的面积= 1 AB(4﹣k),△ABC 与△ABD 的面积
7.二次函数 y=x2+bx 的对称轴为直线 x=2,若关于 x 的一元二次方程 x2+bx﹣t=0(t 为
实数)在﹣1<x<4 的范围内有解,则 t 的取值范围是( )
A.0<t<5
B.﹣4≤t<5
C.﹣4≤t<0
D.t≥﹣4
【答案】B
【解析】
【分析】
先求出 b,确定二次函数解析式,关于 x 的一元二次方程 x2+bx﹣t=0 的解可以看成二次函
4
4
再,④是错误的. 故选 D. 点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐
标特征.
9.已知二次函数 y=ax2+bx+c 的图像如图所示,则下列结论正确的个数有( ) ①c>0;②b2-4ac<0;③ a-b+c>0;④当 x>-1 时,y 随 x 的增大而减小.
错误;∵当 x=-1 时,y>0,即 a-b+c>0, 故③正确;
由图象可知,图象开口向下,对称轴 x>-1,在对称轴右侧, y 随 x 的增大而减小,而在对
称轴左侧和-1 之间,是 y 随 x 的增大而减小,故④错误.
D、当 m<0 时,y=2mx2+(1﹣m)x+(﹣1﹣m) 是一个开口向下的抛物线,其对称轴
是:直线 x= m 1 ,在对称轴的右边 y 随 x 的增大而减小.因为当 m<0 时, 4m
m 1 1 1 1 ,即对称轴在 x= 1 右边,因此函数在 x= 1 右边先递增到对称轴位置,
4m 4 4m 4
∴ b 2a , ∴ 2a b c 4a c , ∵ a 0 , 4a 0 , c0,a0, ∴ 2a b c 4a c 0 ,
故③错误;
④∵对称轴为直线 x 1 ,抛物线与 x 轴一个交点 3 x1 2 , ∴抛物线与 x 轴另一个交点 0 x2 1 , 当 x 1时, y a b c 0 ,
A.4 个
B.3 个
C.2 个
D.1 个
【答案】C
【解析】
【分析】
由抛物线的开口方向判断 a 与 0 的关系,由抛物线与 y 轴的交点判断 c 与 0 的关系,然后
根据抛物线与 x 轴交点及 x=-1 时二次函数的值的情况进行推理,进而对所得结论进行判
断.
【详解】
解:由图象可知,a<0,c>0,故①正确;抛物线与 x 轴有两个交点,则 b²-4ac>0,故②
3.二次函数 y ax2 bx c(a 0) 的图象如图所示,下列结论① b2 4ac , ② abc 0 ,③ 2a b c 0 ,④ a b c 0.其中正确的是( )
A.①④
B.②④
C.②③
D.①②③④
【答案】A
【解析】
【分析】
①抛物线与 x 轴由两个交点,则 b2 4ac 0 ,即 b2 4ac ,所以①正确;②由二次函
数图象可知, a 0 , b 0 , c 0 ,所以 abc 0 ,故②错误;
③对称轴:直线 x b 1, b 2a ,所以 2a b c 4a c , 2a
2a b c 4a c 0 ,故③错误;
④对称轴为直线 x 1 ,抛物线与 x 轴一个交点 3 x1 2 ,则抛物线与 x 轴另一个交
C.3
D.4
【答案】D
【解析】
【分析】
根据二次函数 y=ax2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与 y 轴的交点抛物
线与 x 轴交点的个数确定解答.
【详解】
①由抛物线的对称轴可知:﹣ >0,
∴ab<0, ∵抛物线与 y 轴的交点在正半轴上, ∴c>0, ∴abc<0,故①正确;
②∵﹣ =1,
6.已知抛物线W : y x2 4x c ,其顶点为 A ,与 y 轴交于点 B ,将抛物线W 绕原点
旋转180 得到抛物线W ' ,点 A, B 的对应点分别为 A', B ' ,若四边形 ABA' B' 为矩形,则 c 的值为( )
A. 3 2
【答案】D 【解析】
B. 3
C. 3 2
D. 5 2
故④正确. 故选:A. 【点睛】 本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.
4.已知二次函数 y=ax2+bx+c(a≠0)的图象如图,则下列 4 个结论:①abc<0;②2a+b =0;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论的个数是( )
A.1
B.2
∴b<0 ∴abc>0;①正确; ∵抛物线与 x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线 x=1, ∴抛物线与 x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当 x=-1 时,y<0, 即 a-b+c<0,所以②不正确; ∵抛物线的顶点坐标为(1,m), ∴ 4ac b2 =m,