低压电气-无功补偿基础知识

合集下载

低压电网中的无功补偿技术

低压电网中的无功补偿技术

低压电网中的无功补偿技术一、低压电网功率因数低的主要因素功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。

异步电动机和电力变压器是耗用无功功率的主要设备。

异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。

供电电压超出规定范围也会对功率因数造成很大影响。

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快。

据有关资料统计,当供电电压为额定值的110%时,一般电网的无功将增加35%左右。

电网频率的波动也会对异步电动机和变压器的磁化无功功率造成一定的影响。

二、低压电网中无功补偿的意义低压电网中进行无功补偿的意义表现在以下两个方面:1、提高供电设备的利用率在供电设备的容量(视在功率)S一定的情况下,因P=Scos,显然cos越高,有功功率P越大,设备的容量越能得到充分利用。

例如,某一供电系统的供电容量S=1000KV·A,当cos=0.5时,输出的有功功率P=500KW;如果cos=0.9时,则输出的功率P可达900KW。

可见,低压电网进行无功补偿提高功率因数,可使供电设备得到充分的利用。

2、减少了供电设备和输电线路的功率损耗,达到降损节能的效果由P=UIcos可得I=P/Ucos。

在负载消耗的有功功率P和电压U一定时,功率因数cos越高,供电线路电流I越小,使供电设备和输电线路的功率损耗减小,也减小了供电设备和线路的发热。

三、低压电网中无功补偿提高功率因数的一般方法进行无功补偿提高功率因数而又不改变负载两端的工作电压,通常的方法是:1、提高用电设备本身的功率因数。

提高用电设备的功率因数,主要是合理选用异步电动机和电力变压器的容量,即不要用大容量的电动机带小功率负载,因为它们轻载或空载时,功率因数低,满载时功率因数高,所以选用变压器和电动机的容量不宜过大,应尽量减少空载或长期处于低负载运行状态。

2、并联补偿法。

常采用在电感性负载两端并联电容器的方法来提高电路的功率因数。

低压无功补偿的原理

低压无功补偿的原理

低压无功补偿的原理
低压无功补偿是一种电力系统中常用的电力补偿技术,其原理是通过添加合适的无功补偿设备,来提高系统的功率因数,减小无功功率,提高电能的利用效率。

低压无功补偿的原理主要基于以下几个方面:
1. 电源电压波动引起的功率因数下降:当电源电压波动较大时,负载电流会发生变化,导致功率因数下降。

通过低压无功补偿,可以调节电流的相位和幅值,使其在电源电压变化时保持稳定,从而提高功率因数。

2. 非线性负载对功率因数的影响:许多电力设备,如电子设备、电磁继电器等,对电网的负载是非线性的。

这些非线性负载会引起谐波产生,影响系统的功率因数。

低压无功补偿可以通过滤波等方式,减少谐波的产生,提高功率因数。

3. 长距离输电线路对功率因数的影响:长距离输电线路会引起电网的电压损耗和电流损耗,导致系统的功率因数下降。

低压无功补偿可以通过增加无功电流的注入,来补偿传输线路的电流损耗,提高功率因数。

低压无功补偿通常采用的设备包括静态无功补偿器(SVC)、静止无功发生器(STATCOM)等,通过控制这些设备的无功
功率输出,实现对系统功率因数的调节和控制。

通过合理地设计和使用低压无功补偿设备,可以有效提高电力系统的稳定性和运行效率。

低压电气-无功补偿基础知识

低压电气-无功补偿基础知识

低压电气-无功补偿基础知识无功补偿基础知识与应用案例一、功率的概念2二、需要无功补偿的原因 2三、无功补偿的一般方法 2四、无功补偿装置的分类 3五、采用无功补偿的优点 5六、无功补偿的应用例子 6一、功率的概念1、视在功率:视在功率是指发电机发出的总功率,其中可以分为有功部分和无功部分。

2、有功功率:有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。

3、无功功率:是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。

它不对外作功,而是转变为其他形式的能量。

凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。

无功功率不做功,但是要保证有功功率的传导必须先满足电网的无功功率。

二、需要无功补偿的原因在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。

如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。

但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。

无功补偿是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。

这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。

三、无功补偿的一般方法无功补偿通常采用的方法主要有3种:低压个别补偿、低压集中补偿、高压集中补偿。

下面简单介绍这3种补偿方式的适用范围及使用该种补偿方式的优缺点。

(1)低压个别补偿低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。

通过控制、保护装置与电机同时投切。

随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。

低压电网的无功补偿

低压电网的无功补偿

低压电网的无功补偿摘要:近年来,电力负荷增长迅速,造成电力供应紧张的现象,部分省市甚至出现拉闸限电,这对供电公司来讲,尽可能提高输配电设备的能力显得尤为重要;电力用户对电能的质量要求不断提高;减少电费开支、降低生产成本始终是电力用户一个目标。

这些都对提高功率因数提出了迫切的要求。

功率因素是反映电源输出的视在功率有效利用程度的一个基本概念,是用电设备的一个重要指标。

提高用户的功率因数,对于提高电力运行的经济效益和节约电能都具有重要意义。

由于目前我国在配网中普遍采用的变电所低压母线集中补偿和配电变压器低压侧集中补偿等方式,不能补偿低压电网中大量的无功损耗。

本文针对低压网的特点,从工程实际出发,提出了低压线路无功补偿方式及灵敏度分析法与无功分量直接分析法两种计算方法,以确定补偿电容的最佳安装位置和容量,并讨论了实际应用中电容器的在线动态控制。

计算表明,在低压线上投入无功补偿后,大大降低了线损,经济效益显著,可以推广采用。

电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率,导致电网中出现大量的无功电流。

无功电流产生无功功率,给电网带来额外负担且影响供电质量。

因此采用无功补偿,提高功率因数、节约电能、减少运行费用、提高电能质量是很有效的措施。

本文对无功补偿的种类、特点、作用以及实际应用中所产生的经济效益等进行了论述。

关键词: 低电压;无功补偿;节电技术;功率因数;经济效益论文类型:调研报告1 绪论1.1 电力客户功率因数的现状在数值上,功率因数就是有功功率和视在功率的比值,既cosΦ=P/S。

要提高功率因数,就必须尽可能地减少无功功率在使用过程中的消耗。

功率因素提高后,可以减少输送电流,减少设备的成本,提高设备资源的利用率,减少资源的浪费。

而功率因数降低,会使线路的电压损失增加,结果负载端的电压下降,严重影响电动机、空调及其它用电设备的正常运行。

特别是在用电高峰季节,功率因数太低,会出现大面积的电压偏低,对工业生产带来很大损失,并严重影响居民的正常生活。

低压无功补偿培训

低压无功补偿培训

500 7.0 9.0 11.5 14.5 15.5 18.5 23.0 26.0 33.5 38.0 45.0 52.5 65.0
10 15 20 25 30 40 50 60 75 100 125 150 200
电容器控制方式
• 同投同切 接线与控制方式 将电容器接在热继电器与起动接触器之间,较为简单。
增加设备输电能力
S2=P2+Q2 I2=IP2+Iq2 输电线路、变压器的运行是受其最大传输电流限制 的,即运行的电流不能超过其最大额定电流。 当I或S一定时,减少Iq 或Q,可以增加IP 或 P I S I Q I P,这就 是当输电线路、变压器容量一定时,减少无功功率的传 输能增加有功功率的传输,即增加设备出力的原理。
• • • •
异步电动机空载无功功率补偿 变压器空载无功功率补偿 根据实际负荷进行无功补偿 几种补偿方式的比较
异步电动机空载无功功率补偿 也称“随机补偿” (也称“随机补偿”)
• • • •
补偿原理 补偿容量的确定 电容器控制方式 随机补偿的几点说明
无功优化和补偿的原则
根据网络结构的特点,选择几个中枢点以实 现对其他节点电压的控制; • 根据无功就地平衡原则,选择无功负荷较大 的节点。 • 无功分层平衡,即避免不同电压等级的无功 相互流动,以提高系统运行的经济性。 • 网络中无功补偿度不应低于部颁标准0.7的规 定。 •
24小时无功负何变化及补偿容量确定图
注:图(a)表示的是连续24小时实际无功负荷的变化情况。图(b)是将24小时无 功负荷按从小到大的顺序排列的无功负荷图,便于问题的分析。
补偿容量的确定
• 装设二组电容器 • 一般取一组电容器容量较大,用于补偿 正常无功负荷;另一组取较小,用于高峰负 荷叠加补偿或低谷负荷单独补偿。部分负荷 的补偿也可取两组电容器容量相等。 • QC1、QC2取值应使下图阴影部分面积 尽可能小,一般 • 阴影部分面积越小补偿效果越佳。

低压三相无功补偿

低压三相无功补偿

低压三相无功补偿随着现代化工业的不断发展,大量的电力设备的使用已成为现代工业生产中不可缺少的一部分。

在电力传输过程中,会产生大量的无功功率,而无功功率对于电力系统的运行来说也是相当重要的因素之一。

在电力系统中,无功功率对于电力网络来说是必需的,因此进行无功补偿就显得至关重要。

本文将详细介绍低压三相无功补偿的基本原理、应用场景以及优缺点等内容,以便于读者更好的了解无功补偿技术的重要性。

一、基本原理通常所说的无功补偿,是指在电力系统中将产生的无功功率与消耗的无功功率进行平衡,以达到其良好的运行状态。

低压三相无功补偿是一种补偿无功功率的技术,它是通过附加电感、电容等电气元件来补偿系统中的无功功率,从而达到减小网路中总功率因数的目的。

在低压无功补偿中,对于三相电路的情况,我们通常采用电容器进行补偿,以提高电力系统的功率因数。

补偿后的电流与补偿前的电流相比,基本上是相同的,但是补偿后的电流的相位会有所改变,从而使得电力系统的功率因数得到提升。

二、应用场景低压三相无功补偿技术广泛应用于各种类型的电力系统中。

在现代电力系统中,电力设备普遍采用高效节能的设计,以降低系统的能耗。

在这样的设计下,电器设备的潜在功率因数常常只有0.7左右,而电力系统的稳定运行所需要的功率因数通常需要达到0.9左右,所以对于这样的电力系统,我们就需要进行无功补偿,以提高系统的功率因数,从而保证电力系统正常运行。

三、优缺点低压无功补偿技术的优点:1. 降低了电力系统的无功功率,提高了系统的功率因数,从而使得电力系统的稳定性得到提高。

2. 有效地减少了不良功率的损耗,提高了电力系统的效率,并减少了系统的能耗。

3. 通过控制电容器的电压和电流,可以实现对电力系统功率因数的动态调整,从而更好的保证了电力系统的稳定性。

1. 需要对电容器进行严格的控制,以保证其工作的正确性。

2. 由于电容器具有一定的寿命,因此需要定期维护和更换,以保证其正常的工作。

无功补偿无功补偿无功补偿无功补偿相关知识相关知识相关知识相关知识 一一一一

无功补偿无功补偿无功补偿无功补偿相关知识相关知识相关知识相关知识  一一一一

无功补偿无功补偿无功补偿无功补偿相关知识相关知识相关知识相关知识一一一一、、、、无功补偿无功补偿无功补偿无功补偿基础知识基础知识基础知识基础知识在电力系统的输、变、配电设备和用电设备中所消耗的功率分为两种:一是把电能转换为机械能、光能、热能、化学能并在用电设备中真实消耗掉的功率,称有功功率;二是为了在变压器或电动机电感线圈中产生和维持磁场以及在电容中维持电场所消耗的功率,称无功功率。

1、什么叫无功?电源能量与感性负载线圈中磁场能量或容性负载电容中的电场能量之间进行着可逆的能量交换而占有的电网容量叫无功。

无功功率补偿的基本原理是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间互相交换。

这样,感性负荷所吸收的无功功率可由容性负荷输出的无功功率中得到补偿。

2、无功功率有那些危害?无功功率不做功,但占用电网容量和导线截面积,造成线路压降增大,使供配电设备过载,谐波无功使电网受到污染,甚至会引起电网振荡颠覆。

3、什么是动态无功补偿?动态无功补偿是根据电网中动态变化的无功量实时快速地进行补偿。

4、进行就地动态补偿的意义是什么?就地动补的意义是能将用电设备至发电厂全程供配电设备、线路、都得到补偿,降损节能效果显著,特别是低压线路及变压器的损耗大幅度降低,企业和用户直接受益。

5、动态补偿与静态补偿的主要区别及优点是什么?静态补偿投切速度慢,不适合负载变化频繁的场合,容易产生欠补或者过补偿,造成电网电压波动,损坏用电设备;并且有触点投切设备寿命短,噪声大,维护量大,影响电容器使用寿命。

动态补偿可对任何负载情况进行实时快速补偿,并有稳定电网电压功能,提高电网质量,无触点零电流投切技术增加了电容器使用寿命,同时具备治理谐波的功能。

二二二二、、、、无功补偿无功补偿无功补偿无功补偿节能效益分析节能效益分析节能效益分析节能效益分析1、降低系统传输总电流,从而提高变压器的负载能力。

无功补偿培训教程-基础篇

无功补偿培训教程-基础篇

目 录低压无功补偿部分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1一、无功补偿基础知识∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1(一)、功率、功率因数∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1(二)、提高功率因数的意义∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2(三)、 无功功率补偿的基本原理∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2 (四)、 无功功率补偿的方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2 (五)、并联电容器提高功率因数的原理∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3 (六)、、并联电容器在电力系统中的作用∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3二、并联电容器∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5(一)、自愈式并联电容器∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5(二)、 电容器运行标准∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 (三)、并联电容器与电力网的连接∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7三、无功补偿装置∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7(一)、采用电力电容器补偿的补偿装置——电容柜的种类∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 (二)、新式、老式无功补偿设备比较∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 (三)、可控硅式电容柜内部元器件的型号功能∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8(四)、接触器式电容柜内部元器件的型号功能∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8(五)、复合开关式电容柜内部元器件的型号功能∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8(六)、电容柜的适用范围∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8四、如何确定补偿容量∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8五、如何计算补偿后的效益∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 高压无功补偿部分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16一、高压补偿的概述∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16二、高压补偿与低压补偿的区别∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16三、高压补偿成套装置中各器件及功能作用∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16四、高压补偿电路原理图∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙17五、关于高压补偿的改造∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18六、高压补偿容量的确定∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 计算例题部分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙19 低压高压补偿调试部分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙21 工艺材料部分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙23 安全知识部分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙31 功率因数调整电费办法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙33 灯力分算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙34 计量方式∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙34 变压器损失数据表∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙35低压无功补偿部分一、无功补偿基础知识(一)、功率、功率因数1、有功功率:在直流电路中,从电源输送到电器(负载)的电功率,是电压与电流的乘积,也就是 电器实际所吸收的功率。

无功补偿基本知识培训1

无功补偿基本知识培训1

培 训 资 料目 录 培训对象培训目的培训内容一、电网知识二、低压配电系统1. 低压断路器2. 智能配电3. 低压配电开关4. 熔断器5. 变压器6. 漏电保护装置三、电网中的谐波与抑制1、国家对公共电网谐波含量的标准2、电网谐波源的产生3、电网谐波的危害4、电网谐波的抑制措施四、无功补偿知识1、无功补偿简介2、基本原理3、无功补偿的意义4、无功补偿系统的投切方式5、无功补偿系统的控制方式6、滤波补偿系统7、无功动态补偿装置工作原理与结构特点8、无功补偿方式分类9、无功补偿举例10、补偿常出现的问题11、无功补偿应用12、无功补偿应用选型的因素13、智能低压无功补偿关于智能低压无功补偿的概述与传统无功补偿装置的对比图及特点智能低压无功补偿装置市场发展现状及未来发展趋势分析培训对象电力设计院、社会设计院配电设计人员:电力局三产、私人成套厂安装调试人员、代理商营销及电气技术人员等等培训目的为了解决电网的无功补偿知识,了解和学习智能低压无功补偿南德电气智能电容器产品,掌握南德电气智能电容器在电网中的运行及补偿效果培训内容一、电网知识在电力系统中,联系发电和用电的设施和设备的统称。

属于输送和分配电能的中间环节,它主要由联结成网的送电线路、变电所、配电所和配电线路组成。

通常把由输电、变电、配电设备及相应的辅助系统组成的联系发电与用电的统一整体称为电力网,简称电网。

在现代电网的发展过程中,各国结合其电力工业发展的具体情况,通过不同领域的研究和实践,形成了各自的发展方向和技术路线,也反映出各国对未来电网发展模式的不同理解。

近年来,随着各种先进技术在电网中的广泛应用,智能化已经成为电网发展的必然趋势,发展智能电网已在世界范围内形成共识。

从技术发展和应用的角度看,世界各国、各领域的专家、学者普遍认同以下观点:智能电网是将先进的传感测量技术、信息通信技术、分析决策技术、自动控制技术和能源电力技术相结合,并与电网基础设施高度集成而形成的新型现代化电网。

无功补偿原理基础知识详解 (一)

无功补偿原理基础知识详解 (一)

无功补偿原理基础知识详解 (一)无功补偿是电力系统中十分重要的一环,能够在电网历史上扮演着至关重要的角色。

这篇文章将会详细介绍无功补偿的基础知识,让读者能够更加深入了解无功补偿的原理和应用。

一、无功补偿的意义在电力系统中,无功功率是一种看不见的功率,其并不向负荷输出,但是却会对电网造成一定的损耗和成本。

因此,为了最大程度地降低电网的无功功率,就必须引入无功功率的补偿。

无功补偿的作用在于,能够消除因为电网运作而产生的无功功率,从而减少能量的损失。

同时,对于变电站来说,也需要进行无功补偿,以确保变电站的容量可以被充分利用。

二、无功补偿的基本概念无功功率是指负载所需的无功电流与电压之积,也就是说,无功功率是由电感器和电容器等无功元件贡献的。

因此,无功补偿基于的就是对电感和电容的控制。

具体来说,无功补偿可以通过引入电容器和电感器两种方式实现。

在无功补偿过程中,电容器能够提供无功功率,并抵消电感器产生的无功功率。

因此,引入电容器后,可以达到减少无功功率的目的。

三、无功补偿的应用无功补偿广泛应用于电力系统中,其基本应用方式包括静态无功补偿和动态无功补偿。

静态无功补偿通常采用电容器组,作为一种被动补偿,其主要作用在于动态地响应网络的无功电流需求。

动态无功补偿则是采用高速控制系统,能够快速控制电网内的电容器或电感器,以实现电网的快速校正。

四、无功补偿的影响无功补偿存在对电力系统产生多种影响问题,包括电网安全性、稳定性、综合能量效率等。

通过合理的无功补偿方式,电网络可以在保持良好质量的情况下,尽可能地减少无功功率损失。

同时,不合理的无功补偿方式也会给电力系统带来消极影响,甚至影响电能的稳定供应。

五、无功补偿的发展趋势全球范围内,无功补偿技术的不断发展,使其不断适应复杂的电力系统环境,为保障电力系统的安全运行提供了重要的技术手段。

在未来的发展中,随着国家能源政策的调整,无功补偿将呈现更加广泛的应用景观,为保障电力系统的安全供应提供更加重要的技术支撑。

《低压无功补偿培训》课件

《低压无功补偿培训》课件

低压无功补偿的意义
低压无功补偿可以改善电力系统的功率因数,提高能源利用效率,减少电能损耗,保障系统的稳定运行。
传统低压无功补偿技术
传统的低压无功补偿技术包括电容器补偿、独立无功电源补偿和静止无功发生器补偿。
新型低压无功补偿技术
新型的低压无功补偿技术包括无功补偿器、电子式薄膜传感器和数字化信息 处理方案。
ቤተ መጻሕፍቲ ባይዱ
《低压无功补偿培训》 PPT课件
介绍电力系统中低压无功补偿的重要性和技术,以及其应用实践和发展趋势。
无功补偿的定义
无功补偿是电力系统中一种重要的技术手段,旨在改善电力系统的功率因数,提高电能利用效率。
为什么需要进行无功补偿
无功功率是电力系统中的一种负载,会导致电能损耗和系统的不稳定性,因 此需要进行无功补偿。
低压无功补偿系统设计
低压无功补偿系统的设计包括网络结构、系统参数计算和设备选型。
低压无功补偿应用实践
通过实际案例和故障处理,展示低压无功补偿技术在实际应用中的效果和应 对方案。
总结
低压无功补偿技术具有提高功率因数和电能利用效率的优势,并且其发展趋势是数字化和智能化。
参考资料
了解更多关于低压无功补偿技术的书籍、文献和网站。

《低压无功补偿培训》课件

《低压无功补偿培训》课件

提高客户满意度。
合作与联盟
03
通过与上下游企业合作,形成产业联盟,共同推动无功补偿技
术的发展和应用。
谢谢
THANKS
投切开关
总结词
控制电容器的投切,实现无功补偿
详细描述
投切开关是低压无功补偿装置中的关键元件,其主要功能是控制电容器的投切。通过自 动或手动操作投切开关,可以实现电容器的接入或退出,从而调整系统的无功功率,提
高功率因数,减少能源浪费。
控制保护装置
总结词
监测装置运行状态,保护元件安全
VS
详细描述
控制保护装置是低压无功补偿装置中的重 要组成部分,其主要功能是监测装置的运 行状态,并在发现异常时及时采取保护措 施。控制保护装置能够预防过电流、过电 压等故障的发生,确保系统元件的安全运 行。
运行环境
考虑低压无功补偿装置的 运行环境,包括温度、湿 度、海拔等因素,以确保 装置的稳定运行。
安装注意事项
安全接地
确保低压无功补偿装置的接地可靠, 防止漏电和电击事故。
安装位置
间距控制
在多台低压无功补偿装置并联使用时 ,应保持适当的间距,以减少相互干 扰。
选择通风良好、温度适宜、便于维护 的位置进行安装。
平衡原则
确保低压无功补偿装置的 配置能够平衡系统的无功 功率,提高功率因数,降 低线损。
可靠性原则
选择稳定可靠的产品,确 保低压无功补偿装置在运 行过程中能够稳定运行, 减少故障率。
选型依据
负载特性
了解负载的无功特性,选 择适合的低压无功补偿装 置类型和规格。
系统电压
根据系统的额定电压和电 压波动范围,选择能够在 该电压范围内正常运行的 低压无功补偿装置。

低压无功补偿的原理

低压无功补偿的原理

低压无功补偿的原理一、无功功率的产生和影响无功功率通常是由感性负载(如电动机)和容性负载(如电容器)引起的。

感性负载会产生感性无功功率(或称为无功电感),而容性负载会产生容性无功功率(或称为无功电容)。

无功功率对电网有一定的影响,如引起电网电压的波动、降低电能的利用效率等。

低压电网中的无功补偿主要采用静态无功补偿装置(SVC)、静止无功发生器(SVG)以及电力电容器等设备和系统实现。

其主要原理如下:1.静态无功补偿装置(SVC)SVC是一种基于IGBT(绝缘栅双极型晶体管)技术的无功补偿设备。

其工作原理是通过电容器和电感器组成谐振电路,产生可变的无功电流,来补偿感性或容性负载所引起的无功功率。

SVC可以根据电网的需求实时调整无功功率的大小和相位角,从而达到电网无功补偿的目的。

2.静止无功发生器(SVG)SVG是一种基于IGBT技术的无功补偿设备,主要通过电流控制策略来实现静止无功补偿。

SVG具有快速响应、精确无功补偿以及对电力质量有良好改善等特点。

其工作原理是通过IGBT器件对电网电压的波形进行调节,将电网的无功功率转化为有源功率,进而补偿无功功率。

3.电力电容器电力电容器是一种主动的无功补偿设备,可以通过给电网提供容性功率来补偿感性负载所引起的无功功率。

其工作原理是将感性无功功率转变为容性功率,通过并联接入电网实现补偿。

电力电容器通常具有快速响应、体积小、运行稳定等特点。

三、低压无功补偿的控制策略为了保持电网无功功率在正常范围内,实现无功功率补偿,需要通过控制策略来调整无功补偿装置的工作状态。

一般常用的控制策略有如下几种:1.基于电压稳定控制根据电网电压的变化,实时调整无功补偿设备的容性或感性无功功率,使电网电压保持稳定。

2.基于电流平衡控制通过监测电网三相电流的大小和相位差,实时调整无功补偿设备的工作状态,使电网三相电流保持平衡。

3.基于功率因数控制根据电网功率因数的变化,实时调整无功补偿设备的容性或感性无功功率,使功率因数保持在设定范围内。

无功补偿培训教程-基础篇2

无功补偿培训教程-基础篇2

在电流三角形中,功率因数为 0.7 时,无功电流与有功电流相等,都为 400×0.7=280A 那么功率因数提高到1 补偿容量为 280/1.44=194KVAR功率因数提高到 0.97时,无功电流为 280/4=70A (功率因数为 0.97 时,无功比有功 为 1:4) ,则补偿的无功电流为 280-70=210A此时补偿容量为 210/1.44=146KVAR当总电流为 250A 时,有功功率为 250A×0.4KV×0.7×1.732=121KW当功率因数为 0.97 时,无功与有功之比为 1/4,所以此时无功剩余为 121/4=30KV AR 这时一次侧总无功为30+4536/24/30=36.3KV AR此时无功与有功之比为 36.3/121=1/3.3功率因数 0.85 时无功与有功之比为 1/1.6所以能消除力率电费〖例题 4〗、有一台 10 回路 200KVAR 的电容柜,计算一下可控硅消耗的电能?10 回路的电容柜,共有可控硅 20 只,每路容量为 20KVAR,每只可控硅的导通时的压降 在 0.9V—1V 之间。

0.4KV、20KVAR 电容器的额定电流为 28.8A,那一只可控硅的功耗为P=UI=(0.9V—1V)×28.8A/2=(13~14.4)W20 只可控硅的功耗为20×(13~14)W=260W~288W〖例题 5〗、有一用户,按电压为 0.4KV 计算补偿容量为 200KVAR,但此用户系统有谐波,选 用 0.46KV 的电容器,此时补偿容量应为多少?电容器不在额定电压下运行和实际容量的计算公式为额额 实 实 Q U U Q 22 = 200= 额 Q 2 2 460 4 0 × ×= 额 Q 265KVAR〖例题 6〗、有一高压计量用户,灯力比为 6:4,月平均力率电费 8000 元,月平均总用电量 98000 度,日平均工作 10 小时,电价为0.389 元。

浅谈低压配电网的无功补偿

浅谈低压配电网的无功补偿

浅谈低压配电网的无功补偿摘要:介绍了低压配电网无功补偿的补偿原则、补偿方式和补偿容量的确定方法,结合实际分析了采取无功补偿的效果和意义。

关键词:无功补偿;配电网;容量0 引言创一流供电企业对线损管理和供电质量提出了更高的要求,随着农村“四到户”以及城区“一户一表”改造的深入开展,配电网低压线损电量的管理质量与企业的经济效益息息相关。

近年来我公司在城乡电网改造中,通过搞好低压配网的无功补偿减少了电能损耗,提高了客户电压质量和设备利用率,取得了比较好的效果,下面将就此问题进行探讨分析。

1 无功补偿的原理及原则无论是工业负荷还是民用负荷,大多数均为感性。

所有电感负载均需要补偿大量的无功功率,提供这些无功功率有两条途径:一是输电系统提供;二是补偿电容器提供。

如果由输电系统提供,则设计输电系统时,既要考虑有功功率,也要考虑无功功率。

由输电系统传输无功功率,将造成输电线路及变压器损耗的增加,降低系统的经济效益。

而由补偿电容器就地提供无功功率,就可以避免由输电系统传输无功功率,从而降低无功损耗,提高系统的电能传输能力。

国家电力公司国电农[1999]652号文件中的《供电所线损管理办法》中规定:农村生活和农业线路功率因数不小于0.85;工业、农副业专用线路功率因数不小于0.90。

无功补偿的配置原则应按照“分级补偿,就地平衡”的原则进行规划,合理布局,做到集中补偿与分散补偿相结合,降损与调压相结合,并注意不要出现过补偿。

2 低压无功补偿的方式低压无功补偿是指在配电变压器低压400伏网络中安装补偿装置,包括随机补偿、随器补偿、跟踪补偿几种方式。

随机补偿就是将低压电容器经过熔断器与电动机并接,通过控制保护装置与电动机同时投切。

我市农村许多排灌站根据电机容量选择了并联电容器随机补偿,促进无功就地平衡。

随器补偿是将低压电容器经过熔断器固定接在配电变压器低压侧,以补偿变压器的励磁及漏磁无功损耗。

我公司在配网改造中对天衢小区、北园小区等100余个台变低压侧安装了XYQC系列无功补偿装置,实现了以上台区的无功就地平衡。

低压无功补偿方案

低压无功补偿方案

低压无功补偿方案引言在低压电网中,无功补偿是保证电能质量和提高电网稳定性的重要手段。

本文将介绍低压无功补偿的基本概念、作用和常见的无功补偿方案。

低压无功补偿的基本概念低压电网中的无功功率是电网负荷对电网造成的负面影响之一。

在无功功率存在的情况下,会降低电网的功率因数,增加线路和设备的损耗,降低电网供电能力。

因此,进行无功补偿是必要的。

低压电网中的无功功率主要由电感性负载产生,如电动机、变压器等。

这些负载在工作过程中会消耗无功功率,导致电网出现电压波动和电能损耗。

低压无功补偿的作用低压无功补偿的主要作用是改善电网的功率因数,提高电能质量和电网的稳定性。

具体来说,低压无功补偿可以实现以下几个方面的作用:1.提高电网功率因数:通过补偿隐性负载的无功功率,使电网的功率因数接近于1,减少无功功率对电网的负面影响。

2.减少线路和设备的损耗:无功补偿可以减少电网中的无功功率流动,减少线路和设备的损耗,延长其使用寿命。

3.提高电网供电能力:通过无功补偿可以提高电网的稳定性和供电能力,减少电压波动,保证电力负荷的稳定供应。

常见的低压无功补偿方案在低压电网中,常见的无功补偿方案包括:恒定无功功率装置(SVC)、静态无功功率补偿器 (STATCOM)和电容补偿器。

1. 恒定无功功率装置 (SVC)恒定无功功率装置 (SVC) 是一种通过可控的电抗器和电容器组成的装置,用于补偿电网的无功功率。

SVC能够通过调节电抗器和电容器的容值,实现对无功功率的补偿。

通过控制SVC的输出,可以保持电网的功率因数在一个合理的范围内。

2. 静态无功功率补偿器 (STATCOM)静态无功功率补偿器 (STATCOM) 是一种可以快速响应电力系统需求的电力设备,能够调节电网的电压和无功功率,达到稳定电网电压的目的。

STATCOM通过控制其输出的电流和电压,实现对电网的无功功率补偿。

它具有快速响应的优势,可以迅速调整电压水平,以适应电网的需求变化。

无功补偿基础知识及供用电政策

无功补偿基础知识及供用电政策

无功补偿基础知识及供用电政策1.基本概念1)有功功率当电能转换成其它型能量时,如:电流通过白炽灯发光,通过电动机的传动使电能转换成机械能,通过钢厂电弧炉使电能转换成热能,通过化工厂的电解槽使电能转化成化学能等,这些在能量的转变过程中做功的电能,叫做有功电能,也称其为有功功率。

有功功率是保持用电设备正常运行所需的电功率。

式中有功功率的单位W(瓦),通常用KW表示。

线电压的单位为V(伏),视在电流I为单位A(安)。

2)无功功率在交流电路中,除了电阻负载以外,还有电感负载和电容负载。

如在电力网中使用最多的电动机与变压器,在运行中要产生磁场,而电容器及空载输电线则产生电场。

交流电在电源与这类电感或电容负载之间往返流动,在流动中通过磁场或电场时,不会使电能转换成热能、机械能、化学能或其他任何类型的能量。

此电能既不做功也不消耗,这种电能我们称它们为无功电能,也称其为无功功率。

无功功率绝不是无用功率,它的用处很大。

电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。

变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。

因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。

式中无功功率的单位为Var(乏),通常用Kvar表示。

线电压的单位为V(伏),视在电流I单位为A(安)。

a)感性无功功率电流矢量滞后电压矢量90度,如:电动机、变压器线圈、晶闸管变流设备等,这类负载产生的无功功率为感性无功功率;b)容性无功功率电流矢量超前电压矢量90度,如:电容器、电缆输配电线路、电力电子超前控制设备等,这类负载产生的无功功率为容性无功功率;3)视在功率有功功率与无功功率的向量和称之为视在功率,用S表示。

有功电流与无功电流的向量和称之为视在电流。

4)功率因数有功功率与视在功率的比值,称为功率因数。

功率因数是一个比值,没有单位。

低压无功补偿计算公式

低压无功补偿计算公式

低压无功补偿计算公式低压无功补偿是电力系统中一种重要的电力质量控制技术,它通过补偿无功功率,提高系统的功率因数,减少电网的无功损耗,改善电力系统的稳定性和可靠性。

本文将从低压无功补偿的基本原理、计算公式、应用场景等方面进行阐述,以期帮助读者更好地了解和应用低压无功补偿技术。

低压无功补偿的基本原理是根据电力系统的功率因数及无功功率需求,通过连接无功补偿装置,即电容器或电感器等设备,来提供或吸收无功功率。

其中,电容器用于补偿电力系统的感性无功功率,电感器用于补偿电力系统的容性无功功率。

通过调节补偿装置的容量和连接方式,可以实现对系统功率因数的调节,以达到减少无功功率损耗、提高电网电压质量和稳定运行的目的。

低压无功补偿的计算公式是根据电力系统的功率因数和无功功率需求来确定补偿装置的容量。

一般来说,计算公式包括功率因数公式和无功功率公式两部分。

功率因数公式:功率因数 = 有功功率 / (有功功率^2 + 无功功率^2)^0.5无功功率公式:无功功率 = 有功功率 * tan(acos(功率因数))根据上述公式,可以通过已知的有功功率和功率因数,计算出对应的无功功率。

进而,根据无功功率的大小,来确定补偿装置的容量。

低压无功补偿广泛应用于电网、工矿企业和商业建筑等各个领域。

在电网中,低压无功补偿可以改善电网的功率质量,减少电网的无功损耗,并提高电能利用率。

在工矿企业中,低压无功补偿可以提高电力设备的运行效率,减少电力损耗,降低运行成本。

在商业建筑中,低压无功补偿可以提高电力系统的可靠性,稳定供电,避免因电力质量不佳而引起的设备故障和停电等问题。

低压无功补偿是一种重要的电力质量控制技术,通过补偿无功功率,提高系统的功率因数,减少电网的无功损耗,改善电力系统的稳定性和可靠性。

通过计算公式的应用,可以确定补偿装置的容量,以满足电力系统对无功功率的需求。

低压无功补偿广泛应用于电网、工矿企业和商业建筑等领域,为各个行业提供了稳定可靠的电力供应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低压电气-无功补偿基础知识无功补偿基础知识与应用案例一、功率的概念2二、需要无功补偿的原因 2三、无功补偿的一般方法 2四、无功补偿装置的分类 3五、采用无功补偿的优点 5六、无功补偿的应用例子 6一、功率的概念1、视在功率:视在功率是指发电机发出的总功率,其中可以分为有功部分和无功部分。

2、有功功率:有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。

3、无功功率:是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。

它不对外作功,而是转变为其他形式的能量。

凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。

无功功率不做功,但是要保证有功功率的传导必须先满足电网的无功功率。

二、需要无功补偿的原因在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。

如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。

但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中要设置一安装容易、配置方便灵活、维护简单、事故率低等优点。

(2)低压集中补偿低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。

电容器的投切是整组进行,做不到平滑的调节。

低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。

(3)高压集中补偿高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。

适用于用户远离变电所或在供电线路的末端,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗并可以起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。

同时便于运行维护,补偿效益高。

四、无功补偿装置的分类无功补偿有很多种类:从补偿的范围划分可以分为负荷补偿与线路补偿,从补偿的性质划分可以分为感性补偿与容性补偿。

下面将并联容性补偿的方法大致列举:1、同步调相机调相机的基本原理与同步发电机没有区别,它只输出无功电流。

因为不发电,因此不需要原动机拖动,没有启动电机的调相机也没有轴伸,实质就是相当于一台在电网中空转的同步发电机。

调相机是电网中最早使用的无功补偿装置。

当增加激磁电流时,其输出的容性无功电流增大。

当减少激磁电流时,其输出的容性无功电流减少。

当激磁电流减少到一定程度时,输出无功电流为零,只有很小的有功电流用于弥补调相机的损耗。

当激磁电流进一步减少时,输出感性无功电流。

调相机容量大、对谐波不敏感,并且具有当电网电压下降时输出无功电流自动增加的特点,因此调相机对于电网的无功安全具有不可替代的作用。

由于调相机的价格高,效率低,运行成本高,因此已经逐渐被并联电容器所替代。

但是近年来出于对电网无功安全的重视,一些人主张重新启用调相机。

2、并联电容器并联电容器是目前最主要的无功补偿方法。

其主要特点是价格低,效率高,运行成本低,在保护完善的情况下可靠性也很高。

在高压及中压系统中主要使用固定连接的并联电容器组,而在低压配电系统中则主要使用自动控制电容器投切的自动无功补偿装置。

自动无功补偿装置的结构则多种多样形形色色,适用于各种不同的负荷情况。

对于低压自动无功补偿装置将另文详细介绍。

并联电容器的最主要缺点是其对谐波的敏感性。

当电网中含有谐波时,电容器的电流会急剧增大,还会与电网中的感性元件谐振使谐波放大。

另外,并联电容器属于恒阻抗元件,在电网电压下降时其输出的无功电流也下降,因此不利于电网的无功安全。

3、SVCSVC的全称是静止式无功补偿装置,静止两个字是与同步调相机的旋转相对应的。

国际大电网会议将SVC定义为7个子类:①机械投切电容器(MSC)②机械投切电抗器(MSR)③自饱和电抗器(SR)④晶闸管控制电抗器(TCR)⑤晶闸管投切电容器(TSC)⑥晶闸管投⑦自换向或电网换向转换器(SCC/LCC)根据以上这些子类,我们可以看出:除调相机之外,用电感或电容进行无功补偿的装置几乎均被定义为SVC。

因此,目前一些资料或者广告中大量出现“SVC”字样,其原因不外乎两条:其一是作者自己并不明白SVC的定义,其二就是以普通人不懂的字母组合故弄玄虚。

目前国内市场上被宣传为SVC的产品主要是晶闸管控制电抗器(TCR)和晶闸管投切电容器(TSC)。

对于TSC我们另文叙述,这里只简要介绍一下晶闸管控制电抗器(TCR)。

TCR的基本结构包括一组固定并联连接在线路中的电容器和一组并联连接在线路中用晶闸管控制的电抗器,通常将电抗器的容量设计成与电容器一样。

由于电抗器是用晶闸管控制的,其感性无功电流可以变化。

当晶闸管关断时,电抗器没有电流,而电容器固定连接,因此整套装置的补偿量最大。

当调节晶闸管的导通角时,电抗器的感性电流就会抵消一部分电容器电流,因此补偿量减少,导通角越大,电抗器的电流越大,补偿量就越小。

当晶闸管全通时,电抗器电流就会将电容器电流全部抵消,此时补偿量为0。

在TCR中,当晶闸管的导通角小于90°时,电抗器的电流非正弦含有谐波成分,因此必须将固定电容器组设计成滤波器形式或者配备另外的滤波器。

综上所述,可以看出TCR的结构复杂,损耗大。

但其具有补偿量连续可调的特点,在高压系统中还有应用。

4、STATCOMSTATCOM是一种使用IGBT、GTO、或者SIT等全控型高速电力电子器件作为开关控制电流的装置。

其基本工作原理是:通过对系统电参数的检测,预测出一个与电源电压同相位的幅度适当的正弦电流波形。

当系统瞬时电流大于预测电流的时候,STATCOM将大于预测电流的部分吸收进来,储存在内部的储能电容器中。

当系统瞬时电流小于预测电流的时候,STATCOM将储存在电容器中的能量释放出来,填补小于预测电流的部分,从而使得补偿后的电流变成与电压同相位的正弦波。

根据STATCOM的工作原理,理论上STATCOM可以实现真正的动态补偿,不仅可以应用在感性负荷场合,还可以应用在容性负荷的场合。

并且可以进行谐波滤除,起到滤波器的作用。

但切是实际的STATCOM由于技术的原因不可能达到理论要求,而且由于开关操作频率不够高等原因,还会向电网输出谐波。

STATCOM的结构十分复杂,价格昂贵,可靠性差,损耗大,目前仍处于研究试用阶段,没有实际应用价值。

电抗器(TSR)偿,从补偿的方式划分可以分为串联补偿与并联补偿。

五、采用无功补偿的优点1、根据用电设备的功率因数,可测算输电线路的电能损失。

通过现场技术改造,可使低于标准要求的功率因数达标,实现节电目的。

2、采用无功补偿技术,提高低压电网和用电设备的功率因数,是节电工作的一项重要措施。

3、无功补偿,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量,稳定设备运行。

4、减少电力损失,一般工厂动力配线依据不同的线路及负载情况,其电力损耗约2%--3%左右,使用电容提高功率因数后,总电流降低,可降低供电端与用电端的电力损失。

5、改善供电品质,提高功率因数,减少负载总电流及电压降。

于变压器二次侧加装电容可改善功率因数提高二次侧电压。

6、延长设备寿命。

改善功率因数后线路总电流减少,使接近或已经饱和的变压器、开关等机器设备和线路容量负荷降低,因此可以降低温升增加寿命(温度每降低10°C,寿命可延长1倍)7、最终满足电力系统对无功补偿的监测要求,消除因为功率因数过低而产生的罚款。

8、无功补偿可以改善电能质量、降低电能损耗、挖掘发供电设备潜力、无功补偿减少用户电费支出,是一项投资少,收效快的节能措施。

9、无功补偿技术对用电单位的低压配电网的影响以及提高功率因数所带来的经济效益和社会效益,确定无功功率的补偿容量,确保补偿技术经济、合理、安全可靠,达到节约电能的目的。

六、无功补偿的应用例子例1:某供电企业给某淀粉厂加装470 kvar低压动态补偿电容柜,设定补偿限值cosφ为0.95,小于限值则动态顺序投入电容器组。

如功率因数超前,向线路反送无功功率,则开始顺序切除电容器,使功率因数在一个相对稳定的区域保持动态平衡。

试机时一次电流1050A,cosφ = 0.7,装置动态投入400kvar后,功率因数接近到1,一次电流变为750A,电流是补偿前的电流的70%,即减少线路电流30%左右。

表1列出了补偿前后参数的变化表 1 补偿前后参数的变化功率因数负荷电流/A计算值/A有功电流无功电流补偿前0.7 1050735746补偿后1.0 750735注:按现场控制盘仪表指示例2:某供电企业给某造纸厂加装500 kvar低压动态补偿柜,补偿前功率因数≤0.75,线路电流1300 A,动态补偿到功率因数为0.96后一次电流是1000 A,直观减少线路电流25%左右。

根据电路原理,线路的损耗与负荷电流的平方成正比,线路电流大则损耗大,线路电流减小则线损减少,例1中,补偿前电流为I,补偿后电流大约为0.7×I,根据DP = 3I2R,所以补偿后的线路损耗为补偿前线路损耗值的49 %,线路损耗降低了大约51%左右。

例2中线路补偿后电流大约是补偿前电流的0.77,所以补偿后的线路损耗大概是补偿前线路损耗的59%。

推算出补偿前后功率因数的变化与线路损耗变化的关系:表 2 补偿前后线路损耗之比补偿前功率因数补偿后功率因数0.850.900.951.000.8510.800.80 0.72 0.80 0.88 0.79 0.70 0.64 0.75 0.78 0.690.630.560.700.680.600.540.49按表2所示:例1功率因数从0.7提高到1,补偿后的线路损耗为补偿前线路损耗的49%;线路功率因数从0.75提高到0.95后,线路损耗为补偿前的63%,降低线损效果明显。

例3:某市能源监测中心于2006年4月24、29、30日对某氨纶股份有限公司B区制冷机、空压机电机进行了电机补偿装置的安装调试,从安装后测试结果看,平均降低电流22-51(A),电机功率因数提高到0.98,(见测试结果对比表),减少了公司内部低压电网的消耗,从而达到了节电的目的。

表3 测试结果对比表设备名称设备容量(kW)补前功率因数COSφ1补后功率因数COSφ2电流下降△(A)制冷压缩机LM1-110M、B41100.840.9822制冷压缩机LM1-200M、B2 2200.890.9841制冷压缩机LM1-250MA1C1 2500.860.9851制冷压缩机2DLGS-K2、D2 2500.890.98649制冷压缩机2DLGS-K2、D5 2500.890.9848空气压缩机20S-200A、D1 1500.870.9838空气压缩机20S-200A、D2 1500.860.97836空气压缩机20S-200A、D3 1500.870.98240空气压缩机60A-160、B1 1600.880.9846空气压缩机60A-160、B21600.890.97348由于电流减少,变压器的铜损及公司内部的低压损耗都降低。

相关文档
最新文档