AA第一讲 集合的概念及运算
第一讲 集合的概念和运算
。
解析:对于新定义题,关键是读懂题目, 弄清概念的含义,准确运用。 ∵n=4, ∴ Sn {1, 2,3, 4}, ,则X可取 ,{1}, {2}, {3},
{4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {2,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}.不是偶子集有{1},
A B 0,1,2,4,16
则a的值为( A. 0 答案:D. B. 1
) C. 2 D. 4
a4 解析:抓住并集中的元素,由此知 a 2 16 2
a 4 或 ,∴选D。 a 16
变式题:含有三个实数的集合可表示为{a,b,lg(ab)},也可 表示为{|a|,b,0},则 a 2015 b2015 的值等于 。
7.特别提醒的几点:
①.注意区分几种常见集合
研究一个集合,首先要看集合中的代表元素,然 后再看元素的限制条件,当集合用描述法表示时,注 意弄清其元素表示的意义是什么.
集合 {x|f(x)=0} {x|f(x)>0} {x|y=f(x)} {y|y=f(x)} {(x,y)|y=f(x)}
集合的意义 方程f(x)=0的解源自 不等式f(x)>0的解集 函数y=f(x)的定义域 函数y=f(x)的值域 函数y=f(x)图象上的点集
⑶
无序性
。
5.集合中元素和集合、集合与集合的关系: ⑴元素和集合的关系:若元素a 是集合A的元素, A”。 记作:a A ,否则“a
⑵集合与集合的关系:包含和不包含关系。包含关系又 分为真包含和相等关系。符号为“ ”,“=”, ”,“ “ ”,“ ” .
特别提醒:规定空集是 空集是
第一章 集合的概念及运算(集合论讲义)
(5) 德·摩根律 A ∪ B = A ∩ B , A ∩ B = A ∪ B
A − (B ∪ C) = (A − B) ∩ (A − C) , A − (B ∩ C) = (A − B) ∪ (A − C)
4
|
A1
|=
⎢ 250 ⎥ ⎢⎣ 2 ⎥⎦
=
125
,|
A2
|=
⎢ 250 ⎢⎣ 3
⎥ ⎥⎦
=
83
,|
A3
|=
⎢ 250 ⎥ ⎢⎣ 5 ⎥⎦
=
50
,|
A4
|=
⎢ ⎢⎣
250 ⎥ 7 ⎥⎦
=
35
,
|
A1
∩
A2
|=
⎢ ⎢⎣
250 ⎥ 2× 3⎥⎦
=
41
,|
A1
∩
A3
|=
⎢ 250 ⎥ ⎢⎣2× 5⎥⎦
=
(6) 吸收律 A ∪ ( A ∩ B) = A , A ∩ ( A ∪ B) = A (7) 零律 A ∪ E = E , A ∩ ∅ = ∅ (8) 同一律 A ∪ ∅ = A , A ∩ E = A (9) 排中律 A ∪ A = E
5
(10) 矛盾律 A ∩ A = ∅ (11) 全补律 ∅ = E , E = ∅ (12) 双重否定律 A = A (13) 补交转换律 A − B = A ∩ B
3
还可以将交,并运算推广到集族上。
∪ 定义 2.3 设 A 为一个集族,称由 A 中全体集合的元素组成的集合为 A 的广义并集,记作 A , ∪ 称 ∪ 为广义并运算符, A 可描述为
高考数学总复习 第一章 第一节集合的概念与运算课件 理
第十七页,共35页。
考点(kǎo 集合(jíhé)的基本关系及空集的妙用 diǎn)三
【例3】 设集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m -1},若B⊆A,求实数(shìshù)m的取值范围.
思路点拨:考查集合间的包含、相等关系,关键搞清A,B两 集合谁是谁的子集.若B⊆A,说明B是A的子集,即集合B中元素 都在集合A中,注意B是∅的情况;同样若A⊆B,说明A是B的子集, 此时注意B是不是∅;若A=B,说明两集合元素完全相同.
A.A=B B.B=C C.C=E D.B=E
思路点拨:要注意分辨各集合的代表元素是什么,如果性质 相同,但代表元素不同,则它们所表示的集合也是不一样的.因此 对于集合问题(wèntí),要首先确定它属于哪类集合(数集、点集或某 类图形).
第十五页,共35页。
解析:集合 A 是用列举法表示,它只含有一个元 素,即函数 y=x2+2,集合 B,C,E 中的元素都是数, 即这三个集合都是数集,集合 B 表示的是函数 y=x2 +2 的值域2,+∞,集合 C 表示的是函数 y=x2+2 的 定 义 域 R, 集 合 E 是不 等 式 x - 2≥0 的 解集 2,+∞,集合 D 的元素则是平面上的点,此集合是 函数 y=x2+2 的图象上所有点所组成的集合.故只有 B=E.故选 D.
第七页,共35页。
2.并集. (1)定义: 由所有属于集合A或集合B的元素组成的集合,称 为(chēnɡ w集éi)合__(_j_íh_é_)_A_与__集__合__(_j_íh的é)并B集,记作___A__∪__B_____(读作 “A并B”).即 A∪B={ x|x∈A,或x∈B}. (2)性质:
集合的概念与运算PPT课件
6.子集、真子集及其性质: 对任意的 x∈A,都有 x∈B,则 A⊆ B(或 B⊇ A); 若集合 A⊆ B,但存在元素 x∈B,且 x∉A,则 A⫋ B(或 B⫌ A);
⌀ ⊆ A;A⊆ A;A⊆ B,B⊆ C⇒ A⊆ C. 若集合 A 含有 n 个元素,则 A 的子集有 2n 个,A 的非空子集有 2n-1个,A
【例 2-2】已知集合 A={x|x2-2x+a≤0},B={x|x2-3x+2≤0},且 A⫋ B,求实 数 a 的取值范围.
解:由题意可得 B={x|1≤x≤2}. 对于 A:Δ=(-2)2-4a<0,即 a>1 时,A≠⌀ ,满足 A⫋ B;
Δ=(-2)2-4a=0,即 a=1 时,A={1},满足 A⫋ B;
A.(a*b)*a=a
B.[a*(b*a)]*(a*b)=a
C.b*(b*b)=b
D.(a*b)*[b*(a*b)]=b 解析:在 B 选项中,[a*(b*a)]*(a*b)=b*(a*b)=a,故 B 正确;在 C 选项中,易知 a*(b*a)=b*(b*b)=b 成立,故 C 正确;在 D 选项中,令 a*b=c,则 c*(b*c)=b 成立, 故 D 正确.只有 A 选项不能恒成立.
5.设集合 A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数 a 的值为 1
.
解析:∵A={-1,1,3},B={a+2,a2+4},A∩B={3},a2+4>3, ∴a+2=3,a=1.
一、集合的概念
【例 1-1】 若集合 A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合 B 的元 素个数为( B ).
第1讲集合的概念和运算
第1讲 集合的概念和运算必记考点1.集合的基本概念(1)集合元素的三个特征: 、 、 . (2)元素与集合的关系是属于或不属于关系,用符号 或 表示. (3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集: N ; N *(或N +) ; Z ;Q ; R . (5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、 . 2.集合间的基本关系(1)子集: ,则A ⊆B (或B ⊇A ). (2)真子集: 则A B (或B A ).若集合A 中含有n 个元素,则A 的子集有2n 个,A 的真子集有2n -1个.(3)空集:空集是 的子集,是 的真子集.即∅⊆A ,∅B (B ≠∅).(4)集合相等:若 ,则A =B . 3.集合的基本运算及其性质(1)并集:A ∪B = . (2)交集:A ∩B = .(3)补集:∁U A = ,U 为全集,∁U A 表示A 相对于全集U 的补集. (4)集合的运算性质①A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B ; ②A ∩A =A ,A ∩∅=∅; ③A ∪A =A ,A ∪∅=A ;④A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .考向一 集合的基本概念【例1】►已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 014+b 2 014=________.【训练1】集合⎩⎨⎧⎭⎬⎫x ∈N *⎪⎪12x∈Z 中含有的元素个数为( ).考向二 集合间的基本关系【例2】已知集合A ={x |0<x ≤4},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是________.【训练2】已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.考向三 集合的基本运算【例3】►(1)(2012·安徽)设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( ).A .(1,2)B .[1,2]C .[1,2)D .(1,2](2)(2012·山东)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ). A .{1,2,4} B .{2,3,4} C .{0,2,4}D .{0,2,3,4}(3)设全集U ={1,2,3,4,5,6},集合A ={1,2,4},B ={3,4,5},则图中的阴影部分表示的集合为( ).A .{5}B .{4}C.{1,2} D.{3,5}基础演练1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则().A.A B B.B AC.A=B D.A∩B=∅2.设全集U={1,2,3,4,5,6},集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=().A.{1,2,3,4,6} B.{1,2,3,4,5}C.{1,2,5} D.{1,2}3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=().A.{1,4} B.{1,5}C.{2,3} D.{3,4}4.若集合A={x||x|>1,x∈R},B={y|y=2x2,x∈R},则(∁R A)∩B=().A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅5.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 6.集合A={x∈R||x-2|≤5}中的最小整数为________.7.若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.第2讲函数及其表示必记考点1.函数的概念一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A到集合B 的一个函数.记作.2.函数的三要素函数由、、三个要素构成,对函数y=f(x),x∈A,其中(1)定义域:.(2)值域:.(3)两个函数就相同: .3.函数的表示方法表示函数的常用方法有:解析法、图象法、列表法.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.考向一函数的定义【例1】(1)下列各图形中是函数图象的是().2.下列各组函数表示相同函数的是().A.f(x)=x2,g(x)=(x)2B.f(x)=1,g(x)=x2C.f(x)=⎩⎪⎨⎪⎧x,x≥0,-x,x<0,g(t)=|t|D.f(x)=x+1,g(x)=x2-1x-1考向二 求函数的定义域、值域【例2】►(1) 函数y =x +1x 的定义域为________.(2)函数y =x -3x +1的值域为________.(3) 设函数f (x )=41-x ,若f (a )=2,实数a =________.考向三 分段函数及其应用【例3】(1) 设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( ).A.15 B .3 C.23D.139(2)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( ).A .1B .0C .-1D .π(3)已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ).A.12 B.45 C .2 D .9基础演练1.函数f (x )=11-x +lg(1+x )的定义域是( ).A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)2.下列各组函数中,表示同一函数的是( ). A .f (x )=x ,g (x )=(x )2 B .f (x )=x 2,g (x )=(x +1)2 C .f (x )=x 2,g (x )=|x |D .f (x )=0,g (x )=x -1+1-x3.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( ).A .-3B .±3C .-1D .±14.函数f (x )=lg 1-x 2的定义域为________.5.(2013·皖南八校联考)已知f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,log 2x ,x >0,则f ⎣⎡⎦⎤f ⎝⎛⎭⎫-12=________. 6.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式.第3讲 函数的性质必记考点 1.函数的单调性 (1)单调函数的定义设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,①若 ,则f (x )在区间D 上是增函数;②若 ,则f (x )在区间D 上是减函数.(2)单调区间的定义若函数f (x )在区间D 上是 或 ,则区间D 叫做f (x )的单调区间.(3)用定义判断函数单调性的步骤: . 2. 函数的奇偶性(1)定义:如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做偶函数.如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做奇函数.(2)性质:奇函数的图象关于 对称;偶函数的图象关于 对称.考向一 确定函数的单调性或单调区间【例1】(1)下列函数中,在区间(0,+∞)上为增函数的是( ).A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x(2)函数y =-x 2+2x -3(x <0)的单调增区间是( ).A .(0,+∞)B .(-∞,1]C .(-∞,0)D .(-∞,-1]考向二 函数单调性的应用【例2】(1)若函数f (x )=4x 2-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=________. (2) 函数y =f(x)在R 上为增函数,且f(2m)>f(-m +9),则实数m 的取值范围是 .考向三 求函数的最值【例3】函数f (x )=2xx +1在[1,2]上的最大值和最小值分别是________.考向四 判断函数的奇偶性【例4】判断下列函数的奇偶性: (1)f (x )=x 3-2x ;(2)f (x )=x 2-1+1-x 2;(3)f (x )=(x -1)- 1+x1-x.考向五 函数奇偶性的应用【例5】(1)函数f (x )=(x +a )(x -4)为偶函数,则实数a =________.(2) 设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________. (3) 设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)= .基础演练1.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b>0,则必有( ).A .函数f (x )先增后减B .f (x )是R 上的增函数C .函数f (x )先减后增D .函数f (x )是R 上的减函数2.函数y =f (x )在R 上为减函数,且f (2m )>f (-m +9),则实数m 的取值范围是 .3.下列函数中,在(0,+∞)上单调递增的函数是( ).A .y =1xB .y =|x |+1C .y =-x 2+1D .y =-2x +14.已知f (x )=x 2-2mx +6在(-∞,-1]上是减函数,则m 的范围为________.5.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝⎛⎭⎫12的实数x 的取值范围为________. 6.下列函数是偶函数的是( ).A .y =xB .y =2x 2-3C .y =1xD .y =x 2,x ∈[0,1]7. 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是 .8. 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________.9.已知函数y =f (x )是偶函数,其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是________. 10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0.(1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.第4讲 指数与指数函数必记考点1.指数与指数运算 (1)根式的概念若x n =a ,则x 叫 ,.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.即x n=a ⇒⎩⎨⎧x =n a (当n 为奇数且n ∈N *时),x =±n a (当n 为偶数且n ∈N *时).(2)根式的性质①(na )n = .②当n 为奇数时,na n= ;当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0).(3)分数指数幂的含义正分数指数幂a m n =na m (a >0,m ,n ∈N *,n >1).负分数指数幂a -m n =1a m n =1na m (a >0,m ,n ∈N *,n >1).(4)幂指数的运算性质a r ·a s = rs aa= (a r )s = (ab )r =2.指数函数的图象与性质考向一 指数幂的化简与求值【例1】化简下列各式: (1)[(0.06415)-2.5]23- 3338-π0;(2) 2132a b ·(-31132a b )÷156613a b(3)a ·3a 25a ·3a考向二 指数函数的性质【例2】(1)方程2x -2+x =0的解的个数是________. (2) 下列各式比较大小正确的是( ). A .1.72.5>1.73 B .0.6-1>0.62C .0.8-0.1>1.250.2 D .1.70.3<0.93.1(3)已知函数f (x )=2x -12x +1,①讨论f (x )的奇偶性;②讨论f (x )的单调性.⎝⎛⎭⎫21412-⎝⎛⎭⎫-350-⎝⎛⎭⎫827-13=________. 已知函数f (x )=4+a x -1(a >0且a ≠1)的图象恒过定点P ,则点P 的坐标是( ).函数y =1-3x 的定义域为________。
第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT
第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)B={x|x∈A}={1,2,3}=A,故选 C.
(2)∵集合 A={x|x=sin n3π,n∈Z}={0, 23,- 23},且 B⊆A,∴集合 B 的个 数为 23=8,故选 C.
(3)解法一:(列举法),由题意知
高考一轮总复习 • 数学 • 新高考
返回导航
(2)(多选题)(2020·湖南长郡中学模拟改编)已知集合 M={y|y=x-|x|,x∈R},N
={y|y=(12)x,x∈R},则下列不正确的是(ABD )
A.M=N
B.N⊆M
C.M=∁RN
D.(∁RN)∩M=∅
(3)已知集合 A={x|x2-3x-10≤0},B={x|mx+10>0},若 A⊆B,则 m 的取值范
返回导航
(3)若 a+2=1,则 a=-1,A={1,0,1},不合题意;若(a+1)2=1,则 a=0 或-
2,当 a=0 时,A={2,1,3},当 a=-2 时,A={0,1,1},不合题意;若 a2+3a+3=1,
则 a=-1 或-2,显然都不合题意;因此 a=0,所以 2 0200=1.
∵1∉A,∴a+2≠1,∴a≠-1;(a+1)2≠1,解得 a≠0,-2;a2+3a+3≠1 解
A.(-1,1)
B.(1,2)
C.(-1,+∞)
D.(1,+∞)
[解析] 由题意得A∪B={x|x>-1},即A∪B=(-1,+∞),故选C.
第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
6. (2019·全国卷Ⅱ,5分)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B
高考数学《集合的概念及运算》
(3)本题考查韦恩图及集合的基本运算.如图所示的阴影部分用集合可表示为(∁UA)∩B 或 ∁U(A∩B)∩B.故选 BC.
(2022·连云港模拟)若非空且互不相 等的集合 M,N,P 满足:M∩N=M,N∪P= P,则 M∪P=( )
A.∅ B.M C.N D.P
板书
【答案】D
【解析】本题考查集合的交集、并集运算.由题意可知 M∩N=M,则 M N,又 N∪P =P,则 N P,所以 M N P,所以 M∪P=P,故选 D.
【归纳】研究集合问题时,要把握以下几个关键点:一是集合中的元素是什么,即弄清集合 是数集还是点集;二是集合中的元素满足什么限制条件,特别注意集合中元素的互异性;三是 能根据已知条件(元素的限制条件)构造关系式解决相关问题.
(2022·江苏模拟)已知 a,b∈R,若 a,ba,1={a2,a+b,0},则 a2 019+b2 019= ____________.
A.(∁UA)∪B C.∁U(A∩B)∩B
B.(∁UA)∩B D.∁U(A∪B)∪B
板书
【答案】(1)B (2)A (3)BC
【解析】(1)由对数中真数大于 0,得 M={x|x<-2 或 x>2},所以∁RM={x|-2≤x≤2}. 又 N={x|0<x<4},所以(∁RM)∩N={x|0<x≤2},故选 B.
【归纳】(1)紧扣“新”定义,把新定义所叙述的问题的本质弄清楚.(2)把握“新”性质,要善于 从试题中发现可以使用集合性质的一些因素.(3)遵守“新”法则,准确把握新定义的运算法则.
高中数学 第一讲 集合的概念与运算教案(教师版) 新人教版
第一讲 集合的概念与运算教学目的: 理解集合、子集、交集、并集、补集的概念。
了解空集和全集的意义,了解属于、包含、相等关系的意义,能正确进行“集合语言”、“数学语言”“图形语言”的相互转化.教学重点: 交集、并集、补集的定义与运算.教学难点: 交集、并集、补集的定义及集合的应用.【知识概要】新课标教学目标: 1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 知识点1 集合某些指定的对象集在一起就成为一个集合。
集合中每个对象叫做这个集合的元素 点评:(1)集合是数学中不加定义的基本概念.构成集合的元素除了常见的数、式、点等数学对象之外,还可以是其他任何对象. (2)集合里元素的特性确定性:集合的元素,必须是确定的.任何一个对象都能明确判断出它是或者不是某个集合的元素.互异性:集合中任意两个元素都是不相同的,也就是同一个元素在集合中不能重复出现. 无序性:集合与组成它的元素顺序无关.如集合{a, b, c}与{c, a, b}是同一集合. (3)元素与集合的关系如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A (或a ∈A ).(4)集合的分类集合的种类通常可分为有限集、无限集、空集(用记号φ表示).有限集:含有有限个元素的集合(单元素集:只有一个元素的集合叫做单元素集。
集合的概念与运算
分配律
定义
对于任意三个集合A、B和C,如果A∪(B∩C)=(A∪B)∩(A∪C)和 A∩(B∪C)=(A∩B)∪(A∩C),则称集合的运算满足分配律。
解释
分配律意味着并集和交集运算可以分配给括号内的并集和交集运算。 即,括号内的并集和交集运算的结果可以与外部的并集和交集运算 的结果进行交换。
伍 集合的应用
集合的元素
元素可以是具体的, 如苹果、汽车等;也 可以是抽象的,如数 字、图形等。 元素是构成集合的基 本单位,可以是任何 对象或实体。
并集
并集是将两个集合中 的所有元素合并到一 个新的集合中。 并集运算可以用符号 “∪”表示。
交集
交集运算可以用符号“∩”表示。 交集是两个集合中共有的元素组成的集合。
壹
集合的概念与运算
目录 CONTENTS
0 1 集合的基本概念
0 4 集合的应用
0 2 集合的运算
0 5 集合运算的注意事项
0 3 集合运算的性质
贰 集合的基本概念
集的定义
集合中的元素具有确定性、 互异性和无序性。 集合是由确定的、互不相 同的元素所组成的总体。
集合的表示方法
将集合中的元素一一列举出 来,用大括号括起来。 列举法 通过描述集合中元素的共同 特征,用大括号括起来。 描述法
交集是指两个或多个集合中共有的元素的集合,即同时属于A和B的元素组成的集合。 交集的表示方法为A∩B,其中A和B为两个集合。 交集的性质包括交换律、结合律和分配律。
差集
差集是指属于A但不属于B的元素的集合,即所有属于A但不属于B的元素组成的集合。 差集的表示方法为A−B,其中A和B为两个集合。 差集的性质包括反身律、对称律和传递律。
解释
2023届高考数学一轮复习讲义:第1讲 集合的概念与运算
第1讲集合的概念与运算1.集合与元素(1)集合元素的三个特征:、、.(2)元素与集合的关系是或关系,用符号或表示.(3)集合的表示法:、、.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号[注意]N为自然数集(即非负整数集),包含0,而N*和N+的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系表示关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)真子集 集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中集合 相等集合A ,B 中元素相同A =B3.集合的基本运算集合的并集集合的交集集合的补集图形 语言符号 语言A ∪B =A ∩B =∁U A =➢考点1 集合的含义与表示[名师点睛]与集合元素有关问题的解题策略(1)研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义. (2)利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4(2)设A =⎩⎨⎧⎭⎬⎫2,3,a 2-3a ,a +2a +7,B ={|a -2|,3},已知4∈A 且4∉B ,则a 的取值集合为________.[举一反三]1.(2022·江西·新余四中模拟预测(理))已知集合()(){}20A x a x x a =--<,若2A ∉,则实数a 的取值范围为( )A .()(),12,-∞+∞ B .[)1,2 C .()1,2D .[]1,22.(2022·菏泽模拟)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( ) A .1 B .-1 C .2D .-23.(多选)(2022· 广州一调)已知集合{x |mx 2-2x +1=0}={n },则m +n 的值可能为( )A .0B .12C .1D .24.(2022·福建·模拟预测)设集合{2,1,1,2,3}A =--,{}2|log ||,B y y x x A ==∈ ,则集合B 元素的个数为( )A .2B .3C .4D .55.(2022·武汉校级月考)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.➢考点2 集合的基本关系R N )=( )A .∅B .MC .ND .R(2)[2022·广东阳江月考]已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若B ⊆A ,则实数a 的取值范围为( )A .(-∞,-3]∪[2,+∞)B .[-1,2]C .[-2,1]D .[2,+∞)[举一反三]1.(2022·广东广州·一模)已知集合{}11A x x =∈-≤≤Z ,{}02B x x =≤≤,则A B 的子集个数为( )A .2B .3C .4D .62.[2022·湖北武汉摸底]已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3D .43.(2022·山东·潍坊一中模拟预测)已知集合M ,N 是全集U 的两个非空子集,且()U M N ⊆,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .()U N M U ⋃=4.[2021·湖南长沙长郡中学适应性考试]已知集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}.若A ∩B 只有4个子集,则实数a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[0,1]D .(0,1]5.[2022·吉林辽源五校期末联考]已知集合M ={x |x -a =0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________.➢考点3 集合的基本运算[典例]1.(1)(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =( )A .{3}B .{1,6}C .{5,6}D .{1,3}(2)(多选)[2022·湖南长沙模拟]已知全集U =R ,集合M ={x |-3≤x <4},N ={x |x 2-2x -8≤0},则( )A .M ∪N ={x |-3≤x <4}B .M ∩N ={x |-2≤x <4}C .(∁U M )∪N =(-∞,-3)∪[-2,+∞)D .M ∩(∁U N )=(-3,-2)2.(1)(2020·高考全国卷Ⅰ)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a =( )A .-4B .-2C .2D .4(2)[2022·湖南六校联考]集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4[举一反三]1.(2022·河北石家庄·二模)已知集合{3,2,1,0,1}A =---,301x B x Zx +⎧⎫=∈<⎨⎬-⎩⎭,则A B =( )A .[3,1)-B .[3,1]-C .{3,2,1,0,1}---D .{2,1,0}--2.[2022·华南师范大学附属中学月考]已知集合A ={x |x <3},B ={x |x >a },若A ∩B ≠∅,则实数a 的取值范围为( )A .[3,+∞)B .(3,+∞)C .(-∞,3)D .(-∞,3]3.(2020·高考全国卷Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .64.(2022·重庆·二模)已知集合{}{}21,3,5,6,7,8,9,14480A B xx x ==-+∣,则下图中阴影部分表示的集合为( )A .{}1,3,5,7,9B .{}1,3,5,9C .{}1,3,5D .{}1,3,95.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z6.[2021·豫北名校联考]设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A .⎝⎛⎭⎫0,34 B .⎣⎡⎭⎫34,43 C .⎣⎡⎭⎫34,+∞ D .(1,+∞)7.(2020·浙江·高考真题)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T ②对于任意x ,y ∈T ,若x <y ,则yx∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素➢考点4 集合中的创新问题[典例] 1.(2022·北京房山·一模)已知U 是非实数集,若非空集合A 1,A 2满足以下三个条件,则称(A 1,A 2)为集合U 的一种真分拆,并规定(A 1,A 2)与(A 2,A 1)为集合U 的同一种真分拆 ①A 1∩A 2=0 ②A 1A 2=U③(1,2)i A i =的元素个数不是i A 中的元素.则集合U ={1,2,3,4,5,6}的真分拆的种数是( ) A .5B .6C .10D .152.[2022·广东六校联考]已知集合A 0={x |0<x <1}.给定一个函数y =f (x ),定义集合A n={y |y =f (x ),x ∈A n -1},若A n ∩A n -1=∅对任意的x ∈N *成立,则称该函数具有性质 “∅”. (1)具有性质“∅”的一个一次函数的解析式可以是________.(2)给出下列函数:①y =1x ;②y =x 2+1;③y =cos π2x +2.其中具有性质“∅”的函数的序号是________.3.[2022·河北保定质检]现有100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么对既带感冒药又带胃药的人数统计中,下列说法正确的是( ) A .最多人数是55 B .最少人数是55 C .最少人数是75 D .最多人数是80[举一反三]1.(2022·湖南·雅礼中学一模)已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .302.[2021·四川成都联考]已知集合A ={1,2,3,4,5,6}的所有三个元素的子集记为B 1,B 2,B 3,…,B k ,k ∈N *.记b i 为集合B i (i =1,2,3,…,k )中的最大元素,则b 1+b 2+b 3+…+b k =( )A .45B .105C .150D .2103.[多选][2022·湘赣皖十五校第一次联考]已知集合M ,N 都是非空集合U 的子集,令集合S ={x |x 恰好属于M ,N 中的一个},下列说法正确的是( )A .若S =N ,则M =∅B .若S =∅,则M =NC .若S ⊆M ,则M ⊆ND .∃M ,N ,使得S =(∁U M )∪(∁U N )4.[2022·湖北华大新联盟考试]中国古代重要的数学著作《孙子算经》下卷有题:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A ={x |x =3n +2,n ∈N *},B ={x |x =5n +3,n ∈N *},C ={x |x =7n +2,n ∈N *},若x ∈(A ∩B ∩C ),则整数x 的最小值为( ) A .128 B .127 C .37D .235.[2022·山东省实验中学第二次诊断]若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的.请写出满足上述条件的一个有序数组(a ,b ,c ,d )=________,符合条件的全部有序数组(a ,b ,c ,d )的个数是________.6.[2022·山东潍坊重点高中联考]已知U ={a 1,a 2,a 3,a 4},集合A 是集合U 中的两个元素所组成的集合,且同时满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .求集合A .第1讲 集合的概念与运算1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R [注意]N为自然数集(即非负整数集),包含0,而N*和N+的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系表示关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A⫋B(或B⫌A)集合 相等集合A ,B 中元素相同 A =B3.集合的基本运算集合的并集集合的交集集合的补集图形 语言符号 语言A ∪B = {x |x ∈A 或x∈B }A ∩B = {x |x ∈A 且x ∈B }∁U A = {x |x ∈U 且 x ∉A }➢考点1 集合的含义与表示[名师点睛]与集合元素有关问题的解题策略(1)研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义. (2)利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4(2)设A =⎩⎨⎧⎭⎬⎫2,3,a 2-3a ,a +2a +7,B ={|a -2|,3},已知4∈A 且4∉B ,则a 的取值集合为________.[解析] (1)将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.(2)因为4∈A ,即4∈⎩⎨⎧⎭⎬⎫2,3,a 2-3a ,a +2a +7,所以a 2-3a =4或a +2a +7=4.若a 2-3a =4,则a =-1或a =4;若a +2a +7=4,即a 2+3a +2=0,则a =-1或a =-2.由a 2-3a 与a +2a +7互异,得a ≠-1.故a =-2或a =4.又4∉B ,即4∉{|a -2|,3}, 所以|a -2|≠4,解得a ≠-2且a ≠6. 综上所述,a 的取值集合为{4}. [答案] (1)A (2){4} [举一反三]1.(2022·江西·新余四中模拟预测(理))已知集合()(){}20A x a x x a =--<,若2A ∉,则实数a 的取值范围为( )A .()(),12,-∞+∞B .[)1,2C .()1,2D .[]1,2【答案】D【解析】因为2A ∉,所以()()2220a a --≥,解得12a ≤≤.故选:D .2.(2022·菏泽模拟)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:选C.因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba =-1,所以a=-1,b =1.所以b -a =2.3.(多选)(2022· 广州一调)已知集合{x |mx 2-2x +1=0}={n },则m +n 的值可能为( )A .0B .12C .1D .2解析:选BD.因为集合{x |mx 2-2x +1=0}={n },所以⎩⎪⎨⎪⎧m =0,-2n +1=0或⎩⎪⎨⎪⎧m ≠0,Δ=4-4m =0,n =--22m ,解得⎩⎪⎨⎪⎧m =0,n =12或⎩⎨⎧m =1,n =1,所以m +n =12或m +n =2.故选BD.4.(2022·福建·模拟预测)设集合{2,1,1,2,3}A =--,{}2|log ||,B y y x x A ==∈ ,则集合B 元素的个数为( )A .2B .3C .4D .5【答案】B 【解析】当2x =±时,y =1;当1x =±时,y =0;当x =3时,2log 3y =.故集合B 共有3个元素.故选:B.5.(2022·武汉校级月考)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 解析:由题意得m +2=3或2m 2+m =3, 则m =1或m =-32.当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意; 当m =-32时,m +2=12,而2m 2+m =3,符合题意,故m =-32.答案:-32➢考点2 集合的基本关系R N )=( )A .∅B .MC .ND .R(2)[2022·广东阳江月考]已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若B ⊆A ,则实数a 的取值范围为( )A .(-∞,-3]∪[2,+∞)B .[-1,2]C .[-2,1]D .[2,+∞)【解析】 (1)因为M ,N 均为R 的子集,且∁R M ⊆N ,所以N =∁R M ,所以M ∪(∁R N )=M .故选B.(2)集合A ={x |y =4-x 2}={x |-2≤x ≤2},因为B ⊆A ,所以有⎩⎨⎧a ≥-2,a +1≤2,所以-2≤a ≤1. 【答案】 (1)B (2)C [举一反三]1.(2022·广东广州·一模)已知集合{}11A x x =∈-≤≤Z ,{}02B x x =≤≤,则A B 的子集个数为( )A .2B .3C .4D .6【答案】C【解析】由题可知{}1,0,1A =-,所有{}0,1A B =,所有其子集分别是{}{}{},1,0,0,1∅,所有共有4个子集,故选:C2.[2022·湖北武汉摸底]已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3D .4解析:选D 求解一元二次方程,得A ={x |x 2-3x +2=0,x ∈R }={x |(x -1)(x -2)=0,x ∈R }={1,2},易知B ={x |0<x <5,x ∈N }={1,2,3,4}.因为A ⊆C ⊆B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{3,4}的子集个数,即有22=4个,故选D.3.(2022·山东·潍坊一中模拟预测)已知集合M ,N 是全集U 的两个非空子集,且()U M N ⊆,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .()U N M U ⋃=【答案】A 【解析】UN 表示集合N 的补集,因为()U M N ⊆,所以M N ⋂=∅.故选:A4.[2021·湖南长沙长郡中学适应性考试]已知集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}.若A ∩B 只有4个子集,则实数a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[0,1]D .(0,1][答案] D [解析] 本题考查根据集合的子集个数求参数的取值.集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}={x ∈Z |x ≤2},故A ∩B ={x ∈Z |a ≤x ≤2}.因为A ∩B 只有4个子集,所以A ∩B 中元素只能有2个,即A ∩B ={1,2},所以0<a ≤1,故选D.5.[2022·吉林辽源五校期末联考]已知集合M ={x |x -a =0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________.解析:由题易得M ={a }.因为M ∩N =N , 所以N ⊆M , 所以N =∅或N =M , 所以a =0或a =±1. 答案:0或1或-1➢考点3 集合的基本运算[典例]1.(1)(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.(2)(多选)[2022·湖南长沙模拟]已知全集U =R ,集合M ={x |-3≤x <4},N ={x |x 2-2x -8≤0},则( )A .M ∪N ={x |-3≤x <4}B .M ∩N ={x |-2≤x <4}C .(∁U M )∪N =(-∞,-3)∪[-2,+∞)D .M ∩(∁U N )=(-3,-2)【解析】 (1)方法一:由题意,得A ∪B ={-1,0,1,2},所以∁U (A ∪B )={-2,3},故选A.方法二:因为2∈B ,所以2∈A ∪B ,所以2∉∁U (A ∪B ),故排除B ,D ;又0∈A ,所以0∈A ∪B ,所以0∉∁U (A ∪B ),故排除C ,故选A.(2)由x 2-2x -8≤0,得-2≤x ≤4,所以N ={x |-2≤x ≤4},则M ∪N ={x |-3≤x ≤4},A 错误;M ∩N ={x |-2≤x <4},B 正确;由于∁U M =(-∞,-3)∪[4,+∞),故(∁U M )∪N =(-∞,-3)∪[-2,+∞),C 正确;由于∁U N =(-∞,-2)∪(4,+∞),故M ∩(∁U N )=[-3,-2),D 错误.故选BC.【答案】 (1)A (2)BC2.(1)(2020·高考全国卷Ⅰ)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a =( )A .-4B .-2C .2D .4(2)[2022·湖南六校联考]集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4【解析】 (1)方法一:易知A ={x |-2≤x ≤2},B ={x |x ≤-a2},因为A ∩B ={x |-2≤x ≤1},所以-a2=1,解得a =-2.故选B.方法二:由题意得A ={x |-2≤x ≤2}.若a =-4,则B ={x |x ≤2},又A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤2},不满足题意,排除A ;若a =-2,则B ={x |x ≤1},又A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤1},满足题意;若a =2,则B ={x |x ≤-1},又A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤-1},不满足题意,排除C ;若a =4,则B ={x |x ≤-2},又A ={x |-2≤x ≤2},所以A ∩B ={x |x =-2},不满足题意.故选B.(2)根据集合并集的概念,可知{a ,a 2}={4,16},故a =4. 【答案】 (1)B (2)D [举一反三]1.(2022·河北石家庄·二模)已知集合{3,2,1,0,1}A =---,301x B x Zx +⎧⎫=∈<⎨⎬-⎩⎭,则A B =( )A .[3,1)-B .[3,1]-C .{3,2,1,0,1}---D .{2,1,0}--【答案】D 【解析】因为30311x x x +<⇒-<<-,所以{}2,1,0B =--,而{3,2,1,0,1}A =---, 所以A B ={2,1,0}--,故选:D2.[2022·华南师范大学附属中学月考]已知集合A ={x |x <3},B ={x |x >a },若A ∩B ≠∅,则实数a 的取值范围为( )A .[3,+∞)B .(3,+∞)C .(-∞,3)D .(-∞,3]解析:选C 因为A ∩B ≠∅,所以结合数轴可知实数a 的取值范围是a <3,故选C. 3.(2020·高考全国卷Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6解析:选C.由题意得,A ∩B ={(1,7),(2,6),(3,5),(4,4)},所以A ∩B 中元素的个数为4,选C.4.(2022·重庆·二模)已知集合{}{}21,3,5,6,7,8,9,14480A B xx x ==-+∣,则下图中阴影部分表示的集合为( )A .{}1,3,5,7,9B .{}1,3,5,9C .{}1,3,5D .{}1,3,9【答案】B【解析】由图可知,图中阴影部分表示()R A B ⋂,由214480x x -+≤,得68x ≤≤, 所以{}68B x x =≤≤,所以{R 6B x x =<或}8x >,因为{}1,3,5,6,7,8,9A =, 所以(){}R1,3,5,9AB =,故选:B5.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z【答案】C【解析】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,S T T =.故选:C.6.[2021·豫北名校联考]设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A .⎝⎛⎭⎫0,34 B .⎣⎡⎭⎫34,43 C .⎣⎡⎭⎫34,+∞D .(1,+∞)[答案] B [解析] A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,因为函数f (x )=x 2-2ax -1图象的对称轴为直线x =a (a >0),f (0)=-1<0,根据对称性可知,若A ∩B 中恰有一个整数,则这个整数为2,所以有⎩⎪⎨⎪⎧ f (2)≤0,f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎨⎧a ≥34,a <43,即34≤a <43.故选B. 7.(2020·浙江·高考真题)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T ②对于任意x ,y ∈T ,若x <y ,则yx∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素 【答案】A 【解析】 首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8S T =,包含4个元素,排除选项 C ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ; 若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈,若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =,又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p pp p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i qp i p ==,故31,1,2,3,4i q p i +==,即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确. 故选:A .➢考点4 集合中的创新问题[典例] 1.(2022·北京房山·一模)已知U 是非实数集,若非空集合A 1,A 2满足以下三个条件,则称(A 1,A 2)为集合U 的一种真分拆,并规定(A 1,A 2)与(A 2,A 1)为集合U 的同一种真分拆 ①A 1∩A 2=0 ②A 1A 2=U③(1,2)i A i =的元素个数不是i A 中的元素.则集合U ={1,2,3,4,5,6}的真分拆的种数是( ) A .5 B .6C .10D .15【答案】A 【解析】解:由题意,集合U ={1,2,3,4,5,6}的真分拆有{}{}125,1,2,3,4,6A A ==;{}{}121,4,2,3,5,6A A ==;{}{}123,4,1,2,5,6A A ==;{}{}124,5,1,2,3,6A A ==;{}{}124,6,1,2,3,5A A ==,共5种,故选:A.2.[2022·广东六校联考]已知集合A 0={x |0<x <1}.给定一个函数y =f (x ),定义集合A n={y |y =f (x ),x ∈A n -1},若A n ∩A n -1=∅对任意的x ∈N *成立,则称该函数具有性质 “∅”. (1)具有性质“∅”的一个一次函数的解析式可以是________.(2)给出下列函数:①y =1x ;②y =x 2+1;③y =cos π2x +2.其中具有性质“∅”的函数的序号是________.[解析] (1)答案不唯一,合理即可.示例: 对于解析式y =x +1,因为A 0={x |0<x <1},所以A 1={x |1<x <2}, A 2={x |2<x <3},…,显然符合A n ∩A n -1=∅.故具有性质“∅”的一个一次函数的解析式可以是y =x +1. (2)对于①,A 0={x |0<x <1},A 1={x |x >1},A 2={x |0<x <1},…, 依次循环下去,符合A n ∩A n -1=∅.对于②,A 0={x |0<x <1},A 1={x |1<x <2},A 2={x |2<x <5},A 3={x |5<x <26},…,根据函数y =x 2+1的单调性得相邻两个集合不会有交集,符合A n ∩A n -1=∅.对于③,A 0={x |0<x <1},A 1={x |2<x <3},A 2={x |1<x <2},A 3={x |1<x <2}, 不符合A n ∩A n -1=∅.所以具有性质“∅”的函数的序号是①②. [答案] (1)y =x +1 (2)①②3.[2022·河北保定质检]现有100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么对既带感冒药又带胃药的人数统计中,下列说法正确的是( ) A .最多人数是55 B .最少人数是55 C .最少人数是75D .最多人数是80解析:选B 设100名携带药品出国的旅游者组成全集I ,其中带感冒药的人组成集合A ,带胃药的人组成集合B .设所携带药品既非感冒药又非胃药的人数为x ,则0≤x ≤20.设以上两种药都带的人数为y .由图可知,x +card(A )+card(B )-y =100.∴x +75+80-y =100,∴y =55+x .∵0≤x ≤20,∴55≤y ≤75,故最少人数是55. [举一反三]1.(2022·湖南·雅礼中学一模)已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,中元素的个数为则A BA.77 B.49 C.45 D.30【答案】C【解析】因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.2.[2021·四川成都联考]已知集合A={1,2,3,4,5,6}的所有三个元素的子集记为B1,B2,B3,…,B k,k∈N*.记b i为集合B i(i=1,2,3,…,k)中的最大元素,则b1+b2+b3+…+b k=()A.45 B.105C.150 D.210[答案]B[解析]本题考查集合的新定义问题.集合A的含有3个元素的子集共有C36=20个,所以k=20.在集合B i(i=1,2,3,…,k)中,最大元素为3的集合有C22=1个;最大元素为4的集合有C23=3个;最大元素为5的集合有C24=6个;最大元素为6的集合有C25=10个,所以b1+b2+b3+…+b k=3×1+4×3+5×6+6×10=105.故选B.3.[多选][2022·湘赣皖十五校第一次联考]已知集合M,N都是非空集合U的子集,令集合S={x|x恰好属于M,N中的一个},下列说法正确的是()A.若S=N,则M=∅B.若S=∅,则M=NC.若S⊆M,则M⊆ND.∃M,N,使得S=(∁U M)∪(∁U N)[答案] ABD [解析]本题考查Venn 图.用Venn 图表示,集合S 为如图1中的阴影部分,对于A 选项,若S =N ,利用S 的Venn 图观察,则有M ∩N =∅,M =∅,故A 选项正确;对于B 选项,若S =∅,则M =N ,故B 选项正确;对于C 选项,反例:如图集合S 为如图2中的阴影部分,N ⊆M ,故C 选项错误;对于D 选项,例如U ={1,2,3,4},M ={1,2,3},N ={4},S ={x |x 恰好属于M ,N 中的一个}={1,2,3,4}=U ,而(∁U M )∪(∁U N )={4}∪{1,2,3}={1,2,3,4}=S ,故D 选项正确,故选ABD.图1 图24.[2022·湖北华大新联盟考试]中国古代重要的数学著作《孙子算经》下卷有题:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A ={x |x =3n +2,n ∈N *},B ={x |x =5n +3,n ∈N *},C ={x |x =7n +2,n ∈N *},若x ∈(A ∩B ∩C ),则整数x 的最小值为( ) A .128 B .127 C .37D .23解析:选D ∵求整数的最小值,∴先将23代入检验,满足A ,B ,C 三个集合,故选D.5.[2022·山东省实验中学第二次诊断]若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的.请写出满足上述条件的一个有序数组(a ,b ,c ,d )=________,符合条件的全部有序数组(a ,b ,c ,d )的个数是________. 解析:显然①不可能正确,否则①②都正确;若②正确,则⎩⎪⎨⎪⎧ a =2,b =3,c =1,d =4或⎩⎪⎨⎪⎧ a =3,b =2,c =1,d =4.若③正确,则⎩⎪⎨⎪⎧ a =3,b =1,c =2,d =4.若④正确,则⎩⎪⎨⎪⎧ a =2,b =1,c =4,d =3或⎩⎪⎨⎪⎧ a =3,b =1,c =4,d =2或⎩⎪⎨⎪⎧a =4,b =1,c =3,d =2.所以符合条件的数组共6个. 答案:(3,2,1,4)(填一个正确的即可) 66.[2022·山东潍坊重点高中联考]已知U ={a 1,a 2,a 3,a 4},集合A 是集合U 中的两个元素所组成的集合,且同时满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A.求集合A.解:假设a1∈A,则a2∈A.又若a3∉A,则a2∉A,∴a3∈A,与集合A中有且仅有两个元素不符,∴假设不成立,∴a1∉A.假设a4∈A,则a3∉A,则a2∉A,且a1∉A,与集合A中有且仅有两个元素不符,∴假设不成立,∴a4∉A.故集合A={a2,a3},经检验知符合题意.。
集合的概念及其基本运算PPT教学课件
在描述法表示集合时,描 述不清或描述错误导致集 合不确定。应该准确描述 元素的性质,确保集合的 确定性。
在进行集合运算时,忽略 空集的情况。空集是任何 集合的子集,因此在进行 交集、并集等运算时需要 考虑空集的情况。
在表示集合时,要确保元 素的互异性,即同一个元 素在一个集合中只能出现 一次。
在进行集合运算时,要遵 循运算规则,确保结果的 准确性。例如,在求交集 时要找两个集合中共有的 元素;在求并集时要将两 个集合中的所有元素合并 在一起并去掉重复元素。
偏序关系与等价关系
等价关系定义
设R是集合A上的一个二元关系 ,如果R满足自反性、对称性和 传递性,则称R是A上的一个等 价关系。
区别
偏序关系不满足对称性而等价关 系满足对称性;偏序关系具有方 向性而等价关系不具有方向性。
01
偏序关系定义
设R是集合A上的一个二元关系 ,如果R满足自反性、反对称性 和传递性,则称R是A上的一个 偏序关系。
说明。
感谢您的观看
THANKS
04
集合的应用举例
在数学领域的应用
数的分类
自然数集、整数集、有理数集、实数集等都 是数学中常见的集合,通过对这些集合的研 究,可以深入了解数的性质和分类。
函数定义域和值域
函数中的定义域和值域都是集合,通过对这 些集合的运算和研究,可以了解函数的性质 和特点。
方程和不等式的解集
方程和不等式的解集也是集合,通过对这些 集合的运算和研究,可以了解方程和不等式 的解的性质和特点。
02
03
联系
偏序关系和等价关系都是集合上 的二元关系,都满足自反性和传 递性。
04
序偶与笛卡尔积
序偶定义:由两个元素a和b按一定顺序排列成的二元 组称为序偶,记作(a,b)。序偶中的元素具有顺序性,即 (a,b)和(b,a)表示不同的序偶。 笛卡尔积的性质
第1讲集合的概念及运算
因为既参加数学竞赛又参加物理竞赛的 有12人,
所以card(D)=12-2=10. 同理,得card(E)=6-2=4,
card(F)=5-2=3. 又因为参加数学、物理、化学竞赛的人
数分别为21,17,10. 所以card(A)=21-2-10-4=5,
card(B)=17-2-10-3=2,
card(C)=10-3-2-4=1. 故需预定火车票的张数为 5+2+1+10+4+3+2=27.
解析
( 1 ) 因 为 z=xy , x∈{1,2} , y∈{0,2} , 故 xy=0,2,4 , 从 而 A*B={0,2,4} , 故 集 合A*B的所有元素之和为6.故选D.
(2)该班学生参加竞赛如图所示,集 合A、B、C、D、E、F、F中的任何 两个无公共元素,其中G表示三科都 参加的学生集合,card(G)=2.
分析
求m的取值范围,关键在于做好等价转换.
解析 A∩B≠
x2+mx-y+2=0 x-y+1=0(0≤x≤2)有解
方程x2+(m-1)x+1=0在[0,2]上有解.
令f(x)=x2+(m-1)x+1,则f(0)=1>0.
(ⅰ)若有一解,则f(2)=3+2m≤0,所以m≤
;
3 2
(ⅱ)若有两解,则 f(2)≥0
点评 本题是属于创新型的概念理解题.
准确理解A*B是解决本题的关键所在,并 且又考查了集合元素的互异性,因此要 准确理解集合的含义,明确题目所要解 决的问题,从而使问题得以解决.
备选题
已知集合A={(x,y)|x2+mx-y+2=0}, B={(x,y)|x-y+1=0,0≤x≤2}. 如果A∩B≠ ,求实数m的取值范围.
第一讲集合的概念及其运算
第一讲 集合的概念及其运算集合论是德国数学家康托尔在19世纪末创立的,集合语言是现代数学的基本语言,是表达数学知识、进行数学交流的重要工具。
同时集合是高中数学的基本知识,为历年高考必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用.一、 考纲解读1.考试内容:(1)集合的含义与表示;(2)集合间的基本关系;(3)集合的基本运算。
2.考试要求:(1)了解集合的含义、元素与集合的属于关系,全集与空集的含义;(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
能用韦恩(V enn )图表达集合的关系及运算;(3)理解集合之间包含与相等的含义,能识别给定集合的子集。
理解两个集合的并集与交集的含义,会求两个集合的并集与交集。
理解在给定集合中一个子集的补集的含义,会求给定集合子集的补集。
二、知识网络三、知识讲解:1.集合的有关概念(1)某些指定的对象集在一起就构成一个集合,简称集。
其中的每一个对象叫集合的元素,集合中的元素具有确定性、互异性、无序性三个特征。
确定性:集合的元素必须是确定的,任何一个对象都能明确判断出它是或者不是某个集合的元素。
互异性:集合中任意两个元素都是不同的,也就是同一个元素在一个集合中不能重复出现。
无序性:集合与组成它的元素顺序无关。
如集合}{c b a ,,与}{b a c ,,是同一个集合。
(2)元素与集合的关系:如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉。
任一元素a 与集合A 的关系是a A ∈与a A ∉二者必居其一。
(3)集合的分类:根据集合中元素的个数可将集合分为有限集、无限集和空集。
不含任何元素的集合叫做空集,用符号Φ表示。
空集的性质:空集是任何集合的子集,是任何非空集合的真子集。
01第一讲:集合的概念与运算
第一讲:集合的概念与运算一、知识梳理:1. 集合的含义与表示:(1) 一般地,我们把研究对象统称为__________,把一些元素组成的总体叫做____________(简称______).(2) 集合中元素的三个性质:____________,__________,___________. (3)集合中元素与集合的关系分为____________和____________两种,分别用__________和_________表示. (4) 几种常用集合的表示法:数集 自然数集正整数集整数集有理数集 实数集 表示(5) 集合的三种表示法:___________,____________,_______________. 2. 集合间的基本关系:(1)B ⊆的含义是:__________________________________________. (2)若集合B A ⊆且A B ⊆,我们就说____________________________. (3)若集合B A ⊆且B A ≠,则称__________________记着___________. 即若B A ⊆,但存在B x ∈0,且A x ∉0。
(4)不含任何元素的集合叫做________,记为_______,并规定:空集是任何集合的子集,空集是任何非空集合的真子集。
3.集合的基本运算:(1)B A ⋃的含义是__________________________________________. (2)B A ⋂的含义是_______ _____________________________. (3)如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为__________________,通常记作________________.(4)对于一个集合A ,由全集U 中___________________的所有元素组成的集合称为集合A 相对于全集U 的补集,记作________________. 即________________________________=C U 。
集合的概念及运算课件人教新课标
无序性:
元素完全相同的两个集合相等,而与列举顺序无关。
两个集合相等当且仅当构成这两个集合的元 素是完全一样的.
4 集合的表示方法
1、列举法: 无序 互异
将集合中的元素一一列举出来,并置于{ }内
2、描述法:
将集合的所有元素都具有的性质(满足的条件) 表示出来,写成{x︱p(x)}的情势
综上,a的取值范围是a≤-3. 12分
规律方法总结
1.子集、全集、补集 (1)子集与真子集的区分与联系:集合A的真子集一定 是其子集,而集合A的子集不一定是真子集;若集合A中 有n个元素,则其子集个数为2n,真子集个数为2n-1. (2)集合A与其补集∁UA的关系为:A∩(∁UA)=∅,A∪ (∁UA)=U.
答案:-2,-1
5.设集合A={(x,y)|x-y=0},B={(x, y)|2x-3y+4=0},则A∩B=________.
答案:{(4,4)}
6 集合S,M,N,P如图所示,则图中阴影部分所
表示的集合是( D ) (A) M∩(N∪P)
(B) M∩CS(N∩P) (C) M∪CS(N∩P) (D) M∩CS(N∪P)
在进行集合的运算时,先看清集合的元素和所满足 的条件,再把所给集合化为最简情势,并合理转化求解, 必要时充分利用数轴、Venn图、图象等工具,并会运用 分类讨论、数形结合等思想方法,使运算更加直观,简 洁.
注意:(1)有关集合的运算,要特别注意元 素的互异性,其办法是将所得到的结果进行检 验.(2)要注意∅的性质.
写字母a、b、c…表示.
2.集合的分类 集合按元素多少可分为:有限集(元素个数是有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲集合的概念及运算考点解读【基础性考点知识突破】一、集合的含义及表示方法1.元素与集合的含义一般地,把研究对象统称为元素,把一些元素组成的总体叫做集合.构成集合的元素除了常见的数、式、点等数学对象之外,还可以是其他任何对象.2.集合中元素的性质集合中元素的特征:确定性、互异性和无序性.(1)任何一个对象都能确定它是不是某一集合的元素,这是集合的最基本特征.(2)集合中的任何两个元素都是不同的对象,即在同一集合里不能重复出现相同元素.(3)在同一集合里,通常不考虑元素之间的顺序.3.集合的表示集合的表示有三种方法,分别是列举法、描述法和Venn图法.一般地,表示有限集合常用列举法;表示无限集合常用描述法;描述抽象集合常用Venn图法.正确认识一个集合的关键是理解集合中的元素特征.4.元素与集合的关系“属于”或“不属于”,记为“”或“∉”.二、集合与集合之间的关系1.集合与集合之间的关系(1)包含关系子集:如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A⊆B或B⊇A,显然A⊆A,∅⊆A.(2)相等关系如果集合A中的每一个元素都是集合B中的元素,反过来,集合B中的每一个元素也都是集合A中的元素,那么就说集合A等于集合B,记作A=B.对于两个集合A与B,如果A⊆B,同时B⊆A,那么集合A与集合B相等,记作A=B.(3)真子集关系对于两个集合A 与B ,若A ⊆B ,且A ≠B ,则集合A 是集合B 的真子集,记作A B 或B A .显然有下面的结论:①对于集合A 、B 、C ,如果A ⊆B ,B ⊆C ,则A ⊆C ;②对于集合A 、B 、C ,如果AB ,BC ,则A C .(4)不包含关系 用表示2.空集不含任何元素的集合叫做空集,记作∅.空集是任何一个集合的子集,是任何一个非空集合的真子集.3.有限集的子集、真子集的个数关于有限集的子集个数有下列结论:若有限集合A 中有n 个元素,则集合A 的子集的个数有2n 个,即02C C C 2n n n n n ++⋅⋅⋅+=(个),非空子集的个数有(21n -)个;真子集的个数有(21n -)个;非空真子集的个数有(22n-)个,三、集合的交、并、补集的运算1.交集(1)定义:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A ∩B ,A ∩B ={x |x ∈A 且x ∈B }.(2)性质:A ∩A =A ;A ∩B =B ∩A (交换律); A ∩∅=∅;(A ∩B )⊆A ;(A ∩B )⊆B ;若A ⊆B ,则A ∩B =A .2.并集(1)定义:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A ∪B ,A ∪B ={x |x ∈A 或x ∈B }.(2)性质:A ∪A =A ;A ∪B =B ∪A (交换律);A ∪∅=A ;A ⊆(A ∪B );B ⊆(A ∪B );若A ⊆B ,则A ∪B =B .3.补集(1)定义:在研究某一集合问题的过程中,所有集合都是一个给定集合的子集,这个给定的集合就称为全集,记作U .设A ⊆U ,由U 中所有不属于A 的元素组成的集合,叫做集合A 在集合U 中的补集,记作U A ð,即U A ð={x |x ∈U 且x ∉A }(如图).(2)性质:A ∪(U A ð)=U ;A ∩(U A ð)=∅,U ð(U A ð)=A ,U ∅ð=U , U U ð=∅.4.集合运算中常用的结论(1)U ð(A ∩B )=(U A ð)∪(U B ð),U ð(A ∪B )=(U A ð)∩(U B ð)(2)A ⊆B ⇔A ∩B =A ;A ⊆B ⇔A ∪B =B .【培优性方法技巧综合】1.在处理有关集合的问题时首先确定集合中的元素是点集还是数集,然后明确集合中的元素所满足的条件,理解并正确掌握集合的相关术语及符号表示是解决集合问题的关键.2.判断两集合间的关系①化简集合,从表达式中寻求两集合间的关系;②用列举法表示两集合,从元素中寻求关系.3.根据两集合的关系求参数的方法①若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;②若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.【提示】①题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论. ②已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常运用数轴、Venn 图帮助分析.③两集合之间的关系与运算可以相互转化,即A B AB B A B B ⊆⇔=⇔=. 4.应当考虑空集的几种情况:在⊆A B ,AB ,=A B A ,=A B B ,都应当考虑到=∅A 时的情况.5.要注意表示集合的语言、文字、符号、图形的沟通与转化,对于某些集合运算的问题,文字描述较为抽象,可借助于Venn 图及坐标轴,利用几何图形的直观性,以“形”助“数”.同时加强与其他章节的渗透,在复习中要控制难度.考点分类精讲考点1 集合的概念1.集合概念的准确理解.2.集合的表示方法的准确把握与灵活运用.3.集合中元素的性质的灵活运用.【例1】集合{0,2,}A a =,2{1,}B a =,若{0,1,2,4,16}A B =,则a 的值为A .0B .1C .2D .4点拨:解决集合的有关问题,首先要明确集合元素的构成形式;其次要注意集合元素性质(即元素的三性:确定性、互异性、无序性)的灵活运用,它既是解决有些题的切入点,也是问题解决之前的检验点.【例2】若集合2{|320}A x R ax x =∈-+=中只有一个元素,则a =( )A .92B .98C .0D .0或98 点拨:由于方程的不定性导致求解过程用了分类讨论思想.考点2 集合之间的关系1.集合间的相等、子集、真子集关系的确定.2.已知集合的包含关系,确定有关参数的取值范围.3.求有关集合的子集的个数.【例3】已知集合1{|,}6A x x a a Z ==+∈,1{|,}23b B x x b Z ==-∈,{|2c C x x == 1,}6c Z +∈,则A ,B ,C 之间的关系 A .A =B C B .A B =C C .A B C D .B C =A点拨:辨析集合之间的关系应该从集合中元素的特点入手,可将元素列举出来直观分析,也可从描述法中认识集合中元素具备的特性,定性分析,以上两种思想是解决此类问题的通法,应根据问题的具体情况合理选择.【例4】集合{,,,,}S a b c d e =,包含{,}a b 的S 的子集共有( ).A .2个B .3个C .5个D .8个点拨:解决集合的子集的个数的问题,应注意利用排列组合知识,特别是两个基本计数原理来分析解决问题.考点3 集合的运算1.进行具体集合的交、并、补运算.2.利用集合的运算性质解决问题.3.与集合运算有关的开放性问题.【例5】已知集合{||2|}A x x a =-≤,2{|540}B x x x =-+≥.若A B =∅,求实数a 的取值范围.点拨:解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行分类讨论,分类时要遵循“不重不漏”的分类原则,然后对于每一类情况都要给出问题的解答.【例6】设全集I R =,已知集合2{|(3)0}M x x =+≤,2{|60}N x x x =+-=.(1)求()I M N ð;(2)记集合A =()I M N ð,已知集合{|15,}B x a x a a R =--∈≤≤,若 B A A =,求实数a 的取值范围.点拨:BA A =时,B =∅的情况. 考点4 集合的综合运用1.集合运算的逆向问题.2.集合与函数、方程、不等式的综合问题.3.集合的开放问题与实际应用问题.【例7】已知{|(1,0)(0,1),}P m m R ==+∈a a ,{|(1,1)(1,1),}Q n n R ==+-∈b b 是两个向量集合,则P Q =IA .{(1,1)}B .{(1,1)}-C .{(1,0)}D .{(0,1)}点拨:解答集合的运算类试题必须彻底弄清楚参与运算的集合的意义,即参与运算的集合是由哪些元素组成的,不然就会得出错误的答案,本题这样设计还不至于有多大问题,如果本题中集合Q 改为{|(1,1)(1,1),}Q m m R ==+-∈b b ,就可能出现得到的方程组是111m m m =-⎧⎨=+⎩,而这个方程组无解,就可能认为P Q =∅,这就是没有理解集合的意义所致,实际上本题中的集合P ,Q 都可以看做坐标平面上的点集,集合P 是直线1x =上的点的集合,集合Q 是直线2x y +=上的点的集合,所求的交集就是这两条直线的交点坐标.【例8】某试验班有21个学生参加数学竞赛,17个学生参加物理竞赛,10个学生参加化学竞赛,他们之间既参加数学竞赛又参加物理竞赛的有12人,既参加数学竞赛又参加化学竞赛的有6人,既参加物理竞赛又参加化学竞赛的有5人,三科都参加的有2人.现在参加竞赛的学生都要到外地学习参观,问需要预订多少张火车票?点拨:解决有些集合问题,若充分利用Venn 图,可以使有些问题得到快速地解决.【例9】定义集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为A .0B .2C .3D .6点拨:本题是属于创新型的概念理解题,准确地理解A B *是解决本题的关键所在,并且又考查了集合元素的互异性,因此要准确理解集合含义,明确题目所要解决的问题,才能使问题得以解决,从而培养学生分析问题、解决问题的能力. 本专题试题训练详见《试题精练》。