基于MC34063的开关电源设计
MC34063芯片设计的计算公式及应用讲解
MC34063芯片设计的计算公式及应用讲解MC34063芯片设计的计算公式及应用讲解在论坛经常看到有人在应用MC34063的时候会遇到这样那样的问题,特别的电路中的参数计算上很是不太明了,我会陆续贴上一些相关的计算公式及相关应用数据,欢迎大家参与讨论。
外围元件标称含义和它们取值的计算公式:Vout(输出电压)=1.25V(1+R1/R2 )Ct( 定时电容):决定内部工作频率。
Ct=0.000 004*Ton(工作频率)Ipk=2*Iomax*T/toffRsc( 限流电阻):决定输出电流。
Rsc=0.33/IpkLmin (电感):Lmin=(Vimin-Vces)*T on/ IpkCo(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数)固定值参数:ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces)Vces=1.0VVimin:输入电压范围的最小值Vf=1.2V 快速开关二极管正向压降在实际应用中的注意:1、快速开关二极管可以选用IN4148,在要求高效率的场合必须使用 IN5819(贴片为SS14);2、34063能承受的电压,即输入输出电压绝对值之和不能超过40V,否则不能安全稳定的工作;3、输出功率达不到要求的时候,比如>1A时,可以通过外接扩功率管的方法扩大输出电流,三极管、双极型或MOS管均可,一般的芯片PDF资料上都会有典型扩流电路介绍;MC34063斩波型电源结构图1 中,T 为开关管,L1 为储能电感,C1 为滤波电容,D1 为续流二极管。
当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。
设电感的初始电流为iL0,则流过电感的电流与时间t 的关系为:iLt= iL1+(Vi-Vo-Vs)t/L,Vs 为T 的导通电压。
当T 关断时,L1 通过 D1 续流,从而电感的电流线性减小,设电感的初始电流为 iL1,则则流过电感的电流与时间t 的关系:iLt=iL1-(Vo+Vf)t/L,Vf 为 D1 的正向饱和电压。
基于MC34063的直流稳压可调电源设计
基于MC34063的直流稳压可调电源设计周碧英【摘要】直流稳压电源在各种电子设备应用中具有及其重要的作用,直流电源是否持续平稳,将直接影响着电子设备的稳定性、精确性及可靠性。
针对目前直流稳压电源存在的稳定性差、效率低和成本较高的问题,设计了一种基于MC34063的直流稳压可调电源,并进行了相关测试。
结果表明所提设计具有稳定连续的调节能力、成本较低且效率较高,为类似直流稳压电源的设计提供了参考。
%DC power supply has important role in a variety of electronic device applications, the DC power is sustained and stable, will directly affect the stability, accuracy and reliability of the electronic device to work. For the current DC power supply exist poor stability, low efficiency and high cost problems, designed a DC adjustable power supply based on MC34063, and completed relevant test. The results show that the proposed design has the ability of stability regulate continuous, low cost and high efficiency, provide a reference to similar DC power supply design.【期刊名称】《电子设计工程》【年(卷),期】2015(000)024【总页数】4页(P67-69,72)【关键词】直流;可调;电源;MC34063【作者】周碧英【作者单位】渭南师范学院数学与信息科学学院,陕西渭南 714000【正文语种】中文【中图分类】TN102各种电子设备的大量应用给人们的生产和生活带来的极大便利,但是各种电子设备都必须依赖稳定的电源。
34063降压电路设计报告
题目名称:降压型变换电源摘要:该降压电源变换器电路采用MC34063芯片作为其电路构成的核心部分,用以对12V的输入电压经过降压电源电路降至5V;定时电容Ct用以控制振荡器的频率,电感L和电阻R1、R2则是用以控制输出端电压;调节电感L的电感量以及电阻R2与R1比值即可控制输出端的电压输出,该电路设计则是输出端的电压降至5V;且要求在输出端带负载时的电压压降在0——0.5V之间,同时要求输出端的纹波尽量小。
关键字:降压型变换电源MC34063 12V降至5VEnglish subject:Buck type transform power supply Abstract:The buck power converter circuit adopts MC34063 chip as its core part of a circuit to the input voltage of the 12 V power supply circuit after step-down down to 5 V; Timing capacitance Ct can control the oscillator frequency, inductance L and resistance R1, R2 is used to control the output voltage of the; Adjust the inductance load and inductance L resistance and can control the ratio R2 R1 is the output voltage output, this circuit design is the output voltage drop to 5 V; And require in the output voltage of the load to bring pressure drop in 0-between 0.5 V, also asked the output ripple as low as possible.Keywords:Buck type transform power supply MC34063 12 V down to 5 V目录一.理论分析 (3)1、MC34063芯片简介: (3)1.1.1 MC34063的结构组成: (3)1.1.2 MC34063的内部结构图: (3)1.1.3 MC34063的引脚: (4)1.1.4 MC34063的内部电路原理: (4)1.1.5 MC34063芯片的主要电路应用有以下几个方面: (4)2.用MC34063制作的降压型变换电源的设计思路 (5)1.2.1 设计题目基本要求: (5)1.2.2 用MC34063制作降压型变换电源的设计思路 (5)二.方案设计与论证 (7)2.1.1、设计12V/5V降压电源变换器的思路 (7)2.1.2、12V/5V降压电源变换器的电路原理图设计 (7)2.1.3 、12V/5V降压电源变换器电路相关参数计算 (7)三. 系统硬件电路设计和实现 (9)四.系统测试 (9)4.1.1、调试中用到的仪器: (9)4.1.2、调试方法: (9)4.1.3、调试中出现的问题: (10)4.1.4、调试问题的解决方案: (10)4.1.5、误差分析: (10)五. 结论 (11)六. 系统使用说明 (11)七. 参考文献 (12)一.理论分析1、MC34063芯片简介:1.1.1 MC34063的结构组成:MC34063是一种开关型高效DC/DC变换集成电路。
基于MC34063的开关电源设计
电子技术课程设计报告设计课题:基于MC34063的开关电源设计专业班级:学生姓名:指导教师:设计时间:目录1.设计任务与要求 (3)2.BUCK型电路 (3)2.1线路组成 (3)2.2工作原理 (4)3.开关电源的分类 (4)4.常见开关电源的介绍 (5)4.1基本电路 (5)4.2单端反激式开关电源 (5)4.3单端正激式开关电源 (6)4.4自激式开关稳压电源 (7)4.5推挽式开关电源 (8)4.6降压式开关电源 (8)4.7升压式开关电源 (9)4.8反转式开关电源 (9)5.MC34063的基本知识 (10)5.1 MC34063的内部结构 (10)5.2 MC34063的主要参数与特点 (11)5.3 MC34063的工作原理及内部电路说明 (11)6.由MC34063组成的降压电路及计算参数 (12)6.1 MC34063组成的降压电路原理 (12)6.2 电路的参数设计计算 (13)7.性能测试分析与结果 (16)8. 结论与心得 (18)9.参考文献 (20)10.附录 (20)正文一、设计任务与要求1.掌握PCB制板技术、焊接技术、电路检测以及集成电路的使用方法。
2.掌握mc34063的非隔离开关电源的设计、组装与调试方法。
3.研究开关电源的实现方法,并按照设计指标要求进行电路的设计与仿真。
具体要求如下:①分析、掌握该课题总体方案,广泛阅读相关技术资料,并提出见解。
②掌握开关电源的工作原理。
③设计硬件系统并进行仿真,掌握系统调试方法,使系统达到设计要求。
主要技术指标直流输入电压:15~30V;输出电压:5V;输出电流:0.5A;效率:≥80%。
二.BUCK型电路在实际应用中我们对电压有很重要的应用,而且很多时候我们对电压的值有十分严格的要求,所以有时在电路中也要求我们使用一些方法来达到升压或者降压的目的,以完成自己设计的要求,故对升压与降压电源电路的认识有着重要的意义。
开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。
MC34063升压电路设计
MC34063升压电路设计 学校的智能车队在招新,没错就是NXP的那个智能车⽐赛。
作为⼤三⽼狗肯定要去凑⼀下热闹的,由于软件⽅⾯学烦了,不喜欢那些”虚头⼋脑“的PID控制,不喜欢调参,于是报了硬件组。
(其实是觉得硬件好划⽔) 硬件组的第⼆轮技术考核就是设计三个BUCK电路以及⼀个BOOST电路,具体要求如图: 电源的输⼊部分是NXP智能车⽐赛标配的2S 2000mah锂电池⼀块(电压范围7.2v~8.4v)。
所以3.3v、5v、6v 就是三个BUCK降压电路,12v就是Boost升压电路。
在本⽂要讲的是Boost升压电路的设计。
⼀说到电源设计,不可避免的就会想到LDO和DCDC。
LDO:低压差线性稳压源,可以⽤做降压电路,在本次技术考核中,使⽤LDO显然不是⼀个明智的选择。
简单计算⼀下效率就可以知道:3.3v/8v * 100% = 41.25% 也就是说理想状况下LDO都有⼀半以上的功率⽤于发热了。
因⽽,我们应该选⽤DCDC芯⽚来完成考核指标。
那LDO可以⼲啥呢?如果输⼊,输出端压差较⼩就可以选⽤LDO,并且LDO可以看作⼀个电压跟随器,前后级隔离,还能起到滤波作⽤。
DCDC:直流转换器⼜称开关电源,可以做BUCK电路,也可以做BOOST电路,有的DCDC芯⽚两者都能做。
例如BUCK电路常⽤的DCDC有TPS54540,这是⼀款⽀持42V 5A的⾼性能芯⽚。
⽽MC34063呢,这个芯⽚⾮常的骚,骚就骚在它能做BUCK电路,也可以做BOOST电路,这还没完,甚⾄还可以做反相器。
如果你是⼀个狂热的电⼦爱好者,不妨拆开⼿边的廉价电⼦设备,⽐如机顶盒、车载充电器,⾥⾯总能找到MC34063。
这个芯⽚除了功能多以外,⽣产&⼭寨他的⼚家也⾮常多,贵的⼏块钱,便宜的⼏⽑钱。
所以是个骚的不⾏的芯⽚。
下图是MC34063的内部结构图: 从图⾥⾯可以看出这个芯⽚还是挺简易的,对⽐⼀下tps54540的结构框图:可以看出tps54540的结构框图⽐mc34063复杂了很多。
基于MC34063的大电流负电源设计
基于MC34063的大电流负电源设计摘要:采用MC34063设计带电流扩充的负电源电路,功率MOS管NTB2506作外接开关管,通过调节功率MOS管的栅极驱动电阻和栅-源之间的电阻,使得栅极有最优驱动电压波形和电流大小,以增加电源的输出功率和效率。
实验表明,设计的电源输出电流可达1 A,且体积小、效率高。
在干涉型光纤传感器研制中,相位载波(PGC)调制解调是较为常用的信号检测方案,由滤波电路、模拟乘法器、D/A转换电路、微分电路、积分电路等部分组成,需要采用双电源供电且对电源功率要求较大。
如用线性电源方案为系统供电,要经过降压、整流、滤波产生正负2种直流电压,再用稳压芯片进行稳压,不但效率低,而且滤波电容、散热片会增加电源部分体积,不适合电路小型化的要求。
而用开关电源方案供电时,只需要1套经变压器降压整流后的直流电压,就可以设计出各种输出电压的稳压电源,且电源功率密度高、发热量小[1]。
在开关电源管理芯片中,输出为正电源的器件种类较多,电路易于设计,而输出为负电源的且输出电流达到1A的电源电路则较难设计。
本文采用MC34063设计负电源电路,NTB2506做外接功率管,并优化栅极驱动波形,以此提高电源输出电流的能力。
1 MC34063内部结构和电路工作原理MC34063内部原理框图如图1所示,是一种单片双极性集成电路,具有DC/DC变换器所需要的主要功能,由基准电压发生器、比较器、占空比可控的振荡器,RS触发器和大电流输出开关管等部分组成。
MC34063电路控制方式是它激式,内部有1个振荡器,通过外接电容,产生一定频率的开关脉冲信号,以控制开关管的断通,使输出端有稳定直流电压输出,开关频率由外接电容决定。
MC34063可以根据实际需要,完成各种电压变换功能。
稳压电路工作原理如下:当输出电压低于设计规定值时,反馈端输入电压小于内部基准电源1.25V,误差比较器输出高电平,打开“与门”,振荡器的振荡脉冲加在RS触发器的R端,使输出端Q为高电平,开关管导通,输入电压向滤波电容充电,使输出电压升高,直到反馈电压等于内部基准电源1.25V时,电路达到平衡状态,输出电压稳定在设计时规定的值;反之,当输出电压高于设计规定值时,开关管截止,电容放电,输出电压减小,最终稳定在设计时规定的值,从而达到了稳压的目的。
MC34063芯片设计的计算公式及应用讲解
在论坛经常看到有人在应用MC34063的时候会遇到这样那样的问题,特别的电路中的参数计算上很是不太明了,我会陆续贴上一些相关的计算公式及相关应用数据,欢迎大家参与讨论。
外围元件标称含义和它们取值的计算公式:V out(输出电压)=1.25V(1+R2/R1)Ct( 定时电容):决定内部工作频率。
Ct=0.000 004*Ton(工作频率)Ipk=2*Iomax*T/toffRsc( 限流电阻):决定输出电流。
Rsc=0.33/IpkLmin (电感):Lmin=(Vimin-Vces)*Ton/ IpkCo(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数)固定值参数:ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces)Vces=1.0VVimin:输入电压范围的最小值Vf=1.2V 快速开关二极管正向压降在实际应用中的注意:1、快速开关二极管可以选用IN4148,在要求高效率的场合必须使用IN5819(贴片为SS14);2、34063能承受的电压,即输入输出电压绝对值之和不能超过40V,否则不能安全稳定的工作;3、输出功率达不到要求的时候,比如>1A时,可以通过外接扩功率管的方法扩大输出电流,三极管、双极型或MOS管均可,一般的芯片PDF资料上都会有典型扩流电路介绍;MC34063斩波型电源结构图1 中,T 为开关管,L1 为储能电感,C1 为滤波电容,D1 为续流二极管。
当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。
设电感的初始电流为iL0,则流过电感的电流与时间t 的关系为:iLt= iL1+(Vi-Vo-Vs)t/L,Vs 为T 的导通电压。
当T 关断时,L1 通过D1 续流,从而电感的电流线性减小,设电感的初始电流为iL1,则则流过电感的电流与时间t 的关系:iLt=iL1-(Vo+Vf)t/L,Vf 为D1 的正向饱和电压。
MC34063应用电路图大全(升压电路/降压电路)
MC34063应用电路图大全(升压电路/降压电路)描述MC34063是一个单片集成电路,是一个包含了DC/DC变换器的控制电路。
该集成电路的主要构成部分是具有温度补偿的电压源、占空比可控的振荡器、驱动器、比较器、大电流输出开关电路和R-S触发器。
MC34063可用极少的开关元器件,构成升压变换开关、降压变换开关和电压反向电路,这种开关电源相对线性稳压电源来说,效率较高,而且当输入输出电压降很大时,效率不会降低,电源也不需要大的散热器,体积较小,使得其应用范围非常广泛,主要应用于以微处理器或单片机为基础的系统里。
mc34063应用电路图(一):降压变换电源原理图如下图所示是用芯片MC34063制作的+25/+5V降压变换电源原理图。
该降压电路的工作过程如下:1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。
其中,输出电压U。
=1.25(1+R2/R1)由公式可知输出电压。
仅与R1、R2数值有关,因1.25V为基准电压,恒定不变。
若R1、R2阻值稳定,U。
亦稳定。
2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较。
当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co充电以提高U。
,达到自动控制U。
稳定的作用。
3.当脚5的电压值高于内部基准电压(1.25V)时,R—S触发器的S脚控制门被封锁,Q端为“0”状态(低电平),T2截止,T1亦截止。
4.振荡器的Ipk输入(脚7)用于监视开关管T1的峰值电流,以控制振荡器的脉冲输出到R—S触发器的Q端。
5.脚3外接振荡器所需要的定时电容Co电容值的大小决定振荡器频率的高低,亦决定开关管T1的通断时间。
mc34063应用电路图(二):MC34063升压电路MC34063组成的降压电路原理如图8,当芯片内开关管(T1)导通时,电源经取样电阻Rsc、电感L1、MC34063的1脚和2脚接地,此时电感L1开始存储能量,而由C0对负载提供能量。
MC34063开关模式5伏稳压电源
MC34063开关模式5伏稳压电源
很多电子设备都使用5V充电器,如此可以兼容电脑USB接口进行充电。
该电路是基于一个MC34063的开关模式稳压器。
这个集成电路具有较高的效率,以便产生很少的热量,提供其最大输出电流时也是如此。
相比于7805稳压器,该电路是比较复杂的,但由于输入电压可以是15V DC或更高,如果我们使用7805三端稳压器,在这样的调节器上的电压损耗可能是5W(在500mA输出)。
而5W功耗对于7805是太多了,即使有相当大的散热片。
MC34063
输出电压:1.25~40V
输入电压范围:2.5~40V
最大输出电流:1.5A
最高工作频率:100kHz
特性:低静态电流,短路电流限制等
5V USB充电器电路图
开关电源工作原理
印刷电路板
元器件布局
装配好元器件的电路板。
MC34063芯片设计的计算公式及应用讲解
在论坛经常看到有人在应用MC34063的时候会遇到这样那样的问题,特别的电路中的参数计算上很是不太明了,我会陆续贴上一些相关的计算公式及相关应用数据,欢迎大家参与讨论。
外围元件标称含义和它们取值的计算公式:V out(输出电压)=1.25V(1+R2/R1)Ct( 定时电容):决定内部工作频率。
Ct=0.000 004*Ton(工作频率)Ipk=2*Iomax*T/toffRsc( 限流电阻):决定输出电流。
Rsc=0.33/IpkLmin (电感):Lmin=(Vimin-Vces)*Ton/ IpkCo(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数)固定值参数:ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces)Vces=1.0VVimin:输入电压范围的最小值Vf=1.2V 快速开关二极管正向压降在实际应用中的注意:1、快速开关二极管可以选用IN4148,在要求高效率的场合必须使用IN5819(贴片为SS14);2、34063能承受的电压,即输入输出电压绝对值之和不能超过40V,否则不能安全稳定的工作;3、输出功率达不到要求的时候,比如>1A时,可以通过外接扩功率管的方法扩大输出电流,三极管、双极型或MOS管均可,一般的芯片PDF资料上都会有典型扩流电路介绍;MC34063斩波型电源结构图1 中,T 为开关管,L1 为储能电感,C1 为滤波电容,D1 为续流二极管。
当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。
设电感的初始电流为iL0,则流过电感的电流与时间t 的关系为:iLt= iL1+(Vi-Vo-Vs)t/L,Vs 为T 的导通电压。
当T 关断时,L1 通过D1 续流,从而电感的电流线性减小,设电感的初始电流为iL1,则则流过电感的电流与时间t 的关系:iLt=iL1-(Vo+Vf)t/L,Vf 为D1 的正向饱和电压。
采用MC34063芯片的DCDC电源变换控制器设计
采用MC34063芯片的DC-DC电源变换控制器设计摘要:本文介绍了一种采用MC34063芯片的DC-DC电源变换控制器的电源电路设计。
它提供的直流输出不仅与供电电源共地,而且有两组与供电电源隔离。
实验室长期试运行表明,各项指标均可满足数字与模拟混合电路对电源的要求,没有跳码现象,检测精度不低于0.1%。
关键词:电源电路;DC-DC 变换;隔离电源在工业生产过程测控场合,出于安全的考虑,很多安装于现场的测量控制装置或测控网络的底层节点设备都采用低压直流供电。
这些装置或设备内部的硬件电路常常是基于微处理器的模拟电路与数字电路的混合硬件电路系统,需要多组直流电源为其数字电路部分与模拟电路部分分别供电。
为了取得良好的系统稳定性与测量精度,一般要求数字与模拟电路的供电电源相互隔离或一点连接。
使用多路输出电源是解决这一问题的有效途径。
早期制作多路输出电源,人们总是把几个不同的DC-DC变换器组装起来,这种方式的电路设计简单,但会加大成本,增加供电系统的体积、重量,并且有难以克服的拍频干扰,在输出电压上出现各种振荡频率之差的纹波电压。
因此开关电源的多路输出技术越来越受到人们的关注,因为它只用一个DC-DC变换器,输出电压的纹波具有相同的频率,不会发生拍频干扰。
目前多路输出变换器有3种常用的电路形式:独立滤波电感的多绕组DC-DC变换器,耦合电感的多绕组DC-DC变换器,磁放大器二次稳压的多绕组DC-DC变换器。
虽然使用多路输出变换器模块比组装几个不同DC-DC变换器电路效率高,成本降低,但是对于小型、小功率、低压控制模块来说还不是最佳选择。
本文基于多路输出变换技术,采用MC34063 控制芯片,使用少量的外围元件,设计了一种新型、简单、实用的多路输出电路,能为数字电路和模拟电路同时供电,并使两者相互隔离。
在笔者所查阅的文献中还没有看见类似的设计方法。
MC34063 性能简介电路的核心元件是MC34063 ,它是一种单片双极型线性集成电路,专用于DC-DC直流/直流变换器控制部分,片内包含有温度补偿带隙基准源、一个占空比可控的振荡器和大电流输出开关,能输出1.5A的开关电流。
MC34063芯片设计的计算公式及应用讲解
MC34063芯片设计的计算公式及应用讲解MC34063芯片设计的计算公式及应用讲解在论坛经常看到有人在应用MC34063的时候会遇到这样那样的问题,特别的电路中的参数计算上很是不太明了,我会陆续贴上一些相关的计算公式及相关应用数据,欢迎大家参与讨论。
外围元件标称含义和它们取值的计算公式:Vout(输出电压)=1.25V(1+R1/R2 )Ct( 定时电容):决定内部工作频率。
Ct=0.000 004*Ton(工作频率)Ipk=2*Iomax*T/toffRsc( 限流电阻):决定输出电流。
Rsc=0.33/IpkLmin (电感):Lmin=(Vimin-Vces)*T on/ IpkCo(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数)固定值参数:ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces)Vces=1.0VVimin:输入电压范围的最小值Vf=1.2V 快速开关二极管正向压降在实际应用中的注意:1、快速开关二极管可以选用IN4148,在要求高效率的场合必须使用 IN5819(贴片为SS14);2、34063能承受的电压,即输入输出电压绝对值之和不能超过40V,否则不能安全稳定的工作;3、输出功率达不到要求的时候,比如>1A时,可以通过外接扩功率管的方法扩大输出电流,三极管、双极型或MOS管均可,一般的芯片PDF资料上都会有典型扩流电路介绍;MC34063斩波型电源结构图1 中,T 为开关管,L1 为储能电感,C1 为滤波电容,D1 为续流二极管。
当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。
设电感的初始电流为iL0,则流过电感的电流与时间t 的关系为:iLt= iL1+(Vi-Vo-Vs)t/L,Vs 为T 的导通电压。
当T 关断时,L1 通过 D1 续流,从而电感的电流线性减小,设电感的初始电流为 iL1,则则流过电感的电流与时间t 的关系:iLt=iL1-(Vo+Vf)t/L,Vf 为 D1 的正向饱和电压。
MC34063芯片附送部分经典电路
都是来源于网络的治疗,整理整理,与大家分享学习,我想还是免费的好。
34063由于价格便宜,开关峰值电流达1.5A,电路简单且效率满足一般要求,所以得到广泛使用。
1. MC34063 DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。
片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。
它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。
特点:*能在3.0-40V的输入电压下工作*短路电流限制*低静态电流*输出开关电流可达1.5A(无外接三极管)*输出电压可调*工作振荡频率从100HZ到100KHZ2.MC34063引脚图及原理框图MC34063 电路原理振荡器通过恒流源对外接在CT 管脚(3 脚)上的定时电容不断地充电和放电以产生振荡波形。
充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。
与门的C 输入端在振荡器对外充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平。
当C 和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。
电流限制通过检测连接在VCC(即6脚)和7 脚之间采样电阻(Rsc)上的压降来完成,当检测到电阻上的电压降接近超过300 mV 时,电流限制电路开始工作,这时通过CT 管脚(3 脚)对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。
线性稳压电源效率低,所以通常不适合于大电流或输入、输出电压相差大的情况。
开关电源的效率相对较高,而且效率不随输入电压的升高而降低,电源通常不需要大散热器,体积较小,因此在很多应用场合成为必然之选。
开关电源按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。
基于MC34063集成电路的开关电源设计设计
目录前言 (9)一、直流稳压电源的构成 (11)二、直流稳压电源的分类 (15)三、直流稳压电源的技术指标 (17)四、开关稳压电源的工作原理 (20)五、调宽式开关稳压电源的电路组成 (21)六、开关稳压电源与串联可调式稳压电源 (23)七、电路方案的选择 (25)八、MC34063应用电路图设计 (28)九、电源的PCB板的作 (31)十、方案验证 (33)致谢 (34)参考文献 (35)基于MC34063集成电路的开关电源设计摘要为了提高电源的利用效率和缩小设计电源的尺寸,本文采用MC3406集成芯片的开关稳压电源,并对芯片内部结构和外部电路作简要介绍,给出一个完整的开关稳压电路设计,并对电路作了具体论证,最终完成开关稳压电源的实物制作。
关键词:开关稳压电源;整流滤波电路;PWM控制电路;MC34063引言电源是各种电子设备的核心,因此电源的优劣直接关系到电子设计的好坏。
另外电子设计者不得不考虑的一个问题就是效率问题,所以一个好的电源不仅要工作可靠还应该有较高的效率,而开关电源正是正好符合以上两点。
自开关稳压电源(以下简称开关电源)问世后,在很多领域逐步取代了线性稳压电源和晶闸管相控电源。
早期出现的是串联型开关电源,其主电路拓扑与线性电源相仿,但功率晶体管工作于开关状态。
随着脉宽调制(PWM)技术的发展,PWM开关电源问世,它的特点是用20kHz的载波进行脉冲宽度调制,电源的效率可达70%~90%,而线性电源的效率只有30%~40%。
随着超大规模集成芯片尺寸的不断减小,电源的尺寸也越来越小;而航天、潜艇、军用开关电源以及用电池的便携式电子设备(如手提计算机、移动电话等)更需要小型化、轻量化的电源。
因此,对开关电源提出了小型轻量要求。
这一切高新要求便促进了开关电源的不断发展和进步。
正文一、直流稳压电源的构成许多电子产品如电视机、电子计算机、音响设备等都需要直流电源,电子仪器也需要直流电源,实验室更需要独立的直流电源。
基于MC34063的开关电源电路参数计算方法
基于MC34063的开关电源电路参数计算方法
开关电源以其高效率、小型、重量轻的特点被用于几乎所有的电子设备,是电子信息行业飞速发展中不可缺少的一种电源。
而在开关电源的设计中,开关电源芯片外围电路各参数设计是关系到开关电源稳定可靠工作非常
重要的一环。
MC34063是一种振荡频率可变的电流检测型DC-DC转换芯片,按照其规格书对其外围电路设计,当负载较重时,输出电压往往不能稳定在
目标电压值。
针对此问题,本文对电路参数的设计方法进行改进,并且通过
实验验证改进参数的合理性。
1.MC34063电路介绍
1.1MC34063基本特性
MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。
片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱
动器和大电流输出开关,能输出1.5A的开关电流。
通过不同外围电路设计,可实现升压、降压、电压反向等功能。
其基本特点如下:输入电压在6~40V
之间;短路电流限制;低静态电流;输出开关电流可达1.5A(无外接三极管);输出电压可调;振荡电容为470pF,当负载较轻时,其工作振荡频率从
50KHz到55KHz,当负载较重时,其工作频率可达80KHz。
基于MC34063的升压、降压、正负电压输出(附原理图、PCB、BOM和datasheet)
基于MC34063的升压、降压、正负电压输出(附原理图、
PCB、BOM和datasheet)
本设计电路介绍的是MC34063的升压/降压/正负电压输出电路,并提供原理图、PCB、BOM和MC34063数据手册,均可下载。
设计介绍
电路分为三个升压,降压,升负电压输出,三个独立单元。
也可以共地,广泛应用在多电压供电场合。
MC34063低成本,高性价比。
该MC34063可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。
MC34063的升压/降压/正负电压输出电路参数:
MC34063的升压/降压/正负电压输出电路原理图截图:
MC34063的升压/降压/正负电压输出电路 PCB截图:。
基于MC34063芯片DC-DC(20-5)降压型变换电路
目录基于MC34063芯片的DC-DC(20/5)降压型变换电路 (2)1 引言 (3)2 设计要求及分析 (4)2.1、设计要求 (4)2.2、设计分析 (4)3 MC34063芯片介绍 (5)3.1、MC34063的引脚图及引脚介绍 (5)3.2、MC34063内部组成及示意图 (5)3.3、MC4063芯片特点 (6)4 系统整体方案的论证与选择 (6)4.1、外接开关管方案 (6)4.2、不外接开关管方案 (8)5 基于MC34063变换电路的工作原理 (9)5.1、DC-DC开关电源的电路组成及工作原理 (9)5.2、基于MC34063降压变换电路原理 (11)6 电路仿真 (20)6.1、proteus仿真软件介绍 (20)6.2、仿真电路及测试图 (20)7 实物测试及结论分析................................................................................. 错误!未定义书签。
7.1、实物及测试结果............................................................................ 错误!未定义书签。
7.2、结果分析........................................................................................ 错误!未定义书签。
参考文献.. (22)附录 .............................................................................................................. 错误!未定义书签。
致谢 ............................................................................................................ 错误!未定义书签。
MC34063芯片设计的计算公式及应用讲解
在论坛经常看到有人在应用MC34063的时候会遇到这样那样的问题,特别的电路中的参数计算上很是不太明了,我会陆续贴上一些相关的计算公式及相关应用数据,欢迎大家参与讨论。
外围元件标称含义和它们取值的计算公式:V out(输出电压)=1.25V(1+R2/R1)Ct( 定时电容):决定内部工作频率。
Ct=0.000 004*Ton(工作频率)Ipk=2*Iomax*T/toffRsc( 限流电阻):决定输出电流。
Rsc=0.33/IpkLmin (电感):Lmin=(Vimin-Vces)*Ton/ IpkCo(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数)固定值参数:ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces)Vces=1.0VVimin:输入电压范围的最小值Vf=1.2V 快速开关二极管正向压降在实际应用中的注意:1、快速开关二极管可以选用IN4148,在要求高效率的场合必须使用IN5819(贴片为SS14);2、34063能承受的电压,即输入输出电压绝对值之和不能超过40V,否则不能安全稳定的工作;3、输出功率达不到要求的时候,比如>1A时,可以通过外接扩功率管的方法扩大输出电流,三极管、双极型或MOS管均可,一般的芯片PDF资料上都会有典型扩流电路介绍;MC34063斩波型电源结构图1 中,T 为开关管,L1 为储能电感,C1 为滤波电容,D1 为续流二极管。
当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。
设电感的初始电流为iL0,则流过电感的电流与时间t 的关系为:iLt= iL1+(Vi-Vo-Vs)t/L,Vs 为T 的导通电压。
当T 关断时,L1 通过D1 续流,从而电感的电流线性减小,设电感的初始电流为iL1,则则流过电感的电流与时间t 的关系:iLt=iL1-(Vo+Vf)t/L,Vf 为D1 的正向饱和电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正文一、设计任务与要求2.掌握开关电源的设计、组装与调试方法。
3.研究开关电源的实现方法,并按照设计指标要求进行电路的设计与仿真。
具体要求如下:分析、掌握该课题总体方案,广泛阅读相关技术资料,并提出见解。
掌握开关电源的工作原理。
主要技术指标直流输入电压:15~30V;输出电压:8V;输出电流:0.5A;效率:≥80%。
二.BUCK型电路在实际应用中我们对电压有很重要的应用,而且很多时候我们对电压的值有十分严格的要求,所以有时在电路中也要求我们使用一些方法来达到升压或者降压的目的,以完成自己设计的要求,故对升压与降压电源电路的认识有着重要的意义。
开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。
开关稳压电源分为三种,即BUCK型电路(降压)、 BOOST型电路(升压)、Buck-Boost型电路(降压-升压混合)。
现在我对基本电路BUCK做简要说明,以方便大家对基于MC34063开关稳压电源设计的理解。
2.1.线路组成图1(a)所示为由单刀双掷开关S、电感元件L和电容C组成的Buck变换器电路图。
图1(b)所示为由以占空比D工作的晶体管T r、二极管D1、电感L、电容C组成的Buck变换器电路图。
电路完成把直流电压V s转换成直流电压V o的功能。
图1Buck变换器电路当开关S在位置a时,有图2 (a)所示的电流流过电感线圈L,电流线性增加,在负载R上流过电流Io ,两端输出电压Vo,极性上正下负。
当is>Io时,电容在充电状态。
这时二极管D1承受反向电压;经过时间D1Ts后(,ton为S在a位时间,Ts是周期),当开关S在b位时,如图2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性,以保持其电流iL 不变。
负载R两端电压仍是上正下负。
在iL<Io时,电容处在放电状态,有利于维持Io 、Vo不变。
这时二极管D1,承受正向偏压为电流iL构成通路,故称D1为续流二极管。
由于变换器输出电压Vo 小于电源电压Vs,故称它为降压变换器。
工作中输入电流is,在开关闭合时,is >0,开关打开时,is=0,故is是脉动的,但输出电流Io,在L、D1、C作用下却是连续的,平稳的。
图2Buck变换器电路工作过程三、开关电源的分类:(1)按开关管的连接方式,开关电源可分为串联型开关电源和并联型开关电源。
串联型开关电源的开关管是串联在输入电压和输出负载之间,属于降压式稳压电路;而并联型开关电源的开关管是在输入电压和输出负载之间并联的,属于升压式稳压电路。
(2)按激励方式,开关电源可分为自激式和他激式。
在自激式开关电源中,由开关管和高频变压器构成正反馈环路,来完成自激振荡,类似于间歇振荡器;而他激式开关电源必须附加一个振荡器,振荡器产生的开关脉冲加在开关管上,控制开关管的导通和截止,使开关电路工作并有直流电压输出。
(3)按调制方式,开关电源可分为脉宽调制(PWM)方式和脉频调制(PFM)方式。
PWM是通过改变开关脉冲宽度来控制输出电压稳定的方式,而PFM是当输出电压变化时,通过取样比较,将误差值放大后去控制开关脉冲周期(即频率),使输出电压稳定。
(4)按输出直流值的大小,开关电源可分为升压式开关电源和降压式开关电源,也可分为高压开关电源和低压开关电源。
(5)按输出波形,开关电源可分为矩形波和正弦波电路。
(6)按输出性能,开关电源可分为恒压恒频和变压变频电路。
(7)按开关管的个数及连接方式又可将开关电源分为单端式、推挽式、半桥式和全桥式等。
单端式仅用一只开关管,推挽式和半桥式采用两只开关管,全桥式则采用四只开关管。
(8)开关电源按能量传递方式又可分为正激式和反激式。
(9)按软开关方式分,开关电源有电流谐振型、电压谐振型、E类与准E类谐振型和部分谐振型等四.MC34063的基本知识该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。
它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。
该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。
主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。
5.1、MC34063的内部结构图7 MC34063内部逻辑结构1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。
5.2、MC34063的主要参数与特点★能在3.0V至40V的输入电压下工作★短路电流限制★低静态电流★输出开关电流可达1.5A(无外接三极管)★输出电压可调★工作振荡频率100HZ至100KHZ★可构成升压、降压或反相电源变换器5.3、MC34063的工作原理及内部电路说明由于内置有大电流的电源开关,MC34063的能够控制的开关电流达到1.5A。
该芯片由内部线路由参考电压源、振荡器、转换器、逻辑控制线路和开关晶体管等几部分组成(如图7所示)。
参考电压源是用于温度补偿的带隙基准源。
振荡器的震荡频率由3脚的外接定时电容决定。
开关晶体管由比较器的反向输入端与振荡器相连的逻辑控制线置路成ON,并由与震荡器输出同步的想下一个脉冲置成OFF。
振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断的充电放电,以产生振荡波形。
充电放电电流都是恒定的,所以振荡频率仅取决于外接定时电容的容量。
与门的C输入端在振荡器的对外充电时为高电平,D输入端在比较器的输入电平低于阈值电平时为高电平。
当C和D输入端都变成高电平的时候,触发器被置于高电平,输入管导通。
反之,当振荡器在震荡放电期间,C输入为低电平,触发器被复位,使得输入开关管处于关闭状态。
电流限制SI检测端(5脚)通过检测连接在V+和5脚之间电阻上的压降来完成功能。
当检测到电阻上的电压降接近超过300mv时,电流限制电路开始工作。
这时通过CT管脚(3脚)对定时电容进行快读充电,以减少充电时间和输入开关管的导通时间,结果是使得输出开关管的输出开关管的关闭时间延长。
由MC34063组成的降压电路及计算参数:MC34063组成的降压电路原理:降压转换器1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。
其中,输出电压U。
=1.25(1+ R2/R1)由公式可知输出电压。
仅与R1、R2数值有关因1.25V为基准电压,恒定不变。
若R1、R2阻值稳定,U。
亦稳定。
2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较。
当脚的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co充电以提高U。
,达到自动控制U。
稳定的作用。
3.当脚5的电压值高于内部基准电压(1.25V)时,R—S触发器的S脚控制门封锁,Q端为“0”状态(低电平),T2截止,T1亦截止。
4.振荡器的Ipk 输入(脚7)用于监视开关管T1的峰值电流,以控制振荡器的脉冲输出到R—S触发器的Q端。
5.脚3外接振荡器所需要的定时电容Co电容值的大小决定振荡器频率的高低,亦决定开关管T1的通断时间。
如果对输出电流较大的要求,我们还可以在电路中加上一个扩流电路。
现在我们以一个降压扩流电路为例,讲解实际降压电路。
降压电路技术要求为:输入24V,输出8V,最大负载电流2A(需扩流) 。
我们已经知道MC34063内部的达林顿管的极限饱和电流为1.5A,若要最大负载电流也要达到2A,那么在电流外部就必须要进行扩流,使得在从管脚1输出电流远小于2A的情况下,最大负载电流能够达到2A。
电路如图9。
图4 MC34063组成的降压扩流电路降压扩流电路图如图4,现在我们通过MC34063的外围电路元器件的计算方法来计算各元件的参数指标。
元件参数计算表容易电路的参数设计计算:1.采样回路电阻R1和R2:Uo(输出电压):它的稳压值由R1和R2决定,其计算公式为U。
=1.25(1+ R2/R1 )。
由实际电路可知:8=1.25(1+ R2/R1 )R1=10k电位器R2=10k电位器用10K电位器调整参数参数如下:V1=电压输出V2=加负载的电压输出A最大电流由于一直稳不住2A 所以改变方案,如下选择从TIP41改为TIP32,从NPN改为PNP,从而调整参数,进而得到如下参数实验结论:元件清单::。