2019年高考北京卷数学(理)试卷及答案
2019年全国统一高考理科数学全国II卷(含答案)
2019年普通高等学校招生全国统一考试全国II 卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A. (-∞,1) B. (-2,1) C. (-3,-1)D. (3,+∞)2.设z =-3+2i ,则在复平面内z 对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限D. 第四象限 3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A. -3 B. -2 C. 2D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 A.B.C.D.5.演讲比赛共有9位评委分别给出某选手原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A. 中位数B. 平均数C. 方差D. 极差6.若a >b ,则 A. ln(a −b )>0B. 3a <3bC. a 3−b 3>0D. │a │>│b │7.设α,β为两个平面,则α∥β的充要条件是 A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α,β平行于同一条直线 D. α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A. 2B. 3C. 4D. 89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │ D. f (x )= sin│x │10.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15 B.C. 3D.511.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A.B.C. 2D.12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A. 9,4⎛⎤-∞ ⎥⎝⎦B. 7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D. 8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 15.V ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则V ABC 的面积为__________. 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.三、解答题:共70分。
2019年北京卷语文英语数学理综高考真题及答案(4套齐了)
2019年普通高等学校招生全国统一考试语文(北京卷)本试卷共10页,150分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、本大题共7小题,共23分。
阅读下面的材料,完成1—6题。
材料一随着全球人口的不断增长和科学技术的飞速发展,人类在创造文明的同时也缔造了一个深受人类影响的全球生态系统。
长期以来对生物资源及土地的过度利用,导致了动植物栖息地丧失、环境污染等一系列问题的出现,生态环境及生物系统遭受了严重破坏。
据专家估计,由于人类活动和气候变化,地球上的生物种类目前正在以相当于正常水平1000倍速度消失,全球已有约3.4万种植物和5200多种动物濒临灭绝,物种分布发生了大范围的变化,这些形成了全球性的生物多样性危机。
生物多样性危机是多种因素综合作用的结果,城市化是其中重要的因素之一。
城市化是伴随工业化和现代化必然出现,反过来又推进工业化和现代化的一个历史过程;城市化水平是现代文明的重要指标。
但无序蔓延的城市开发使野生动植物的栖息地日益萎缩,一部分动植物不得不和人类共同生活在城市之中。
城市中约60~70%的地表被道路、人エ建筑、停车场等硬化,水不容易渗入,植物的种子难以生根。
全球很多城市的人口密度已达每平方千米数万人,密集的人流对诸多生物而言是潜在的危险;除此之外,还有大量的汽车、摩托车等在飞驰。
高楼大厦林立,热量不断聚集,城市中心的温度有时甚至高出周边10°C之多,这种热岛效应对生物的生存也是一大干扰因素。
生物多样性为人类发展带来了巨大财富,目前它却面临着来自城市化等方面的威胁。
城市化对生物多样性的影响成为生态学研究者关注的焦点问题。
(取材于干靓等的相关文章)1.根据材料一,下列表述不属于生物多样性危机的一项是(3分)A.生物种类以非正常速度消失。
B.大量动植物濒临灭绝。
C.物种分布发生大范围变化。
D.动植物和人类共同生活。
2.根据材料一,下列理解和分析,符合文意的一项是(3分)A.深受人类影响的全球生态系统利于缓解生物多样性危机。
2019年高考理科数学北京卷理数(附参考答案和详解)
绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(北京卷)数学(理工农医类)总分:150分考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I卷一、选择题:本题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019北京卷·理)已知复数2iz=+,则z z⋅=()A.3B.5C.3D.5【解析】因为2iz z⋅=+⋅-=.故选D.z=+,所以2iz=-,所以(2i)(2i)5【答案】D2.(2019北京卷·理)执行如图所示的程序框图,输出的s值为()A.1B.2C.3D.4【解析】1,1k s ==;第一次循环:2s =,判断3,2k k <=;第二次循环:2s =,判断3,3k k <=;第三次循环:2s =,判断3k =.故输出2,故选B. 【答案】B3.(2019北京卷·理)已知直线l 的参数方程为13,24x t y t=+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是( )A.15B.25C.45D.65【解析】由题意可知直线l 的普通方程为4320x y -+=,由点到直线的距离公式可得点(1,0)到直线l的距离65d ==.故选D. 【答案】D4.(2019北京卷·理)已知椭圆22221(0)x y a b a b+=>>的离心率为12,则( )A.222a b =B.2234a b =C.2a b =D.34a b =【解析】因为椭圆的离心率为12c e a ==,所以224a c =.又222a b c =+,所以2234a b =.故选B. 【答案】B5.(2019北京卷·理)若x ,y 满足||1x y ≤-,且1y ≥-,则3x y +的最大值为( )A.7-B.1C.5D.7【解析】由||1x y ≤-,且1y ≥-,得10,10,1.x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩作出可行域如图阴影部分所示.设3z x y =+,则3y x z =-+,作直线0:3l y x =-,并进行平移.显然当0l 经过点(2,1)A -时,z 取得最大值,max 3215z =⨯-=.故选C. 【答案】C6.(2019北京卷·理)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足12125lg2E m m E -=,其中星等为k m 的星的亮度为(1,2)k E k =.已知太阳的星等是26.7-,天狼星的星等是 1.45-,则太阳与天狼星的亮度的比值为( )A.10.110B.10.1C.lg10.1D.10.110-【解析】由题意知,126.7m =-,2 1.45m =-,代入所给公式得1251.45(26.7)lg 2EE ---=,所以12lg10.1E E =,所以10.11210EE =.故选A. 【答案】A7.(2019北京卷·理)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】因为设点A ,B ,C 不共线,由向量加法的三角形法则,可知BC AC AB =-,所以||||AB AC BC +>等价于||||AB AC AC AB +>-,因模为正,故不等号两边平方得22222||||cos 2||||cos AB AC AB AC AC AB AC AB θθ++⋅⋅>+-⋅⋅(θ为AB 与AC 的夹角),整理得4||||cos 0AB AC θ⋅⋅>,故cos 0θ>,即θ为锐角.又以上推理过程可逆,所以“AB 与AC 的夹角为锐角”是“AB AC BC +>”的充分必要条件.故选C. 【答案】C8.(2019北京卷·理)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图).给出下列三个结论: ①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是( )A.①B.②C.①②D.①②③【解析】由221||x y x y +=+,当0x =时,1y =±;当0y =时,1x =±;当1y =时,01x =±,.故曲线C 恰好经过6个整点:(0,1)A ,(0,1)B -,(1,0)C ,(1,1)D ,(1,0)E -,(1,1)F -,所以①正确.由基本不等式,当0y >时,22221||1||12x y x y x y xy ++=+=+≤+,所以222x y +≤222x y +≤②正确.如图,由①知矩形CDFE 的面积为2,△BCE 的面积为1,所以曲线C 所围成的“心形”区域的面积大于3,故③错误.故选C. 【答案】C第Ⅱ卷二、填空题:本题共6小题,每小题5分。
2019年高考理科数学(全国1卷)答案详解(附试卷)
P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)
sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为
2019全国2卷高考数学理科含答案详解(珍藏版)
绝密★启用前2019年普通高等学校招生全国统一考试(全国2卷)理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A ={x|x 2﹣5x+6>0},B ={x|x ﹣1<0},则A ∩B =()A .(﹣∞,1)B .(﹣2,1)C .(﹣3,﹣1)D .(3,+∞)2.(5分)设z =﹣3+2i ,则在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)已知=(2,3),=(3,t ),||=1,则?=()A .﹣3B .﹣2C .2D .34.(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:+=(R +r ).设α=.由于α的值很小,因此在近似计算中≈3α3,则r 的近似值为()A .RB .RC .R D .R5.(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A .中位数B .平均数C .方差D .极差6.(5分)若a >b ,则()A .ln (a ﹣b )>0B .3a<3bC .a 3﹣b 3>0D .|a|>|b|7.(5分)设α,β为两个平面,则α∥β的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.(5分)若抛物线y 2=2px (p >0)的焦点是椭圆+=1的一个焦点,则p =()A .2B .3C .4D .89.(5分)下列函数中,以为周期且在区间(,)单调递增的是()A .f (x )=|cos2x|B .f (x )=|sin2x|C .f (x )=cos|x |D .f (x )=sin|x|10.(5分)已知α∈(0,),2sin2α=cos2α+1,则sin α=()A .B .C .D .11.(5分)设F 为双曲线C :﹣=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF |,则C 的离心率为()A .B .C .2D .12.(5分)设函数f (x )的定义域为R ,满足f (x+1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m],都有f (x )≥﹣,则m 的取值范围是()A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]二、填空题:本题共4小题,每小题5分,共20分。
2019年高考理科数学北京卷(附参考答案和详解)
4!数学中 有 许 多 形 状 优 美/寓 意 美 好 的 曲 线# 曲线 .,#$0&$'!0"#"& 就是 其 中 之 一$如 图 %!给 出 下 列 三 个 结 论 ,
曲线 . 恰 好 经 过 & 个 整 点 $即 横/纵 坐 标
均 为 整 数 的 点 %-
第4题图
曲线 . 上任意一点到原点的距离都不超过槡$-
三 解 答 题解答应写出文字说明证明过程或演算步骤
!"!$本小题满 分 !+ 分%在 '+0. 中#''+#(()'$#5290'
(
! $
!
$!%求(#) 的 值 -
$$%求9/: $0(.%的值!
.!( .
!&!$本小题满分!)分%如图#在 四 棱 锥 12+0.5 中#1+& 平
面 +0.5#+5&.5#+5,0.#1+'+5'.5'$#0.'+!
曲线 . 所围成的&心形'区域的面积小于+! 其 中 #所 有 正 确 结 论 的 序 号 是
*% -%
! ! !,% ! ! !.%
$! ! %
第二部分
二 填 空 题本大题共&小题每 小 题 " 分共 +# 分!把 答 案
填在题中横线上
8!函数 *$#%'9/:$$# 的最小正周期是!!!!! !#!设 等 差 数 列!'-"的 前- 项 和 为,-#若'$ ' (+#," ' (!##
2019年北京市高考数学试卷(理科)以及答案解析
绝密★本科目考试启用前2019年普通高等学校招生全国统一考试(北京卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(5分)已知复数z=2+i,则z•=()A.B.C.3D.52.(5分)执行如图所示的程序框图,输出的s值为()A.1B.2C.3D.43.(5分)已知直线l的参数方程为(t为参数),则点(1,0)到直线l的距离是()A.B.C.D.4.(5分)已知椭圆+=1(a>b>0)的离心率为,则()A.a2=2b2B.3a2=4b2C.a=2b D.3a=4b5.(5分)若x,y满足|x|≤1﹣y,且y≥﹣1,则3x+y的最大值为()A.﹣7B.1C.5D.76.(5分)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=lg,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.17.(5分)设点A,B,C不共线,则“与的夹角为锐角”是“|+|>||”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A.①B.②C.①②D.①②③二、填空题共6小题,每小题5分,共30分。
2019年全国卷Ⅰ理数数学高考试题(含答案)
21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得 分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
A.165 cmB.175 cmC.185 cmD.190cm
5.函数f(x)= 在 的图像大致为
A. B.
C. D.
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
16.已知双曲线C: 的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若 , ,则C的离心率为____________.
三、解答题:
17.(12分) 的内角A,B,C的对边分别为a,b,c,设 .
(1)求A;
(2)若 ,求sinC.
18.(12分) 如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
23.[选修4—5:不等式选讲](10分)
2019年全国统一高考数学试卷(理科)真题解析(解析版)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设z =-3+2i ,则在复平面内z 对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】 【分析】本题考查复数的共轭复数和复数在复平面内的对应点位置,渗透了直观想象和数学运算素养.采取定义法,利用数形结合思想解题.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目,难度偏易.忽视共轭复数的定义致错,复数与共轭复数间的关系为实部同而虚部异,它的实部和虚部分别对应复平面上点的横纵坐标.3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A. -3 B. -2 C. 2 D. 3【答案】C 【解析】 【分析】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.【详解】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A.B.C.D.【答案】D 【解析】 【分析】本题在正确理解题意的基础上,将有关式子代入给定公式,建立α的方程,解方程、近似计算.题目所处位置应是“解答题”,但由于题干较长,易使考生“望而生畏”,注重了阅读理解、数学式子的变形及运算求解能力的考查. 【详解】由rRα=,得r R α= 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得3α=所以3.r R α==【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错.5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A. 中位数B. 平均数C. 方差D. 极差【答案】A 【解析】 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x <<<,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数234817x x x x x '=<<<()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()22221119q S x x x x x x ⎡⎤=-+-++-⎢⎥⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 显然极差变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.6.若a >b ,则 A. ln(a −b )>0B. 3a <3bC. a 3−b 3>0D. │a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3xy =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.7.设α,β为两个平面,则α∥β的充要条件是 A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α,β平行于同一条直线 D. α,β垂直于同一平面 【答案】B 【解析】 【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A. 2B. 3C. 4D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │ D. f (x )= sin│x │【答案】A 【解析】 【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间单调递减,排除B ,故选A .【点睛】利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;10.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15B.5C. D.【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=B .【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.11.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A.B. C. 2 D.【答案】A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A. 9,4⎛⎤-∞ ⎥⎝⎦B. 7,3⎛⎤-∞ ⎥⎝⎦ C. 5,2⎛⎤-∞ ⎥⎝⎦ D. 8,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.14.已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】 【分析】本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案. 【详解】因为()f x 是奇函数,且当0x <时,()ax f x e -=-.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e --=-,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3π. 【点睛】本题主要考查函数奇偶性,对数的计算.15.V ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则V ABC 的面积为__________.【答案】【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】 (1). 共26个面. (2). 1. 【解析】 【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决. 【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则A B B E x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题:共70分。
2019年高考数学全国卷1(文理科试题及答案)
2019 年普通高等学校招生全国统一考试(全国卷1)理科数学2019年聊通高筲学枝IW 上全国统与试理科数学1. 善巻啊.蛊生务愛耨自已的蚪化、齐生号霁垃q 在善變节*1弑嘗搭电他*上.2. 阿巻就卄虺uh 迤出禅小町善丽,用樹笔把仔国鬥tlSJ ■貝曲唇塞标号找事,如蒂改圍”用 檢皮崔「浄后・再选涂其它袴索标号"凤祎非选择期时.特嘗案耳在答理卡匕耳左血试卷匕无牡・3-苇试姑柬斤,将事试卷和書岂卡一弁宦回°、业獎砸:本翹弍垃小SL 爼水粗占分.共⑷分.在毎小題箱出的四个选亚中.人有--助超胡倉饉 目贾康的"】.己如能會M ■徉4< JT 莖工}, N = |x -r-6<o|» HA/nJV =(A. [.r|-4 < x <3. (r-4 < x < -2^C.[ .v -1 < J <D. (JL |2 < A <d 试耳烈:満足:一F| = l*匚料珏罪血内时咻的戌対(斗y)・确r 】A.(x-i) +3': =1B (J -1 + >2 - IC t' +( i -l)J =i D.r +(.V + 1)3 = 1弘已刘iM = 】Qg ;0£ b 二 0 • e-o^1' ・剧 i JA,.ti<h<ce. < f < bCvai^bu.Zt <c<a朽一]4,古希雅时朗.人怕认为星类人井的齊哺至肚睛的绘度勺肚1ft 帘足底的氏度之比是七一吕首的-瞬嘗聲抽飓・便艮则此Jtt>K 摊羌人体的久3证1%1/5噸的快度与咽麻奇tt 席酋长嵐之比也呈坐二.拧卓人厲址h.ifffif 黄童井制比桝.105cm.AJMSIF f F 韻的叹度为Mcrm 则K 甘岳町施址(1A,]lKcm B.l 75cm 匚185cm5,i 炯柱小}壬二町・屁訂的側粉打)ccs r +□ 190cm*: 0.611!.轧爲竝;:寸乩比隣.*"tty氐我岡古代典攜(周SP用H卄”推述打物的堂比邯一“直5K山从卜之1齐列的EG弦爼获.Jt分为團爻■■一 -•- ■■右圈就是M・也所有重計中融机取£幷’则谍啃料惜盯于个们爻的栅率¥(〕5 II 2\IIA.—&.—C,— D.—16 竝竝169.记旺为:字衣吐列仏}的前』」1杷L1畑二=0・山二5.驅CA.叫= 2rt 5B. = 3n 10CS =2n:D.S =-ft-2nh °2ltt已如«•■<;的世点为^(-W) . FW 过珂的fL^'j C丸于礼H阳点雷|娠卜2|两国,\AH=2|占F,則亡的力糧为(>①丿足腾咕救②/|町任邂的|彳,用)单闊理增③f (x I住区间[一亿訂f:F个-匸?.i ④/V)的赧(伯X-j 22/5 三三A,—Uu b)-i・则:与石的夹甬沟<fiSMEB・图中空白框*■ I丄rL缶航朗是求二己知羊零向鐵:* &WM 22/711.艾干诵豹f ix)= sin J* |>in A'| f」下述四个馆论t匚①④埠巴如三检推F —川封匸的四牛I 加的用商上,PA^PB^PC, AX5CMlt£^2 rn 止-M t £尸介別兄加「祐的中九 ZCEF = 90 ’则球O 的休机为( t34vf )zr二 填空嵐:本鹽找4「|咂.毎小駆S 井”其加分达曲凹7 = 3(屮7片在点((}期社儿•:叫川沟 ________________ .地记屯为等比栽手|{叫}的前萌项和,若納二y tr? = a..则员= _____________________ .Je.屮.乙洒賦诜恬槪球比賽.光用七场西胜制.幄捲訓期比赛成细,屮认的主客甬安排粮抚旳"主主客 峯L 客广.设甲阻主场即胜的柢率为06辉场駅胖的觀率肯血窑(1各场比赛靖黑梱互1M 則甲駅以4: 1塡腔的槪率 ________________ .J甲W 已知或曲険C:肴-舊 “BI" 0)的底右儒点分別为耳迅.迁片的血线二匸的两最潮瓦钱甘 ^TA y B^F [A = AB. FR 化 S 則卍的离也那肯 ________________________________ .三' 解善題:M7C^・聲笞应写出文字说明、证明过程亚演算步骑L 第E1锂为必考麵.毎『试饉 老生都必顼作啤 闕瞬” 口罚为选老題・老主喂西英求作?£• (一)叱老證匸別分"17. <12山I&C 的内ftX.JJ,C 的柑边分别是ng 设(sin£ —sinQ 『 =sin 2/I-sm ffsiuC,ti )求右;2)?7 ^2a + 6 = 2c .求*nJ “IS. (12 *、 斗呃直网檢哇卫处Q-月風CD 的虑曲是菱器*.11, = 41 AB = 2 ・ £BAD =■ 6O P . E,M r N^\^BC.RH 、 J Q ;勺中止”丸①②④-Ci5 / 36i)旺明i .,WA P//2)求_i加傩卫一址气一用的止強值.19”〔12 分}己却删为尸,期卓为斗的直教却C的蛉伪小总,S轴的仝山为"Xi11務|/<尸| + 0F卜£ 求*的力軒;2*越乔二[两.求\AU .30.(12^)dfti^Si/(r)=(mx-hi(l + T). f(x)^i/(r)的#敷就削:⑴『匕)杞皿’—】.亍存杞唯…的极人值点;⑵血工”相农有2卒毒丸21- C12 分〉为冷疗革种臥両”研制了甲、乙两种折科,需型知洞那种軒药更TT故・为此进打动梅实越真验收fill心毎轮逸取詡卿自臥对貞1效进荷对比试鑿.对F闊!!勺就・RI机选•射只施氐乙罚. M MB HINNIA ffiBI卜--轮试戦.当齐中--忡童称直的白嵐出另咐> i门二h、;.: a」一- 就碎止试驰丼从曲治倉只數命的荊史有玆・为了方便描述问臥的定*对于厘Flit魅・若itu甲药的白艮治載且16玖兀药的白損耒谢蠢惰甲蘇禅I分,二药斜-】血若施以乙药时口瞬泊JftlL施以屮葯的白亂走冶愈刚乙罚堺lih甲冊-】4h若欄治竈诚暮水治壷嘲两种眦均鮒0分耳、£两种拘闱治愈率廿别记如和". 熾试猫申甲的的咼灯记沖Y.1)哦JV的少舟列t⑵ 若甲药、乙t?孫试验幵始时都瞋"井.期"=0J,2…問老示存甲苟的當计得分知仇最终儿为屮知比乙热屯白%”的槻典刖地=0,仇=1+冏=即严如+甲⑴(:=】2 <7},儿中芒=尸(,丫=0), f) -P(.¥ -0), < = P( A J/7-0>.:i)hi小—瓦}"二12…⑺为鼻比故処;门门求齐.井規揣円的您駢痒试种试誥方當的合證性.4/5(二)粧电瓯:it 10^.请弋生在察2叭為赣中作讐.如睾第妣・则按所憎的策一晅计分.22.[选悔V 坐标集与題數晒(10井】"为需歎)息堂标底成O为駆点.石轴在帆角坐标纂呦冲*曲爼C的辩数方押为f -1 ~止半稱为槻轴建立璇坐标系.的概生桩方租为2“顷旧 + JJpsin日+丨1・0,11)*匚与』的直箱坐栋方程I:空痕匚上财点到F跑寄的最小值.21[4iU-5t不芳氏注讲]10 5Z)已抑臥he为壬敕・且胃足nhc- I.证弗(1)丄4■丄+丄羞应『卜胪+『和a b c!2)(a + ^)J + (A+r)- +(c+<J)' >245/58 / 362019年査通爲零学校招化全国统一考试文科数学注卷車顶:1.售卷前・考牛•务感将口己的姓洛号空号黑填垢在割S卡铀试卷指建位胃匕.孔河答址择期i・h旌出毎小童答案冶*期铅里把菩匙轻对应題目鸚I■如需盘4h用也皮攥「-净后.再选洙其它答慕标h昇回霜4延择题时.瘙椁家写隹粹朗卡上.写芒本试卷L:无效"3.考试轴束已将体试程和剳冒卡一件交同―、选擇慙;本駆共12小怂"程小融弓分*共60分在毎小融绐出的四个进念中* 口右一砺星轩合豔目要求的=2B.V3 c. 41ai1L1知#0U =①狛从氐7}・A ={234・5;,Z?二h・3百・7}・A=(】A ;L6(B-{1J| C. {6.7} D. {1,6,7} 乱已知a = lo^r DN・h = 2a2, c = 0.2in. IM t )A.ii <h<f R.ti<c<hC.c<ti<hD.^ <4 一古乖聊时训”人心认为於兀人侏的义顶至肚M的山A乌丄情孚足呸的li哽之比兄"匚‘^5-1*0.618.林为黄金分割比榊人着呂的•斷惮醴抽斯”良足JU此,此外.扯k扎障的久顶至啥2喉的fei44i咽喉至It脐的怪度立比也昱{口+若臬人涌匸丨述两个扯金分削比悯*巨腿圧为KScm’2张顼奎聆『卜-端的悅度为265・耻其身禹町能足(>^lGSem B.175cm CJBScm D.190em 去汝嚼数/{巧二竺斗■理[饥厅]的轻|他为(-COS J + X立科軸学10 / 36氐某学栈为r 解1 Q00宕新生怕刖悻當际将这些学牛編弓为眞2+ -+ 1000.^^^<k 屮用系统抽枠 的加i 等距抽9U00名手空进行测试.若輻号学牛被抽轧 则下面4名宁主中被抽取的址()A.B :^^T. B 200 号学中- C 616 ^4^1:D 81S 号即上&己划 忤向施.匸祸斗:=平.11币一和丄乳则门示的夹旳,1LAXSC 的内脚扎鼠匸的时处务刑是鸟氏c LliuasiiM- bsia&-4ca\nC . e«j» J = - T M* =4 cA.6B.5C.d a.3区L 2掠瞬闘匚的囁点为林一 1、创・rtkOl ・过巧的起缕耳匚交:■-」/ 九忆苦I”; =2|/';^・I 姐=2)昭|・则(7的方程为<)11 T 丁*■* 1 x'2 .犷 y .工” y .匕 A ' v .A . — + r = I玫一 + J 匸】匚一+ — = I& - -+ — = I232435 4->才空题;本题共4小題,霽小題5井,共20分.= ^x~ +扌片件点(0X )牡的切纯方出为 ________________ .皿记比为等比數时就}的斛丹顷和.若坷丄・衬=毎.则乂二 _______________________ .17. un 255 =【Rg 号学生 B 200号学生 C616号供主0415 v^tB. - ? ■ v'?i€-2"D 2 + V3■右— 的程序帼用.圈屮空口框屮应塡入]■応础戟(?:二—吴三财>0上M )的一柚f 近线的幢料角为口0 .则匕的离心莘为< abA. 2 sin 4(}B. 2 cos 40sin 50D. ---------cos 502 + 4CA =1*2#甲2/515 医靈/(P v)=siml v 4-—)-Jcnsx 的瑕小恆为_______________________值已如ZJCB二90’・P为芈迪A&C外规FC = 2 ■点尸到^ACB两边"G AB的距离均A I J5.廉么P到辛祈冲占“的护离为 ______________________ .三i離答孤共7C^解答內写出文字说馭证明讨幻走洁草梅第1严21孤为必老黑.岛个试耶不生都必须件答“第2氛刀就为选青!L电生觸据聲求作答.C-)必书迩;60分*17.(1Z 时)臬南场为提1W务櫛孟驰机调查了和粕男贼客神疔「窑立顒罂毎忖蹊客村谨商场恂审务给出満总戍平满意的泮比眸到下列列联祐D分別估计职女岡客对谐商场服务满强的槪執C2)能否有95%的把握认為?b女陵第对谁斷炀服务的评价有館异? 附宀——凹」竺——(tj + h)(c^-ii )(/T-*-L')(/J +18 <12 ^f)记&为零龙:数列®」的前舟驷h曲0罠=—令*1> 阻%軒帆}他通项公戌*(2)若>?0・頼購£ 土斗術I刀取苟小范鬧.立理數学13 / 3619. (12如& 豐四變柱ABCD -叫垃3的旳如辛菱厢-AA,= 4 (AH-2. r£4匚*分别晁/?「.11歇..4、D的中点.[D 证I则v.w/TmcDFi[?>求点<到平[tic,n£的距离,竹、Ml 朗数 f (x) - 2 sin v - .vcos x~x , f f(x)为f(x)的冷 ft.[|>证罔:_f{-r)托IK间®.JT)存序吋-话点t⑵占上£[0卫]时,/(.r)>ax T求“的収價小也囤20, <12 分)已姐山彳.F艾尸叶函:口。
2019年高考理科数学全国三卷真题及答案解析
【答案】D
【解析】
【分析】
通过求导数,确定得到切线斜率的表达式,求得 ,将点的坐标代入直线方程,求得 .
【详解】详解:
,
将 代入 得 ,故选D.
【点睛】本题关键得到含有a,b的等式,利用导数几何意义和点在曲线上得到方程关系。
7.函数 在 的图像大致为
A. B. C. D.
【答案】B
A. B. C. D.
【答案】C
【解析】
【分析】
根据题先求出阅读过西游记的人数,进而得解.
【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.
【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.
【详解】 是R的偶函数, .
,
又 在(0,+∞)单调递减,
∴ ,
,故选C.
【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.
12.设函数 =sin( )( >0),已知 在 有且仅有5个零点,下述四个结论:
① 在( )有且仅有3个极大值点
② 在( )有且仅有2个极小值点
4.(1+2x2)(1+x)4的展开式中x3的系数为
A.12B.16C.20D.24
【答案】A
【解析】
【分析】
本题利用二项展开式通项公式求展开式指定项的系数.
【详解】由题意得x3的系数为 ,故选A.
【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.
5.已知各项均为正数的等比数列 的前4项和为15,且 ,则 ( )
2019年全国Ⅰ卷高考理科数学试题及答案详细解析
17. 的内角A,B,C的对边分别为a,b,c,设 .
(1)求A;
(2)若 ,求sinC.
解:(1)
即:
由正弦定理可得:
(2) ,由正弦定理得:
又 ,
整理可得:
解得: 或
因为 所以 ,故 .
(2)法二: ,由正弦定理得:
又 ,
整理可得: ,即
或
且
考点:正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.
解:
由 知 是 的中点, ,又 是 的中点,所以 为中位线且 ,所以 ,因此 ,又根据两渐近线对称, ,所以 , .
考点: ,双曲线及其渐近线的对称性.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
A. B.
C. D.
解:由 ,得 是奇函数,其图象关于原点对称.又 .故选D.
考点:本题考查函数的性质与图象,利用函数奇偶性和特殊点即可解决这类问题.
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
2019年普通高等学校招生全国统一考试
理科数学
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 ,则 =
A. B. C. D.
解: , .故选C.
考点:一元二次不等式解法,集合的交集.
2019年高考理数北京卷(附答案与解析)
---------------- 密★启用前 2019 年普通高等学校招生全国统一考试·北京卷数学(理)m - m = lg 1 ,其中星等为 m 的星的亮度为 E (k = 1,2).已知太阳的星等是 -26.7 ,2 E_ -------------------- __ __ ___号 卷__ 生 __ __ 上___ 答 __ ___ --------------------A .1B .2C .3D .4( t 为参数),则点 (1,0) 到直线 l 的距离是()A . 15B .5C .5D .5--------------------b 2 = 1 ( a >b >0 )4.已知椭圆( )n }的前 n 项和为 S_ __ __1.已知复数 z = 2 + i ,则 z ⋅ z =()考__ __ __ _ _ _ _ _ _ _ _ _ _ _ _ 名 __ 姓 _ _ _ __ __ __ _ 题校 学 -------------绝在--------------------本试卷满分 150 分,考试时长 120 分钟.此 第一部分(选择题 共 40 分)一、选择题共 8 小题,每小题 5 分,共 40 分。
在每小题列出的四个选项中,选出符合题目要求的一项。
A . 3B . 5C .3D .5--------------------2.执行如图所示的程序框图,输出的 s 值为 ( )----------------------------------------业 ⎧ x = 1 + 3t,毕 3.已知直线 l 的参数方程为 ⎨ ⎩ y = 2 + 4t2 4 6无x 2 y 2a 2 +A . a 2 = 2b 2B . 3a 2 = 4b 2C . a = 2bD . 3a = 4b 5.若 x , y 满足 |x|≤1 - y ,且 y ≥ - 1 ,则 3x + y 的最大值为 ( )|A . -7B .1C .5D .7 6.在天文学中,天体的明暗程度可以用星等或亮度来描述 .两颗星的星等与亮度满足 5 E2 1 k k 2天狼星的星等是 -1.45 ,则太阳与天狼星的亮度的比值为下列说法中,正确的是( )A .1010.1B .10.1C . lg10.1D .10 -10.1 7.设点 A , B , C 不共线,则“ AB 与 AC 的夹角为锐角”是“| AB + AC | > B C | ”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.数学中有许多形状优美、寓意美好的曲线,曲线 C : x 2 + y 2 = 1+ | x | y 就是其中之一(如图).给出下列三个结论:①曲线 C 恰好经过 6 个整点(即横、纵坐标均为整数的点);②曲线 C 上任意一点到原点的距离都不超过 2 ; ③曲线 C 所围成的“心形”区域的面积小于 3.其中,所有正确结论的序号是 ( )A .①B .②C .①②D .①②③第二部分(非选择题 共 110 分)二、填空题共 6 小题,每小题 5 分,共 30 分。
2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
即 ,可得 .
由于 ,所以 ,故
.
18.解:(1)连结B1C,ME.
因为M,E分别为BB1,BC的中点,
所以ME∥B1C,且ME= B1C.
又因为N为A1D的中点,所以ND= A1D.
由题设知A1B1 DC,可得B1C A1D,故ME ND,
因此四边形MNDE为平行四边形,MN∥ED.
1.已知集合 ,则 =
A. B. C. D.
【答案】C
【解析】
【分析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
【详解】由题意得, ,则
.故选C.
【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
2.设复数z满足 ,z在复平面内对应的点为(x,y),则
A. B. C. D.
11.关于函数 有下述四个结论:
①f(x)是偶函数②f(x)在区间( , )单调递增
③f(x)在 有4个零点④f(x)的最大值为2
其中所有正确结论的编号是
A.①②④B.②④C.①④D.①③
12.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,PB的中点,∠CEF=90°,则球O的体积为
22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为 (t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 .
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
23.[选修4—5:不等式选讲](10分)
2019年理科数学高考真题试卷(全国I卷)及参考答案
绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N I = A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm 5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A +B .A =12A +C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212xy += B .22132x y += C .22143x y+= D .22154x y+= 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为 A .6πB .64πC .6πD 6π二、填空题:本题共4小题,每小题5分,共20分。
2019年高考理科数学全国2卷(附答案)
12B-SX-0000020-绝密★启用前__2019 年普通高等学校招生全国统一考试_ -__-理科数学全国 II 卷__- 本试卷共 23 小题,满分 150 分,考试用时 120 分钟:号 -(适用地区:内蒙古 / 黑龙江 /辽宁 /吉林 /重庆 /陕西 / 甘肃 /宁夏 /青海 /新疆 / 西藏 /海南 )学 -注意事项:_-__1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
_-__2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
__-如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在___答题卡上。
写在本试卷上无效。
_ 线__ 封_ 3.考试结束后,将本试卷和答题卡一并交回。
_密__ -__12 小题,每小题 5 分,共 60 分。
在每个小题给出的四个选:-一、选择题:本题共名 -项中,只有一项是符合题目要求的。
姓-2- 1.设集合 A={ x|x -5x+6>0} , B={ x|x-1<0} ,则 A ∩B=班-A . (-∞, 1)B . (-2, 1)C .(-3 , -1)D . (3, +∞)___ -_ 2 .设 z=-3+2i ,则在复平面内 z 对应的点位于_-__A .第一象限B .第二象限C .第三象限D .第四象限年-____ 线 3 .已知 AB =(2,3),AC =(3,t),BC =1,则AB BC= _ _ 封_A .-3B .-2C . 2D . 3_密_-__4. 2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,_- ___ -我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键___-_ 技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中__ -___ -继星 “鹊桥 ”,鹊桥沿着围绕地月拉格朗日 L 2点的轨道运行. L 2点是平衡点,__ -_M 1,月球质量为 M 2,地月距离为: - 位于地月连线的延长线上.设地球质量为校 学 -R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M 1,月球质量为 M 2,地月距离为R, L 2点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1M 2M 1 (R r) 2r 2(R r ) 3.R设r ,由于 的值很小,因此在近似计算中3 33 45 3 3,则R(1 ) 2r 的近似值为A .M2RB .M2RC .33M2RD .3M2RM 12M 1M 13M 15.演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉 1 个最高分、 1 个最低分,得到 7 个有效评分 .7 个有效评分与 9 个原始评分相比,不变的数字特征是 A .中位数B .平均数C .方差D .极差6.若 a>b ,则A . ln(a- b)>0B .3a <3 bC . a 3- b 3>0D . │a │ >│b │7.设 α, β为两个平面,则α∥ β的充要条件是A . α内有无数条直线与β平行B .α内有两条相交直线与β平行C . α, β平行于同一条直线D .α,β垂直于同一平面2x 2 y 2 p=8.若抛物线 y =2px(p>0) 的焦点是椭圆1 的一个焦点,则3pp12B-SX-0000020A .2B. 3C. 4D. 89.下列函数中,以为周期且在区间(,)单调递增的是242A .f(x)= │ cos x2│B . f(x)= │ sin 2x│C.f(x)=cos │x│ D . f(x)= sin x│10.已知α∈ (0,), 2sin 2α=cos 2α+1,则 sin α=21B .5A .5 5C.3 D .2535x2y21(a0,b0)的右焦点, O 为坐标原点,以 OF 11.设 F 为双曲线 C:b2a2为直径的圆与圆x2y2 a2交于P,Q两点.若PQ OF ,则C的离心率为A .2B .3C. 2 D .512.设函数 f ( x) 的定义域为R,满足 f (x1) 2 f ( x) ,且当x(0,1] 时,f (x )x(x 1) .若对任意 x (, m],都有 f ( x)8,则 m 的9取值范围是A .9B .7 ,, 43C.5D .8,,23二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学精品复习资料2019.520xx北京高考理科数学试题第一部分(选择题共40分)一、选择题共8小题.每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合A={-1,0,1},B={x|-1≤ x<1},则A∩B=A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限3.“φ=π”是“曲线y=sin(2x+φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S值为A.1B.23C.1321D.6109875.函数f(x)的图象向右平移1个单位长度,所得图象与y=e x关于y轴对称,则f(x)=A.1e x+ B. 1e x- C. 1e x-+ D. 1e x--6.若双曲线22221x ya b-=,则其渐近线方程为A.y=±2xB.y=C.12y x=± D.y x=7.直线l过抛物线C: x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于A.43 B.2 C.838.设关于x,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是 A.4,3⎛⎫-∞ ⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C. 2,3⎛⎫-∞- ⎪⎝⎭ D. 5,3⎛⎫-∞- ⎪⎝⎭第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分. 9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于 . 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q= ;前n 项和S n = . 11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D.若PA=3,916PD DB =::,则PD= ;AB= .12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ= .14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题共13分)在△ABC 中,a=3,,∠B=2∠A.(I)求cosA 的值; (II)求c 的值. 16.( 本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 17. (本小题共14分)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC⊥平面AA 1C 1C ,AB=3,BC=5.(Ⅰ)求证:AA 1⊥平面ABC ;(Ⅱ)求二面角A 1-BC 1-B 1的余弦值;(Ⅲ)证明:在线段BC 1存在点D ,使得AD⊥A 1B ,并求1BDBC 的值. 1B18. (本小题共13分) 设L 为曲线C :ln xy x=在点(1,0)处的切线. (I)求L 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 19. (本小题共14分)已知A 、B 、C 是椭圆W :2214x y +=上的三个点,O 是坐标原点. (I)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(II)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 20. (本小题共13分)已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项1n a +,2n a +,…的最小值记为B n ,d n =A n -B n 。
(I)若{a n }为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值;(II)设d 为非负整数,证明:d n =-d(n=1,2,3…)的充分必要条件为{a n }为公差为d 的等差数列;(III)证明:若a 1=2,d n =1(n=1,2,3,…),则{a n }的项只能是1或者2,且有无穷多项为1.参考答案一、 选择题:1.B2.D3.A4.C5.D6.B7.C8.C 二、填空题:9.1 10.2,122n +- 11. 95;4 12.96 13.4 14. 5三.解答题:15.解:(I )因为a=3,,∠B=2∠A. 所以在△ABC 中,由正弦定理得3sin A =.所以2sin cos sin 3A A A =.故cos 3A =.(II)由(I )知c o s 3A =,所以sin 3A ==.又因为∠B=2∠A,所以21c o s 2c o s 13B A =-=.所以sin 3B ==.在△ABC 中,sin sin()sin cos cos sin C A B A B A B =+=+=. 所以sin 5sin a Cc A==.16.解:设i A 表示事件“此人于3月i 日到达该市”( i =1,2,…,13). 根据题意, 1()13i P A =,且()i j A A i j =∅≠.(I )设B 为事件“此人到达当日空气重度污染”,则58B A A =,所以58582()()()()13P B P A A P A P A ==+=. (II)由题意可知,X 的所有可能取值为0,1,2,且P(X=1)=P(A 3∪A 6∪A 7∪A 11)= P(A 3)+P(A 6)+P(A 7)+P(A 11)= 413, P(X=2)=P(A 1∪A 2∪A 12∪A 13)= P(A 1)+P(A 2)+P(A 12)+P(A 13)= 413,P(X=0)=1-P(X=1)-P(X=2)= 513,所以X 的分布列为:012544131313X P故X 的期望5441201213131313EX =⨯+⨯+⨯=. (III)从3月5日开始连续三天的空气质量指数方差最大.17.解:(I )因为AA 1C 1C 为正方形,所以AA 1 ⊥AC.因为平面ABC⊥平面AA 1C 1C,且AA 1垂直于这两个平面的交线AC,所以AA 1⊥平面ABC.(II)由(I )知AA 1 ⊥AC,AA 1 ⊥AB. 由题知AB=3,BC=5,AC=4,所以AB⊥AC. 如图,以A 为原点建立空间直角坐标系A -xyz ,则B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),设平面A 1BC 1的法向量为,,)x y z n =(,则11100A B A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,即34040y z x -=⎧⎨=⎩,令3z =,则0x =,4y =,所以(0,4,3)n =.同理可得,平面BB 1C 1的法向量为(3,4,0)m =,所以16cos 25⋅==n m n,m |n ||m |. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (III)设D (,,)x y z 是直线BC1上一点,且1BD BC λ=. 所以(,3,)(4,3,4)x y z λ-=-.解得4x λ=,33y λ=-,4z λ=. 所以(4,33,4)AD λλλ=-.由1·0AD A B =,即9250λ-=.解得925λ=. 因为9[0,1]25∈,所以在线段BC 1上存在点D , 使得AD⊥A 1B. 此时,1925BD BC λ==. 18.解: (I )设ln ()x f x x =,则21l n ()xf x x-'=.所以(1)1f '=.所以L 的方程为1y x =-. (II)令()1()g x x f x =--,则除切点之外,曲线C 在直线l 的下方等价于()0g x >(0,1)x x ∀>≠. ()g x 满足(1)0g =,且221ln ()1()x xg x f x x -+''=-=.当01x <<时,210x -<,ln 0x <,所以()0g x '<,故()g x 单调递减; 当1x >时,210x ->,ln 0x >,所以()0g x '>,故()g x 单调递增. 所以,()(1)0g x g >=(0,1x x >≠). 所以除切点之外,曲线C 在直线L 的下方. 又解:()0g x >即ln 10xx x-->变形为2ln 0x x x -->,记2()ln h x x x x =--,则2121(21)(1)()21x x x x h x x x x x--+-'=--==,所以当01x <<时,()0h x '<,()h x 在(0,1)上单调递减;当1x >时,()0h x '>,()h x 在(1,+∞)上单调递增。
所以()(1)0h x h >=.)19.解:(I )椭圆W :2214x y +=的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分. 所以可设A (1,m ),代入椭圆方程得2114m +=,即2m =±.所以菱形OABC 的面积是11||||22||22OB AC m ⋅=⨯⨯=(II)假设四边形OABC 为菱形. 因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为(0,0)y kx m k m =+≠≠.由2244x y y kx m⎧+=⎨=+⎩消去y 并整理得222(14)8440k x kmx m +++-=. 设A 1,1()x y ,C 2,2()x y ,则1224214x x km k +=-+,121222214y y x x mk m k ++=⋅+=+. 所以AC 的中点为M (2414km k -+,214mk +).因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k-.因为1()14k k⋅-≠-,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾. 所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 20.(I )12341, 3.d d d d ====(II)(充分性)因为{}n a 是公差为d 的等差数列,且0d ≥,所以12.n a a a ≤≤≤≤因此n n A a =,1n n B a +=,1(1,2,3,)n n n d a a d n +=-=-=.(必要性)因为0(1,2,3,)n d d n =-≤=,所以n n n n A B d B =+≤.又因为n n a A ≤,1n n a B +≥,所以1n n a a +≤. 于是n n A a =,1n n B a +=. 因此1n n n n n a a B A d d +-=-=-=,即{}n a 是公差为d 的等差数列.(III)因为112,1a d ==,所以112A a ==,1111B A d =-=.故对任意11,1n n a B ≥≥=. 假设{}(2)n a n ≥中存在大于2的项.设m 为满足2n a >的最小正整数,则2m ≥,并且对任意1,2k k m a ≤<≤,. 又因为12a =,所以12m A -=,且2m m A a =>.于是211m m m B A d =->-=,{}1min ,2m m m B a B -=≥. 故111220m m m d A B ---=-≤-=,与11m d -=矛盾.所以对于任意1n ≥,有2n a ≤,即非负整数列{}n a 的各项只能为1或2. 因此对任意1n ≥,12n a a ≤=,所以2n A =. 故211n n n B A d =-=-=.因此对于任意正整数n ,存在m 满足m n >,且1m a =,即数列{}n a 有无穷多项为1.。