中职数学基础模块1.1.4.2集合的运算(二)教学设计教案人教版
人教版中职数学基础上册《集合的运算》2课时表格式教案
1.1.4 集合的运算(一)
【教学目标】
1. 理解交集与并集的概念与性质.
2. 掌握交集和并集的表示法,会求两个集合的交集和并集.
3. 发展学生运用数学语言进行表达、交流的能力;培养学生观察、归纳、分析的能力.
【教学重点】
交集与并集的概念与运算.
【教学难点】
交集和并集的概念、符号之间的区别与联系.
【教学方法】
这节课主要采用发现式教学法和自学法.运用现代化教学手段,通过创设情景,提出问题,引导学生自己独立地去发现问题、分析归纳、形成概念.并通过对比,自学相似概念,深化对概念的理解.
【教学过程】
1.1.4 集合的运算(二)
【教学目标】
1. 了解全集的意义;理解补集的概念,掌握补集的表示法;理解集合的补集的性质;会求一个集合在全集中的补集.
2. 发展学生运用数学语言进行表达、交流的能力;培养学生建立数形结合的思想,将满足条件的集合用Venn图或数轴一一表示出来;提高学生观察、比较、分析、概括的能力.
3. 鼓励学生主动参与“教”与“学”的整个过程,激发其求知欲望,增强其学习数学的兴趣与自信心.
【教学重点】
补集的概念与运算.
【教学难点】
全集的意义;数集的运算.
【教学方法】
本节课采用发现式教学法,通过引入实例,进而分析实例,引导学生寻找、发现其一般结果,归纳其普遍规律.
【教学过程】
U
U
U
∪
U
∩U
∪U
{
U
U (3) U(U
已知全集
U
U
,求U
U
设
;U;U∩U
U
∪U
U
练习3
求U ,U ,U ∩U ∪U。
中职数学基础模块1.1.3.2集合之间的关系(二)教学设计教案人教版
课时教学设计首页(试用)第页(总页)课时教学流程(4) M = {x | x是等腰直角三角形},N = {x | x是有一个角是45的直角三角形}.解⑴ B = A;(2) P = Q ;⑶ C = D; (4) M = N.练习1用适当的符号三)填空:(1) a{a, b, c};(2) {4 , 5, 6}—{6 , 5, 4};(3) { a}{a, b,c};⑷{a, b, c }{ b, c};(5)-一{1 , 2, 3};⑹{x |x是矩形}—{x | x是平行四边形};(7) 5{5};(8) {2 , 4, 6, 8}{2 , 8}.例3指出下列各集合之间的关系,并用Venn图表示:A= {x|x是平行四边形}, B= {x|x 是菱形}, C= {x|x是矩形}, D = {x|x 是正方形}.解练习2集合U , S, T,F如图所示,下列关系中哪些是对的?哪些是错的?(1) S - U; (2) F = T;(3) S = T;⑷ S 2 F;师:出示题目,请学生思考、试做.生:分析、试做.师:出示答案订正,请学生核对做题情况,改正错题并找出自己出错的原因.生:交流做错的题目与出错的原因.师:汇总、强调学生容易出错的问题,引起全班同学重视.师:出示问题,请学生分组讨论,并画图.生:将答案画到黑板上,全班同学讨论订正.师:点评,给以赏识性评价.首先学生分组讨论,最后各选一个代表回答本组讨论结果,其余同学补充.最后教师公布答案,加以点评.用符号表示兀素与集合的关系、集合间关系是难点,通过学生试做、老师订正、学生反思、师生纠错多个环节,使学生兴趣盎然,在思考与争论中得到正确答案,学生之间交流,教师与学生之间的交流达到高潮,有效地突破难点.通过例3和练习2,渗透数形结合思想,强化学生的画图、读图能力;培养学生用Venn图解决集合间关系问题的意识.课时教学流程课时教学设计尾页(试用)☆补充设计☆1•子集,真子集,集合相等.2.元素与集合、集合与集合的关系. 教材P12,练习B组第1、2、3题板书设计作业设计教学后记。
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念教学目标:理解集合的含义及集合中元素的特点。
掌握集合的表示方法,如列举法、描述法等。
教学内容:集合的定义与表示方法。
集合的性质与运算。
教学过程:1. 引入新课:通过生活中的实例引入集合的概念。
2. 讲解与演示:讲解集合的定义,展示不同类型的集合及其表示方法。
3. 练习与讨论:学生独立完成练习题,分组讨论集合的性质与运算。
1.2 集合的关系教学目标:理解集合之间的大小关系,包括子集、真子集、并集、交集等。
教学内容:集合之间的基本关系。
集合关系的表示方法。
教学过程:1. 引入新课:通过图形展示集合之间的关系。
2. 讲解与演示:讲解集合之间的子集、真子集、并集、交集等概念。
3. 练习与讨论:学生独立完成练习题,分组讨论集合关系的应用。
第二章:函数2.1 函数的概念教学目标:理解函数的定义及其表示方法。
掌握函数的性质,如单调性、奇偶性等。
教学内容:函数的定义与表示方法。
函数的性质。
教学过程:1. 引入新课:通过生活中的实例引入函数的概念。
2. 讲解与演示:讲解函数的定义,展示不同类型的函数及其表示方法。
3. 练习与讨论:学生独立完成练习题,分组讨论函数的性质。
2.2 函数的图像教学目标:理解函数图像的特点及绘制方法。
学会利用函数图像分析函数的性质。
教学内容:函数图像的特点。
绘制函数图像的方法。
教学过程:1. 引入新课:通过实例展示函数图像的特点。
2. 讲解与演示:讲解函数图像的绘制方法,展示不同类型函数的图像。
3. 练习与讨论:学生独立完成练习题,分组讨论函数图像的应用。
第三章:不等式与不等式组3.1 不等式的概念教学目标:理解不等式的定义及其性质。
学会解一元一次不等式。
教学内容:不等式的定义与性质。
一元一次不等式的解法。
教学过程:1. 引入新课:通过生活中的实例引入不等式的概念。
2. 讲解与演示:讲解不等式的定义,展示不等式的性质。
3. 练习与讨论:学生独立完成练习题,分组讨论一元一次不等式的解法。
中职数学基础模块上册(人教版)全套教案
中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】了解集合的概念,掌握集合的表示方法,能够正确理解和运用集合的基本运算。
【教学内容】1. 集合的定义2. 集合的表示方法3. 集合的基本运算(并集、交集、补集)【教学步骤】1. 引入集合的概念,通过实例讲解集合的表示方法。
2. 讲解集合的基本运算,结合实例进行演示和练习。
【课后作业】1. 判断题:判断下列各题的真假。
(1)集合{1, 2, 3} 包含元素1, 2, 3。
(2)集合{1, 2, 3} 和集合{3, 4, 5} 的交集是{1, 2, 3}。
(3)集合{1, 2, 3} 的补集是{4, 5, 6}。
2. 选择题:选择正确答案。
(1)下列哪个选项是集合{1, 2, 3, 4, 5} 的补集?A. {1, 2, 3}B. {2, 3, 4}C. {1, 4, 5}D. {1, 2, 3, 4, 5}(2)设A = {x | x 是小于5 的正整数},B = {x | x 是大于等于2 且小于等于4 的整数},则A ∩B 是哪个集合?A. {2, 3, 4}B. {1, 2, 3, 4}C. {2, 3, 4, 5}D. {1, 2, 3}1.2 集合的关系【教学目标】理解集合之间的包含关系,掌握集合的并集、交集、补集的定义及运算方法。
【教学内容】1. 集合的包含关系2. 集合的并集3. 集合的交集4. 集合的补集【教学步骤】1. 讲解集合的包含关系,通过实例说明集合之间的包含关系。
2. 讲解集合的并集、交集、补集的定义及运算方法,结合实例进行演示和练习。
【课后作业】1. 判断题:判断下列各题的真假。
(1)集合{1, 2, 3} 包含于集合{1, 2, 3, 4, 5}。
(2)集合{1, 2, 3} 和集合{3, 4, 5} 的并集是{1, 2, 3, 4, 5}。
(3)集合{1, 2, 3} 和集合{3, 4, 5} 的交集是{3}。
集合的运算教学设计中职
标题:集合的运算教学设计方案(中职)引言:集合是数学中的基本概念之一,它不仅在数学中有着重要的应用,也在各个领域中具有广泛的应用。
教授集合的运算是中职数学教学中的重要内容之一。
本文将设计一套适用于中职学生的集合运算教学方案,旨在帮助学生理解集合的基本概念和运算规则,提高他们的数学思维能力与解决问题的能力。
一、教学目标1. 知识目标:- 了解集合的基本概念和符号表示法;- 掌握集合的运算法则,包括并集、交集和补集;- 熟练运用集合的运算法则解决实际问题。
2. 能力目标:- 发展学生的观察与归纳能力;- 培养学生的逻辑推理和问题解决能力;- 培养学生的团队合作和沟通能力。
3. 情感目标:- 培养学生对数学的兴趣和好奇心;- 提高学生对集合运算实用性的认识;- 培养学生的数学思维和抽象思维能力。
二、教学内容1. 集合的基本概念- 集合的定义和表示法;- 集合中的元素和空集的概念;- 集合的分类和常见的集合。
2. 集合的运算法则- 并集的定义和表示法;- 交集的定义和表示法;- 补集的定义和表示法。
3. 集合的运算例题与解析- 通过具体的例题,引导学生掌握集合的运算法则;- 解析例题中的思路和方法,帮助学生理解集合的运算原理; - 引导学生灵活运用集合的运算法则解决实际问题。
4. 集合的应用- 利用集合运算解决实际问题,如选课问题、调查问题等;- 引导学生将集合的运算与实际问题相联系,提高他们的应用能力。
三、教学方法1. 呈现法- 通过展示集合的概念和运算法则,引发学生的学习兴趣;- 利用课件或板书,在课堂上对概念和法则进行清晰明了的呈现。
2. 问题导入法- 准备一些与集合有关的问题,启发学生思考与实际情境相关的集合运算问题;- 引导学生通过思考和讨论,逐步推导出集合的运算法则。
3. 探究式教学法- 安排学生进行小组活动,采用探究式教学的方法,通过实践和发现,理解集合运算法则;- 引导学生在小组内进行集体讨论,交流归纳各自的探索结果。
中职数学基础模块上册(人教版)全套教案
第二章 不等式............................................................................................................33 2.1.1 实数的大小............................................................................................... 33 2.1.2 不等式的性质........................................................................................... 37 2.2.1 区间的概念.................................................................................................41 2.2.2 一元一次不等式(组)的解法....................................................................45 2.2.3 一元二次不等式的解法(一)....................................................................49 2.2.3 一元二次不等式的解法(二)....................................................................52 2.2.4 含有绝对值的不等式...............................................................................56 2.3 不等式的应用.............................................................................................. 59
中职数学(基础模块)教案
中职数学(基础模块)教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1.2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1.3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“”,“”,“”的正确使用.教学难ZYB重油煤焦油专用泵点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合高温导热油泵的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.教学重点:⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.教学难点:一元二次不等式的解法.课时安排:2课时.2.4含绝对值的不等式知识目标:(1)理解含绝对值不等式或的解法;(2)了解或的解法.能力目标:(1)通过含绝对值不等式的学习;培风冷式离心油泵养学生的计算技能与数学思维能力;(2)通过数形结合的研究问题,培养学生的观察能力.教学重点:(1)不等式或的解法.(2)利用变量替换解不等式或.教学难点:利用变量替换解不等式或.课时安排:2课时.3.1函数的概念及其表示法知识目标:(1)理解函数的定义;(2)理解函数值的概念及表示;(3)理解函数的三种表示方法;(4)掌握利用“描点法”作函数图像的方法.能力目标:(1)通过函数概念的学习,培养学生的数学思维能力;(2)通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3)会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.教学重点:(1)函数的概念;(2)利用“描点法”描绘函数图像.教学难点:(1)对函数的概念及记号的理解;(2)利用“描点法”描绘函数图像.课时安排:2课时.3.2函数的性质知识目标:⑴理解函数的单BWCB沥青泵调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.能力目标:⑴通过利用函数图像研究函数性质,培养学生的观察能力;⑵通过函数奇偶性的判断,培养学生的数学思维能力.教学重点:⑴函数单调性与奇偶性的概念及其图像特征;⑵简单函数奇偶性的判定.教学难点:函数奇偶性的判断.(*函数单调性的判断)课时安排:2课时.3.3函数的实际应用举例知识目标:(1)理解分段函数的概念;(2)理解分段函数的图像;(3)了解实际问题中的分段函数问题.能力目标:(1)会求分段函数的定义域和分YHB立式齿轮泵段函数在点处的函数值;(2)掌握分段函数的作图方法;(3)能建立简单实际问题的分段函数的关系式.教学重点:(1)分段函数的概念;(2)分段函数的图像.教学难点:(1)建立实际问题的分段函数关系;(2)分段函数的图像.课时安排:2课时.4.1实数指数幂(1)知识目标:⑴复习整数指数幂的知识;⑵了解n次根式的概念;⑶理解分数指数幂的定义.能力目标:⑴掌握根式与分数指数幂之间的转化;⑵会利用计算器求根式和分数指数幂的值;⑶培养计算工具使用技能.教学重点:分数指数幂的定义.教学难点:根式和分数YHB轴头齿轮油泵指数幂的互化.课时安排:2课时.4.1实数指数幂(2)知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点.能力目标:⑴正确进行实数指数幂的运算;⑵培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力.教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.课时安排:2课时.4.2指数函数知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.教学重点:⑴指数函数的概念、图像和性质;⑵指数沥青拌合站增压泵函数的应用实例.教学难点:指数函数的应用实例.课时安排:2课时.4.3对数知识目标:⑴理解对数的概念,理解常用对数和自然对数的概念;⑵掌握利用计算器求对数值的方法;⑶了解积、商、幂的对数.能力目标:⑴会进行指数式与对数式之间的互化;⑵会运用函数型计算器计算对数值;⑶培养计算工具的使用技能.教学重点:指数式与对数式的关系.教学难点:对数的YCB齿轮泵概念.课时安排:2课时.4.4对数函数知识目标:⑴了解对数函数的图像及性质特征;⑵了解对数函数的实际应用. 能力目标:⑴观察对数函数的图像,总结对数函数的性质,培养观察能力;⑵通过应用实例的介绍,培养学生数学思维能力和分析与解决问题能力.教学重点:对数函数的图像及性质.教学难点:对数函数的应用中实际ZYB-33.3A问题的题意分析.课时安排:2课时.5.1角的概念推广知识目标:⑴了解角的概念推广的实际背景意义;⑵理解任意角、象限角、界限角、终边相同的角的概念.能力目标:(1)会判断角所在的象限;(2)会求指定范围内与已知角终边相同的角;(3)培养观察能力和计算技能.教学重点:终边相同角的概念.教学难点:终边相同角的表示和确定.课时安排:2课时.5.2弧度制知识目标:⑴理解弧度制的概念;⑵理解角度制与弧度制的换算关系.能力目标:(1)会进行角度制与弧度制的换算;(2)会利用计算器进行角度制与弧度制的换算;(3)培养学生的计算技能与计算工具使用技能.教学重点:弧度制的概念,弧度与角度的换算.教学难点:弧度制的概念.课时安排:2课时.5.3任意角的正弦函数、余弦函数和正切函数知识目标:⑴理解任意角的三角函数的定义及定义域;⑵理解三角函数在各象限的正负号;⑶掌握界限角的三ZYB系列渣油泵角函数值.能力目标:⑴会利用定义求任意角的三角函数值;⑵会判断任意角三角函数的正负号;⑶培养学生的观察能力.教学重点:⑴任意角的三角函数的概念;⑵三角函数在各象限的符号;⑶特殊角的三角函数值.教学难点:任意角的三角函数值符号的确定.课时安排:2课时.5.4同角三角函数的基本关系知识目标:理解同角的三角函数基本关系式.能力目标:⑴已知一个三角函数值,会利用同角三角函数的基本关系式求其他的三角函数值;⑵会利用同角三角函数的基本关系式求三角式的值.教学重点:同角的三角函数基本关系式的应用.教学难点:应用平方关系求正弦或余弦值时,正负号的确定.课时安排:2课时.5.5诱导公式知识目标:了解“”、“”、“180°”的诱导公式.能力目标:(1)会利用简化公式搅拌站渣油泵将任意角的三角函数的转化为锐角的三角函数;(2)会利用计算器求任意角的三角函数值;(3)培养学生的数学思维能力及应用计算工具的能力.教学重点:三个诱导公式.教学难点:诱导公式的应用.课时安排:2课时.5.6三角函数的图像和性质知识目标:(1)理解正弦函数的图像和性质;(2)理解用“五点法”画正弦函数的简图的方法;(3)了解余弦函数的图像和性质.能力目标:(1)认识周期现象,以正弦ZYB型增压渣油泵函数、余弦函数为载体,理解周期函数;(2)会用“五点法”作出正弦函数、余弦函数的简图;(3)通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.教学重点:(1)正弦函数的图像及性质;(2)用“五点法”作出函数y=sinx在上的简图.教学难点:周期性的理解.课时安排:2课时.5.7已知三角函数值求角知识目标:(1)掌握利用计算器求角度的方法;(2)了解已知三角函数值,求指定范围内的角的方法.能力目标:(1)会利用计算器求角;(2)已知三角函数值会求指定范围内的角;(3)培养使用计算工具的技能.教学重点:已知三角函数值,利用计算器求角;利用诱导公式求出指定范围内的角.教学难点:已知三角函数值,利用计算器求指定范围内的角.课时安排:2课时.6.1数列的概念知识目标:(1)了解数列的有关ZYB重油泵概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.教学重点:利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.教学难点:根据数列的前若干项写出它的一个通项公式.课时安排:2课时.6.2等差数列(一)知识目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力.教学重点:等差数列的通项公式.教学难点:等差数列通项公式的推导.课时安排:2课时.6.2等差数列知识目标:理解等差数列通项公式及前项和公式.能力目标:通过学习前项和公ZYB煤焦油泵式,培养学生处理数据的能力.教学重点:等差数列的前项和的公式.教学难点:等差数列前项和公式的推导.课时安排:2课时.6.3等比数列知识目标:(1)理解等比数列的定义;(2)理解等比数列通项公式.能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力.教学重点:等比数列的通项公式.教学难点:等比数列通项公式的推导.课时安排:2课时.6.3等比数列知识目标:理解等比数列前项和公式.能力目标:通过学习等沥青拌合站重油泵比数列前项和公式,培养学生处理数据的能力.教学重点:等比数列的前项和的公式.教学难点:等比数列前项和公式的推导.课时安排:3课时.7.1平面向量的概念及线性运算知识目标:(1)了解向量、向量的相等、共线向量等概念;(2)掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.教学重点:向量的线性运算.教学难点:已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.课时安排:2课时.7.2平面向量的坐标表示知识目标:(1)了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;(2)了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.教学重点:向量线性运算的坐标表高温导热油泵示及运算法则.教学难点:向量的坐标的概念.采用数形结合的方法进行教学是突破难点的关键. 课时安排:2课时.7.3平面向量的内积知识目标:(1)了解平面向量内积的概念及其几何意义;(2)了解平面向量内积的计算公式.为利用向量的内积研究有关问题奠定基础.能力目标:通过实例引出向量内积的定义,培养学生观察和归纳的能力.教学重点:平面向量数量积的概念及计算公式.教学难点:数量积的概念及利用数量积来计算两个非零向量的夹角.课时安排:2课时.8.1两点间的距离与线段中点的坐标知识目标:掌握两点间的距离公式与中点坐标公式;能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.教学重点:两点间的距离公式与YHB润滑齿轮泵线段中点的坐标公式的运用教学难点:两点间的距离公式的理解课时安排:2课时.8.2直线的方程知识目标:(1)理解直线的倾角、斜率的概念;(2)掌握直线的倾角、斜率的计算方法.能力目标:采用“数形结合”的方法,培养学生有条理地思考问题.教学重点:直线的斜率公式的应用.教学难点:直线的斜率概念和公式的理解.课时安排:2课时.8.2直线的方程(二)知识目标:(1)了解直线与方程的关系;(2)掌握直线的点斜式方程、斜截式方程,理解直线的一般式方程.能力目标:培养学生解决问题的能沥青拌合站增压泵力与计算能力.教学重点:直线方程的点斜式、斜截式方程.教学难点:根据已知条件,选择直线方程的适当形式求直线方程.课时安排:2课时.8.3两条直线的位置关系(一)知识目标:(1)掌握两条直线平行的条件;(2)能应用两条直线平行的条件解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:两条直线平行的条件.教学难点:两条直线平行的判断及应用.课时安排:2课时.8.3两条直线的位置关系(二)知识目标:(1)掌握两条直线平行的条件;(2)能应用点到直线的距离公式解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:两条直线的位置关系,点到直线的距离公式.教学难点:两条直线的位置关系的ZYB点火增压燃油泵判断及应用.课时安排:2课时.8.4圆(一)知识目标:(1)了解圆的定义;(2)掌握圆的标准方程和一般方程.能力目标:培养学生解决问题的能力与计算能力.教学重点:圆的标准方程和一般方程的理解与应用.教学难点:对圆的标准方程和一般方程的正确认识.课时安排:2课时.8.4圆(二)知识目标:(1)理解直线和圆的位置关系;(2)了解直线与圆相切在实际中的应用.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:直线与圆的位置关系的理解和掌握.教学难点:直线与圆的位置关系的判定.课时安排:2课时.9.1平面的基本性质知识目标:(1)了解平面的概念、平面的基本性质;(2)掌握平面的表示法与画法.能力目标:培养学生的空间想象能3GR普通型三螺杆泵力和数学思维能力.教学重点:平面的表示法与画法.教学难点:对平面的概念及平面的基本性质的理解.课时安排:2课时.9.2直线与直线、直线与平面、平面与平面平行的判定与性质知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:直线与直线、直线与平面、平面与平面平行的判定与性质.教学难点:异面直线的想象与理YCB齿轮泵解.课时安排:2课时.9.3直线与直线、直线与平面、平面与平面所成的角知识目标:(1)了解两条异面直线所成的角的概念;(2)理解直线与平面垂直、直线与平面所成的角的概念,二面角及其平面角的概念.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:异面直线的概念与两条异面直线所成的角的概念、直线与平面所成的角的概念、二面角及其平面角的概念.教学难点:两条异面直线所成的角的概念、二面角的平面角的确定.课时安排:2课时.9.4直线与直线、直线与平面、平面与平面垂直的判定与性质知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:直线与平面、平面与平面垂直的判定方法与性质.教学难点:判定空间直线与直KCB型不锈钢齿轮泵线、直线与平面、平面与平面垂直.课时安排:2课时.9.5柱、锥、球及其简单组合体(一)知识目标:(1)了解棱柱、棱锥的结构特征;(2)掌握棱柱、棱锥面积和体积计算.能力目标:培养学生的观察能力,数值计算能力及计算工具使用技能.教学重点:正棱柱、正棱锥的结构特征及相关的计算.教学难点:正棱柱、正棱锥的相关计算.课时安排:2课时.9.5柱、锥、球及其简单组合体(二)知识目标:(1)了解圆柱、圆锥、球的结构特征;(2)掌握圆柱、圆锥、球的面积和体积计算.能力目标:培养学生的观察能力,数值计算能力及计算工具使用技能.教学重点:圆柱、圆锥、球的结构特征及相关的计算.教学难点:简单组合体的结构特征及其面积、体积的计算.课时安排:2课时.10.1计数原理知识目标:掌握分类计数原理和分步计数原理.能力目标:培养学生的观察、分析能力.教学重点:掌握分类计数原理和分步计数原理.教学难点:区别与运用分类计数原理RYB电动齿轮泵和分步计数原理.课时安排:2课时.10.2概率(一)知识目标:(1)理解必然事件、不可能事件、随机事件的意义;(2)理解事件的频率与概率的意义以及二者的区别与联系.能力目标:培养学生的观察、分析能力.教学重点:事件的概率的定义.教学难点:概率的计算.课时安排:2课时.10.2概率(二)知识目标:掌握古典概型,互斥事件的概念.能力目标:培养学生的观察、分析能力.教学重点:运用公式计算等可能事件的概率.教学难点:概率的计算.课时安排:2课时.10.3总体、样本与抽样方法(一)知识目标:理解总体、个体、样本等概念.能力目标:培养学生认识世界、探ZYB增压燃油泵索世界的辩证唯物观.教学重点:总体、个体、样本、样本的容量的概念.教学难点:总体、个体、样本之间的关系.课时安排:2课时.10.3总体、样本与抽样方法(二)知识目标:了解简单随机抽样、系统抽样、分层抽样等三种抽样方法.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:了解简单随机抽样、系统抽样、分层抽样等三种抽样方法.教学难点:对简单随机抽样、系统抽样、分层抽样等三种抽样方法的理解.课时安排:2课时.10.4用样本估计总体知识目标:(1)了解用样本的频率分布估计总体;(2)掌握用样本均值、方差和标准差估计总体的均值、方差和标准差.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:计算样本均值、样NYP高粘度保温泵本方差及样本标准差.教学难点:列频率分布表,绘频率分布直方图.课时安排:2课时.10.5一元线性回归知识目标:(1)了解相关关系的概念;(2)掌握一元线性回归思想及回归方程的建立.能力目标:增强学生的数据处理能力,计算工具的使用能力,分析问题和解决问题的能力,培养严谨、CYB稠油泵细致的学习和工作作风.教学重点:掌握一元回归方程.教学难点:理解相关关系、回归分析概念.课时安排:2课时/ktyzyb/KZYB.html//七年级英语期末考试质量分析一、试卷分析:本次试卷的难易程度定位在面向大多数学生。
中职数学基础模块1.1.1集合的概念教学设计教案人教版
课时教学流程课4. 集合的分类.(1) 有限集:含有有限个兀素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作N;(2) 正整数集:非负整数集内排除0 的集合,记作N +或N* ;(3) 整数集:整数全体构成的集合,记作Z;(4) 有理数集:有理数全体构成的集合,记作Q;(5) 实数集:实数全体构成的集合,记作R.教师强调集合兀素的确疋性.师:高一(1)班高个子同学的全体能否构成集合?生:不能构成集合.这是由于没有规定多高才算是高个子,因而"高个子同学”不能确定.教师强调:相同的对象归入同一个集合时只能算作集合的一个元素.请学生试举有限集和无限集的例子.师:说出自然数集与非负整数集的关系.生:自然数集与非负整数集是相同的.师:也就是说,自然数集包括数0.师:出示例题,引导学生讨论、思考.生:讨论,回答,明确说出理由.生:模仿练习;讨论并口答. 师:点拨、解答学生疑难.通过具体例子,师生的问答,巩固集合概念及其元素特例1判断下列语句能否构成一个集合,并说明理由.(1) 小于10的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的26个大写字母;(4) 非常接近1的实数.练习1判断下列语句是否正确:(1) 由2, 2, 3, 3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm的三角形构成的集合是有限集;(4) 如果a = Q, b乏Q,贝U a+ b乏Q.例2用符号“”或“”填空:(1) 1 —N , 0 —N , —4_N , 0.3 —N ;(2) 1 —Z, 0—Z , —4—Z , 0.3—Z ;课时教学流程师:出示例题,请学生填写. 生:口答各题结果.师:引导学生进行订正,并 说明错误原因.学生模仿练习; 老师订正、点拨.通过例题2和练习2,加深 对特殊数集的 理解以及练习2用符号“ ”或 “”填空:(1) - 3 N ;⑵ 3.14 Q ;11⑶3Z ; (4) - 2R ;(5) 2R ;⑹oZ .性.通过练习 进一步强化学 生对集合中元 素特性的理解.(4) 1 R , 0 R , - 4 R , 0.3 R .课时教学流程元素与集合关系的理解与表示,既突出重点又分解难点. 本节课学习了以下内容:1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.学生畅谈本节课的收获,老师引导梳理,总结本节课的知识占八、、♦梳理总结也可针对学生薄弱或易错处强调总结.课时教学设计尾页(试用)☆补充设计☆板书设计1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.作业设计教材P4,练习A组第1~3题教学后记。
【精品】人教版中职数学教材-基础模块上册全册教案[1-5章共41份教案]
人教版中职数学教材-基础模块上册全册教案[1-5章共41份教案]人教版中职数学教材基础模块上册全册教案(2009年7月第1版)目录第一章集合 (1)1.1.1 集合的概念 (1)1.1.2 集合的表示方法 (7)1.1.3 集合之间的关系(一) (13)1.1.3 集合之间的关系(二) (19)1.1.4 集合的运算(一) (24)1.1.4 集合的运算(二) (31)1.2.1 充要条件 (36)1.2.2 子集与推出的关系 (42)第二章不等式 (47)2.1.1 实数的大小 (47)2.1.2 不等式的性质 (53)2.2.1 区间的概念 (60)2.2.2 一元一次不等式(组)的解法 (66)2.2.3 一元二次不等式的解法(一) (73)2.2.3 一元二次不等式的解法(二) (78)2.2.4 含有绝对值的不等式 (84)2.3 不等式的应用 (89)第三章函数 (94)3.1.1 函数的概念 (94)3.1.2 函数的表示方法 (100)3.1.3 函数的单调性 (105)3.1.4 函数的奇偶性 (111)3.2.1 一次、二次问题 (119)3.2.2 一次函数模型 (124)3.2.3 二次函数模型 (130)3.3 函数的应用 (137)第四章指数函数与对数函数 (141)4.1.1 有理指数(一) (141)4.1.1 有理指数(二) (147)4.1.2 幂函数举例 (154)4.1.3 指数函数 (160)4.2.1 对数 (168)4.2.2 积、商、幂的对数 (174)4.2.3 换底公式与自然对数 (181)4.2.4 对数函数 (185)4.3 指数、对数函数的应用 (190)第五章三角函数 (195)5.1.1 角的概念的推广 (195)5.1.2 弧度制 (201)5.2.1 任意角三角函数的定义 (207)5.2.2 同角三角函数的基本关系式 (215)5.2.3 诱导公式 (222)5.3.1 正弦函数的图象和性质 (233)5.3.2 余弦函数的图象和性质 (240)5.3.3 已知三角函数值求角 (245)第一章集合1.1.1集合的概念【教学目标】1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学方法】本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.【教学过程】(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母A,B,C,…表示,它的元素通常用小写英文字母a,b,c,…表示.2. 元素与集合的关系.(1) 如果a 是集合A 的元素,就说a属于A,记作a A,读作“a 属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a A.读作“a不属于A”.3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元教师检查学生自学情况,梳理本节课知识,并强调要注意的问题.教师要把集合与元素的定义分析透彻.请同学举出一些集合的例子,并说出所举例子中的元素.教师强调:“”的开口方向,不能把a A颠倒过来写.教师强调集合元素的确定性.师:高一(1)班高个子同学的全体能否构成集合?生:不能构成数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的 26 个大写字母;(4) 非常接近 1 的实数.练习1 判断下列语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集;(4) 如果a Q,bQ,则a+b Q.例2 用符号“”或“”填空:(1) 1 N,0 N,-4 N,0.3 N;(2) 1 Z,0 Z,-4 Z,0.3 Z;(3) 1 Q,0 Q,-4 Q,0.3 Q;(4) 1 R ,0 R ,-4 R ,0.3 R . 练习2 用符号“”或“”填空:(1) -3 N ;(2) 3.14 Q ;(3) 13 Z ; (4)-12R ; (5) 2 R ; (6) 0 Z .1.1.2集合的表示方法【教学目标】1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.2. 发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.3. 让学生感受集合语言的意义和作用,学习从数学的角度认识世界;通过合作学习培养学生的合作精神.【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合.【教学难点】集合特征性质的概念,以及运用描述法表示集合.【教学方法】本节课采用实例归纳,自主探究,合作交流等方法.在教学中通过列举例子,引导学生讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质.【教学过程】1. 集合、元素、有限集和无限集的概念是什么?2. 用符号“”与“”填空白:集合A的一个特征性质,于是集合A 可以用它的特征性质描述为 {x I | p(x)} ,它表示集合A是由集合I 中具有性质p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意:(1) 特征性质明确;(2) 若元素范围为R,“x R”可以省略不写.例2 用性质描述法表示下列集合:(1) 大于3的实数的全体构成的集合;(2) 平行四边形的全体构成的集合;(3) 平面内到两定点A,B 距离相等的点的全体构成的集合.解 (1){ x |x >3};(2){ x | x是两组对边分别平行的四边形};(3) l={ P ,|PA|=|PB|,A,B 为内两定点}.练习2 用性质描述法表示下列集合:(1) 目前你所在班级所有同学构成的集合;(2) 正奇数的全体构成的集合;(3) 绝对值等于3的实数的全体构成的集合;(4) 不等式4 x-5<3的解构成的集合;(5)所有的正方形构成的集合.者不便于、不需要一一列举出来,常用描述法.如:集合{x Q|1≤x≤4}.1.1.3集合之间的关系(一)【教学目标】1. 理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.2. 了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.3. 培养学生使用符号的能力;建立数形结合的数学思想;培养学生用集合的观点分析问题、解决问题的能力.【教学重点】子集、真子集的概念.【教学难点】集合间包含关系的正确表示.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段辅助教学.设计典型题目,并提出问题,层层引导学生探究知识,让学生在完成题目的同时,思维得以深化;切实体现以人为本的思想,充分发挥学生的主观能动性,培养其探索精神和运用数学知识的意识.【教学过程】1. 子集定义.如果集合A的任何一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作A B或B A;读作“A包含于B”,或“B包含A”.2. 真子集定义.如果集合A是集合B 的子集,并且集合B中至少有一个元素不属于A,师:通过对引例中元素与集合关系的分析,得出子集的定义.请学生举满足“A B”的实例.在理解了“子集”定义的基础上,引导学生根据元素与集合的关系,试叙述“真子那么集合A是集合B的真子集.记作A B(或BA);读作“A真包含于B”,或“B真包含A”.3. Venn图表示.集合B同它的真子集A之间的关系,可用Venn 图表示如下.4. 空集定义.不含任何元素的集合叫空集.记作.如,{x| x2<0};{x | x+1=x+2},这两个集合都为空集.5.性质.(1) A A任何一个集合是它本身的子集.(2) A空集是任何集合的子集”的定义.老师总结,得出真子集的定义.介绍用Venn图表示集合及集合间关系的方法.请学生画图表示:A B.请学生举空集的例子.师:能否把子集说成是由原来集合中的部分元素组成的集合?生:分组讨论,派代表发表各组看法.解疑:不能.因为集合的子集也包括它本身,而这个子集是由它A B新课集.(3) 对于集合A,B,C,如果A B,BC,则A C.(4) 对于集合A,B,C,如果A B,BC,则A C.例1 判断:集合A是否为集合B的子集,若是则在( )打“√”,若不是则在( )打“×”.(1) A={1,3,5},B={1,2,3,4,5,6}( )(2) A={1,3,5},B={1,3,6,9}( )(3) A={0},B={ x|x2+2=0}( )(4) A={ a,b,c,d },B={ d,b,c,a } ( )例2 (1) 写出集合A={1,2}的所有子集及真子的全体元素组成的.空集是任一个集合的子集,而这个集合中并不含有B中的元素.师:出示题目,请学生思考、判断.生:根据定义作出判断.师:引导全班学生进行订正,加深对定义的理解.生:尝试解答例题.师:引导学生订正;请学生归纳“写出一个集合的所有子集”的步骤.验,分解了难点.在学习定义之后紧跟上一组根据定义进行判断的题目,利于加深学生对定义的理解,巩固新知.在板书的过程中,突出解题思路,体现解题步骤.集.(2) 写出集合B={1,2,3}的所有子集及真子集.解 (1)集合A 的所有子集是,{1},{2},{1,2}.在上述子集中,除去集合A本身,即{1,2},剩下的都是A的真子集.(2) 集合B的所有子集是,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合B本身,即{1,2,3},剩下的都是B的真子集.练习写出集合A={a,b,c}的所有子集及真子集.1.1.3集合之间的关系(二)【教学目标】1. 理解两个集合相等概念.能判断两集合间的包含、相等关系.2. 理解掌握元素与集合、集合与集合之间关系的区别.3. 学习类比方法,渗透分类思想,提高学生思维能力,增强学生创新意识.【教学重点】1. 理解集合间的包含、真包含、相等关系及传递关系.2. 元素与集合、集合与集合之间关系的区别.【教学难点】弄清元素与集合、集合与集合之间关系的区别.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段进行教学.使学生初步经历使用最基本的集合语言表示有关数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力.精心设计问题情境,引起学生强烈的求知欲望,通过启发,使学生的思考、发现、归纳等一系列的探究思维活动始终处于自主的状态中.【教学过程】如果两个集合的元素完全相同,那么我们就说这两个集合相等.记作A=B.读作集合A等于集合B.如果A B,且BA,那么A=B;反之,如果A=B,那么A B,且B A.例1 指出下面各组中集合之间的关系:(1) A={x | x2-9=0},B={-3,3};(2) M={x | |x|=1},N={-1,1}.解 (1) A=B;(2) M=N.例2 判断以下各组集合之间的关系:(1) A={2,4,5,7},B={2,5};(2) P={x | x2=1},Q={-1,1};(3) C={x | x 是正奇数},D={x | x是正整数};(4) M={x | x 是等腰直角三角形},N={x | x 是有一个角是45的直角三角形}.解 (1) B A;(2) P=Q;义判断:A B成立吗?生:讨论,得出结论.学生容易得出:A=B.请学生在黑板上板书.教师引导学生订正后,总结集合与集合的关系.师:出示题目,请学生思考、试做.生:分析、试做.师:出示答案(3) C D;(4) M=N.练习1 用适当的符号(,,=,,)填空:(1) a {a,b,c};(2) {4,5,6} {6,5,4};(3) {a} {a,b,c};(4) {a, b,c } { b,c};(5) {1,2,3};(6) {x | x是矩形} {x | x是平行四边形};(7) 5 {5};(8) {2,4,6,8} {2,8}.例3 指出下列各集合之间的关系,并用Venn图表示:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.解U STF练习2集合U ,S ,T ,F 如图所示,下列关系中哪些是对的?哪些是错的?(1) S U ;(2) FT ;(3) S T ;(4) SF ;(5) S F ;(6) FU .ABCD1.1.4集合的运算(一)【教学目标】1. 理解交集与并集的概念与性质.2. 掌握交集和并集的表示法,会求两个集合的交集和并集.3. 发展学生运用数学语言进行表达、交流的能力;培养学生观察、归纳、分析的能力.【教学重点】交集与并集的概念与运算.【教学难点】交集和并集的概念、符号之间的区别与联系.【教学方法】这节课主要采用发现式教学法和自学法.运用现代化教学手段,通过创设情景,提出问题,引导学生自己独立地去发现问题、分析归纳、形成概念.并通过对比,自学相似概念,深化对概念的理解.【教学过程】(2) (A ∩B) ∩ CA ∩ (B ∩C);(3) A ∩A=;(4) A ∩=A=.例1(1) 已知:A={1,2,3},B={3,4,5},C ={5,3},则A ∩B=;B ∩C=;(A∩ B)∩ C =.例2(1) 已知A={x | x 是奇数},B={x | x 是偶数},Z={x | x 是整数},求A∩ Z,B∩Z,A∩ B.解A∩ Z={x | x 是奇数} ∩ {x | x是整数}={x | x 是奇数}=A;B∩ Z={x | x 是偶数} ∩ {x | x是整数}={x | x 是偶数}=以填空的形式出示各条性质.请学生根据交集的定义和上面的Venn图进行讨论,填写性质.想一想,如果AB,那么A ∩B =.师:出示例1(1)生:口答.师:出示例2(1),引导学生弄清:(1) 整数的分类;(2) {x | x 是整数},{x | x 是奇数},{x | x 是偶数}各集合之间的关系.生:试画出Venn图,并解答此题.B;A∩ B={x | x 是奇数} ∩ {x | x是偶数}=.二、集合的并1. 并集的定义.给定两个集合A,B,把它们所有的元素合并在一起构成的集合,叫做A与B的并集记作A∪B,读作“A并B”.2. 并集的Venn图表示.3. 并集的性质.(1) A ∪ B B ∪ A;(2) (A∪B)∪CA∪(B∪C);(3) A ∪ A=;(4) A ∪=在引例中,集合D是集合A与B的什么运算?师:出示自学提纲:(1) 并集的定义是什么?其记法与读法如何?(2) 如何用Venn图表示集合A与B的并集.(3) 并集有哪些性质?生:自学教材P14~15——集合的并,每四人为一组,讨论并回答自学提纲中提出的问题.师:以提问的方式检查学生自学情况,订正学生回答的问题结果,并出示各知识点.想一想:如果AB,那么A ∪ BA B A B A A B1.1.4集合的运算(二)【教学目标】1. 了解全集的意义;理解补集的概念,掌握补集的表示法;理解集合的补集的性质;会求一个集合在全集中的补集.2. 发展学生运用数学语言进行表达、交流的能力;培养学生建立数形结合的思想,将满足条件的集合用Venn图或数轴一一表示出来;提高学生观察、比较、分析、概括的能力.3. 鼓励学生主动参与“教”与“学”的整个过程,激发其求知欲望,增强其学习数学的兴趣与自信心.【教学重点】补集的概念与运算.【教学难点】全集的意义;数集的运算.【教学方法】本节课采用发现式教学法,通过引入实例,进而分析实例,引导学生寻找、发现其一般结果,归纳其普遍规律.【教学过程】新课新课二、补集1. 定义.如果 A 是全集U的一个子集,由U中的所有不属于 A 的元素构成的集合,叫做 A在U 中的补集.记作U A.读作“A 在U中的补集”.2. 补集的Venn图表示.例1 已知:U={1,2,3,4,5,6},A={1,3,5}.则U A=;A ∩U A=;A ∪U A=.解 {2,4,6};;U.例2 已知U={ x | x生回答引例中的问题2“没有购进的品种构成的集合是什么?”,得出补集的定义和特征;介绍补集的记法和读法.生:根据定义,试用阴影表示补集.师:订正、讲解补集Venn图表示法.生:对例1口答填空.师:引导学生画出例2的Venn图,明确集合间关系,请学生观察并说出结果.义.通过画图来理解补集定义,突破难点.借助简单题目使学生初步理解补集定义.例2中补充两问,为学生得出性质做铺垫.结合具体例题和Venn图,使学生自AUC U A是实数},Q={ x | x 是有理数}.则U Q=;Q∩U Q=;Q∪U Q=.解 { x | x 是无理数};;U.3. 补集的性质.(1) A ∪U A=U;(2) A ∩U A=;(3) U(U A)=A.例3 已知全集U=R,A={x | x>5},求U A.解U A={x |x≤5}.练习 1(1) 已知全集U=R,A={ x | x<1},求U A.(2) 已知全集U=R,A={ x | x≤1},师:以填空的形式出示各条性质.生:填写性质.师:结合数轴讲解例3.学生解答练习1,并总结解题规律.学生做练习2、3,老师点拨、解答学生疑难.己得出补集的各个性质,深化对补集概念的理解.培养学生数形结合的数学意识.通过练习加深学生对补集的理解.求U A.练习2 设U={1,2,3,4,5,6},A={5,2,1},B={5,4,3,2}.求U A;U B;U A ∩U B;U A ∪U B.练习3 已知全集U=R,A={x | -1< x < 1}.求U A,U A∩U,U A∪U,A ∩U A,A ∪U A.小结补集定义记法图示性质1. 学生读书、反思,说出自己学习本节课的收获和存在问题.2. 老师引导梳理,总结本节课的知识点,学生填表巩固.让学生读书、反思,培养学生形成良好的学习习惯,提高学习能力.作业教材P17,练习A组第1~4题.学生课后完成.巩固拓展.1.2.1充要条件【教学目标】1. 使学生正确理解充分条件、必要条件和充要条件三个概念.2. 能在判断、论证中灵活运用上述三个概念.3. 培养学生思维的严密性.【教学重点】正确理解充分条件、必要条件和充要条件三个概念.【教学难点】正确区分充分条件、必要条件.【教学方法】本节课采用启发式教学和讲练结合的教学方法,引导学生分析归纳,形成概念.【教学过程】假要通过推理来判断.如果p真,证明q也为真,那么“如果p,则q”就是真命题.这时我们就说,由p可推出q.符号记作:p q,读作:“p推出q”.2.推出与充分、必要条件.p推出q,通常还可表述为p是q的充分条件;q是p的必要条件.这就是说,如果p,则q;(真)p q;p是q的充分条件;q是p的必要条件.这四句话表达的都是同一意义.例1 (1)“如果x=y,则x2=y2”(真)这个命题还可表述为哪几种形式?(2)“在△ABC中,如果AB=AC,则∠B=∠C”(真)这个命题还可表述为哪几种形式?解 (1)“如果x=y,则x2=y2”(真)这个命题还可表述为x=y x2=y2;或x=y 是x2=y2 的充分条件;或x2=y2 是x=y 的必要条件.(2)“在△ABC中,如果AB=AC,则∠B=∠C”(真)这个命题还可表述为在△ABC中,AB=AC∠B=∠C;或在△ABC中,AB=AC 是∠B=∠C的充分条件;或在△ABC中,∠B=∠C是AB=AC的必要条件.练习1 教材P22 练习A组第1题.练习2 教师写出四种等价说法中的一种,学生说出其他三种.3.充要条件.观察例1(2)“在△ABC中,如果AB=AC,则∠B=∠C”.反过来,“在△ABC 中,如果∠B=∠C,则AB=AC”这个命题是否正确?若正确,用刚学过的“推出符号”和充分、必要条件怎么叙述?引出充要条件的概念.如果p是q的充分条件(p q ),p又是q 的必要条件(q p ),则称p是q的充分且必要条件,简称充要条件.记作p q.显然,如果p是q的充要条件,那么q也是p 的充要条件.又常说成q 当且仅当p,或p与q等价.例如:两个三角形对应角相等是两个三角形相似的充要条件.4.综合练习.例2用充分条件、必要条件或充要条件填空:(1) x 是整数是x 是有理数的;(2) x=3 是x2=9的;(3) 同位角相等是两直线平行的;(4) (x-2)(x-3)=0是x-2=0的;练习3 教材 P22,A组第2题.例3 已知p 是q 充分条件,s是r 必要条件,p 是s 充要条件.求q与r的关系.解根据已知可得p q,r s,ps.所以r s pq.所以r q.1.2.2子集与推出的关系【教学目标】1. 正确理解子集和推出的关系.2. 掌握通过“推出”判断集合的关系.3. 启发学生发现问题和提出问题,培养学生独立思考的能力,学会分析问题和解决问题;培养学生抽象概括能力和逻辑思维能力.【教学重点】理解子集和推出的关系.【教学难点】理解通过“推出”判断集合的包含关系.【教学方法】本节课采用启发式教学和讲练结合的教学方法,运用现代化教学手段进行教学.通过创设情景,用普遍联系的观点审视事物,引导学生自己去发现、分析、归纳,形成概念.穿插有针对性的练习及讲解,并配以题组训练模式,使学生边学边练,及时巩固,深化对概念的理解.【教学过程】景,引入新知.从推出观点看:x是整数x 是有理数;从两个集合关系看:整数集是有理数集的子集.生:感受从推出和两个集合关系两个角度,了解两者关系.够从不同角度发现问题和提出问题,培养学生独立思考的能力1. 已知Q={x | x是有理数},R={x | x是实数},Q是R的子集.命题“如果x是有理数,则x是实数”正确.即:x是有理数x 是实数.反过来,如果上述命题正确,那么有理数集Q 也一定是实数集R的子集.2. 山东省公民构成的集合一定是中国公民构成的集合的子集.命题“如果我是山东省公民,则我是中国公民”正确.一般地,设A={x | p(x)},B={x | q(x)},如果A B,则x A x B.于是x具有性质px具有性质q,即pq;反之,如果A中的所有元素x都具有性质q(x),则A一定是B的子集.例1 判断下列集合A与B的关系.(1) A={x | x是12的约数},B={x | x是36的约数};(2) A={x | x>3},B={x | x>5};(3) A={x | x是矩形},B={x | x是有一个角为直角的平行四边形}.解 (1) 因为x是12的约数x是36的约数,所以A B.(2) 因为x>5x>3,所以B A.(3) 因为x是矩形x是有一个角为直角的平行四边形,所以A B.练习1教材P24 练习A组第1题.例2 已知A={x | x是等腰三角形},B={x | p(x)},试确定一个集合B,使A B.解因为A B,则x是等腰三角形x 具有性质p(x),p(x):x是三角形,所以 B={x | x是三角形}.练习2教材P24,练习A组第2题.本节课学习了以下内容:我们可以通过判断两个集合之间的关系来判断它们的特征性质之间的关系.设A={x | p(x)},B={x | q(x)},如果p q,则A B.反之亦然.。
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】1. 了解集合的概念,掌握集合的表示方法。
2. 能够运用集合的概念解决实际问题。
【教学内容】1. 集合的定义及表示方法。
2. 集合的性质。
3. 集合之间的基本关系。
【教学重点】1. 集合的概念及表示方法。
2. 集合的性质。
【教学难点】1. 集合的表示方法。
2. 集合之间的基本关系。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解集合的概念。
2. 讲解集合的定义及表示方法,如列举法、描述法等。
3. 讲解集合的性质,如无序性、确定性、互异性。
4. 讲解集合之间的基本关系,如子集、真子集、并集、交集等。
5. 课堂练习:让学生运用集合的概念解决实际问题。
1.2 集合之间的关系【教学目标】1. 掌握集合之间的基本关系,如子集、真子集、并集、交集等。
2. 能够运用集合之间的关系解决实际问题。
【教学内容】1. 集合之间的子集、真子集关系。
2. 集合之间的并集、交集关系。
3. 集合的补集概念。
【教学重点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学难点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学过程】1. 复习上节课的内容,引导学生理解集合之间的关系。
2. 讲解集合之间的子集、真子集关系。
3. 讲解集合之间的并集、交集关系。
4. 讲解集合的补集概念。
5. 课堂练习:让学生运用集合之间的关系解决实际问题。
第二章:函数与方程2.1 函数的概念【教学目标】1. 了解函数的概念,掌握函数的表示方法。
2. 能够运用函数的概念解决实际问题。
【教学内容】1. 函数的定义及表示方法。
2. 函数的性质。
【教学重点】1. 函数的概念及表示方法。
2. 函数的性质。
【教学难点】1. 函数的表示方法。
2. 函数的性质。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解函数的概念。
2. 讲解函数的定义及表示方法,如解析式、表格法等。
中职数学基础模块上下册全册教案【配套人教版教材】
人教版中职数学教材基础模块上下册全册教案【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*新阶段学习导入语介绍中职阶段学习数学的必要性,数学的学习内容、学习方法、学习特点等等.同学们就要开始新的人生阶段了,很高兴可以和大家一起度过这段美好的时光.希望同学们可以通过自己不懈的努力,介绍说明倾听了解引领学生了解新阶段的过程行为行为意图间在毕业后能够找到一个合适的工作,能够独立生存,能够成为为家庭、为企业、为社会做出自我贡献的能工巧匠.当然要达到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始……1.学习——旅程学习是一段旅程,对知识的探求永无止境,而且这段旅程可以从任何时候开始!未来的成功在现在脚下!2.老师——导游与大家一起开始这一段新的旅程、一起分享学习中的快乐、一起体会成长与进步的滋味.3.目的——运用我们应当能够理解数学,而且通过运用数学进行沟通和推理,在现实生活中应用数学来解决问题,养成一种数学上的自信心理.请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学.4.准备——必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流.回答为什么要学数学?学什么样的数学?怎么学数学?讲解说明领会了解数学学习特点重点是要树立学生的数学学习信心8*揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便.这就是我们将要研究学习的 1.1集合.介绍说明了解引入教学内容10*创设情景兴趣导入问题某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、薯片、裁纸刀、尺子.那么如何将这些商品放在指定的篮筐里?解决播放课件质疑观看课件思考从实际事例使学生自然的走过程行为行为意图间显然,面包、饼干、汉堡、果冻、薯片放在食品篮筐,彩笔、水笔、橡皮、裁纸刀、尺子放在文具篮筐.归纳面包、饼干、汉堡、果冻、薯片组成了食品集合,彩笔、水笔、橡皮、裁纸刀、尺子组成了文具集合.而面包、饼干、汉堡、果冻、薯片、彩笔、水笔、橡皮、裁纸刀、尺子就是其对应集合的元素.引导分析自我建构向知识点启发学生体会集合概念15*动脑思考探索新知概念由某些确定的对象组成的整体叫做集合,简称集.组成集合的对象叫做这个集合的元素.如大于2并且小于5的自然数组成的集合是由哪些元素组成?表示一般采用大写英文字母,,,A B C…表示集合,小写英文字母,,,a b c…表示集合的元素.拓展集合中的元素具有下列特点:(1)互异性:一个给定的集合中的元素都是互不相同的;(2)无序性:一个给定的集合中的元素排列无顺序;(3) 确定性:一个给定的集合中的元素必须是确定的.不能确定的对象,不能组成集合.例如,某班跑得快的同学,就不能组成集合.例1下列对象能否组成集合:(1)所有小于10的自然数;(2)某班个子高的同学;(3)方程210x的所有解;(4)不等式20x的所有解.解(1) 由于小于10的自然数包括0、1、2、3、4、5、6、7、8、9十个数,它们是确定的对象,所以它们可以组成集合.(2)由于个子高没有具体的标准,对象是不确定的,因此不总结归纳讲解说明强调质疑分析讲解理解领会记忆思考回答带领学生理解整体个体意义为后续学习做准备通过例题进一步领会元素确定性观察学生过程行为行为意图间能组成集合.(3)方程210x的解是-1和1,它们是确定的对象,所以可以组成集合.(4)解不等式20x,得2x,它们是确定的对象,所以可以组成集合.类型由方程的所有解组成的集合叫做这个方程的解集.由不等式的所有解组成的集合叫做这个不等式的解集.像方程210x的解组成的集合那样,由有限个元素组成的集合叫做有限集.像不等式x-2>0的解组成的集合那样,由无限个元素组成的集合叫做无限集.像平面上与点O的距离为 2 cm的所有点组成的集合那样,由平面内的点组成的集合叫做平面点集.由数组成的集合叫做数集.方程的解集与不等式的解集都是数集.所有自然数组成的集合叫做自然数集,记作N.所有正整数组成的集合叫做正整数集,记作N或+Ζ.所有整数组成的集合叫做整数集,记作Z.所有有理数组成的集合叫做有理数集,记作Q.所有实数组成的集合叫做实数集,记作R.不含任何元素的集合叫做空集,记作.例如,方程x2+1=0的实数解的集合里不含有任何元素,所以这个解集就是空集关系元素a是集合A的元素,记作a A(读作“a属于A”),a不是集合A的元素,记作a A(读作“a不属于A”).集合中的对象(元素)必须是确定的.对于任何的一个对象,或者属于这个集合,或者不属于这个集合,二者必居其一.提问归纳说明引领强调讲解分析强调讲解理解领会明确思考了解理解记忆领会是否理解知识点集合类型比较简单可以让学生自己分析强调各个数集的内涵和表示字母突出强调符号规范书写过程行为行为意图间35 *运用知识强化练习练习 1.1.11.用符号“”或“”填空:(1)-3 N,0.5 N,3 N;(2)1.5 Z,-5 Z,3 Z;(3)-0.2 Q,πQ,7.21 Q;(4)1.5 R,-1.2 R,πR.2.指出下列各集合中,哪个集合是空集?(1)方程210x的解集;(2)方程22x的解集.提问巡视指导思考动手求解交流及时了解学生知识掌握情况40*创设情景兴趣导入问题不大于5的自然数所组成的集合中有哪些元素?小于5的实数所组成的集合中有哪些元素?解决不大于5的自然数所组成的集合中只有0、1、2、3、4、5这6个元素,这些元素是可以一一列举的.而小于5的实数有无穷多个,而且无法一一列举出来,但元素的特征是明显的:(1) 集合的元素都是实数;(2)集合的元素都小于 5.归纳当集合中元素可以一一列举时,可以用列举的方法表示集合;当集合中元素无法一一列举但元素特征是明显时,可以分析出集合的元素所具有的特征性质,通过对元素特征性质的描述来表示集合.质疑引导讲解总结思考自我分析自我建构用较简单的问题给学生参与学习的起点引导学生得出结论45*动脑思考探索新知集合的表示有两种方法:(1)列举法.把集合的元素一一列举出来,写在花括号内,仔细理解带领过程行为行为意图间元素之间用逗号隔开.如不大于5的自然数所组成的集合可以表示为0,1,2,3,4,5.当集合为无限集或为元素很多的有限集时,在不发生误解的情况下可以采用省略的写法.例如,小于100的自然数集可以表示为0,1,2,3,,99,正偶数集可以表示为2,4,6,.(2)描述法.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于5的实数所组成的集合可表示为{|5,}x x x R.如果从上下文能明显看出集合的元素为实数,那么可以将x R省略不写.如不等式360x的解集可以表示为{|2}x x.为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表元素,直接用中文来表示集合的特征性质.例如所有正奇数组成的集合可以表示为{正奇数}.分析讲解关键词语强调说明记忆了解理解记忆了解学生总结集合两种表示方法特别注意强调写法的规范性50*巩固知识典型例题例2用列举法表示下列集合:(1)由大于4且小于12的所有偶数组成的集合;(2)方程2560x x的解集.分析这两个集合都是有限集.(1)题的元素可以直接列举出来;(2)题的元素需要解方程2560x x才能得到.解(1)集合表示为2,0,2,4,6,8,10;(2)解方程2560x x得11x,26x.故方程解集为1,6.例3用描述法表示下列各集合:(1)不等式210x,的解集;说明强调引领观察思考通过例题进一步领会集合的表示注意观察学生是否过程行为行为意图间(2)所有奇数组成的集合;(3)由第一象限所有的点组成的集合.分析用描述法表示集合关键是找出元素的特征性质.(1)题解不等式就可以得到不等式解集元素的特征性质;(2)题奇数的特征性质是“元素都能写成21()k k Z的形式”.(3)题元素的特征性质是“为第一象限的点”,即横坐标与纵坐标都为正数.解(1)解不等式210x,得12x,,所以解集为12x x,;(2)奇数集合21,x x k k Z;(3)第一象限所有的点组成的集合为,0,0x y x y.讲解说明引领分析强调含义说明主动求解观察思考求解领会思考求解理解知识点突出表示法的书写要规范复习对应数学知识60*运用知识强化练习教材练习 1.1.21.用列举法表示下列各集合:(1)方程2340x x的解集;(2)方程430x的解集;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合.2.用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程240x的解集;(3)大于5的所有偶数所组成的集合;(4)不等式253x的解集.巡视指导动手求解检验学习的效果70*理论升华整体建构本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征性质直观明确.因此表示集合时,要针对实际情况,选用合适的方法.例总结归纳理解体会从整体再一次突出集合过程行为行为意图间如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示.表示方法75*巩固知识典型例题例4 用适当的方法表示下列集合:(1)方程x+5=0的解集;(2)不等式3x-7>5的解集;(3)大于3且小于11的偶数组成的集合;(4)不大于5的所有实数组成的集合;解(1){-5}; (2){x| x>4};(3) {4,6,8,10};(4) {x| x≤5} .引领分析讲解说明领会思考求解进行综合题讲解巩固所归纳的强化点80*运用知识强化练习选用适当的方法表示出下列各集合:(1)由大于10的所有自然数组成的集合;(2)方程290x的解集;(3)不等式465x的解集;(4)平面直角坐标系中第二象限所有的点组成的集合;(5)方程243x的解集;(6)不等式组330,60xx,的解集.提问巡视指导归纳强调动手求解汇总交流及时了解学生知识掌握情况85*归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?(1)本次课学了哪些内容?(2)通过本次课的学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?引导提问回忆反思培养学生总结学习过程能力88*继续探索活动探究(1)阅读理解:教材 1.1,学习与训练 1.1;说明记录过程行为行为意图间(2)书面作业:教材习题 1.1,学习与训练 1.1训练题;(3)实践调查:探究生活中集合知识的应用90【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*复习知识揭示课题前面学习了集合的相关问题,试着回忆下面的知识点:1.集合由某些确定的对象组成的整体.质疑回忆对前面学习的过程行为行为意图间元素组成集合的对象.2.常用数集有哪些?用什么字母表示?3.集合的表示法(1)列举法:在花括号内,一一列举集合的元素;(2)描述法:{代表元素|元素所具有的特征性质}.4.元素与集合之间有属于或不属于的关系.完成下面的问题:用适当的符号“”或“”填空:(1) 0 ;(2) 0 N;(3) 3R;(4) 0.5 Z;(5) 1 {1,2,3};(6) 2 {x|x<1};(7)2 {x|x=2k+1, k Z}.那么集合与集合之间又有什么关系呢?引导强调明确加深回答内容进行复习有助于新内容的学习5*创设情景兴趣导入问题1.设A表示我班全体学生的集合,B表示我班全体男学生的集合,那么,集合A与集合B之间存在什么关系呢?2.设M={数学,语文,英语,计算机应用基础,体育与健康,物理,化学},N ={数学,语文,英语,计算机应用基础,体育与健康},那么集合M与集合N之间存在什么关系呢?3.自然数集Z与整数集N之间存在什么关系呢?解决显然,问题1中集合B的元素(我班的男学生)肯定是集合A的元素(我班的学生);问题2中集合N的元素肯定是集合M的元素;问题3中集合N的元素(自然数)肯定是集合Z 的元素(整数).归纳当集合B的元素肯定是集合A的元素时称集合A包含集合B.两个集合之间的这种关系叫做包含关系.播放课件质疑引导分析观看课件思考理解自我建构用问题引导学生思考集合之间关系启发学生体会包含含义10*动脑思考探索新知概念一般地,如果集合B的元素都是集合A的元素,那么称集合A包含集合B,并把集合B叫做集合A的子集.总结归纳理解领会带领学生理解包含过程行为行为意图间表示将集合A 包含集合B 记作A B 或BA (读作“A 包含B ”或“B 包含于A ”).可以用下图表示出这两个集合之间的包含关系.拓展由子集的定义可知,任何一个集合A 都是它自身的子集,即AA .规定:空集是任何集合的子集,即A .说明强调引导介绍记忆观察了解意义特别介绍符号的规范性图形有助学生加深理解15*巩固知识典型例题例1 用符号“”、“”、“”或“”填空:(1),,,a b c d,a b ;(2)1,2,3;(3) N Q ;(4) 0R ;(5) d ,,a b c ;(6)|35x x|06x x,.分析“”与“”是用来表示集合与集合之间关系的符号;而“”与“”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.解(1)集合,a b 的元素都是集合,,,a b c d 的元素,因此,,,a b c d,a b ;(2)空集是任何集合的子集,因此1,2,3;(3)自然数都是有理数,因此N Q ;(4)0是实数,因此0R ;(5)d 不是集合,,a b c 的元素,因此d ,,a b c ;(6)集合|35x x的元素都是集合|06x x,的元素,因此|35|06x xx x,.说明引领讲解强调观察思考领会主动求解通过例题进一步指导学生元素与集合集合与集合关系的分类确定20*运用知识强化练习教材练习 1.2.1提问动手了解AB过程行为行为意图间用符号“”、“”、“”或“”填空:(1)*N Q;(2)0;(3)a,,a b c;(4)2,32;(5)0;(6)|12x x,|14x x.巡视指导求解交流学生知识掌握情况25*动脑思考探索新知概念如果集合B是集合A的子集,并且集合A中至少有一个元素不属于集合B,那么把集合B叫做集合A的真子集.表示记作A BY(或B Aü),读作“A真包含B”(或“B真包含于A”).拓展空集是任何非空集合的真子集.对于集合A、B、C,如果AüB,BüC,则AüC.仔细分析讲解关键词语强调说明理解记忆记忆了解特别强调真子集与子集的区别30*巩固知识典型例题例2选用适当的符号“ü”或“Y”填空:(1){1,3,5}_ _{1,2,3,4,5};(2){2}_ _ {x| |x|=2}; (3){1}_.解(1) {1,3,5}ü{1,2,3,4,5};(2) {2}ü{x| |x|=2};(3) {1}Y.例3设集合0,1,2M,试写出M的所有子集,并指出其中的真子集.分析集合M中有3个元素,可以分别列出空集、含1个元素的集合、含2个元素的集合、含3个元素的集合.解M的所有子集为,0,1,2,0,1,0,2,1,20,1,2.说明讲解说明讲解观察主动求解思考理解通过例题进一步理解真包含的含义特别提醒注意空集过程行为行为意图间除集合0,1,2外,所有集合都是集合M的真子集.强调35*运用知识强化练习练习 1.2.21.设集合,A c d,试写出A的所有子集,并指出其中的真子集.2.设集合{|6}A x x,集合{|0}B x x,指出集合A与集合B之间的关系.巡视指导求解交流检验学习效果40*创设情景兴趣导入问题设集合A={x|x2-1=0},B ={-1,1},那么这两个集合会有什么关系呢?解决由于方程x2-1=0的解是x1= -1,x2=1,所以说集合A中的元素就是1,-1,可以看出集合A与集合B中的元素完全相同,集合A与集合 B 相等.归纳集合A与集合B中的元素完全相同,只是表示方法不同,我们就说集合A与集合 B 相等,即A=B.质疑引导分析总结思考理解自我建构启发学生体会相等含义45*动脑思考探索新知概念一般地,如果两个集合的元素完全相同,那么就说这两个集合相等.表示将集合A与集合B相等记作A B.拓展如果A B,同时B A,那么集合B的元素都属于集合A,同时集合A的元素都属于集合B,因此集合A与集合B的元素完全相同,由集合相等的定义知A B.讲解强调说明领会记忆理解强调集合相等的本质含义50*巩固知识典型例题注意过程行为行为意图间例4判断集合2Ax x与集合240Bx x的关系.分析要通过研究两个集合的元素之间的关系来判断这两个集合之间的关系.解由2x 得2x 或2x ,所以集合A 用列举法表示为2,2;由240x 得2x 或2x ,所以集合B 用列举法表示为2,2;可以看出,这两个集合的元素完全相同,因此它们相等,即AB .质疑提问分析引领思考主动求解总结归纳复习第一节中有关知识55*运用知识强化练习判断集合A 与B 是否相等?(1) A={0},B=;(2) A={…,-5,-3,-1,1,3,5,…},B={x|x=2m+1 ,m Z };(3) A={x|x=2m -1 ,m Z },B={x|x=2m+1 ,mZ }.巡视指导动手求解检验学习的效果60*理论升华整体建构元素与集合关系:属于与不属于(、);集合与集合关系:子集、真子集、相等(、ü、=);首先要分清楚对象,然后再根据关系,正确选用符号.总结归纳理解体会从整体再次突出65*巩固知识典型例题例5 用适当的符号填空:⑴{1,3,5}{1,2,3,4,5,6};⑵2{|9}x x {3,-3};⑶{2}{ x| |x|=2};⑷ 2 N ;⑸a { a };⑹{0};⑺{1,1}2{|10}x x.解⑴{1,3,5}{1,2,3,4,5,6}ü;⑵{x|x 2=9}={3,-3};⑶因为{|2}{2,2}x x ,所以{2}{2}x xü;⑷2∈N ;⑸a ∈{a};⑹{0}Y;⑺因为2{|10}x x=,所以{1,1}Y 2{|10}x x.引领分析质疑讲解说明领会思考求解自我强化巩固所归纳强化点, 可以适当的教给学生完成,再进行核对75过程行为行为意图间*运用知识强化练习用适当的符号填空:(1) 2.5Z;(2)13|1x x;(3)2,22|2x x;(4)a,,a b c;(5)Z N;(6){|40}x x;(7)Q;(8)1,3,53,5.提问巡视指导动手求解汇总交流及时了解学生知识掌握情况80*归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?引导提问回忆反思培养学生总结学习过程能力85*继续探索活动探究(1)阅读:教材章节 1.2;学习与训练 1.2;(2)书写:习题 1.2,学习与训练 1.2训练题;(3)实践:寻找集合和集合关系的生活实例.说明记录90【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题1.3集合的运算*创设情景兴趣导入问题 1 在运动会上,某班参加百米赛跑的有4名同学,参加跳高比赛的有6名同学,既参加百米赛跑又参加跳高比赛的同学有2名同学,那么这些同学之间有什么关系?问题 2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生?用我们学过的集合来表示:A={李佳,王燕,张洁,王勇};B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系?问题 3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B 的交集.质疑引导分析归纳总结思考自我分析了解从实际事例使学生自然的走向知识点引导式启发学生思考集合元素之间的关系过程行为行为意图间5*动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A 交B”.即A B x x A x B且.集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识典型例题例1已知集合A,B,求A∩B.(1) A={1,2},B={2,3};(2) A={a,b},B={c,d , e , f };(3) A={1,3,5},B= ;(4) A={2,4},B={1,2,3,4}.分析集合都是由列举法表示的,因为A∩B是由集合A和集合B中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解(1) 相同元素是2,A∩B={1,2}∩{2,3 }={2};(2) 没有相同元素A∩B={a , b}∩{c, d , e , f }=;(3) 因为A是含有三个元素的集合,是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A∩B=;(4)因为A中的每一个元素的都是集合B中的元素,所以A ∩B=A.例2设,|0A x y x y,,|4B x y x y,求A B.分析集合A表示方程0x y的解集;集合B表示方程说明强调引领讲解观察思考主动求解观察通过例题进一步领会交集注意观察学生是否理解知识点复习过程行为行为意图间4x y 的解集.两个解集的交集就是二元一次方程组0,4x y x y的解集.解解方程组0,4.x y x y得2,2x y.所以2,2AB .例3设|12Ax x ,,|03B x x ,,求A B .分析这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解|12|03ABx x x x剟|02x x ,.由交集定义和上面的例题,可以得到:对于任意两个集合A ,B ,都有(1)A B B A ;(2)A AA,A;(3)B BAA BA ,;(4)如果A BAB A 那么,.说明引领强调含义说明启发引导思考求解领会思考求解了解方程组的解法突出数轴的作用强调数形结合可以交给学生自我发现归纳25*运用知识强化练习练习 1.3.11.设1,0,1,2A ,0,2,4,6B ,求A B .2.设,|21A x y x y,,|23Bx y x y,求AB .3.设|22A x x ≤,|04B x x剟,求A B .提问巡视指导动手求解交流及时了解学生知识掌握情况35*创设情景兴趣导入问题 1 某班有团员34名,非团员11名,那么该班有多少名同学?用我们学过的集合来表示:A={该班团员};B={该班非团员};C={该班同学}.那么这三个集合之间有什么关系?问题 2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;介绍质疑了解观看课件思考从实际事例使学生自然。
中职数学基础模块上册《集合的运算》word教案
No。
1课时序号授课班级授课时间学年第1学期第1。
2课时12机电预19.17工作课时2课时课的类型教学内容教学目标新授课√练习课实验课复习课测验课综合课1.1.1集合的概念1.初步理解集合的概念;理解集合中元素的性质.2.初步理解“属于”关系的意义;知道常用数集的概念及其记法.3.引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.教材分析重点难集合的基本概念,元素与集合的关系.正确理解集合的概念点教具准备教学后记本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.【引课】师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”.师:“物以类聚”;“人以群分”;这些都给我们以集合的印象.引入课题【新授】课件展示引例:(1)某学校数控班学生的全体;(2)正数的全体;(3)平行四边形的全体;(4)数轴上所有点的坐标的全体1.集合的概念.(1)一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2)构成集合的每个对象都叫做集合的元素.(3)集合与元素的表示方法:一个集合,通常用大写英文字母A,B,C,…表示,它的元素通常用小写英文字母a,b,c,…表示.2.元素与集合的关系.(1)如果a是集合A的元素,就说a属于A,记作a∈A,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a∉A.读作“a不属于A”.3.集合中元素的特性.(1)确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2)互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.4.集合的分类.(1)有限集:含有有限个元素的集合叫做有限集.(2)无限集:含有无限个元素的集合叫做无限集.5.常用数集及其记法.(1)自然数集:非负整数全体构成的集合,记作N;(2)正整数集:非负整数集内排除0的集合,记作N+或N*;(3)整数集:整数全体构成的集合,记作Z;(4)有理数集:有理数全体构成的集合,记作Q;(5)实数集:实数全体构成的集合,记作R.【巩固】例1判断下列语句能否构成一个集合,并说明理由.(1)小于10的自然数的全体;(2)某校高一(2)班所有性格开朗的男生;(3)英文的26个大写字母;(4)非常接近1的实数.练习1判断下列语句是否正确:(1)由2,2,3,3构成一个集合,此集合共有4个元素;(2)所有三角形构成的集合是无限集;(3)周长为20cm的三角形构成的集合是有限集;(4)如果a∈Q,b∈Q,则a+b∈Q.例2用符号“∈”或“∉”填空:(1)1N,0N,-4N,0.3N;(2)1Z,0Z,-4Z,0.3Z;(1) -3 N ;(2) 3.14Q ;(3) Z ; (4) - R ;(5)2 R ; (6) 0Z(3) 1 Q ,0 Q ,-4 Q ,0.3 Q ;(4) 1 R ,0 R ,-4 R ,0.3 R .练习 2 用符号“∈”或“∉”填空:1312【小结】1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.【作业】教材 P4,练习 A 组第 1~3 题课时序号授课班级授课时间课的类型教学内容教学目标专业学校课时工作计划No。
中职数学(基础模块)教案.pdf
中职数学(基础模块)教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1.2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1.3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“”,“”,“”的正确使用.教学难点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.教学重点:⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.教学难点:一元二次不等式的解法.课时安排:2课时.2.4含绝对值的不等式知识目标:(1)理解含绝对值不等式或的解法;(2)了解或的解法.能力目标:(1)通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力;(2)通过数形结合的研究问题,培养学生的观察能力.教学重点:(1)不等式或的解法.(2)利用变量替换解不等式或.教学难点:利用变量替换解不等式或.课时安排:2课时.3.1函数的概念及其表示法知识目标:(1)理解函数的定义;(2)理解函数值的概念及表示;(3)理解函数的三种表示方法;(4)掌握利用“描点法”作函数图像的方法.能力目标:(1)通过函数概念的学习,培养学生的数学思维能力;(2)通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3)会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.教学重点:(1)函数的概念;(2)利用“描点法”描绘函数图像.教学难点:(1)对函数的概念及记号的理解;(2)利用“描点法”描绘函数图像.课时安排:2课时.3.2函数的性质知识目标:⑴理解函数的单调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.能力目标:⑴通过利用函数图像研究函数性质,培养学生的观察能力;⑵通过函数奇偶性的判断,培养学生的数学思维能力.教学重点:⑴函数单调性与奇偶性的概念及其图像特征;⑵简单函数奇偶性的判定.教学难点:函数奇偶性的判断.(*函数单调性的判断)课时安排:2课时.3.3函数的实际应用举例知识目标:(1)理解分段函数的概念;(2)理解分段函数的图像;(3)了解实际问题中的分段函数问题.能力目标:(1)会求分段函数的定义域和分段函数在点处的函数值;(2)掌握分段函数的作图方法;(3)能建立简单实际问题的分段函数的关系式.教学重点:(1)分段函数的概念;(2)分段函数的图像.教学难点:(1)建立实际问题的分段函数关系;(2)分段函数的图像.课时安排:2课时.4.1实数指数幂(1)知识目标:⑴复习整数指数幂的知识;⑵了解n次根式的概念;⑶理解分数指数幂的定义.能力目标:⑴掌握根式与分数指数幂之间的转化;⑵会利用计算器求根式和分数指数幂的值;⑶培养计算工具使用技能.教学重点:分数指数幂的定义.教学难点:根式和分数指数幂的互化.课时安排:2课时.4.1实数指数幂(2)知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点.能力目标:⑴正确进行实数指数幂的运算;⑵培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力.教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.课时安排:2课时.4.2指数函数知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.教学重点:⑴指数函数的概念、图像和性质;⑵指数函数的应用实例.教学难点:指数函数的应用实例.课时安排:2课时.4.3对数知识目标:⑴理解对数的概念,理解常用对数和自然对数的概念;⑵掌握利用计算器求对数值的方法;⑶了解积、商、幂的对数.能力目标:⑴会进行指数式与对数式之间的互化;⑵会运用函数型计算器计算对数值;⑶培养计算工具的使用技能.教学重点:指数式与对数式的关系.教学难点:对数的概念.课时安排:2课时.4.4对数函数知识目标:⑴了解对数函数的图像及性质特征;⑵了解对数函数的实际应用. 能力目标:⑴观察对数函数的图像,总结对数函数的性质,培养观察能力;⑵通过应用实例的介绍,培养学生数学思维能力和分析与解决问题能力.教学重点:对数函数的图像及性质.教学难点:对数函数的应用中实际问题的题意分析.课时安排:2课时.5.1角的概念推广知识目标:⑴了解角的概念推广的实际背景意义;⑵理解任意角、象限角、界限角、终边相同的角的概念.能力目标:(1)会判断角所在的象限;(2)会求指定范围内与已知角终边相同的角;(3)培养观察能力和计算技能.教学重点:终边相同角的概念.教学难点:终边相同角的表示和确定.课时安排:2课时.5.2弧度制知识目标:⑴理解弧度制的概念;⑵理解角度制与弧度制的换算关系.能力目标:(1)会进行角度制与弧度制的换算;(2)会利用计算器进行角度制与弧度制的换算;(3)培养学生的计算技能与计算工具使用技能.教学重点:弧度制的概念,弧度与角度的换算.教学难点:弧度制的概念.课时安排:2课时.5.3任意角的正弦函数、余弦函数和正切函数知识目标:⑴理解任意角的三角函数的定义及定义域;⑵理解三角函数在各象限的正负号;⑶掌握界限角的三角函数值.能力目标:⑴会利用定义求任意角的三角函数值;⑵会判断任意角三角函数的正负号;⑶培养学生的观察能力.教学重点:⑴任意角的三角函数的概念;⑵三角函数在各象限的符号;⑶特殊角的三角函数值.教学难点:任意角的三角函数值符号的确定.课时安排:2课时.5.4同角三角函数的基本关系知识目标:理解同角的三角函数基本关系式.能力目标:⑴已知一个三角函数值,会利用同角三角函数的基本关系式求其他的三角函数值;⑵会利用同角三角函数的基本关系式求三角式的值.教学重点:同角的三角函数基本关系式的应用.教学难点:应用平方关系求正弦或余弦值时,正负号的确定.课时安排:2课时.5.5诱导公式知识目标:了解“”、“”、“180°”的诱导公式.能力目标:(1)会利用简化公式将任意角的三角函数的转化为锐角的三角函数;(2)会利用计算器求任意角的三角函数值;(3)培养学生的数学思维能力及应用计算工具的能力.教学重点:三个诱导公式.教学难点:诱导公式的应用.课时安排:2课时.5.6三角函数的图像和性质知识目标:(1)理解正弦函数的图像和性质;(2)理解用“五点法”画正弦函数的简图的方法;(3)了解余弦函数的图像和性质.能力目标:(1)认识周期现象,以正弦函数、余弦函数为载体,理解周期函数;(2)会用“五点法”作出正弦函数、余弦函数的简图;(3)通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.教学重点:(1)正弦函数的图像及性质;(2)用“五点法”作出函数y=sinx在上的简图.教学难点:周期性的理解.课时安排:2课时.5.7已知三角函数值求角知识目标:(1)掌握利用计算器求角度的方法;(2)了解已知三角函数值,求指定范围内的角的方法.能力目标:(1)会利用计算器求角;(2)已知三角函数值会求指定范围内的角;(3)培养使用计算工具的技能.教学重点:已知三角函数值,利用计算器求角;利用诱导公式求出指定范围内的角.教学难点:已知三角函数值,利用计算器求指定范围内的角.课时安排:2课时.6.1数列的概念知识目标:(1)了解数列的有关概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.教学重点:利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.教学难点:根据数列的前若干项写出它的一个通项公式.课时安排:2课时.6.2等差数列(一)知识目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力.教学重点:等差数列的通项公式.教学难点:等差数列通项公式的推导.课时安排:2课时.6.2等差数列知识目标:理解等差数列通项公式及前项和公式.能力目标:通过学习前项和公式,培养学生处理数据的能力.教学重点:等差数列的前项和的公式.教学难点:等差数列前项和公式的推导.课时安排:2课时.6.3等比数列知识目标:(1)理解等比数列的定义;(2)理解等比数列通项公式.能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力.教学重点:等比数列的通项公式.教学难点:等比数列通项公式的推导.课时安排:2课时.6.3等比数列知识目标:理解等比数列前项和公式.能力目标:通过学习等比数列前项和公式,培养学生处理数据的能力.教学重点:等比数列的前项和的公式.教学难点:等比数列前项和公式的推导.课时安排:3课时.7.1平面向量的概念及线性运算知识目标:(1)了解向量、向量的相等、共线向量等概念;(2)掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.教学重点:向量的线性运算.教学难点:已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.课时安排:2课时.7.2平面向量的坐标表示知识目标:(1)了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;(2)了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.教学重点:向量线性运算的坐标表示及运算法则.教学难点:向量的坐标的概念.采用数形结合的方法进行教学是突破难点的关键. 课时安排:2课时.7.3平面向量的内积知识目标:(1)了解平面向量内积的概念及其几何意义;(2)了解平面向量内积的计算公式.为利用向量的内积研究有关问题奠定基础.能力目标:通过实例引出向量内积的定义,培养学生观察和归纳的能力.教学重点:平面向量数量积的概念及计算公式.教学难点:数量积的概念及利用数量积来计算两个非零向量的夹角.课时安排:2课时.8.1两点间的距离与线段中点的坐标知识目标:掌握两点间的距离公式与中点坐标公式;能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.教学重点:两点间的距离公式与线段中点的坐标公式的运用教学难点:两点间的距离公式的理解课时安排:2课时.8.2直线的方程知识目标:(1)理解直线的倾角、斜率的概念;(2)掌握直线的倾角、斜率的计算方法.能力目标:采用“数形结合”的方法,培养学生有条理地思考问题.教学重点:直线的斜率公式的应用.教学难点:直线的斜率概念和公式的理解.课时安排:2课时.8.2直线的方程(二)知识目标:(1)了解直线与方程的关系;(2)掌握直线的点斜式方程、斜截式方程,理解直线的一般式方程.能力目标:培养学生解决问题的能力与计算能力.教学重点:直线方程的点斜式、斜截式方程.教学难点:根据已知条件,选择直线方程的适当形式求直线方程.课时安排:2课时.8.3两条直线的位置关系(一)知识目标:(1)掌握两条直线平行的条件;(2)能应用两条直线平行的条件解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:两条直线平行的条件.教学难点:两条直线平行的判断及应用.课时安排:2课时.8.3两条直线的位置关系(二)知识目标:(1)掌握两条直线平行的条件;(2)能应用点到直线的距离公式解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:两条直线的位置关系,点到直线的距离公式.教学难点:两条直线的位置关系的判断及应用.课时安排:2课时.8.4圆(一)知识目标:(1)了解圆的定义;(2)掌握圆的标准方程和一般方程.能力目标:培养学生解决问题的能力与计算能力.教学重点:圆的标准方程和一般方程的理解与应用.教学难点:对圆的标准方程和一般方程的正确认识.课时安排:2课时.8.4圆(二)知识目标:(1)理解直线和圆的位置关系;(2)了解直线与圆相切在实际中的应用.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:直线与圆的位置关系的理解和掌握.教学难点:直线与圆的位置关系的判定.课时安排:2课时.9.1平面的基本性质知识目标:(1)了解平面的概念、平面的基本性质;(2)掌握平面的表示法与画法.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:平面的表示法与画法.教学难点:对平面的概念及平面的基本性质的理解.课时安排:2课时.9.2直线与直线、直线与平面、平面与平面平行的判定与性质知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:直线与直线、直线与平面、平面与平面平行的判定与性质.教学难点:异面直线的想象与理解.课时安排:2课时.9.3直线与直线、直线与平面、平面与平面所成的角知识目标:(1)了解两条异面直线所成的角的概念;(2)理解直线与平面垂直、直线与平面所成的角的概念,二面角及其平面角的概念.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:异面直线的概念与两条异面直线所成的角的概念、直线与平面所成的角的概念、二面角及其平面角的概念.教学难点:两条异面直线所成的角的概念、二面角的平面角的确定.课时安排:2课时.9.4直线与直线、直线与平面、平面与平面垂直的判定与性质知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:直线与平面、平面与平面垂直的判定方法与性质.教学难点:判定空间直线与直线、直线与平面、平面与平面垂直.课时安排:2课时.9.5柱、锥、球及其简单组合体(一)知识目标:(1)了解棱柱、棱锥的结构特征;(2)掌握棱柱、棱锥面积和体积计算.能力目标:培养学生的观察能力,数值计算能力及计算工具使用技能.教学重点:正棱柱、正棱锥的结构特征及相关的计算.教学难点:正棱柱、正棱锥的相关计算.课时安排:2课时.9.5柱、锥、球及其简单组合体(二)知识目标:(1)了解圆柱、圆锥、球的结构特征;(2)掌握圆柱、圆锥、球的面积和体积计算.能力目标:培养学生的观察能力,数值计算能力及计算工具使用技能.教学重点:圆柱、圆锥、球的结构特征及相关的计算.教学难点:简单组合体的结构特征及其面积、体积的计算.课时安排:2课时.10.1计数原理知识目标:掌握分类计数原理和分步计数原理.能力目标:培养学生的观察、分析能力.教学重点:掌握分类计数原理和分步计数原理.教学难点:区别与运用分类计数原理和分步计数原理.课时安排:2课时.10.2概率(一)知识目标:(1)理解必然事件、不可能事件、随机事件的意义;(2)理解事件的频率与概率的意义以及二者的区别与联系.能力目标:培养学生的观察、分析能力.教学重点:事件的概率的定义.教学难点:概率的计算.课时安排:2课时.10.2概率(二)知识目标:掌握古典概型,互斥事件的概念.能力目标:培养学生的观察、分析能力.教学重点:运用公式计算等可能事件的概率.教学难点:概率的计算.课时安排:2课时.10.3总体、样本与抽样方法(一)知识目标:理解总体、个体、样本等概念.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:总体、个体、样本、样本的容量的概念.教学难点:总体、个体、样本之间的关系.课时安排:2课时.10.3总体、样本与抽样方法(二)知识目标:了解简单随机抽样、系统抽样、分层抽样等三种抽样方法.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:了解简单随机抽样、系统抽样、分层抽样等三种抽样方法.教学难点:对简单随机抽样、系统抽样、分层抽样等三种抽样方法的理解.课时安排:2课时.10.4用样本估计总体知识目标:(1)了解用样本的频率分布估计总体;(2)掌握用样本均值、方差和标准差估计总体的均值、方差和标准差.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:计算样本均值、样本方差及样本标准差.教学难点:列频率分布表,绘频率分布直方图.课时安排:2课时.10.5一元线性回归知识目标:(1)了解相关关系的概念;(2)掌握一元线性回归思想及回归方程的建立.能力目标:增强学生的数据处理能力,计算工具的使用能力,分析问题和解决问题的能力,培养严谨、细致的学习和工作作风.教学重点:掌握一元回归方程.教学难点:理解相关关系、回归分析概念.课时安排:2课时。
职高数学基础模块上(人教版)教案:集合02
职高数学基础模块上(人教版)教案:集合02一.目标:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图、数轴表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
二.知识内容:集合的交集与并集、补集的概念:1.并集:一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集,记作:A∪B,读作:“A并B”,即:A∪B={x|x∈A,或x∈B},Venn图表示:注意:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
2:交集:一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。
记作:A∩B,读作:“A交B”即:A∩B={x|∈A,且x∈B},交集的Venn图表示注意:1)两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
2)当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3:补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U。
补集:对于全集U的一个子集A,由全集U中所有不属于集合A 的所有素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作:C U A,即:C U A={x|x∈U且x A},补集的Venn图表示A UC U A集合基本运算的一些结论:(最后一行必须理解记住)A ∩B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩AA ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A(C U A )∪A=U ,(C U A )∩A=∅若x ∈(A ∩B ),则x ∈A 且x ∈B ;若x ∈(A ∪B ),则x ∈A ,或x ∈B若A ∩B=A ,则A ⊆B ,反之也成立 ;若A ∪B=B ,则A ⊆B ,反之也成立三.例题与练习1. 设A={奇数}、B={偶数},则A ∩Z=____,B ∩Z=_____,A ∩B=_____,则A ∪Z=____,B ∪Z=_____,A ∪B=_____2. 已知全集B C A B A U U ⋂===则集合集合},4,1{},5,4,3,1{},6,5,4,3,2,1{等于A .{1,4}B .{2,6}C .{3,5}D .{2,3,5,6}3.已知集合U ={1,2,3,4,5,6,7}, A ={2,4,5,7},B ={3,4,5},则(u A )∪(u B )=(A){1,6} (B){4,5} (C){1,2,3,4,5,7}(D){1,2,3,6,7}4.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=(A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4]5. 表示图形中的阴影部分( )A .)()(CBC A ⋃⋂⋃B .)()(C A B A ⋃⋂⋃C .)()(C B B A ⋃⋂⋃D .C B A ⋂⋃)( 6.设全集}7,5{|},6|,1{},7,5,3,1{=-==A C a A U U ,则a 的值为( )A 、3B 、9C 、3-D 、3或97 .已知集合}045|{2>+-=x x x A ,}4|3||{<-=x x B ,则B A =( )(A))7,4()1,1( - (B)Φ (C)),7()1,(+∞--∞ (D) )7,1(-8.已知全集U=R ,集合A={}122|2<--x x x ,集合B={}11|≥-x x ,求B A 和B AC U )(。
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案一、教案内容:第1章集合1.1 集合的概念教学目标:了解集合的概念,掌握集合的表示方法。
教学重点:集合的概念,集合的表示方法。
教学难点:理解集合的相等性和包含性。
教学准备:教材、黑板、粉笔。
教学过程:引入集合的概念,讲解集合的表示方法,举例说明。
1.2 集合的关系教学目标:了解集合之间的关系,掌握集合的并、交、补运算。
教学重点:集合之间的关系,集合的并、交、补运算。
教学难点:理解集合的运算法则。
教学准备:教材、黑板、粉笔。
教学过程:讲解集合之间的关系,举例说明并、交、补运算。
二、教案内容:第2章函数2.1 函数的概念教学目标:了解函数的概念,掌握函数的表示方法。
教学重点:函数的概念,函数的表示方法。
教学难点:理解函数的定义域和值域。
教学准备:教材、黑板、粉笔。
教学过程:引入函数的概念,讲解函数的表示方法,举例说明。
2.2 函数的性质教学目标:了解函数的性质,掌握函数的单调性、奇偶性、周期性。
教学重点:函数的性质,函数的单调性、奇偶性、周期性。
教学难点:理解函数的性质。
教学准备:教材、黑板、粉笔。
教学过程:讲解函数的性质,举例说明单调性、奇偶性、周期性。
三、教案内容:第3章实数与不等式3.1 实数的概念教学目标:了解实数的概念,掌握实数的分类。
教学重点:实数的概念,实数的分类。
教学难点:理解实数的性质。
教学准备:教材、黑板、粉笔。
教学过程:引入实数的概念,讲解实数的分类,举例说明。
3.2 不等式的解法教学目标:了解不等式的解法,掌握不等式的解法技巧。
教学重点:不等式的解法,不等式的解法技巧。
教学难点:理解不等式的解法。
教学准备:教材、黑板、粉笔。
教学过程:讲解不等式的解法,举例说明解法技巧。
四、教案内容:第4章平面几何4.1 点、线、面的关系教学目标:了解点、线、面的关系,掌握直线、平面的方程。
教学重点:点、线、面的关系,直线、平面的方程。
教学难点:理解点、线、面的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时教学设计首页(试用)
课时教学流程
☆补充设计☆
课时教学流程
生:对例1 口答填空. a I
借助简单题目使学生初步理解补集定义.
例1 已知:U = {1 , 2, 3, 4, 5, 6},
A = {1 , 3, 5}.
贝V』u A = ;
A n」U A = ___________ ;
A U」u A= ___________ .
解{2 , 4, 6} ; .一;U.
例2已知U = { x | x是实数}, Q = { x | x 是有理数}.
贝y』u Q = ____________ ;
Q n u Q = ______________ ;
T|
Q U iu Q = ____________ .
解{ x | x是无理数}; 0; u.
3•补集的性质.
(1) A U :u A = u ;
(2) A n〔u A= 0 ;
(3) 〔u(」u A)= A .
例3 已知全集U = R, A= {x | x> 5}, 求:u A.
解」u A = {x | x W 5}.
练习1
(1) 已知全集U= R, A= { x | x v
H~|
1},求」u A.
(2) 已知全集U= R, A= { x | x<
1},求」u A.
练习2 设U = {1 , 2, 3, 4, 5, 6} , A ={5 , 2, 1} , B = {5 , 4, 3 , 2}.求J A; J u B; 'u A n 'u B;
」u A U」u B .
练习3 已知全集U = R, A = {x卜1 < x
< 1}.求」u A,」u A n u ,」u A U U , A n u A, A
U A.
师:引导学生画出例2的Venn
图,明确集合间关系,请学生观察并说
出结果.
师:以填空的形式出示各条性
质.
生:填写性质.
师:结合数轴讲解例3.
学生解答练习1,并总结解题规
律.
学生做练习2、3,老师点拨、解
答学生疑难.
例2中补充两问,
为学生得出性质做铺
垫.
结合具体例题和
Venn图,使学生自己得
出补集的各个性质,深化
对补集概念的理解.
培养学生数形结合
的数学意识.
通过练习加深学生
对补集的理解.
课时教学流程
小结:
1. 学生读书、反思,说出自己
学习本节课的收获和存在问题.
2. 老师引导梳理,总结本节课的知识点,学生填表巩固•
让学生读书、反思, 培养学生形成良好的学习习惯,提高学习能力.
课时教学设计尾页(试用)
☆补充设计☆
板书设计
补集二、例题与练习
作业设计
教材P17,练习A组第1〜4题.
教学后记。