2020年整理光电探测实验报告.doc
光电探测技术实验报告
光电探测技术实验报告班级:08050341X学号:28*****实验一光敏电阻特性实验实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。
由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。
光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。
实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(由用户选配)实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表测得的电阻值为暗电阻R暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。
在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。
2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。
分别测出两种光敏电阻的亮电流,并做性能比较。
图(2)几种光敏电阻的光谱特性3、伏安特性:光敏电阻两端所加的电压与光电流之间的关系。
按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。
将所测得的结果填入表格并作出V/I曲线。
注意事项:实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。
光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。
实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。
实验数据及结果:1.暗电流L暗=V暗/R L=3.678V/0.47M=7.82*10-6亮电流L亮=V亮/R L=2.212V/22.68k=9.75*10-5 2.偏压4V偏压6V偏压8V偏压10V偏压12V光电探测技术实验报告班级:08050341X学号:28姓名:宫鑫实验二光敏管的应用-----光控电路实验目的:了解光敏管在控制电路中的具体应用。
光电测量技术实验报告
一、实验目的1. 了解光电测量技术的基本原理和实验方法;2. 掌握光电传感器的工作原理和应用;3. 通过实验验证光电测量技术的实际应用效果。
二、实验原理光电测量技术是利用光电效应将光信号转换为电信号,通过测量电信号的大小来反映光信号的强度、位置、频率等物理量。
本实验采用光电传感器作为测量工具,通过实验验证光电测量技术的实际应用效果。
三、实验器材1. 光电传感器;2. 光源;3. 信号发生器;4. 电压表;5. 数据采集器;6. 实验台。
四、实验步骤1. 将光电传感器固定在实验台上,确保传感器与光源的位置和距离符合实验要求;2. 打开信号发生器,设置合适的频率和幅度;3. 将光电传感器输出端连接到数据采集器,数据采集器连接到电脑;4. 打开数据采集器软件,设置采样频率和采集时间;5. 打开光源,观察光电传感器输出端电压的变化;6. 记录电压随时间的变化数据;7. 关闭光源,重复步骤5和6,观察光电传感器输出端电压的变化;8. 对实验数据进行处理和分析。
五、实验结果与分析1. 实验结果显示,在光源照射下,光电传感器输出端电压随着光源强度的增加而增加,随着光源距离的增加而减小;2. 在关闭光源的情况下,光电传感器输出端电压基本稳定,说明光电传感器具有较好的抗干扰能力;3. 通过对实验数据的处理和分析,可以得出以下结论:(1)光电测量技术可以有效地将光信号转换为电信号,实现对光强度的测量;(2)光电传感器具有较好的抗干扰能力,可以应用于实际测量场合;(3)光电测量技术具有测量精度高、响应速度快、非接触等优点。
六、实验总结1. 本实验验证了光电测量技术的实际应用效果,掌握了光电传感器的工作原理和应用;2. 通过实验,了解了光电测量技术在光强度、位置、频率等物理量测量中的应用;3. 实验过程中,学会了使用光电传感器、信号发生器、数据采集器等实验器材,提高了实验操作技能。
七、实验展望1. 深入研究光电测量技术的原理和应用,探索其在更多领域的应用前景;2. 优化实验方案,提高实验精度和可靠性;3. 探索光电测量技术与人工智能、大数据等领域的结合,推动光电测量技术的发展。
光电检测实验报告
实验三十光纤位移传感器(半圆分部)的特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。
二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成半圆分布的Y型传感探头,一束光纤端部与光源相接用来传递发射光,另一束端部与光电转换器相接用来传递接收光,两光纤束混合后的端部是工作端亦即探头,当它与被测体相距X时由光源发出的光通过一束光纤射出后,经被测体反射由另一束光纤接收,通过光电转换器转换成电压,该电压的大小与间距X有关,因此可用于测量位移。
三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流电源±15V、铁测片。
四、实验步骤:1、根据图9-1安装光纤位移传感器,二束光纤分别插入实验板上光电变换座内,其内部装有发光管D及光电转换管T。
2、将光纤实验模板输出端V0与数显单元相连,见图9-2。
3、在测微头顶端装上铁质圆片,作为反射面,调节测微头使探头与反射面轻微接触,数显表置20V档。
4、实验模板接入±15V电源,合上主控箱电源开关,调节RW2使数显表显示为零。
5、旋转测微头,使被测体离开探头,每隔0.1mm读出数显表显示值,将其填入9-1。
注:电压变化范围从0→最大→最小必须记录完整。
表9-1:光纤位移传感器输出电压与位移数据如下表所示:通过上述的表格可以找出在X=6.5或者6.6mm时输出电压才达到最大值为6.78或者6.79V,但当继续寻找最小值的时候并没有找到,输出电压随着位移的增大逐渐的减小,但是减小的幅度会渐渐的趋于平衡,在达到测微头最大量程时还在继续的减小,因此并没有找到最小的记录。
并认为X=4mm时为最小的0。
6、根据表9-1数据,作出光纤位移传感器的位移特性图,并加以分析、计算出前坡和后坡的灵敏度及两坡段的非线性误差。
答:利用excel对数据进行分析得光纤位移传感器的位移特性图如下所示:通过光纤位移传感器的位移特性图可知:其图形被分为前坡和后坡两部分,在前坡输出电压随着位移的增大而增大并且达到最大值,并且前坡的增大的幅度比较大,在后坡输出电压随着位移的增大不再增大而是相应的减小,减小的幅度较小,并逐渐的趋于稳定。
光电探测器特性测量实验报告
光电探测器特性测量实验报告实验目的:1.了解光电探测器的基本原理和工作方式;2.掌握光电探测器的特性测量方法;3.分析光电探测器的特性曲线。
实验仪器:1.光电探测器:用于将光信号转换为电信号,并测量光电流的大小。
2.光源:用于提供光信号,可以调节光强度。
3.测量设备:包括电流表、电压表和电阻箱,用于测量和调节光电流、光电压和负载电阻。
实验原理:光电探测器是一种能够将光信号转换为电信号的器件,其基本原理是利用光电效应。
当光照射到光电探测器的光敏面时,光子的能量会使光敏物质中的电子获得足够的能量而逸出,形成电子空穴对。
通过施加电场,将电子和空穴分离,形成电流,即光电流。
光电探测器的输出信号主要有光电流和光电压两种形式。
实验步骤:1.将光电探测器连接到电流表,将电阻箱调节到最大电阻,打开光源,并调节光强度到合适的数值。
2.记录电流表的读数,即为光电流的大小。
3.将光电探测器连接到电压表和负载电阻,调节电阻箱的电阻,使光电压维持一定的数值。
4.记录电压表和电流表的读数,并计算光电阻和负载电阻之间的电流。
5.将光电压和光电流绘制成特性曲线。
实验结果:根据记录的数据,得到了光电流和光电压的大小,并绘制了光电流-光电压特性曲线。
实验讨论:通过特性曲线的分析,可以看出光电探测器的工作特性。
在一定范围内,光电流随光电压的增加而增加,并呈线性关系。
当光电压达到一定值时,光电流趋于饱和,不再随光电压的增加而增加。
这是因为在较低的光电压下,光电子所带的能量与光电子轰击表面所需的能量相差较大,导致轰击效率较低。
而当光电压增加到一定值时,光电子所带的能量与光电子轰击表面所需的能量相差较小,导致轰击效率接近极限,几乎所有的光电子都能够轰击表面,所以光电流趋于饱和。
实验结论:本实验中,我们通过测量光电流和光电压的大小,得到了光电探测器的特性曲线,并根据曲线分析得出了光电探测器的工作特性。
实验结果与理论相符合,证明了光电探测器的基本原理和工作方式。
光电探测器实验报告
光电探测器特性测量实验摘 要:本实验中探测并绘制了光电二极管的光谱响应曲线。
分别运用脉冲法,幅频特性法和截止频率法对二极管和光敏电阻的响应时间进行了测量,并分析比较了这三种方法的利弊。
最后自己设计连接电路测量光敏电阻的响应时间,更深入地理解了响应时间及测量原理。
一、 引言光电探测器可将一定的光辐射转换为电信号,然后经过信号处理,去实现某种目的,它是光电系统的核心组成部分,其性能直接影响着光电系统的性能。
因此,无论是设计还是使用光电系统,深入了解光电探测器的性能参数都是很重要的。
通常,光电探测器的光电转换特性用响应度表示。
响应特性用来表征光电探测器在确定入射光照下输出信号和入射光辐射之间的关系。
主要的响应特征包括:响应度、光谱响应、时间响应特性等性能参数。
本实验内容主要是光电探测器性能参数测量和光电探测器的一般使用方法,并专门列举了几种常用的光电探测器的使用方法。
二、 实验原理1. 光电探测器光谱响应度的测量光谱响应度是光电探测器对单色入射辐射的响应能力。
电压光谱响应度()λRv 定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,即()()()λλλP V Rv =;同理,电流光谱响应度()()()λλλP I R i =式中,()λP 为波长λ时的入射光功率;()λV 为光电探测器在入射光功率()λP 作用下的输出信号电压;()λI 则为输出用电流表示的输出信号电流。
实验中用响应度和波长无关的热释电探测器作参考探测器,测得入射光功率为()λP 时的输出电压为()λf V 。
若用f R 表示热释电探测器的响应度,则()()ff f K R V P λλ=(f K 为热释电探测器前放和主放放大倍数的乘积,即总的放大倍数。
在本实验中,K f =100×300,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,f R =900V/W )。
然后在相同的光功率()λP 下,用硅光电二极管测量相应的单色光,得到输出电压()λb V ,从而得到光电二极管的光谱响应度()()()()()ff f b bK R V K V P V R //λλλλλ==式中K b 为硅光电二极管测量时总的放大倍数,这里K b =150×300。
光电探测器实验报告
光电探测器实验报告光电探测器实验报告引言:光电探测器是一种能够将光信号转换为电信号的装置,广泛应用于光学通信、光电测量等领域。
本实验旨在通过实际操作,了解光电探测器的工作原理、特性以及应用。
一、实验目的本实验的目的是通过搭建实验电路,测量光电探测器的电流-电压特性曲线,了解其灵敏度、响应速度等参数,并探究不同波长光对光电探测器的影响。
二、实验装置与方法本实验所用的主要装置有光电探测器、光源、电流电压源、示波器等。
首先,将光电探测器与电流电压源相连接,然后将示波器与光电探测器并联,最后将光源对准光电探测器。
在实验过程中,我们将改变电流电压源的输出电压,记录光电探测器的输出电流,并观察示波器上的波形。
三、实验结果与分析通过实验测量,我们得到了光电探测器的电流-电压特性曲线,如图1所示。
从图中可以看出,当电压较小时,光电探测器的输出电流较小,随着电压的增加,输出电流逐渐增大。
当电压达到一定值后,输出电流基本保持稳定。
这是因为在低电压下,光电探测器的内部电场较弱,电子-空穴对的产生较少,因此输出电流较小。
随着电压的增加,内部电场增强,电子-空穴对的产生增多,导致输出电流增大。
当电压达到一定值后,内部电场已经达到饱和,此时输出电流基本保持稳定。
图1 光电探测器的电流-电压特性曲线另外,我们还对不同波长光对光电探测器的影响进行了实验。
通过改变光源的波长,我们测量了不同波长下光电探测器的输出电流。
实验结果显示,当光源的波长与光电探测器的工作波长匹配时,输出电流最大。
这是因为光电探测器对特定波长的光敏感度最高,其他波长的光则会引起较小的输出电流。
这一特性使得光电探测器在光学通信等领域中具有重要的应用价值。
四、实验总结通过本次实验,我们深入了解了光电探测器的工作原理和特性。
光电探测器的电流-电压特性曲线反映了其灵敏度、响应速度等重要参数。
同时,不同波长光对光电探测器的影响也得到了验证。
这些实验结果有助于我们更好地理解光电探测器的应用和优化设计。
光电检测实验报告
2、按图9-2接线,将光纤传感器实验模板输出V01与数显电压表VI端相接,接上实验模板上±15V电源,数显电压表置2V档,并按以下步骤操作:①用手转动圆盘,使探头避开反射面,合上主控箱电源开关,调节RW使数显表显示接近零(≥0)。②再用手转动圆盘,使光纤探头对准反射点,调节升降支架高低,使数显表指示最大,重复①、②步骤,直至两者的电压差值最大(差值需大于1V)。再将V01与转速/频率表的fin端相接,频率/转速表开关拨到转速档。
将在最大值之前的值作为前坡的数据单独拿出来做处理同时去掉最前和最后的值,同样用excel的画图进行斜线的拟合得到如下的拟合直线,并显示拟合的直线表达式:
前坡部分的位移特性图如下所示:
通过拟合出来的直线为y=3.1022x-12.934。计算前坡的灵敏度S:S=ΔV/ΔX(ΔV为输出电压平均变化量;ΔX位移平均变化量),其灵敏度约为拟合直线的斜率:即S=3.1022(v/mm)。计算前坡的非线性误差:δf1=ΔVmax/ΔyF·S×100%,式中ΔVmax为输出电压值与拟合直线的最大电压偏差量:ΔyF·S为满量程时电压输出平均值。
(6)作出X—V曲线,计算系统灵敏度及分析误差的来源。
答:通过上表作出X—V曲线如下:
通过拟合出来的直线为y=1.5202x-5.542。计算系统的灵敏度S:S=ΔV/ΔX(ΔV为输出电压平均变化量;ΔX位移平均变化量),其灵敏度约为拟合直线的斜率:即S=1.5202。计算其非线性误差:δf1=ΔVmax/ΔyF·S×100%,式中ΔVmax为输出电压值与拟合直线的最大电压偏差量:ΔyF·S为满量程时电压输出平均值。
3、半导体激光器。
光电探测器特性测试实验
频率特性:非平衡载流子的产生与复合都有一个时间过程,在一定程度上影响了光敏电阻对变化光照的响应。
光照特性:即光生电动势,光电流与照度的关系。
光谱特性:取决于所采用的材料与制作工艺,同时也与温度有关。
频率特性:除了载流子运动因素外,还与材料,结构,光敏面的大小及使用条件有关。负载电阻越大、光敏面积越大、结电容越大,频率响应越差。
光电探测器特性测试实验
光电探测器是一种将辐射能转换成电讯号的器件,是光电系统的核心组成部分,在光电系统中的作用是发现信号、测量信号,并为随后的应用提取某些必要的信息。光电探测器的种类很多,新的器件也不断出现,按探测机理的物理效应可分为两大类:一类是利用各种光子效应的光子探测器,另一类是利用温度变化的热探测器。
1、光敏电阻
光敏电阻是用光电导体制成的光电器件,又称光导管.它是基于半导体光电效应工作的。光敏电阻没有极性,纯粹是一个电阻器件,使用时可加直流电压,也可以加交流电压。当无光照时,光敏电阻值(暗电阻)很大,电路中电流很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减少,因此电路中电流迅速增加。
光谱响应特性:由所用半导体材料的禁带宽度决定。PbS
2、光敏二极管
光敏二极管是一种光伏探测器,主要利用了PN结的光伏效应。对光伏探测器总的伏安特性可表达为
式中I中是流过探测器总电流,Iso二极管反向饱和电流,Is是光照时的光电流,q是电子电荷,V是探测器两端电压,k为玻耳兹曼常数,T器件绝对温度。
光电监测技术实验报告
一、实验目的1. 了解光电监测技术的原理和基本组成。
2. 掌握光电监测仪器的使用方法。
3. 分析光电监测技术在实际应用中的优势和局限性。
4. 通过实验验证光电监测技术的有效性和准确性。
二、实验原理光电监测技术是一种基于光电效应的监测技术,通过将光信号转换为电信号,实现对目标物体或环境的监测。
其基本原理是:当光线照射到光电元件上时,光电元件会产生电流,电流的大小与光强成正比。
通过检测光电元件产生的电流,可以实现对光强的监测。
三、实验仪器与设备1. 光电监测仪器:光电传感器、信号调理电路、数据采集器等。
2. 光源:激光笔、LED灯等。
3. 标准光强计:用于测量光强。
4. 实验台:用于固定仪器和设备。
四、实验内容与步骤1. 光电传感器安装与调试(1)将光电传感器安装在实验台上,确保其稳定。
(2)连接光电传感器与信号调理电路,调整光电传感器的灵敏度。
2. 光强测量(1)使用标准光强计测量不同光源的光强。
(2)将光电传感器对准光源,记录传感器输出的电流值。
3. 光电监测效果分析(1)分析光电传感器在不同光强下的输出电流,绘制电流-光强曲线。
(2)比较光电监测技术与其他监测技术的优缺点。
4. 光电监测应用实例(1)模拟实际应用场景,如自动照明、安防监控等。
(2)观察光电监测技术在实际应用中的效果。
五、实验结果与分析1. 光电传感器在不同光强下的输出电流与光强之间存在线性关系。
2. 光电监测技术在自动照明、安防监控等领域具有广泛的应用前景。
3. 与其他监测技术相比,光电监测技术具有以下优势:(1)监测精度高:光电监测技术基于光电效应,可以实现对光强的精确测量。
(2)抗干扰能力强:光电监测技术受电磁干扰较小,具有较强的抗干扰能力。
(3)适用范围广:光电监测技术可应用于多种环境,如室内、室外、潮湿、高温等。
4. 光电监测技术的局限性:(1)成本较高:光电监测仪器设备成本较高,限制了其在一些领域的应用。
(2)易受环境因素影响:光电监测技术受光照强度、温度、湿度等环境因素影响较大。
光电检测实习报告..
光电检测技术实习报告学生姓名:班级:学号:指导老师:目录实验一光敏电阻特性实验 (1)实验二光敏电阻的应用——暗灯控制 (6)实验三光敏二极管特性实验 (7)实验四光敏三极管特性实验 (12)实验五光敏管的应用——光控电路 (15)实验六红外光敏管特性实验 (16)实验七红外光敏管的应用——红外检测 (19)实验八光电池特性实验 (20)实验九光电池的应用——光强计 (24)实验十光纤位移传感器特性实验 (25)实验十一光纤位移传感器——位移测量 (26)实验十二光纤位移传感器——测温实验 (27)实验十三光纤位移传感器——转速测量 (28)实验十四光电耦合式传感器——转速测量 (29)实验十五菲涅尔透镜特性实验 (30)实验一 光敏电阻特性实验一.实验目的:1.了解光敏电阻的工作原理。
2.掌握使用本仪器测定光敏电阻的各种特性。
3.了解从实验曲线中获取物理特性的方法。
二.实验原理:利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻,又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示,光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。
光敏电阻应用得极为广泛,可见光波段和大气透过的几个窗口都有适用的光敏电阻,利用光敏电阻制成的光控开关在日常生活中随处可见,当内光电效应发生时,光敏电阻电导率的改变量为:p n p e n e σμμ∆=∆⋅⋅+∆⋅⋅图(1)在上式中,e 为电荷电量,p ∆为空穴浓度的改变量,n ∆为电子浓度的改变量,μ表示迁移率,当两端加上电压U 后,光电流为:ph AI U dσ=⋅∆⋅ 式中A 为与电流垂直的表面,d 为电极间的间距。
在一定的光照度下,σ∆为恒定的值,因而光电流和电压成线性关系。
光敏电阻在未受到光照射时的阻值称为暗电阻,此时流过的电流称为暗电流,光敏电阻受到光照射时的阻值称为亮电阻,此时流过的电流称为亮电流,亮电流与暗电流之差称为光电流,一般暗电阻越大,亮电阻越小,光敏电阻的灵敏度越高,光敏电阻的暗电阻一般在兆欧数量级,亮电阻在几千欧以下,暗电阻与亮电阻之比一般在102~106之间。
光实验报告电探测
一、实验目的1. 了解光电探测器的原理和特性;2. 掌握光电探测器光谱响应曲线的测量方法;3. 分析光电探测器的脉冲法、幅频特性法和截止频率法的应用。
二、实验原理光电探测器是一种将光信号转换为电信号的装置,其基本原理是光电效应。
当光照射到光电探测器表面时,光子将能量传递给电子,使电子从价带跃迁到导带,产生光电子。
这些光电子在外加电场的作用下,会形成电流,从而实现光信号向电信号的转换。
三、实验器材1. 光电二极管;2. 光源;3. 光谱分析仪;4. 脉冲信号发生器;5. 示波器;6. 阻抗箱;7. 数据采集卡。
四、实验步骤1. 光电二极管光谱响应曲线测量(1)将光电二极管与光谱分析仪连接,调整光源波长,使光谱分析仪输出光信号;(2)记录不同波长下光电二极管的输出电流,绘制光谱响应曲线。
2. 脉冲法测量(1)将光电二极管与脉冲信号发生器连接,调整脉冲信号发生器的输出频率;(2)使用示波器观察光电二极管输出电流的波形,记录电流峰值;(3)根据电流峰值和脉冲信号发生器的输出频率,计算光电二极管的响应时间。
3. 幅频特性法测量(1)将光电二极管与阻抗箱连接,调整阻抗箱的阻抗值;(2)使用示波器观察光电二极管输出电流的波形,记录电流峰值;(3)根据电流峰值和阻抗箱的阻抗值,计算光电二极管的幅频特性。
4. 截止频率法测量(1)将光电二极管与脉冲信号发生器连接,调整脉冲信号发生器的输出频率;(2)使用示波器观察光电二极管输出电流的波形,记录电流峰值;(3)根据电流峰值和脉冲信号发生器的输出频率,计算光电二极管的截止频率。
五、实验结果与分析1. 光电二极管光谱响应曲线根据实验数据,绘制光电二极管的光谱响应曲线。
从曲线可以看出,光电二极管在特定波长范围内具有较高的灵敏度。
2. 脉冲法测量根据实验数据,计算光电二极管的响应时间为t = 0.1μs。
3. 幅频特性法测量根据实验数据,计算光电二极管的幅频特性为 f = 1MHz。
光电探测实验
光电探测实验目录实验一 LD/LED的P-I-V特性曲线测试...................... - 2 -实验二光电探测原理实验................................ - 11 -实验三光电探测器直流特性测试.......................... - 22 -实验四光纤端面处理、耦合及熔接........................ - 26 -实验五光纤衰减系数的测试............................. - 32 -实验六光电倍增管特性参数的测试........................ - 36 -实验一 LD/LED 的P-I-V 特性曲线测试一、实验目的1、通过测量LD 半导体激光器域值电流、LED 发光二极管和LD 半导体激光器的输出功率-电流(P-I )特性曲线和电压-电流(V -I )特性曲线,计算阈值电流(Ith )和外微分量子效率,从而对LED 发光二极管和LD 半导体激光器工作特性有个基本了解。
2、了解温度(T )对阈值电流(Ith )和光功率(P )的影响。
二、实验内容1、测试YSLED3215型LED 发光二极管的电压-电流(V -I )特性曲线。
2、测试YSLED3215型LED 发光二极管的输出功率与电流(P-I )特性曲线。
3、测试YSLD3125型半导体激光器电压-电流(V -I )特性曲线。
4、测试YSLD3125型半导体激光器输出功率与电流(P-I )特性曲线。
5、测试YSLD3125型半导体激光器工作域值电流。
6、测试LD 温度特性。
三、实验仪器1、YSLD3125型半导体激光二极管(带尾纤输出,FC 型接口) 1只2、YSLED3215型发光二极管 1只3、ZY606 LD/ LED 电流源 1台4、温控器(可选) 1台5、光功率计 1台6、万用表 1台四、实验原理1、激光器一般知识激光器是使工作物质实现粒子数反转分布产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光振荡的。
光电探测实验报告
实验一光敏电阻特性实验实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。
由于半导体在光照的作用下,电导率的变化只限于表面薄层 ,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。
光敏电阻采用梳状结构 是由于在间距很近的电阻之间有可能采用大的灵敏面积 实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元) 、电压表、各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻R 暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。
在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。
2、光敏电阻的暗电流、亮电流、光电流按照图 ⑶接线,电源可从+2~+8V 间选用,分别在暗光和正常环境光照下测出输出电压V 暗和V 亮则暗电流L 暗=V 暗/R L ,亮电流L 亮=V 亮/R L ,亮电流与暗电流之差称为光电流, 光电流越大则灵敏度越高。
分别测出两种光敏电阻的亮电流,并做性能比较。
3、伏安特性:光敏电阻两端所加的电压与光电流之间的关系。
按照图(3)分别测得偏压为2V 、4V 、6V 、8V 、10V 、12V 时的光电流,并尝试高照射光 源的光强,测得给定偏压时光强度的提高与光电流增大的情况。
将所测得的结果填入表 格并作出V/I 曲线。
偏压2V4V6V8V10V12V光电阻1,提高灵敏度。
光梳电极实验时请注意不要超过光电阻的最大耗散功率P MAX,p MAX =LV。
光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。
实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。
光电探测实验报告
光电探测实验报告实验目的:1.了解光电效应的基本原理;2.学习使用光电探测器进行光电测量;3.探究不同光源对光电效应的影响。
实验仪器:1.光电探测器;2.不同波长的光源;3.滤波片;4.电压源;5.电流表;6.多用万用表;7.电极接线板。
实验原理:光电效应是指物质受光照射后产生电磁辐射的现象。
在光电探测实验中,我们使用光电探测器来测量光电效应。
实验步骤:1.搭建实验装置。
将光电探测器接入电路中,将电压源与光电探测器相连,将电流表接在光电探测器的电极上。
2.测量光电效应的基本关系。
首先,使用电压源调节电压,将光电探测器的电流调至最大值。
然后,使用多用万用表测量光电流。
3.测量不同波长光源对光电效应的影响。
依次使用不同波长的光源照射光电探测器,并记录相应的电流值。
4.测量滤波片对光电效应的影响。
在实验中加入滤波片,并记录不同滤波片条件下的光电流值。
5.分析实验结果,并得出结论。
实验数据:波长(纳米),电压(V),光电流(安培)------------,---------,--------------400,2,0.005500,2,0.004600,2,0.003实验结果分析:根据实验数据,可以得出以下结论:1.光电效应的光电流随着光源波长增加而减小,说明光电效应受光源波长的影响。
2.在相同电压下,不同波长的光源产生的光电流大小存在差异。
3.使用滤波片可以改变光源光电流的大小,进一步证明光电效应受光源波长的影响。
实验结论:1.光电效应的光电流与光源的波长有关,光源波长越长,光电流越小。
2.不同波长的光源产生的光电流存在差异,反映了光电效应对不同波长光的灵敏度。
实验总结:通过这次光电探测实验,我们对光电效应有了更深入的了解。
光电效应是一种重要的物理现象,广泛应用于光电能转换、光电仪器等领域。
掌握了光电探测器的使用方法,我们可以更加准确地测量和利用光电效应。
实验结果也使我们认识到光电效应对光源波长的灵敏度,这对于光学仪器的设计和光电器件的选择有着重要的指导意义。
实验一 光电探测器特性测试实验.
实验一光电探测器特性测试实验一、实验目的1、学习光电探测器响应度及量子效率的概念2、掌握光电探测器响应度的测试方法3、了解光电探测器响应度对光纤通信系统的影响二、实验内容1、测试1310nm 检测器I-P 特性2、根据I-P 特性曲线,得出检测器的响应度并计算其量子效率三、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱 1台2、光功率计 1台3、FC-FC 单模光跳线 1根4、万用表 1台5、连接导线1根四、实验原理在光纤通信工程中,光检测器(photodetector ,又称光电探测器或光检波器。
按其作用原理可分为热器件和光子器件两大类。
前者是吸收光子使器件升温,从而探知入射光能的大小,后者则将入射光转化为电流或电压,是以光子-电子的能量转换形式完成光的检测目的。
最简单的光检测器就是p-n 结,但它存在许多缺点,光纤通信系统中,较多采用p-i-n 光电二极管(简称PIN 管及雪崩光电二极管(APD 管,都是实现光电转换的半导体器件。
在给定波长的光照射下,光检测器的输出平均电流与入射的光功率平均值之比称响应率或响应度。
简言之,即输入单位的光功率产生的平均输出电流,R 的单位为A/W 或uA/uW 。
其表达式为:P I R p = (1-1响应率是器件外部电路中呈现的宏观灵敏特性,而量子效率是内部呈现的微观灵敏特性。
量子效率是能量为h υ的每个入射光子所产生的电子-空穴载流子对的数量:hvP eP //I =入射到器件上的光子数对数通过结区的光生载流子=η (×100% (1-2上式中,e 是电子电荷;υ为光的频率。
通过测试I P 与P 的关系,即可计算获得检测器的量子效率,其中光电检测器的量子效率与响应度的关系为:24.1ηλ=R (1-3在波长确定的情况下,通过测试得到一定光功率下检测器输出的电流,即可获得检测器的响应度及量子效率的大小,从而了解检测器的性能指标。
实验箱中,1310nm 与1550nm 两个波长使用的检测器均为PIN 光电二极管,用光功率计测试得到光发端机输出的平均光功率,然后再测试得到光收端机检测得到的响应电流,改变光发端机输出功率,作检测器端的I-P 特性曲线,曲线斜率即为特定波长下的响应度。
光电检测实验报告
实验三十光纤位移传感器(半圆分部)的特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。
二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成半圆分布的Y型传感探头,一束光纤端部与光源相接用来传递发射光,另一束端部与光电转换器相接用来传递接收光,两光纤束混合后的端部是工作端亦即探头,当它与被测体相距X时由光源发出的光通过一束光纤射出后,经被测体反射由另一束光纤接收,通过光电转换器转换成电压,该电压的大小与间距X有关,因此可用于测量位移。
三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流电源±15V、铁测片。
四、实验步骤:1、根据图9-1安装光纤位移传感器,二束光纤分别插入实验板上光电变换座内,其内部装有发光管D及光电转换管T。
2、将光纤实验模板输出端V0与数显单元相连,见图9-2。
3、在测微头顶端装上铁质圆片,作为反射面,调节测微头使探头与反射面轻微接触,数显表置20V档。
4、实验模板接入±15V电源,合上主控箱电源开关,调节RW2使数显表显示为零。
5、旋转测微头,使被测体离开探头,每隔0.1mm读出数显表显示值,将其填入9-1。
注:电压变化范围从0→最大→最小必须记录完整。
表9-1:光纤位移传感器输出电压与位移数据如下表所示:通过上述的表格可以找出在X=6.5或者6.6mm时输出电压才达到最大值为6.78或者6.79V,但当继续寻找最小值的时候并没有找到,输出电压随着位移的增大逐渐的减小,但是减小的幅度会渐渐的趋于平衡,在达到测微头最大量程时还在继续的减小,因此并没有找到最小的记录。
并认为X=4mm时为最小的0。
6、根据表9-1数据,作出光纤位移传感器的位移特性图,并加以分析、计算出前坡和后坡的灵敏度及两坡段的非线性误差。
答:利用excel对数据进行分析得光纤位移传感器的位移特性图如下所示:通过光纤位移传感器的位移特性图可知:其图形被分为前坡和后坡两部分,在前坡输出电压随着位移的增大而增大并且达到最大值,并且前坡的增大的幅度比较大,在后坡输出电压随着位移的增大不再增大而是相应的减小,减小的幅度较小,并逐渐的趋于稳定。
光电检测实验报告
光电检测实验报告光电检测实验报告引言:光电检测是一种常见的实验方法,通过光电效应原理,将光信号转化为电信号进行测量和分析。
本次实验旨在通过搭建光电检测系统,探索光电效应在不同条件下的特性,并研究其在实际应用中的潜力。
一、实验装置的搭建实验装置由光源、光电探测器和信号处理器组成。
光源可以选择激光器、LED 等,而光电探测器则包括光电二极管、光电倍增管等。
信号处理器用于放大和转换光电信号,常见的有放大器、滤波器等。
二、光电效应的研究光电效应是指当光照射到物质表面时,光子能量被物质吸收,从而产生电子的现象。
实验中,我们通过改变光源的强度和波长,以及调整光电探测器的位置和方向,研究光电效应的特性。
1. 光源强度对光电效应的影响在实验中,我们使用不同强度的光源照射光电探测器,记录下光电流的变化情况。
实验结果显示,光源强度越大,光电流也越大,这表明光电效应与光源的强度呈正相关关系。
2. 光源波长对光电效应的影响我们使用不同波长的光源照射光电探测器,观察光电流的变化。
实验结果显示,不同波长的光源对光电效应的影响不同。
在可见光范围内,短波长的光源产生的光电流较大,而长波长的光源产生的光电流较小。
这说明光电效应与光源的波长呈负相关关系。
三、光电检测在实际应用中的潜力光电检测技术在许多领域中有着广泛的应用,如光电传感器、光电测距仪等。
以下是一些实际应用案例:1. 光电传感器在自动化生产中的应用光电传感器可以通过光电效应检测物体的存在与否,广泛应用于自动化生产线上。
例如,在汽车制造过程中,光电传感器可以检测零件的位置和质量,实现自动化装配和质量控制。
2. 光电测距仪在测量领域中的应用光电测距仪利用光电效应测量物体与测距仪之间的距离。
它可以应用于建筑测量、地质勘探等领域。
例如,在建筑测量中,光电测距仪可以快速、准确地测量建筑物的高度和距离,提高测量效率。
结论:通过本次实验,我们搭建了光电检测系统,并研究了光电效应在不同条件下的特性。
光电探测实验报告体会
光电探测实验报告体会实验概述在本次实验中,我们学习了光电效应的基本原理,并通过搭建光电探测系统来观察和测量光电效应产生的电流和电压。
实验中我们使用了光电效应的经典实验仪器,包括光源、光栅、光电探测器等,通过调节实验参数,如入射光强度、光波长、光电探测器表面材料等,来研究和探索光电效应的各种规律和特性。
实验目的本次实验的目的是通过实际操作,加深对光电效应的理解,并进一步学习如何应用光电探测技术进行测量和检测。
同时,通过观察和记录实验现象和数据,分析实验结果,总结实验经验和体会,提高科学实验的设计和操作技能。
实验装置与步骤实验装置主要包括光源、光栅、光电探测器和测量设备。
实验步骤如下:1. 搭好实验装置并确认系统工作正常;2. 调节光源亮度和光电探测器的位置,确保探测到的电流和电压信号稳定;3. 在一定范围内改变入射光波长,并观察光电流和光电压的变化;4. 固定光波长,改变光源亮度,测量光电流和光电压的关系;5. 记录实验数据并进行分析。
实验结果与分析通过实验观察和数据测量,我们得到了以下结果和分析:1. 光电流与光电压与入射光强度成正比关系;2. 光电流与光电压与光波长有关,当光波长增大时,光电流和光电压呈指数增长;3. 改变光电探测器表面材料可以改变光电效应的灵敏度和响应特性。
实验结果与理论预期相符,验证了光电效应的基本规律和特性。
通过分析数据,我们可以进一步推导出光电效应的数学表达式,并用于实际应用中的光电探测和测量。
实验总结与体会通过本次实验,我对光电效应有了更深入的理解,学习到了如何设计和搭建光电探测系统,以及如何准确测量和分析光电信号。
同时,我也体会到了进行科学实验的重要性和意义:1. 科学实验是理论知识的验证和实践应用的重要环节;2. 实验过程需要细心和耐心,保证实验数据的准确性和可靠性;3. 数据分析是实验成果的重要组成部分,需要具备科学思维和严密的推理能力。
此外,本次实验还让我认识到光电探测技术在现代科学和工程领域的重要性,特别是在光学通信、太阳能发电、光电传感器等领域的应用。
光电技术实验报告
一、实验目的1. 理解光电效应的基本原理和规律。
2. 掌握光电探测器的性能参数测量方法。
3. 学习光电技术在实际应用中的具体应用。
二、实验原理光电效应是指光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应方程,光子的能量与电子的动能之间存在以下关系:E = hν = Ek + W其中,E为光子的能量,h为普朗克常数,ν为光的频率,Ek为电子的动能,W为金属的逸出功。
光电探测器是一种将光信号转换为电信号的装置,常用的光电探测器有光电二极管、光电三极管、光电倍增管等。
本实验主要研究光电二极管的性能参数。
三、实验仪器与设备1. 光电效应实验装置:包括光电管、光源、放大器、示波器等。
2. 光电探测器性能参数测试仪:用于测量光电二极管的暗电流、饱和电流、光电流、响应时间等参数。
3. 电源:提供实验所需的电压。
四、实验步骤1. 光电效应实验:(1)将光电管接入实验装置,调整光源的电压和电流,使光电管正常工作。
(2)打开示波器,观察光电管在不同电压下的伏安特性曲线。
(3)改变光源的频率,观察光电效应的规律。
2. 光电探测器性能参数测试:(1)将光电二极管接入性能参数测试仪,调整测试仪的电压和电流,使光电二极管正常工作。
(2)测量光电二极管的暗电流、饱和电流、光电流、响应时间等参数。
五、实验结果与分析1. 光电效应实验结果:(1)伏安特性曲线:随着电压的增加,光电管的电流逐渐增大,当电压达到一定值时,电流达到饱和。
(2)光电效应规律:光电效应的电流与光强成正比,与光的频率有关,当光的频率低于截止频率时,光电效应不发生。
2. 光电探测器性能参数测试结果:(1)暗电流:在无光照条件下,光电二极管的电流为暗电流,其大小反映了光电二极管的漏电流。
(2)饱和电流:当光强增加时,光电二极管的电流逐渐增大,当电流达到饱和时,光强的增加对电流的影响不再明显。
(3)光电流:光电二极管的光电流与光强成正比,其比例系数称为光电流灵敏度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电探测技术实验报告班级:10050341学号:05姓名:解娴实验一光敏电阻特性实验一、实验目的1.了解一些常见的光敏电阻的器件的类型;2.了解光敏电阻的基本特性;3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。
二、实验原理伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。
这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。
光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。
各种光敏电阻的非线性程度都是各不相同的。
大多数场合证明,各种光敏电阻均存在着分析关系。
这一关系为I kα=ΦΦ式中,K为比例系数;是永远小于1的分数。
光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。
这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。
光照的非线性特性并不是一切光敏半导体都必有的。
目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。
光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。
三、实验步骤1、光敏电阻的暗电流、亮电流、光电流按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。
则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。
2、伏安特性光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。
按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。
将所测得的结果填入表格并做出V/I曲线。
图1光敏电阻的测量电路偏压2V 4V 6V 8V 10V 12V 光电阻I四、实验数据实验数据记录如下:光电流:E/V246810U/V0.090.210.320.430.56I/uA1427.54255.270.5暗电流:0.5uA实验数据处理:拟合曲线如下:五、实验结论通过本次实验了解了一些常用的光敏电阻的类型、内部结构及其基本特性,也熟练掌握了光敏电阻的特性测试的方法。
随着偏置电压的增加,光敏电阻的伏安特性曲线呈线性增长。
实验二光源光功率测试实验一、实验目的1.了解光功率计的原理;2.掌握光功率计的使用方法;3.了解不同光源的功率值。
二、实验原理采用美国相干公司的光功率计测量,其工作原理为:光功率计是测量光纤上传送的信号强度的设备,用于测量绝对光功率或通过一段光纤的光功率相对损耗。
在光纤系统中,测量光功率是最基本的。
光功率计的原理非常像电子学中的万用表,只不过万用表测量的是电子,而光功率计测量的是光。
通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。
用光功率计与稳定光源组合使用,组成光损失测试器,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。
三、实验步骤分别测量了红光激光器、绿光激光器和白光光源:1.打开光功率计,预热一段时间;2.将波长设置为红光激光器的波长;3.打开对应激光器,在光功率计上测得其光功率值;4.依次将波长设置为绿光激光器和白光光源的波长,重复第3步。
5.记录测得数据值。
四、实验数据实验数据记录如下:光源波长光功率红光532nm8.20uW绿光650nm56.1mW白光700nm93.2uW五、实验结论通过此次光源光功率测试实验,初步了解了光功率计的工作原理及光功率的测量方法,学会了光功率计的使用。
通过实验对光的功率有了一个直观的认识,而且提高了我们的动手能力。
实验三光电位置敏感器件---PSD传感器一、实验目的1.了解光电位置敏感器件的内部结构;2.了解PSD传感器的工作原理;3.学会使用PSD传感器测量微小位移。
二、实验原理PSD测试系统的基本组成:本测试系统主要有PSD基座、半导体激光器、反射屏、PSD及处理电路单元组成,其结构框图如图2所示。
图2 PSD测试系统结构框图半导体激光器能输出频率单一,能量集中,功率稳定性好的光信号,具有体积小、亮度高、重量轻、方向性好、寿命长、抗冲击性能好等优点。
所以采用半导体激光器作为光电测试系统的光源。
由于PSD器件对光点位置的变化非常敏感而对光斑的形状无严格要求,即输出信号与光的聚焦无关,只与光的能量中心有关,所以让反射屏连接在一个带有螺旋测微仪的平台上,通过旋转螺旋测微仪来改变反射体离激光器的距离从而改变光线照在聚光透镜上的位置最终达到改变光点离PSD中心的距离。
其光路图如图 3。
图 3 PSD测试系统的光路图由PSD的工作原理及其探测位置线性度的讨论可知,从PSD电极输出的电信号并不直接是位置信号,必须对这些电信号进一步处理才能得到光斑的入射位置。
当允许将PSD封装起来使用而且入射光比较强时,可以忽略背景光电流和暗电流,即采用恒定连续光源,光电流为直流信号,处理电路框图如图4所示(即PSD处理电路单元),前置处理部分将从PSD两电极输出的微弱电流转换成电压并放大,运算处理部分按照位置公式将两路电压信号相加、相减和相除,最终输出位置信号。
图 4 PSD处理电路单元三、实验步骤1、通过基座上端圆形观察孔观察PSD器件及在基座上的安装位置,连接好PSD器件与处理电路,开启仪器电源,输出端Vo接电压表,此时因无光源照射,PSD 前聚焦透镜也无因光照射而形成的光点照射在PSD器件上,Vo输出的为环境光的透镜1透镜2ABCbcLD PSDa噪声电压,试用一块遮光片将观察圆孔盖上,观察光噪声对输出电压的变化。
2、将激光器插头插入“激光电源”插口,激光器安装在基座圆孔中并固定。
注意激光束照射到反射面上时的情况,光束应与反射面垂直。
旋转激光器角度,调节激光光点,(必要时也可调节PSD前的透镜)使光点尽可能集中在器件上。
3、仔细调节位移平台,用电压表观察输出电压VO的变化,当输出为零时,再分别测两路信号电压输出端VO1、VO2的电压值,此时两个信号电压应是基本一致的。
4、从原点开始,位移平台分别向前和向后位移10mm,因为PSD器件对光点位置的变化非常敏感,故每次螺旋测微仪旋转10格(1/10mm),并将位移值(mm)与输出电压值(V0)记录列表,做出V/X曲线,求出灵敏度S,S=△V/△X。
根据曲线分析其线性。
四、实验数据向前移位时的测量数据:向后移位时的测量数据:曲线拟合:灵敏度: =∆∆=X VS 10.048958 =∆∆=X VS 20.043364五、实验结论通过本次试验了解了光电位置敏感器件的内部结构及PSD 传感器的工作原理。
并且实验中学会了使用PSD 传感器测量微小位移。
通过整理实验数据,得到了PSD 传感器的灵敏度。
实验四 CCD 摄像法测径实验一、实验目的1. 通过实验了解CCD 实验仪器的安装及操作;2. 了解CCD 实验仪的测量原理及相应的算法;3. 熟练掌握使用CCD 实验仪器测量圆孔直径。
二、实验原理测量原理:测量系统在图像获取环节首先通过CCD 摄像机摄取物体图像,接着经图像采集卡进行数据采集和处理后由图像采集程序将其转化为位图文件存放到硬盘中。
随后在测量程序中打开此文件,用户根据测量目的剪取感兴趣的图像区域,然后再经过图像处理和分析得到测量结果。
整个测量过程依据几何成像原理,即根据透镜成像原理建立物面与像面上对应点之间的几何对应关系。
如图5所示,待测物休通过物镜成像在CCD 光敏元上,在经过摄像机输出、采样、量化可得到与物体尺寸成一定比例的数字图像。
量化后可得确立这种比例关系即可实现实际尺寸的测量。
然而由于实际的镜头与理论卜的理想透镜有较大差别,其物像关系也不是和理想透镜成像公式描述的那么简单,所以在本测量系统中采用了实验标定的方法,即通过对标准件的测量实验确立物像间的尺寸比例关系。
实际标定时,我们使用标准量块作为试件,首先利用区域分割从图像中分离目标物体,然后提取并细化其边缘,通过测量程序拟和边缘及计算其长宽所占的像素跨距N 。
在已知其长宽的实际尺寸W 的条件下,系统放大比例系数可通过公式K=W/N 计算获得,它表示了一个像素对应的目标空间的实际尺寸。
在测量程序输出像素个数计算结果的基础上乘以相应的K 值即可获得实际尺寸的测量结果。
为了避免随机误差的干扰,我们采取了多次标定取平均值的方法。
图5. 几何成像图圆形尺寸测量算法:我们知道最能全面描述图像统计性质的就是它的统计分布规律。
根据理论定义的形状描述是非常有实际意义的,离散图像f (x, y)的矩定义为:(1)如果是二值图像,则矩可按下式计算:p qpq ji m i j =∑∑ (2)用目标的距可以求出它的A 心坐标:(3)本系统中对圆的测量就是利用了圆心与重心重合的特点,首先对物体图像采用统计排序滤波器进行滤波,然后选取阀值将图像转化为二值图像,利用公式(2) (3)计算其重心即圆心坐标。
再对滤波后的图像进行边缘检测确定其边缘点,通过这些边缘点与圆心计算出半径的平均值和均方差。
然后根招 3σ原则剔除伪边缘点,再重复计算圆心和半径一次从而得到测量结果。
三、实验步骤(一)在被测物前安装好摄像头,连接CCD稳压电源,视频线正确连接图像卡与摄像头。
(二)检查无误后进入测量程序,启动图像采集后,屏幕窗口即显示被测物的图像,适当地调节CCD的镜头前后位置,使目标图像最为清晰。
需要注意的是,如果不能正常显示图像时,检查设置的视频标准是否正确,设置如下:(1)打开BtWDMCap(2)选择工具栏的Option/video Capture Filter(3)在视频标准中选择PAL—N(三)尺寸标定:先取一标准直径圆形目标(D0=10mm),根据测试程序测定其屏幕图像的直径D1(单位用象素表示),则测量常数K=D1/D0。
软件操作具体如下:<1>调整CCD摄像机与物体之间的距离,使得物体显示最清晰,记下物距;<2>使用捕捉(capture)采集图片,即点击按钮,并指定地方保存图片;<3>进行中值滤波,点击按钮;<4>选择阀值点进行对图像二值化,点击按钮,然后拖动滑块。
<5>进行二值化处理,点击按钮;<6>二值化后进行直径测量,点击按钮,把鼠标拖到二值化后的圆形图上,右边条形块中的Distance显示的数据就是图像像素长度(即像素跨距),然后进行计算物体实际长度。
(四)保持CCD镜头与位移平台距离不变,更换另一未知直径的圆形目标,利用测试程序测得其在屏幕上的直径,除以系数K,即得该目标的直径。
四、实验数据可求得大圆直径R=(380.76585/298.71387)*10=12.75mm五、实验结论光电探测技术实验报告通过本次实验了解了CCD实验仪器的内部结构及其简单的安装与操作方法,同时也了解了CCD实验仪器的测量原理及相应的算法。