★★★主成分回归分析原理与步骤
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主成分回归分析
logistic回归分析法是一种应用最大似然法估计回归系数的回归方法,它不要求变量服从协方差矩阵相等和残差项服从正态分布,因而得到广泛的应用。
logistic回归要求模型的解释变量之间不能具有线性的函数关系,然而,在很多研究中,各变量常常不是独立存在的,而是存在一定程度的线性依存关系,这一现象称作多重共线性(multi-collinearity)。多重共线性关系常增大估计参数的标准误,从而降低模型的稳定性,有时还可出现与实际情况相悖的结果。
因此,为了合理地估计和解释一个回归模型,需要对变量之间的多重共线性进行处理。
主成分logistic回归是解决logistic回归分析中的共线性问题的常用方法之一,它通过主成分变换,将高度相关的变量的信息综合成相关性低的主成分,然后以主成分代替原变量参与回归。
原理与步骤
1、原始数据标准化
2、计算相关系数矩阵
3、求相关矩阵R的特征根、特征向量和方差贡献率,确定主
成分。
4、建立主成分特征函数
5、使用主成分代替原始变量进行多元回归