全等三角形教学设计与反思

合集下载

三角形全等的判定(边边边)

三角形全等的判定(边边边)

三角形全等的判定(边边边定理)教学设计及反思教学目标及重点难点1.体悟探索方法,经历探索过程,归纳得出判定定理的过程。

2.能根据问题和情境,利用边边边定理判定两个三角形全等。

3.通过观察、猜想、概括、验证等数学活动,积累数学活动经验,培养学生的猜想探究能力和团结协作能力,同时在师生讨论交流中培养学生的发散性思维以及数学符号语言表达能力。

教学重点:探究三角形全等所需条件的过程,利用边边边定理判定两个三角形全等。

教学难点:探索三角形全等条件的过程。

二、教学过程(一)引入课题,激发探索欲望师:我们已经学习了三角形全等的相关概念及性质,你们知道全等三角形是怎么定义的吗?生 1 :全等三角形是能够完全重合的两个三角形。

生 2 :有三条边对应相等,三个角也对应相等的两个三角形全等。

师:生 1 说的是描述性定义,生 2 说的是课本上的定义,本质上都是正确的。

全等三角形具有的性质你能用文字语言、符号语言和图形语言表示出来吗?生 3 :全等三角形的性质是对应边相等、对应角相等(如图 1 )。

学生画图并在练习本上用符号语言表示:因为△ABC ≌△A′B′C′,所以 AB=A′B′, BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′(教师电脑展示 PPT )。

设计意图:在教师引导下回忆已学知识,激发探索欲望,让学生产生浓厚兴趣,为探索新知识做好准备。

(二)设计问题链,充分展示探索思维过程师:根据全等三角形的定义,如果三条边和三个角都分别对应相等,确实能判定两个三角形全等,但是否必须同时满足六个条件才能判定两个三角形全等呢?我们的证明过程是不是太过复杂了呢?如果减少一些条件是否也能达到证明全等的目的呢?今天我们就开始学习三角形全等的判定(板书课题)。

让学生猜想和探究:满足一个、两个、三个、四个、五个条件时,可以证明两个三角形全等吗?生 4 :满足一个条件,不论是角还是边,肯定不能证明两个三角形全等。

《全等三角形》教学设计

《全等三角形》教学设计

《全等三角形》教学设计一、教学目标:1. 认识全等三角形的概念,并能够用简单的语言描述全等三角形的特点。

2. 学会判断两个三角形是否全等,并能够根据给定的条件完成相应的证明。

3. 学会使用全等三角形的性质解决实际问题。

二、教学重难点:1. 全等三角形的定义和性质。

2. 全等三角形的证明方法。

三、教学过程:【导入】1. 引导学生回顾两个图形的全等的概念,并提问:什么样的条件可以判断两个三角形全等?为什么?2. 提供一张图示两个全等三角形的示意图,让学生观察并总结两个三角形全等的条件。

【呈现】1. 准备一些不同形状和大小的三角形卡片,让学生分组配对,判断哪些三角形可以构成全等三角形,并说明理由。

2. 引导学生从形状、角度和边长三个方面进行判断,并记录下构成全等三角形的条件。

【讲解】1. 讲解全等三角形的定义:如果两个三角形的三条边和三个角分别相等,那么他们互为全等三角形。

2. 引导学生观察两个全等三角形的性质:对应边相等、对应角相等、对边角的关系等。

【练习】1. 发放练习册,让学生完成其中的例题。

2. 布置课后作业:完成练习册上的习题,巩固所学内容。

【拓展】1. 引导学生运用全等三角形的性质解决实际问题,如测量难以直接测量的距离、计算不规则图形的面积等。

【总结】1. 结合实际情景,对所学内容进行总结和归纳,强调全等三角形的定义和性质。

2. 引导学生总结全等三角形的作用和应用场景。

四、教学评价:1. 观察学生在练习过程中的表现,了解其对全等三角形的理解程度和运用能力。

2. 对学生完成的练习册进行批改,进行个别辅导和指导。

五、教学反思:1. 需要特别注意在教学中注重示范和讲解全等三角形的证明方法,以提高学生的证明能力。

2. 在教学中注重实际问题的应用,并帮助学生理解全等三角形的重要性和实际意义。

三角形全等判定的教案

三角形全等判定的教案
2
画法:1画线段bc=4
2分别以a、b为圆心,以2和3为半径作弧,交于点c。则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?
归纳:有三边对应相等的两个三角形全等.
可以简写成“边边边”或“ sss ”用数学语言表述:
在△abc和△ def中
∴ △≌△ def(sss)
(二)新课讲解:
问题1:如图:在△abc和△def中,ab=de,bc=ef,ac=df, ∠a=
∠d, ∠b=∠e, ∠c=∠f,则△abc和△def全等吗?
问题2: △abc和△def全等是不是一定要满足
ab=de,bc=ef,ac=df, ∠a=∠d, ∠b=∠e, ∠c=∠f这六个条
件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角
满足三个条件有几种情形呢?
3.给出三个条件
三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一
角相等
例:画△abc,使ab=2,ac=3,bc=4
画法:1画线段bc=42分别以a、b为圆心,以2和3为半径作弧,交于点c。
则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否
1、如图,d、f是线段bc上的两点,
ab=ec,af=ed,要使△abf≌△ecd,还需要条件
2、已知:b、e、c、f在同一直线上, ab=de,ac=df a
并且be=cf,
求证: △ abc≌ △ def
小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。
2证明三角形全等的书写步骤。3证明三角形be全等应注意的问题。
我们知道如果两个三角形的对应边、对应角都相等,那么这两个三角形全等。判定两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?

三角形全等的判定(SSS)教学设计与教学反思

三角形全等的判定(SSS)教学设计与教学反思
(二)操作探究
出示探究一:(课前完成)多媒体
已知一个条件 已知两个条件
AD条件与图形 结论 条件与图形 结论
已知:△ABC与△DEF
条件1:AB=10cm AC=12cm BC=13cm BCE条件2:DE=10cm DF=12cm EF=13cm
让两个组学生按照条件1中所给出的条件画出三角形ABC,让另两个组学生按照条件2中所给出的条件画出三角形DEF。
3、情感、态度与价值观
在探索三角形全等条件的过程中,培养学生有条理的思考能力、概括能力和语言表达能力。
二、学习重点和难点
等的条件及应用“边边边”定理解决问题。
(2)难点:三角形全等条件的探索过程。
三、教具准备
(1)准备一些形状、大小完全相同的三角形纸片(2)教师自制的多媒体课件、三角板、量角器、圆规等(3)上课环境为多媒体大屏幕环境。(4)剪刀
画完后将三角形剪下来,与周围同学比一比,看所画的两个三角形是否全等。 本节课组织学生进行交流,经过学生逐步分析,各种情况逐渐明朗。 得出结论:只给出一个或两个条件时,都不能保证所画出的三角形全等。 (学生动手操作,通过实践、自主探索、交流获得新知,同时也渗透了分类的思想,引导学生从六个元素中选取部分元素可得到全等的三角形.)
四、教学过程
(一)复习引入
多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等。反之,这六个元素分别相等,这样的两个三角形一定全等。(在教师引导下回忆前面知识,为探究新知识作好准备。) 提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个元素中的一部分,至少需要几个元素对应相等能保证两个三角形全等呢?(问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望。引导学生先确定探究的思路和方法,进一步培养理性思维。)

初中数学_1.1全等三角形教学设计学情分析教材分析课后反思

初中数学_1.1全等三角形教学设计学情分析教材分析课后反思

第1.1节 全等三角形教学设计【教学重点】1.了解全等三角形的概念和性质.2.能准确辨认全等三角形的对应元素.【教学难点】准确确定全等三角形的对应元素. 【教学建议】 一、教学流程【教学设计举例】因为本章的概念和性质在本节中开始体现,所以以这小节为例,我来详细谈谈如何落实以上各环节,即看看具体的教学设计,供大家参考。

如图所示,已知△ABC绕点B旋转一定角度后得到△△DBE,已知点A和点D是对应顶点,(1)这两个三角形全等吗?如果全等,用符号表示出来;(2)写出所有的对应顶点、对应边和对应角;(3)如果AB=3cm,那么BD= cm,∠E=55°,那么∠C= °.课后作业略注意:本节内容很多,多数学生在一节课内完不成,而且前面的设计中还没有给出性质应用的例题(可参考教科书第7页第3题类型给例子。

1:完成对全等形和全等三角形概念的认识,并探索出找对应顶点、对应边和对应角的方法.2:针对不同的全等变换,教师给学生多个图形辨认,并找出对应角对应边等,同时给出利用全等三角形性质解题的例题,参考教科书第4页第3题类型,程度好些的学生还可以进一步给出简单的证明线段平行或角相等的例题,但是不宜复杂,现在只需学生有初步认识即可(将课本的第3题进行变式练习,比如添加问题:哪些线段平行?为什么?等等.)二、其他要注意的内容:1.书上的习题涉及的图形,都是可以利用平移、翻折或旋转来得到,有的图形是综合三种变换而得.比如:平移平移、翻折、旋转旋转平移、翻折、旋转旋转 , 翻折、旋转教师在利用全等三角形进行对应元素辨认时,可以引导学生动手操作,将平移、翻折和旋转充分融合,逐步将图形复杂化. 【突破难点】如果学生能弄清两个图形是经过了怎样的变换才得到现在的位置,那么他也就能够将图形复原,从而准确找到对应元素.除了以上各图,教师还可以更多的变换图形,让学生充分体会. 对应边、对应角和对边、对角的区别.对应边或对应角,是指两个三角形之间的元素对应,而对边或对角,是针对同一个三角形内,边或角的对应.在教学中应注意给学生区分.3.参考习题:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角.【出题意图】对变换后的不同位置图形进行简单训练找对应元素.(2)将ABC ∆沿直线BC 平移,得到DEF ∆,那么△ABC 和△DEF 全等吗?指出他们的对应元素. 【引申】将本题改成翻折、旋转等变换,结论是什么? 分别找出他们的对应元素.【出题意图】让学生自己设计变换,将知识巩固.(3)如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 分别是对应边,已知: 30,43=∠=∠B A ,OABCDCABDBEBCBDD CB D DDC BD的大小。

《全等三角形的判定》 教学设计

《全等三角形的判定》 教学设计

《全等三角形的判定》教学设计一、教学目标1、知识与技能目标学生能够理解全等三角形的概念,掌握全等三角形的性质。

学生能够熟练掌握全等三角形的判定定理(SSS、SAS、ASA、AAS、HL),并能运用这些定理进行简单的推理和证明。

2、过程与方法目标通过观察、比较、操作等活动,培养学生的动手能力、观察能力和逻辑思维能力。

经历探索全等三角形判定定理的过程,让学生体会从一般到特殊、从简单到复杂的数学思维方法。

3、情感态度与价值观目标通过合作学习,培养学生的团队合作精神和交流能力。

让学生在数学学习中体验成功的喜悦,增强学习数学的自信心。

二、教学重难点1、教学重点全等三角形的判定定理(SSS、SAS、ASA、AAS、HL)。

运用全等三角形的判定定理进行推理和证明。

2、教学难点灵活运用全等三角形的判定定理解决实际问题。

理解 HL 定理的适用条件。

三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、导入新课展示两个形状、大小完全相同的三角形,让学生观察并说出它们的特点。

引导学生回忆三角形的相关知识,如三角形的边、角等。

提出问题:如何判断两个三角形是否全等?从而引出本节课的主题——全等三角形的判定。

2、讲授新课全等三角形的概念给出全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

通过演示两个三角形重合的过程,让学生直观地理解全等三角形的概念。

强调全等三角形的对应边相等,对应角相等。

全等三角形的性质引导学生根据全等三角形的概念,思考全等三角形的性质。

总结全等三角形的性质:全等三角形的对应边相等,对应角相等。

全等三角形的判定定理SSS 定理给出两个三角形的三条边分别相等的条件,让学生通过动手操作,将两个三角形重合,从而得出 SSS 定理:三边对应相等的两个三角形全等。

通过例题,让学生运用 SSS 定理进行证明。

SAS 定理给出两个三角形的两条边及其夹角分别相等的条件,让学生通过操作和观察,得出 SAS 定理:两边和它们的夹角对应相等的两个三角形全等。

初中数学教学课例《全等三角形》教学设计及总结反思

初中数学教学课例《全等三角形》教学设计及总结反思

由学生观察动画发现,两个三角形的三组对应边相
等、三组对应角相等。
课例研究综
重视学生在学习过程中的参与程度,关注他们的处

境和感受。兴趣永远是最好的老师,把简单、枯燥的学
习理性知识的过程变成学生自主探究、发现问题并解决
问题的动态过程,促使学生思维活跃地参与整个学习过
程,也使课堂充满了生机和活力。二、注意到了数学知
一般学生都能发现这两个三角形是完全重合的。
(2)学生自己动手
画一个三角形:边长为 4cm,5cm,7cm.然后剪下
来,同桌的两位同学配合,把两个三角形放在一起重合。 教学过程
(3)获取概念
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:
问题:对应边、对应角有何关系
发展体验获取数学知识的感受,培养学生勇于创新,多
方位审视问题的创造技巧。
本班学生学习只凭借直观生动形象的事物,数学思
学生学习能 维能力较差,创新思维,创新精神缺失,分析问题,提
力分析 出问题,解决问题的能力差。因此我着重做好以下三点
进行设计:1.巧设情境,激发学习兴趣,凸现学生的
主体地位。2.联系生活,加强应用,培养学生良好的
识与现实生活之间的联系,关注学生的生活经验。“实
用性”是这节课的一个显著特点,都是现实生活中的客
观存在,也正因为此我们才有学习和探讨的必要。因此,
我结合班级和上课时的实际情况组织教材,尽可能使学
习内容贴近学生的生活,并通过课后延伸等方式,启发
学生将所学内容在现实生活中进行充分的体验和感悟,
为学生提供一个更为深广的学习空间。三、大胆改编教
能用符号正确地表示两个三角形全等;(3)能熟练找出

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。

遵循启发式教学原则,采用引探式教学方法。

用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

人教版八年级数学上《全等三角形的性质》教学反思

人教版八年级数学上《全等三角形的性质》教学反思

《全等三角形的性质》教学反思
一、教学目标达成情况
本节课的教学目标是让学生掌握全等三角形的性质,包括全等三角形的对应边相等、对应角相等。

通过讲解、讨论和练习,学生基本掌握了这些性质,并能运用它们进行简单的推理和证明。

二、教学方法和手段
本节课采用了讲解、讨论和练习相结合的教学方法。

首先,通过回顾全等三角形的定义,引出全等三角形的性质。

然后,通过讲解和讨论,让学生了解全等三角形的性质及其应用。

最后,通过练习巩固所学知识。

三、学生表现
在课堂中,大部分学生能够积极参与讨论和练习,表现出较高的学习热情和积极性。

但也存在一些问题,如部分学生对于全等三角形的性质理解不够深入,需要进一步加强练习和指导。

四、改进措施
针对本节课存在的问题,可以采取以下措施加以改进:
1.加强学生对全等三角形性质的深入理解,可以通过更多的实例和练习加以
巩固。

2.针对学生的不同学习水平,可以设计不同难度的练习题,以满足不同层次
学生的需求。

3.加强课堂互动,鼓励学生提出问题和意见,以便更好地了解学生的学习情
况和需求。

总之,本节课的教学效果基本达到了预期目标,但也存在一些需要改进的地方。

在今后的教学中,我将继续努力,不断改进教学方法和手段,提高教学效果。

全等三角形优秀教案教学设计

全等三角形优秀教案教学设计

全等三角形优秀教案教学设计一、教学设计:1、学习方法:对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第—步。

它是两个三角形间最简单,最常见的关系。

它不仅是学习后面知识的根底,并且是证明线段相等、角相等以及两线相互垂直、平行的重要依据。

因此必须熟练地掌握全等三角形的判定方法,并且灵敏的应用。

为了使学生更好地掌握这一局部内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探究、交流、发觉、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

2 、学习任务分析:充分利用教科书提供的素材和活动,鼓舞学生经历观察、操作、推理、想象等活动,开展学生的空间观念,体会分析问题、解决问题的方法,累积数学活动经验。

培养学生有条理的思考,表达和交流的能力,并且在以直观操作的根底上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方法有条理的表达推理过程,为以后的证明打下根底。

3、学生的认知起点分析:学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的打算。

其它,学生也具备了利用已知条件作三角形的根本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

4、教学目标:〔1〕学生在教师引导下,积极主动地经历探究三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

〔2〕掌握三角形全等的“边边边〞、“边角边〞、“角边角〞、“角角边〞的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

〔3〕培养学生的空间观念,推理能力,开展有条理地表达能力,累积数学活动经验。

5 、教学的重点与难点:重点:三角形全等条件的探究过程是本节课的重点。

从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,累积了数学活动经验,这将有利于学生更好的理解数学,应用数学。

全等三角形教学反思

全等三角形教学反思

全等三角形教学反思这是全等三角形教学反思,是优秀的数学教案文章,供老师家长们参考学习.全等三角形教学反思第1篇本节课探索三角形全等的判定方法一,是后面几种判定方法的根底,也是本章的重点也是难点.教材看似简单,仔细研究后才发现对学生来说有些困难,处理不好可能难以成功.备课时发现本节课的难点就是处理从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作和学生相互交流验证很好地解决了问题,圆满地完本钱节课的教学任务.反思整个过程,我觉得做得较为成功的有以下几个方面:1、教学设计整体化,内容生活化.在课题的引入方面,让学生动手做、裁剪三角形.既提问复习了全等三角形的定义,又很好的过渡到确定一个三角形需要哪些条件的问题上来.把知识不知不觉地表达出来,学得自然新鲜.数学学习来源于生活实际,学生学得轻松有趣.2、把课堂充分地让给了学生.我和学生做了些课前交流,临上课前我先对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言.其实,这是一个调动学生积极性,同时也是鼓励彼此的过程.在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论来解决问题.3、在难点的突破上取得了成功.上这堂课前,我一直担忧学生在得出三角形全等的判定方法上出现理解困难.课堂上我通过让学生动手制作一个两边长分别为6cm和8cm,并且这两边的夹角为45度的三角形,并要求相互之间互相比拟发现制作的三角形形状和大小完全相同,即三角形都全等,最后同学们都不约而同地得出了三角形全等的判定方法:边角边公理,即:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简称SAS. 但也有几处是值得思考和在以后教学中应该改良的地方:1、在课堂上优等生急着演示、发言,后进生却成了观众和听众.如何做到面向全体,人人学有所得,也值得我们数学教师来探讨.2、课堂学生的操作应努力做到学生自发生成的,而不是老师说你们比拟下三角形的形状和大小,应换为自发地比拟更好.3、教学细节需进一步改良,教学时应多关注学生,在学习新知后,虽然大局部的学生都掌握了,但有少数后进生仍然是不理解.全等三角形教学反思第2篇本节课探索三角形全等的判定方法一,是后面几种判定方法的根底,也是本章的重点也是难点.备课时发现本节课的难点就是处理从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作和学生相互交流验证很好地解决了问题,圆满地完本钱节课的教学任务.反思整个过程,我觉得做得较为成功的有以下几个方面:1、教学设计整体化,内容生活化.在课题的引入方面,然学生动手做、裁剪三角形.既提问复习了全等三角形的定义,又很好的过度到确定一个三角形需要哪些条件的问题上来.把知识不知不觉地表达出来,学得自然新鲜.数学学习来源于生活实际,学生学得轻松有趣.2、把课堂充分地让给了学生.我和学生做了些课前交流,临上课前我先对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言.其实,这是一个调动学生积极性,同时也是鼓励彼此的过程.在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论来解决问题.3、在难点的突破上取得了成功.上这堂课前,我一直担忧学生在得出三角形全等的判定方法上出现理解困难.课堂上我通过让学生动手制作两个三角形形状和大小完全相同,即三角形都全等,最后同学们都不约而同地得出了三角形全等的判定方法.但也有几处是值得思考和在以后教学中应该改良的地方:1、在课堂上优等生急着演示、发言,后进生却成了观众和听众.如何做到面向全体,人人学有所得,也值得我们数学教师来探讨.2、课堂学生的操作应努力做到学生自发生成的,而不是老师说你们比拟下三角形的形状和大小,应换为自发地比拟更好.3、教学细节需进一步改良,教学时应多关注学生,在学习新知后,虽然大局部的学生都掌握了,但有少数后进生任然是不理解.全等三角形教学反思第3篇一、教学目标的反思.『全等三角形的判定』这一课,要求学生会通过观察几何图形识别两个三角形全等,并能通过正确的分类动手探索出两个三角形全等的条件.具体说:〔1〕正确识别两个三角形全等----会将两个三角形相等的边和角对应重叠在一起,看是否重合;〔2〕相信判定两个三角形全等不一定要3条边和3个角都相等,可能一边或一角相等就足够〔这个判断不一定要正确,但要有这种想法,探索命题的真假才有可能〕;〔3〕能正确地将三角形的6个元素按条件的个数分成:①一个元素:一个边或一条角对应相等.②两个元素:两边或一边一角或两角对应相等.③三个元素:三边或两边和一角或一边和两角或三角对应相等.或者按:①边〔一条边或两条边或三条边分别对应相等〕,②角〔一个角或两个角或三个角分别对应相等〕,③边和角[一条边和一个角或一条边和两个角〔又分为角边角和角角边两种〕或两条边和一个角〔又分为边角边和边边角两种〕分别对应相等];〔4〕能将分好的三大类〔12小类〕条件用画图的方法进行验证,找出能判定两个三角形全等的三条公理和一条定理;〔5〕能用这四个判定,直接判定两个三角形是否全等或能补充一个条件使两个三角形全等.基于知识的完整性和分类的数学思想的渗透,我认为这个教学设计表达了知识与技能目标.增强学生的观察、猜测和动手操作能力.二、教学策略的反思1、对分类的把握.对许多学生来说进行分类有困难,学生是否能准确分类,是本节课的难点和重点之一.要找到解决难点策略,就要找到造成难点的原因,学生之所以分类有困难是因为他们不知到从什么地方下手,以及做到不重不漏.我将这个问题分为两步:〔1〕提出第一个问:我们发现判定两个三角形全等不一定要6个元素〔三个角和三条边〕分别对应相等,可少一些元素,那么最少要几个元素,我们从多少个元素开始找呢?多数学生会从一个元素开始,不断地增加元素.少局部学生从边开始,一条边、两条边、三条边,然后再到角、边角〔这也是一种好方法,给予肯定,但不在堂上全班探讨〕.〔2〕提出第二个问:从一个元素到二个元素再到三个元素,一步一步地探索下去的思路是正确的,但不够具体,请同学们将元素所代表的具体情况〔边或角〕写出,并进一步画出草图表示对应相等的边角位置.小组讨论,分类如下:可以说,通过这样分类的学习,到达了两个目标:〔1〕渗透数学的分类思想;〔2〕明确对应关系,使得后继学习变得顺利.2、容量问题.与其把学生当天津鸭儿添入一些零碎知识,不如给他们几把锁匙,使他们可以自动去开发文化的金库和宇宙之宝藏. 本课为了到达内容的完整性和思路的连续性----找两个三角形全等的判定,将找的方法-----分类和验证得出结论,放在一节课上,使人觉得容量比拟大.造成容量大的原因主要在画图验证上,而画图验证的过程中以学生画图占用的时间最长,弄不好整节课就好似在上画图课,而学生画图并不困难.因此,我将本课学习分为两局部完成,第一局部是画图和识图,放在课前学习,〔1〕要求学生按所给的不同的3个条件〔附上作图步骤〕,画出6个图并在图注上条件,剪下来备用.在课堂上需验证时才取出与小组同学比照,是否全等.实际上,学生在上课前早已忍不住进行了比照,正为有的三角形与同学的全等,有的三角形与同学的不全等而奇怪,不知道是同学画错了还是自己画错了.所以我在想是不是就从小组交流结果开始更好呢?〔2〕对给出的两个三角形直接判断是否全等.第二局部是在课堂上,对全等的概念进行强化复习〔包括验证两个三角形全等的方法和书写要求,使学生明确画图验证是目前唯一的可操作的方法〕,分类、验证〔包括举反例:对满足一个元素或两个元素对应相等的两个三角形不一定全等〕、简单应用.三、成效性反思原教学设计附有作图练习卷〔按要求作三角形,使得三角形有三个元素等于所给的具体值〕,要求学生在课堂上做,因考虑到内容较多,在上课时将学生分成6组,每组完成同一个作图〔其它为作业〕,每个同学独立完成作图,然后与小组成员比拟所画图形的形状和大小并汇报给全班同学.操作上可进行,但我始终有一种不踏实的感觉,可又说不出为什么.给我的学生上课,才意识到边边角情况,画了图的六分之一学生说全等,而六分之五的学生没动手画过,我不能直接点评,一急之下,我脱口说这一组的作图藏有一个秘密,我们再仔细画一次,这才顺利解决了问题.因而,另一个班,我就将作图练习卷作为课前作业,正如陶行知先生所说:行是知之始,知是行之成. 教学做是一件事,不是三件事.我们要在做上教,在做上学.不在做上用功夫,教固不成为教,学也不成为学. 这样处理效果更好.。

三角形全等的判定教案 三角形全等的判定教学设计

三角形全等的判定教案 三角形全等的判定教学设计

三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。

重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。

难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。

用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。

于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。

然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。

(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。

应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。

在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

三角形全等的判定教学反思(必备10篇)

三角形全等的判定教学反思(必备10篇)

三角形全等的判定教学反思(必备10篇)三角形全等的判定教学反思第1篇[授课流程反思]通过让学生回忆基本作图,在作图过程中体会三角形全等的条件,在直观的操作过程中发现问题、获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力。

[讲授效果反思]讲解例题时要使学生明确:证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决。

学习要善于总结,在总结的过程中提高。

应给学生搭建一个质疑、交流和相互学习的平台,保证此环节的时间和质量,引导学生从知识、方法、学习习惯等多方面进行总结和反思。

[师生互动反思]知识、方法方面的收获,教师要适时点播,点出本节课所用到的数学思想、方法,这是学习的精髓,但不能忽视孩子们其他方面的收获,如好的听课习惯,好的思维、设想,要互相学习,这些好的收获更有助于学生的全面、和谐发展。

三角形全等的判定教学反思第2篇[授课流程反思]本节课的设计先让学生动手操作以便使学生对三角形的内角和有一定感性认识,然后再根据拼图说出结论成立的理由,由浅入深,循序渐进,学生易接受.教师引导学生对三角形的三个内角进行拼合,可以出现不同的方法,这样能让学生充分发挥白己的主动性和创新能力。

[讲授效果反思]组织学生进行探索或分组讨论,经过讨论找到不同的解决方法.在解决问题的过程中,关注学生在推理过程中语言使用的准确性,引导学生用规范的格式进行书写。

[师生互动反思]无论是例题还是习题的教学均采用“尝试一交流一讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用。

三角形全等的判定教学反思第3篇本节课是探索三角形全等的重要判定方法之一,也是本章的重点。

反思整个过程,我觉得做得较为成功的有以下几个方面:1、教学设计整体化,内容逻辑化。

在课题的引入方面,通过复习回顾,问题展示导入新课。

既提问复习了全等三角形的判定方法,又很好的过渡新问题上来。

把知识不知不觉地体现出来,学得自然新鲜。

新知学习于学生已掌握的知识基础上,学生学得轻松有趣。

初中数学教学课例《全等三角形》课程思政核心素养教学设计及总结反思

初中数学教学课例《全等三角形》课程思政核心素养教学设计及总结反思

教学重点:全等三角形的相关概念。
难点:辨认全等三角形中的对应元素。
1.知识与技能
了解全等三角形的概念,理解全等三角形的相关概
念,能辨认全等三角形的对应元素,掌握全等三角形的
性质。
教学目标
2.过程与方法 经历实验观察发现图形现状,大小相同关系的过
程,体会从图形变换角度理解图形的全等关系。
3.情感,态度与价值观
全等。
通过本节课学习,让更多学生参与到课堂中来,培 课例研究综
养学生主观能动性,创造性,培养学生一定数学思维, 述
团队协作能力。
体验全等图形在生活中应用的广泛性,从动,静两
方面理解三角形全等关系。
学生学习能
八年级学生已经具有一定的自主分析能力,已有一
力分析 定的数学基础,但学生之间有差距,有些两极分化,适
合小组合作,各取所需。互相学习,发挥学生主动性。
多媒体图像协助,使学生能更直观感受图形全等。 教学策略选
然后独立思考,小组合作讨论,抢答,既活跃了课堂气 择与设计
初中数学教学课例《全等三角形》教学设计及总结反思
ห้องสมุดไป่ตู้
学科
初中数学
教学课例名
《全等三角形》

本节课是“全等三角形”这一章开始,是在学习了
三角形的一些概念之后安排的学习内容。理解和掌握全
等三角形的有关概念是今后学习全等三角形的判定和
教材分析 应用的基础,全等三角形的有关知识也是证明角相等,
线段相等的重要依据。
氛,又发挥了学生主观能动性,创造性。
1.观察图形,形成概念
(1)观察图形,形成全等图形概念,
(2)生活举例,理解概念,
(3)几何基本图形全等关系分类命名,形成全等

数学全等三角形教学设计教案

数学全等三角形教学设计教案

数学全等三角形教学设计教案经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。

全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。

全等三角形是几何中全等之一。

下面是整理的数学全等三角形教学设计教案【最新3篇】,倘若对您有一些参考与帮忙,请共享给最好的伙伴。

数学全等三角形教案篇一一、教学目标【学问与技能】把握三角形全等的“角角边”条件,会把“角边角”转化成“角角边”。

能运用全等三角形的条件,解决简单的推理证明问题。

【过程与方法】经过探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

【情感、态度与价值观】在探究归纳论证的过程中,体会数学的严谨性,体验成功的欢乐。

二、教学重难点【教学重点】“角角边”三角形全等的探究。

【教学难点】将三角形“角边角”全等条件转化成“角角边”全等条件。

三、教学过程(一)引入新课利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)(四)小结作业提问:今日有什么收获?还有什么疑问?课后作业:书后相关练习题。

数学全等三角形教案篇二全等三角形课题:全等三角形教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。

2、本领目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析本领;(2)通过找出全等三角形的对应元素,培育同学的识图本领。

3、情感目标:(1)通过感受全等三角形的对应美激发同学酷爱科学勇于探究的精神;(2)通过自主学习的进展体验取得数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么巧妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。

全等三角形教案六篇

全等三角形教案六篇

全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。

同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。

二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。

因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。

《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。

为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。

2.方法与过程:争论、引导教学法。

3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。

三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。

第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。

全等三角形的定义:两个能够重合的三角形称为全等三角形。

全等三角形的性质:全等三角形的对应边、对应角相等。

活动目的:回忆前面学习过的学问,为探究新学问作预备。

三角形全等的判定教学反思

三角形全等的判定教学反思

三角形全等的判定教学反思篇一:《全等三角形的判定1》教案及教学反思《全等三角形的判定1》教案及教学反思教学目标1知识目标:掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等.2能力目标:使学生经历探索三角形全等条件的过程,体会如何探索研究问题,并初步体会分类思想,提高学生分析问题和解决问题的能力.3思想目标:通过画图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。

教学重点、难点:重点:利用边边边证明两个三角形全等难点:探究三角形全等的条件教学过程(一)复习提问1、什么叫全等三角形?2、全等三角形有什么性质?3、若△ABC≌△DEF,点A与点D,点B与点E是对应点,试写出其中相等的线段和角.(二)新课讲解:问题1:如图:在△ABC和△DEF中,AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,则△ABC和△DEF全等吗问题2:△ABC和△DEF全等是不是一定要满足AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F这六个条件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角形全等吗一个条件可分为:一组边相等和一组角相等两个条件可分为:两个边相等、两个角相等、一组边一组角相等探究一:1.只给一个条件(一组对应边相等或一组对应角相等)。

①只给一条边:②只给一个角:2.给出两个条件:①一边一内角:°②两内角:②两°内角°:③两边:502cm4cm2cm4cm问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?3.给出三个条件三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一角相等例:画△ABC,使AB=2,AC=3,BC=42画法:1画线段BC=42分别以A、B为圆心,以2和3为半径作弧,交于点C。

则△ABC即为所求的三角形把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?归纳:有三边对应相等的两个三角形全等.可以简写成“边边边”或“SSS”用数学语言表述:在△ABC和△DEF中∴△≌△DEF(SSS)(三)题例训练:例1填空:1、在下列推理中填写需要补充的条件,使结论成立:如图,在△AOB和△DOC中AO=DO(已知)______=________(已知)∴△AOB≌△DOC(SSS)2、如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由。

《全等三角形性质》教学反思(通用7篇)

《全等三角形性质》教学反思(通用7篇)

《全等三角形性质》教学反思(通用7篇)作为一名人民老师,课堂教学是我们的工作之一,借助教学反思可以快速提升我们的教学能力,快来参考教学反思是怎么写的吧!下面是小编为大家收集的《全等三角形性质》教学反思(通用7篇),仅供参考,大家一起来看看吧。

《全等三角形性质》教学反思1《全等三角形的判定》这一课,要求学生会通过观察几何图形识别两个三角形全等,并能通过正确的分类动手探索出两个三角形全等的条件。

具体说:(1)正确识别两个三角形全等——会将两个三角形相等的边和角对应重叠在一起,看是否重合;(2)相信判定两个三角形全等不一定要3条边和3个角都相等,可能一边或一角相等就足够(这个判断不一定要正确,但要有这种想法,探索命题的真假才有可能);(3)能正确地将三角形的6个元素按条件的个数分成:①一个元素:一个边或一条角对应相等。

②两个元素:两边或一边一角或两角对应相等。

③三个元素:三边或两边和一角或一边和两角或三角对应相等。

或者按:①边(一条边或两条边或三条边分别对应相等)。

②角(一个角或两个角或三个角分别对应相等)。

③边和角[一条边和一个角或一条边和两个角(又分为角边角和角角边两种)或两条边和一个角(又分为边角边和边边角两种)分别对应相等];(4)能将分好的三大类(12小类)条件用画图的方法进行验证,找出能判定两个三角形全等的三条公理和一条定理;(5)能用这四个判定,直接判定两个三角形是否全等或能补充一个条件使两个三角形全等。

基于知识的完整性和分类的数学思想的渗透,我认为这个教学设计体现了知识与技能目标。

增强学生的观察、猜想和动手操作能力。

《全等三角形性质》教学反思2复习这部分知识的设计指导思想,旨在通过学生自主归纳,整理回忆,从而形成知识链,这正是数学新课标倡导的理念,在教学过程中,例题的选择非常重要,一个好的例题能激发学生的兴趣,合理的变式会激起学时的探索欲望。

所以,精选例题,合理组织教学内容,是我上复习课的宗旨。

《三角形全等》教学反思(精选7篇)

《三角形全等》教学反思(精选7篇)

《三角形全等》教学反思(精选7篇)《三角形全等》教学反思(精选7篇)作为一名到岗不久的人民教师,课堂教学是我们的任务之一,通过教学反思可以很好地改正讲课缺点,教学反思应该怎么写呢?以下是小编精心整理的《三角形全等》教学反思(精选7篇),欢迎大家借鉴与参考,希望对大家有所帮助。

《三角形全等》教学反思1一、教学方法:让学生通过观察体会身边的民族图案和作图,观察体会全等图形的定义,自学全等图形的特征,通过练习总结和强化对应边、对应角的寻找方法。

从而体会什么样的两个图形是全等三角形。

二、教学过程设计1、本节课我本着学生为主,突出重点的意图。

在全等图形的定义推导中,我让学生自己动手,通过平移、翻折和旋转的作图,为体会重合的图形全等这一定义提供了分析、思考、发现的依据,把抽象问题转化为具体问题。

而全等图形的特征及对应边对应角的寻找这一难点,我通过具体练习让学生总结,并带领学生寻找快速寻找对应元素的方法,练习的设计采用由易到难的手法,符合学生的思维发展,一气呵成,突破了本节课的重点和难点。

而在练习中,我创设情境,展示教材上的图案和学生身边所熟悉的民族图案,引导学生读图,激发学生的兴趣,从图中去发现存在形状与大小完全相同的图形。

然后我安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,直观感知全等形和全等三角形的概念。

并且通过让学生找出生活中的全等图形让学生体会数学来源于生活,生活离不开数学,激起学生热爱数学。

2、我在结尾总结全等图形时让学生在生活中寻找实例,体现了数学与生活的联系;渗透美学价值。

让学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。

然后,通过阅读的方法让学生找出全等形和全等三角形的概念。

3、从教学流程来说:情境创设——自学概念与特征——练习与小结——变式练习,应用数学,我创造性调整了教学顺序:在学生掌握了全等图形定义和特征后,增添了书上没有的民族地区常见图形练习,为全等图形的变换奠定了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形教学设计与反思
一、教学设计:
1、学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。

它是两个三角形间最简单,最常见的关系。

它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。

因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。

为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

2、学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。

培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。

3、学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

4、教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

5、教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。

从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种
情况进行讨论,对初一学生有一定的难度。

根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

6、教学过程(略)
教学步骤教师活动学生活动教学媒体(资源)和教学方式
7、反思小结
提炼规律
电脑显示,带领学生复习全等三角定义及其性质。

电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这
六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

按照三角形“边、角” 元素进行分类,师生共同归纳得
出:
1、一个条件:一角,一边
2、两个条件:两角;两边;一角一边
3、三个条件:三角;三边;两角一边;两边一角
按以上分类顺序动脑、动手操作,验证。

教师收集学生的作品,加以比较,得出结论:
只给出一个或两个条件时,都不能保证所画出的三角形一定全等。

下面将研究三个条件下三角形全等的判定。

(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。

学生得出结论后,再举例体会一下。

举例说明:
如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很显然不全等;
再如同是:等边三角形,边长不等,两个三角形也不全等。

等等。

(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。

板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。

实物演示:
由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。

举例说明该性质在生活中的应用
类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性
图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。

题组练习(略)
3、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。

对一般学生要求口头表达理由,并能说明每一步的根据。

)
教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。

在教师引导下回忆前面知识,为探究新知识作好准备。

议一议:
学生分小组进行讨论交流。

受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件…经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。

想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?画一画:
按照下面给出的两个条件做出三角形:
(1)三角形的两个角分别是:30°,50°
(2)三角形的两条边分别是:4cm,6cm
(3)三角形的一个角为30,一条边为3cm
剪一剪:
把所画的三角形分别剪下来。

比一比:
同一条件下作出的三角形与其他同学作的比一比,是否全等。

学生重复上面的操作过程,画一画,剪一剪,比一比。

学生总结出:三个内角对应相等的两个三角形不一定全等学生举例说明
学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。

鼓励学生自己举出实例,体验数学在生活中的应用.学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。

相关文档
最新文档