高频开关电源的干扰问题及解决方法

合集下载

抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。

根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。

1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。

电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。

电源进线端通常采用如图1 所示的EMI 滤波器电路。

该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。

在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。

而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。

抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。

当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。

因此,即使在大负载电流的情况下,磁芯也不会饱和。

而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。

2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。

采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。

可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。

开关电源中的干扰

开关电源中的干扰

开关电源中的干扰一.电源线噪声电网中各种用电设备产生的电磁骚扰沿着电源线传播所造成的,电源线的噪声分为两大类:共模干扰和差模干扰。

1.共模干扰(Common-mode Interference):两导线上的干扰电流振幅相等,而方向相同者称为共模干扰。

(任何载流体与地之间不希望有的电位)共模干扰的消除共模扼流圈工作原理如下:共模扼流圈当电路中的正常电流通过时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当共模电流流过线圈时,由于共模电流的同向性,会在线圈类产生同向的磁场而增大线圈的阻抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流达到滤波的目的。

共模电容的工作原理和差模电容的工作原理是一致的,都是利用电容的高频低阻性,使高频干扰电路短路,而低频时电路不受任何影响。

只是差模电容是两极之间短路,而共模电容是线对地短路。

消除共模干扰的方法包括:(1).采用双绞线并有效接地。

(2).强电场的地方还需要采用度锌管屏蔽。

(3).布线时远离高压线,更不能将高压电源线和信号线捆在一起走线。

(4).不要和电控所共用同一个电源。

(5).采用线形稳压电源或高品质的开关电源(纹波干扰小于50mV)(6).采用差分式电路2.差模干扰(Differential-mode Interference):两导线上的干扰电流,振幅相等,方向相反称为差模干扰。

(任何两个载流体之间不希望有的电位差)(电容C的容量范围大致是2200pF-0.1uF,为减小漏电流,电容量不宜超过0.1uF)差模干扰的消除当干扰信号频率越高时,Zc越小,效果越明显,而低频时电路不受任何影响。

(电容C的容量大致是0.01-0.47uF)任何电源线上传导干扰信号,均用差模和共模信号来表示,差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,一般指在两根信号线上产生的幅值相等,相位相同的噪声,属于非对对称性干扰。

高频开关电源中的电磁干扰与处置方式

高频开关电源中的电磁干扰与处置方式

高频开关电源中的电磁干扰与处置方式作者:靳慧来源:《电子技术与软件工程》2018年第01期高频开关电源是电力系统中较为常用的电气设备之一,它的运行稳定与否至关重要。

文章首先对高频开关电源电磁干扰的产生机进行简要分析,在此基础上对处置高频开关电源电磁干扰问题有效方式进行论述。

期望通过本文的研究能对高频开关电源电磁干扰问题的解决提供帮助。

【关键词】高频开关电源电磁干扰处置1 高频开关电源电磁干扰的产生机理分析在分析高频开关电源电磁干扰的产生机理之前,需要先对高频开关电源的构成情况进行简单的了解,其构成框架如图1所示。

1.1 电磁干扰的成因由图1可知,高频开关电源通过整流会将工频交流变为直流,再经过逆变之后,转为高频,最后利用滤波电路完成输出,进而获得相对稳定的直流电压,在电流转换的过程中,存在大量的谐波干扰,不仅如此,变压器的漏电感应和输出二极管的反向恢复电流所形成的尖峰也都存在一定的电磁干扰。

在高频开关电源中,电磁干扰源主要集中在电流和电压变化较大的器件当中,如高频变压器、二极管、开关管等等。

1.2 电磁干扰的产生机理高频开关电源电磁干扰的产生机理与以下器件有关:开关和整流电路、高频变以及分布电容等等。

下面就此进行具体分析。

1.2.1 开关电路对于高频开关电源而言,开关电路是其核心组成部分,同时也是高频开关电源的主要干扰源。

常规的开关电路由以下两个部分组成:开关管盒高频变,由开关电路所产生出的du/dt具有脉冲冲击的特性,不但频带宽而且谐波也比较丰富,此类脉冲干扰的形成机理如下:高频变的初级线圈为开关管的负载,这个负载的性质为感性,当开关管导通时,会在初级线圈当中产生出较大的涌流,并在线圈两端呈现出较高的尖峰电压,而开关管断开时,因漏磁通的存在会导致部分能量无法才能够一次线圈传递到二次线圈,这部分能量会存在于电感当中,并与集电极电路中的电容和电阻形成衰减振荡,进而叠加于关断电压之上,在这一前提下,便会形成关断电压尖峰。

高频开关电源电磁干扰的处置措施与抗扰能力的提升

高频开关电源电磁干扰的处置措施与抗扰能力的提升

高频开关电源电磁干扰的处置措施与抗扰能力的提升摘要:随着半导体器件高频性能的逐步提升,高频开关电源得到了广泛的应用。

高频率不仅可以大大减小产品的体积,同时还能减小电源输出的纹波,保证输出的稳定。

但与此同时,高频的存在也同样增加了电源对周边环境的电磁干扰以及周边辐射对电源系统稳定性的风险。

为了使开关电源能够在相对高频的模式下顺利工作同时降低其产生的电磁干扰对其他设备的影响,必须采取有效措施抑制电磁干扰增加电磁抗扰。

因此,结合高频开关电源中电磁干扰的特点,提出了一些抑制电磁干扰,增加电源抗扰能力的措施关键词:高频开关电源;电磁干扰;抗扰能力;处置方式随着高频开关电源被广泛应用于通信、家用电器和自动控制等领域,电源的干扰与抗干扰设计越来越重要。

在大功率电源中,增加开关频率往往可有效减小电源体积,减低输出纹波,然而伴随而来的是产生较强的电磁干扰,较高的电压变化率。

电源中产生的电磁干扰信号进入电网,影响其他设备的正常工作。

较宽的频率范围和幅值导致电源开关不符合EMC 标准。

除了电网中的传导骚扰经电源入口进入电源外,从电源本身来看产生电磁干扰的主要部件是逆变过程中的功率开关管和高频变压器,这也是开关电源产生电磁干扰的主要原因。

1.高频开关电源的电磁干扰与抗扰高频开关电源的电磁干扰主要来自电源电路内部热点、功率器件以及高频变压器。

高频开关电源电磁抗扰主要是外部干扰对电源内部敏感器件的影响。

分析电磁干扰,基于以下两点分析:一、外部环境对电源的干扰,表现在电源上为电源的抗扰能力。

二、电源本身产生的干扰,表现为电磁骚扰。

一般的检测方式分为两种:一种为辐射干扰,另一种为传导骚扰。

1.1 电源外部产生的电磁干扰电源外部的电磁干扰一般包括电网内部电磁干扰、电磁脉冲干扰和静电放电干扰三种,它们体现了电源的抗扰能力。

(1)电网的电磁对电源的干扰一个完整的电网系统,必然连接诸多的电子设备和电器设备,这些设备相互之间会进行电磁转换。

开关电源的电磁干扰解决方法

开关电源的电磁干扰解决方法
输出整流二极管的反向恢复问题可以通过在输出整流管上串联一个饱和电感来抑制,,饱和电感Ls与二极管串联工作。饱和电感的磁芯是用具有矩形BH曲线的磁性材料制成的。同磁放大器使用的材料一样,这种磁芯做的电感有很高的磁导率,该种磁芯在BH曲线上拥有一段接近垂直的线性区并很容易进入饱和。实际使用中,在输出整流二极管导通时,使饱和电感工作在饱和状态下,相当于一段导线;当二极管关断反向恢复时,使饱和电感工作在电感特性状态下,阻碍了反向恢复电流的大幅度变化,从而抑制了它对外部的干扰。
差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路(如图6中电容CX1),只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等级,并能承受可预料的电压冲击即可。为了避免放电电流引起的冲击危害,CX电容容量不宜过大,一般在0.01~0.1μF之间。电容类型为陶瓷电容或聚酯薄膜电容。
ID=2πfCYVcY
式中:ID为漏电流;
f为电网频率。
一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。
1.2 输入电流畸变造成的噪声
开关电源的输入普遍采用桥式整流、电容滤波型整流电源。,在没有 PFC功能的输入级,由于整流二极管的非线性和滤波电容的储能作用,使得二极管的导通角变小,输入电流i成为一个时间很短、峰值很高的周期性尖峰电流。这种畸变的电流实质上除了包含基波分量以外还含有丰富的高次谐波分量。这些高次谐波分量注入电网,引起严重的谐波污染,对电网上其他的电器造成干扰。为了控制开关电源对电网的污染以及实现高功率因数,PFC电路是不可或缺的部分。

开关电源的电磁干扰及其滤波措施

开关电源的电磁干扰及其滤波措施

开关电源的电磁干扰及其滤波措施1引言开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛用于计算机及外围设备、通信、自动控制、家用电器等领域。

但开关电源的突出缺点是产生较强的电磁干扰(EMI)。

EMI信号既占有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子仪器造成干扰。

如果处理不当,开关电源本身就会变成一个干扰源。

随着电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关EMC标准或规范,已成为电子产品设计者越来越关注的问题。

2开关电源产生EMI的原理开关电源产生EMI的因素较多,其中由基本整流器产生的电流高次谐波干扰和变压器型功率转换电路产生的尖峰电压干扰是主要因素。

它们所以产生于电源装置的内部,是由于开关电源中的二级管和晶体管在工作过程中产生的跃变电压和电流,通过高频变压器、储能电感线圈和导线以及系统结构、元件布局等而造成的。

基本整流器的整流过程是产生EMI最常见的原因。

这是因为正弦波通过整流器后不再是单一频率的电流,而是变成单向脉动电源,此电流波形分解为一直流分量和一系列频率不同的交流分量之和。

实验结果表明,较高的谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰,使接收机等产生噪声。

变压器型功率转换电路是实现变压、变频以及完成输出电压调整的部件,是开关稳压电源的核心,主要由开关管和高频变压器组成。

它产生的尖峰电压是一种有较大辐度的窄脉冲,其频带较宽且谐波比较丰富。

产生这种脉冲干扰的主要原因是:(1) 开关功率晶体管感性负载是高频变压器或储能电感。

在开关管导通的瞬间,变压器初级出现很大的电流,它在开关管过激励较大时,将造成尖峰噪声。

这个尖峰噪声实际上是尖脉冲,轻者造成干扰,重者有可能击穿开关管。

(2) 由高频变压器产生的干扰。

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施
有效的开关电源电磁干扰抑制措施包括:
1. 选择合适的滤波器:在开关电源输入端、输出端以及变压器绕组的附近安装滤波器,可以有效滤除高频噪声和突变噪声,减少电磁辐射。

2. 使用磁性材料:在开关电源变压器绕组的附近使用磁性材料,如铁氧体、铁氟龙等,可以有效吸收和屏蔽电磁干扰。

3. 地线布局:合理布置地线,减少电磁干扰。

不同元器件的地线要分开布局,避免共
用一个接地点。

4. 合理选择元器件:选择低电阻、低电感、低容值的元器件,减少电路中的谐振,降
低电磁干扰。

5. 优化电路设计:合理布局和连接元器件,减少信号回路,增加信号路径的隔离,减
少电磁干扰。

6. 使用屏蔽材料:在开关电源敏感部分使用屏蔽材料,如铝箔、铁氧网、铜网等,将
电磁辐射封锁在内部。

7. 设计良好的接地系统:确保良好的接地系统,包括减少接地回路的电阻,建立良好
的接地连接。

8. 符合电磁兼容性标准:在设计和生产过程中遵循电磁兼容性标准,如EMC(电磁兼容性)标准,确保产品符合相关电磁干扰限制。

以上是一些常见的有效的开关电源电磁干扰抑制措施,根据具体的应用场景和需求,还可以采取其它的措施来减少电磁干扰的影响。

高频开关电源电磁干扰

高频开关电源电磁干扰

内容摘要现代电子、通信技术的发展对电源的要求越来越高。

高频开关电源以其体积小、重量轻、变换效率高等优点,广泛应用于家电、计算机、通信、控制等设备中。

但高频开关电源固有的高频辐射及传导的电磁干扰发射对开关电源效率及使用的影响已成为人们关注的热点。

因此,本文主要研究了高频开关电源电磁干扰及其抑制措施。

论文首先介绍了开关电源的概念、高频开关电源电磁干扰产生的原因,并综述了高频开关电源的发展趋势,其次具体探讨了抑制高频开关电源电磁干扰的措施。

关键词:高频开关电源;电磁干扰;抑制措施目录内容摘要 (I)引言 (3)1 高频开关电源电磁干扰产生的原因分析 (4)1.1 开关电源的定义 (4)1.2 高频开关电源的电磁干扰分析 (4)1.3 高频开关电源的发展趋势 (5)2 高频开关电源的电磁干扰的抑制措施 (8)2.1 抑制开关电源中各类电磁干扰源 (8)2.2 破坏电磁干扰传输途径 (8)2.3 其它解决方法 (10)3 高频开关电源电子干扰滤波的分析与仿真 (11)3.1 研究方法和实验方案 (11)3.2 开关电源电磁干扰的仿真 (12)结论 (14)参考文献 (15)引言开关电源由于具有体积小、重量轻、效率高、稳压范围宽等许多优点,己经广泛应用于计算机及其外围设备、通信、自动控制、家用电器等领域。

然而,开关电源自身产生的各种噪声干扰却形成了一个很强的电磁干扰源。

这些干扰随着开关频率的提高、输出功率的增大而明显地增强,不仅对与通信电源在同一电网上供电的其它设备及电网产生干扰,同时对由通信电源供电的其它设备产生干扰,使设备不能正常工作;另一方面严重的谐波电压电流在开关电源内部产生电磁干扰,从而造成开关电源内部工作的不稳定,使电源的性能降低。

因此,只有提高开关电源的电磁兼容性,才能发挥开关电源的更大优势,使开关电源在那些对电源噪声指标有严格要求的场合下被采用。

1 高频开关电源电磁干扰产生的原因分析1.1 开关电源的定义开关电源是作为线性稳压电源的一种替代物出现的,开关电源这一称谓也是相对于线性稳压电源而产生的。

开关电源的抗干扰解决方法(3)

开关电源的抗干扰解决方法(3)

开关电源的抗干扰解决方法(3)开关电源的抗干扰解决方法图4 高频工作下的元件频率特性2 开关电源emi抑制措施电磁兼容的三要素是干扰源、耦合通路和敏感体,抑制以上任何一项都可以减少电磁干扰问题。

开关电源工作在高电压大电流的高频开关状态时,其引起的电磁兼容性问题是比较复杂的。

但是,仍符合基本的电磁干扰模型,可以从三要素入手寻求抑制电磁干扰的方法。

2.1 抑制开关电源中各类电磁干扰源为了解决输入电流波形畸变和降低电流谐波含量,开关电源需要使用功率因数校正(pfc)技术。

pfc技术使得电流波形跟随电压波形,将电流波形校正成近似的正弦波。

从而降低了电流谐波含量,改善了桥式整流电容滤波电路的输入特性,同时也提高了开关电源的功率因数。

软开关技术是减小开关器件损耗和改善开关器件电磁兼容特性的重要方法。

开关器件开通和关断时会产生浪涌电流和尖峰电压,这是开关管产生电磁干扰及开关损耗的主要原因。

使用软开关技术使开关管在零电压、零电流时进行开关转换可以有效地抑制电磁干扰。

使用缓冲电路吸收开关管或高频变压器初级线圈两端的尖峰电压也能有效地改善电磁兼容特性。

输出整流二极管的反向恢复问题可以通过在输出整流管上串联一个饱和电感来抑制,如图5所示,饱和电感ls与二极管串联工作。

饱和电感的磁芯是用具有矩形bh曲线的磁性材料制成的。

同磁放大器使用的材料一样,这种磁芯做的电感有很高的磁导率,该种磁芯在bh曲线上拥有一段接近垂直的线性区并很容易进入饱和。

实际使用中,在输出整流二极管导通时,使饱和电感工作在饱和状态下,相当于一段导线;当二极管关断反向恢复时,使饱和电感工作在电感特性状态下,阻碍了反向恢复电流的大幅度变化,从而抑制了它对外部的干扰。

图5 饱和电感在减小二极管反向恢复电流中的应用2.2 切断电磁干扰传输途径——共模、差模电源线滤波器设计电源线干扰可以使用电源线滤波器滤除,开关电源emi滤波器基本电路如图6所示。

一个合理有效的开关电源emi滤波器应该对电源线上差模干扰和共模干扰都有较强的抑制作用。

开关电源电磁干扰(EMI)整改汇总

开关电源电磁干扰(EMI)整改汇总

开关电源电磁干扰(EMI)整改汇总开关电源类产品的频率大概分四段:150K-400K-4M-20M-30M,这样分的好处是找问题迅速,一般前一段的主要问题在于滤波元器件上。

小功率开关电源用一个合适的X电容和一个共模电感可消除,从增加的元件对测试结果来看,一般电感对A V值有效,电容对QP值有效。

当然,这只是一般规律。

电容越大,滤除的频率越低。

电感越大(适可而止),滤除的频率越高。

400K-4M这一段主要是开关管,变压器等的干扰。

可以在管与散热片之间加屏蔽层(云母片),或者在引脚上套磁珠。

吸收电路上套磁珠有时也很有效。

变压器初次级之间的Y 电容也是不容忽视的。

次级对初级高压端合适还是低压端有时候对这段频率影响很大。

除此之外,调整滤波器也可以抑制其骚扰。

4M-20M这段主要是变压器等高频干扰,在没有找到根源前,大概通过调整滤波,接地,加磁珠等手段解除,有时也可能是输出端的问题。

20M 以后主要针对齐纳二级管,输出端电源输入端整改。

一般是用到磁珠,接地等。

值得注意的是,滤波器件因该远离变压器,散热器,否则容易耦合。

镇流器整改原理和开关电源类似,但是前部分超标并非调整滤波器件就都可以解除,最有效的办法是Y电容金属外壳,外壳再连接地线。

磁珠对高频抑制效果不错。

根据IEC 60384-14,电容器分为X电容及Y电容,1. X电容是指跨于L-N之间的电容器,2. Y电容是指跨于L-G/N-G之间的电容器。

(L="Line", N="Neutral", G="Ground")X电容底下又分为X1, X2, X3,主要差別在于:1. X1耐高压大于2.5 kV, 小于等于4 kV,2. X2耐高压小于等于2.5 kV,3. X3耐高压小于等于1.2 kVY电容底下又分为Y1, Y2, Y3,Y4, 主要差別在于:1. Y1耐高压大于8 kV,2. Y2耐高压大于5 kV,3. Y3耐高压n/a4. Y4耐高压大于2.5 kVX,Y电容都是安规电容,火线零线间的是X电容,火线与地间的是Y电容.它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模工扰起滤波作用.作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板 (PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。

高频开关电源中的电磁干扰问题及抑制措施

高频开关电源中的电磁干扰问题及抑制措施

高频开关电源中的电磁干扰问题及抑制措施中国人民解放军78156部队重庆市九龙坡区 400039摘要:高频开关电源,在电力系统中属于比较常用的电气设备,也叫开关型整流器。

它的开关频率在50-100kHz可控范围内,主要是在IGBT或MOSFET的帮助下完成高频工作,具有运行稳定和高效率的特点,但同时也会受到电磁干扰的问题困扰。

本文通过对电磁干扰的成因及产生的机理进行分析,探讨能够抑制高频开关电源中的电磁干扰问题的有效策略,以供参考。

关键词:高频开关电源;电磁干扰;抑制措施前言:在电力系统中,由于开关电源本身重量轻、体积小和效率高的特点,被广泛应用在家用电器、计算机、通信、自动控制等电子设施设备上。

同时由于在高频条件下,开关电源工作会产生一定强度的电磁干扰,经过辐射和传导的过程,对周围的电磁环境造成一定程度的污染,进而影响电子设备的使用。

一、电磁干扰的类型在高频开关电源中,电磁干扰的来源主要来自两个方面,即设备电源自己内部出现的电磁干扰,以及设备外的电磁干扰。

设备外的电磁干扰,主要包括电磁脉冲(EMP)干扰、电网中的电磁干扰和静电放电(ESD)干扰等,而在高频开关电源的设备内部,产生电磁干扰的原因,主要是高频变压器、整流器等各种器件。

二、电磁干扰的成因由于高频开关电源本身就是个干扰源,这是由其原理所决定的。

在经过整流时,高频开关电源通过把交流电变成直流电,采用DC/AC变换技术,变成高频,经过滤波电路,滤去电流中输出电压中存在的纹波,可以使直流电压更加稳定。

但是在实现电流转换过程里,难以避免会出现许多谐波干扰问题。

此外,由于变压器存在漏电感应,与输出二极管的反向恢复电流所形成的尖峰,也存在一定的电磁干扰。

三、高频开关电源电磁干扰问题和机理(一)开关电路在高频开关电源中,开关电路既是重要的核心部分,也是主要电磁干扰源。

开关电路一般由两个组成部分。

一是道额雌花冲击电流瞬变,属于传感型的电磁干扰。

对变压器初级和配电系统形成一定影响,使电网收到谐波干扰,影响电气设备的正常运行[2]。

开关电源传导骚扰和辐射骚扰解决方法

开关电源传导骚扰和辐射骚扰解决方法

开关电源传导骚扰和辐射骚扰解决方法开关电源是一种常见的电源供应器,在电子设备中广泛应用。

但是,开关电源工作时会产生电磁辐射和传导骚扰问题。

为了解决这些问题,可以采取以下方法:1.电磁屏蔽材料的使用:使用电磁屏蔽材料将开关电源封装起来,阻挡电磁辐射的传播,减少对周围设备和人员的骚扰。

这种材料通常是在电源外部或内部的铁壳上加上一层导电材料,如铜箔。

通过将电磁波引导到导体上,使其在外部不能通过,并通过接地,排除电磁波。

2.优化电源布线:合理优化电源布线,减少线路长度和交叉区域,减少电磁辐射。

如果电源线和信号线发生交叉,可以采取绕线或分离线路的方式,避免相互干扰,减少传导骚扰。

3.使用滤波器:在开关电源输入和输出端之间安装滤波器,可以抑制输入和输出信号的噪声,减少骚扰。

输入滤波器通常是由电容器和电感器组成,用于消除输入端的高频噪声。

输出滤波器通常是由电容器和电感器组成,用于消除输出端的高频噪声。

4.电源线的屏蔽:使用屏蔽电源线可以减少电磁辐射和传导骚扰。

屏蔽电源线通过在电源线外部包裹一层金属网或箔片,将电磁辐射和传导骚扰限制在金属屏蔽层内部。

5.合理设计散热系统:开关电源工作时会产生较大的热量,如果不能有效散热,会影响电源的工作效率,并可能导致电磁辐射和传导骚扰。

因此,电源的散热系统设计应合理,采用优质散热材料和风扇等散热设备,确保电源的正常工作和延长寿命。

6.选择高质量的开关电源产品:选择经过认证的高质量开关电源产品,这些产品通常具有较低的辐射和骚扰,较好的EMC性能。

这些产品经过专业的测试和验证,能够有效减少对其他设备的影响。

7.定期维护和检修:开关电源在长时间使用后,可能出现故障或老化现象,会导致电磁辐射和传导骚扰的增加。

因此,定期进行维护和检修工作,及时发现和解决问题,可以减少对设备和人员的骚扰。

总之,开关电源的电磁辐射和传导骚扰是一个需要重视的问题,可以通过采取合适的措施来解决。

这些方法包括使用电磁屏蔽材料、优化电源布线、使用滤波器、使用屏蔽电源线、合理设计散热系统、选择高质量产品以及定期维护和检修等。

开关电源的共模干扰抑制技术,开关电源共模电磁干扰(EMI)对策详解

开关电源的共模干扰抑制技术,开关电源共模电磁干扰(EMI)对策详解

开关电源的共模干扰抑制技术|开关电源共模电磁干扰(EMI)对策详解由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。

传导是电力电子装置中干扰传播的重要途径。

差模干扰和共模干扰是主要的传导干扰形态。

多数情况下,功率变换器的传导干扰以共模干扰为主。

本文介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功地应用于多种功率变换器拓扑中。

理论和实验结果都证明了,它能有效地减小电路中的高频传导共模干扰。

这一方案的优越性在于,它无需额外的控制电路和辅助电源,不依赖于电源变换器其他部分的运行情况,结构简单、紧凑。

1 补偿原理共模噪声与差模噪声产生的内部机制有所不同:差模噪声主要由开关变换器的脉动电流引起;共模噪声则主要由较高的d/d与杂散参数间相互作用而产生的高频振荡引起。

如图1所示。

共模电流包含连线到接地面的位移电流,同时,由于开关器件端子上的d/d是最大的,所以开关器件与散热片之间的杂散电容也将产生共模电流。

图2给出了这种新型共模噪声抑制电路所依据的本质概念。

开关器件的d/d通过外壳和散热片之间的寄生电容对地形成噪声电流。

抑制电路通过检测器件的d/d,并把它反相,然后加到一个补偿电容上面,从而形成补偿电流对噪声电流的抵消。

即补偿电流与噪声电流等幅但相位相差180°,并且也流入接地层。

根据基尔霍夫电流定律,这两股电流在接地点汇流为零,于是50Ω的阻抗平衡网络(LISN)电阻(接测量接收机的BNC端口)上的共模噪声电压被大大减弱了。

图1 CM及DM噪声电流的耦合路径示意图图2 提出的共模噪声消除方法2 基于补偿原理的共模干扰抑制技术在开关电源中的应用本文以单端反激电路为例,介绍基于补偿原理的共模干扰抑制技术在功率变换器中的应用。

图3给出了典型单端反激变换器的拓扑结构,并加入了新的共模噪声抑制电路。

开关电源的电磁干扰及噪声抑制方法

开关电源的电磁干扰及噪声抑制方法

开关电源的电磁干扰及噪声抑制方法开关电源是现代电子应用中常见的一种电源形式,其工作原理是通过开关管开关控制输入电压的大小和频率以实现电压转换。

但是,开关电源在工作过程中会产生电磁干扰和噪声,对其他电子设备的正常工作产生影响。

因此,为了抑制开关电源的电磁干扰和噪声,在设计和使用开关电源时需要采取一些措施。

首先,开关电源产生的电磁干扰主要包括导向式干扰和辐射式干扰。

导向式干扰是指开关电源通过引线或线路对周围设备产生的电磁干扰,辐射式干扰是指开关电源通过电磁波辐射对周围设备产生的干扰。

对于导向式干扰,可以采取以下措施进行抑制:1.滤波器:在开关电源的输入和输出端加装滤波器,用于滤除高频噪声和电磁干扰。

常用的滤波器有LC滤波器、RC滤波器和Pi型滤波器等。

2.输入电源线路的处理:尽量缩短输入电源线路的长度,采用屏蔽线材,减小电磁干扰的传播路径。

同时,在输入电源线上添加额外的滤波电容和电感,抑制高频噪声。

3.地线处理:通过合理布置地线,减小接地电阻,提高地线的抗干扰能力。

将开关电源的地线与其他设备的接地点连接,共用同一个地线。

对于辐射式干扰,可以采取以下措施进行抑制:1.屏蔽:在开关电源的外壳上添加金属屏蔽罩,减少电磁辐射。

金属屏蔽罩应与开关电源的地线连接,以形成完整的屏蔽。

2.PCB设计:在开关电源的PCB板设计中,合理布局信号和电源线路,减小线路的长度。

同时,采用地平面和电源平面屏蔽,减少信号线和电源线的交叉和干扰。

3.使用低频率开关管:低频率工作的开关管辐射干扰较小,可以有效降低开关电源的电磁辐射干扰。

此外1.选择合适的元器件:选用带有防干扰措施的元器件,如具有抗干扰特性的电解电容和电感器件,减小干扰的产生和传播。

2.电源输出滤波:在开关电源的输出端添加滤波电容和电感,减小输出电压的纹波和噪声。

3.接地处理:通过合理的接地设计和连接方式,减小接地电阻,提高接地抗干扰能力。

4.EMI滤波器:在开关电源的输入端和输出端加装EMI滤波器,进一步滤除高频噪声和电磁干扰。

高频开关电源的干扰问题及解决方法

高频开关电源的干扰问题及解决方法

高频开关电源的干扰问题及解决方法随着电源技术的发展,高频开关电源控制从最初的模拟电路逐渐发展到微处理器、DSP等高集成度的控制器件,这些器件体积小、精密度高,但开关电源内的电磁干扰、辐射相对其他通讯设备工作环境更强,这对辅助电源提出了更高的要求。

本文对高频开关电源内辅助电源的工作特性和波形加以阐述,并着重根据实验数据来分析高频开关电源设计中应注意的问题和参数的选择。

一、高频开关电源的干扰问题在目前的智能开关电源中,都有机内微处理器或DSP,作机内监控和通讯之用。

微处理芯片对供电电源要求很高,要求幅值相当稳定,更不能带有较大尖峰毛刺,造成电磁干扰,而且要求辅助电源的交流适应能力比整流器正常工作的范围更广。

当整流器接上交流输入电时,必须是监控部分先正常工作,进行自检和各种状况的检测,以确定整流器能否开机;如遇极高或极低交流电压,整流器虽已停止工作,但监控部分仍要正常工作,保持正常的监控和通讯。

某些电源产品运行过程中曾出现无故复位等现象,在进行大功率开关电源的辅助电源设计的时候,对其进行分析,发现其辅助电源在不同交流输入电压、不同负载条件下存在比较多的问题:交流适应范围窄,负载能力低,工作波形不稳且极不对称,出现偏磁,电磁干扰极严重等。

一般开关整流器辅助电源的工作原理是:输入交流电经整流成为高压直流电,然后经变换电路成为低压高频方波,再经由整流滤波电路成为系统所需的平稳低压直流电,一般由三端稳压器稳压,由一路直流输出提供高频变换驱动脉冲控制环的电压反馈信号。

由功率变换的主回路上串电阻采样作为电流反馈信号,功率变换管的驱动脉冲由UC3844等控制芯片及其外围电路产生。

(注:交流低压是辅助电源开始启动工作时最低输入电压实测值)可以看到,在较低的交流输入电压、无电流反馈条件下辅助变压器已经不能正常工作,其波形的脉宽是不一样的,有的宽有的窄,而且发生抖动,示波器已无法稳定地抓住波形。

电流反馈,波形的脉宽也是有宽有窄,占空比达到了47%,而UC3844的最大占空比仅为50%,如果增加负载,输出电压会降低。

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施本文先分析了开关电源产生电磁干扰的机理, ,就目前几种有效的开关电源电磁干扰措施进行了分析比较,并为开关电源电磁干扰的进一步研究提出参考建议。

目前,许多大学及科研单位都进行了开关电源EMI(Electromagnetic Interference)的研究,他们中有些从EMI产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。

这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。

一、开关电源电磁干扰的产生机理开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。

现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。

2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。

例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。

当采用零电流、零电压开关时,这种谐波干扰将会很小。

另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。

3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。

开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。

这种通过电磁辐射产生的干扰称为辐射干扰。

4、其他原因元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。

开关电源的噪音及解决方法

开关电源的噪音及解决方法

开关电源具有线性电源无可比拟的许多优点:体积小,重量轻,效率高等等,但开关电源会产生电磁干扰,尤其是中大功率等级的开关电源干扰更为严重。

这是由于开关电源存在着整流谐波、开关频率和它的谐波以及在开关转换中所固有的高速电流和电压瞬变。

产生电磁干扰是开关电源本身的特点所决定的,是难以避免的,关键是如何采取有效的措施来减小其干扰程度。

通过对开关电源进行电磁兼容性测试得知,一般有以下四项指标不合格。

CE01100Hz~15KHz电源线传导发射。

CE0315KHz~50MHz电源线传导发射。

RE0125Hz~50KHz磁场辐射发射。

RE0214KHz~10GHz电场辐射发射。

2开关电源电磁干扰产生原因分析开关电源按主电路型式可分为全桥式,半桥式,推挽式等几种,但无论何种类型的开关电源在工作时都会产生很强的噪声。

它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射。

开关电源对由电网侵入的外部噪声也很敏感,并经它传递到其他电子设备中产生干扰。

图1是一种最简单的开关电源主电路型式,直流变换式它激单边型开关电源,以此为例分析开关电源的噪声来源。

交流电输入开关电源后,由桥式整流器V1~V4整理成直流电压Vi加在高频变压器的初级L1和开关管V5上。

开关管V5的基极输入一个几十到几百千赫的高频矩形波,其重复频率和占空比由输出直流电压VO的要求来确定。

被开关管放大了的脉冲电流由高频变压器耦合到次级回路。

高频变压器初次级匝数之比也是由输出直流电压VO的要求来确定的。

高频脉冲电流经二极管V6整流并经C2滤波后变成直流输出电压VO。

因此开关电源在以下几个环节都将产生噪声,形成电磁干扰。

(1)高频变压器初级L1、开关管V5和滤波电容C1构成的高频开关电流环路,可能会产生较大的空间辐射。

如果电容器滤波不足,则高频电流还会以差模方式传导到输入交流电源中去。

如图1中的I1 。

(2)高频变压器次级L2、整流二极管V6、滤波电容C2也构成高频开关电流环路会产生空间辐射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频开关电源的干扰问题及解决方法
 随着电源技术的发展,高频开关电源控制从最初的模拟电路逐渐发展到微处理器、DSP等高集成度的控制器件,这些器件体积小、精密度高,但开关电源内的电磁干扰、辐射相对其他通讯设备工作环境更强,这对辅助电源提出了更高的要求。

本文对高频开关电源内辅助电源的工作特性和波形加以阐述,并着重根据实验数据来分析高频开关电源设计中应注意的问题和参数的选择。

 一、高频开关电源的干扰问题
在目前的智能开关电源中,都有机内微处理器或DSP,作机内监控和通讯之用。

微处理芯片对供电电源要求很高,要求幅值相当稳定,更不能带有较大尖峰毛刺,造成电磁干扰,而且要求辅助电源的交流适应能力比整流器正常工作的范围更广。

当整流器接上交流输入电时,必须是监控部分先正常工作,进行自检和各种状况的检测,以确定整流器能否开机;如遇极高或极低交流电压,整流器虽已停止工作,但监控部分仍要正常工作,保持正常的监控和通讯。

某些电源产品运行过程中曾出现无故复位等现象,在进行大功率开关电源的辅助电源设计的时候,对其进行分析,发现其辅助电源在不同交流输入电压、不同负载条件下存在比较多的问题:交流适应范围窄,负载能力。

相关文档
最新文档