求向量组的秩与极大无关组(修改整理)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求向量组的秩与最大无关组
一、对于具体给出的向量组,求秩与最大无关组
1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵
【定理】矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等)
①把向量组的向量作为矩阵的列(或行)向量组成矩阵A;
②对矩阵A进行初等行变换化为阶梯形矩阵B;
③阶梯形B中非零行的个数即为所求向量组的秩.
【例1】求下列向量组a1=(1, 2, 3, 4),a2 =( 2, 3, 4, 5),a3 =(3, 4, 5, 6)的秩. 解1:以a1,a2,a3为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求.
因为阶梯形矩阵的列秩为2,所以向量组的秩为2.
解2:以a1,a2,a3为行向量作成矩阵A,用初等行变换将A化为
阶梯形矩阵后可求.
因为阶梯形矩阵的行秩为2,所以向量组的秩为2.
2、求向量组的最大线性无关组的方法
方法1 逐个选录法
给定一个非零向量组A:α1, α2,…, αn
①设α1≠ 0,则α1线性相关,保留α1
②加入α2,若α2与α1线性相关,去掉α2;若α2与α1线性无关,保留α1,α2;
③依次进行下去,最后求出的向量组就是所求的最大无关组
【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T T
ααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1
取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。 所以最大无关组为a 1,a 2 方法2 初等变换法
【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立.
向量组:α1=(1,2,3)T
, α2=(-1,2,0)T
, α3=(1,6,6)T
由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换
①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ;
③A 中的与B 的每阶梯首列对应的向量组,即为最大无关组.
【例3】求向量组 :α1=(2,1,3,-1)T
, α2=(3,-1,2,0)T
, α3=(1,3,4,-2)T
, α4=(4,-3,1,1)T
的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。
解 以α1,α2,α3,α4为列构造矩阵A , 并实施初等行变换化为行阶梯形矩阵求其秩:
()⎛⎫⎛⎫ ⎪ ⎪--
⎪ ⎪==→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭123423141-13-3113305-510,,,324105-51010210-11-2A αααα---⎛⎫ ⎪
⎪→ ⎪ ⎪
⎝⎭
1133011200000000 知r (A )=2, 故向量组的最大无关组含2个向量
而两个非零行的非零首元分别在第1, 2列, 故α1,α2为向量组的一个最大无关组
事实上,()⎛⎫ ⎪
⎪→ ⎪ ⎪⎝⎭1211010000αα-, 知r (α1,α2)=2, 故α1,α2 线性无关 为把α3,α4用α1,α2线性表示, 把A 变成行最简形矩阵 10
2
-101-1200000
000⎛⎫ ⎪
⎪
→= ⎪
⎪
⎝⎭A B
记矩阵B=(β1, β2, β3, β4),因为初等行变换保持了列向量间的线性表出性,因此向量α1,α2,α3,α4与向量β1, β2, β3, β4之间有相同的线性关系。
()312412210101
212,2000000⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪==+-=-=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
ββββββ而
因此α3=2α1-α2, α4=-α1+2α2
【例4】求下列向量组的一个最大无关组,其中:
()11,2,0,3α=-()22,5,3,6α=--()30,1,3,0,α=()42,1,4,7α=--()55,8,1,2.α=-
解:以给定向量为列向量作成矩阵A ,用初等行变换将A 化为阶梯形矩阵B
再利用初等行变换,将B 再化成行最简形矩阵C .
用最大线性无关组表示其它向量的方法为: ①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ; ③把阶梯形B 进行初等行变换化为行最简形矩阵C ;
④根据行最简形矩阵列向量的分量,用最大无关组表示其它向量.
【例5】 求向量组,,,的秩和一个最大无关组.
解:
(1) 当且时,,故向量组的秩为3,且是一个最大无关组;
(2) 当时,,故向量组的秩为3,且是一个最大无关组;
初等矩阵A, B, C 初等变换行作为 求秩无关 B 中见 线性无关 C 做陪
(3) 当时,若,则,此时向量组的秩为2,且是一个最大无关组.若,则,此时向量组的秩为3,且是一个最大无关组.
(2)行向量列变换
同理, 也可以用向量组中各向量为行向量组成矩阵(即列向量的转置矩阵), 通过做初等列变换来求向量组的最大无关组。
【例6】求向量组,,,,的一个最大无关组.
解:以给定向量为行向量作成矩阵A,用初等列变换将A化为行最简形:
(行向量列变换)
由于的第1,2,4个行向量构成的向量组线性无关,故是向量组的一个最大无关组.
方法3 线性相关法(了解)
若非零向量组A:α1, α2,…, αn线性无关,则A的最大无关组就是α1, α2,…, αn
若非零向量组A线性相关,则A中必有最大无关组
二、对于抽象的向量组,求秩与最大无关组常利用一些有关的结论,如:
1、若向量组(Ⅰ)可由向量组(Ⅱ)线性表示,则(Ⅰ)的秩不超过(Ⅱ)的秩
2、等价向量组有相同的秩
3、秩为的向量组中任意个线性无关的向量都是该向量组的最大无关组
【例7】设向量组的秩为.又设
,,
求向量组的秩.