柴油机高压共轨电控燃油喷射技术介绍
共轨式柴油电喷控制技术概述
理.word版本可编辑.欢迎下载支持. 共轨式柴油电喷控制技术概述,进而控制喷油器工作,即按设定的要求喷出或停喷高压燃油。
(2)中压共轨系统(共轨蓄压式)。
该系统有一个共轨输油泵、油压增压器、蓄压式喷油器和其它一些的部件组成。
该系统的控制油为燃油,仅有一套供油回路。
输油泵挤出压力为2~10MPa之间。
其关键在于它采用一个有压式喷油器,其所具有蓄压性能可允许泵油能量的积累和喷射过程有一定的时间间隔,可大大降低对停油压力要求。
即低压共轨、高压喷射。
(3)共轨液压式燃油喷射系统分燃油和润滑油两个线路,其中润滑油为喷油控制油,理.word版本可编辑.欢迎下载支持. 高压机油泵将润滑油挤入共轨油管,并作用到喷油器,共轨油压的电磁阀控制,压力在4~23MPa之间调节。
其工作过程为电磁阀通电后,共轨润滑油进入增压活塞上方,活塞下分压缩柴油、高压柴油打开针阀形成高压喷射。
3.柴油机电控燃油喷射系统的组成柴油机电控燃油喷射系统除了控制喷油量外,对喷油正时和喷油的压力都有很高的要求(柴油机电控燃油喷射系统的喷油压力较高约19.6MPa),各种柴油电控系统的区别理.word版本可编辑.欢迎下载支持. 在于控制功能、传感器的数量和类型、执行元件的类型、ECU控制软件、主要电控元件的结构原理和安装位置,基本组成与其他电子控制系统一致,也由传感器一ECU一执行元件三部分组成。
(1)传感器。
传感器有曲轴转速传感器、凸轮轴转速传感器、冷却液和燃油温度传感器、空气流量计、加速踏板传感器、增压压力传感器等。
(2)柴油机电控单元(ECU)。
根据各传感器输入信号和内存程序,计算出供(喷)油量和供(喷)油开始时刻,并向执行元件发出执行令信号。
理.word版本可编辑.欢迎下载支持.(3)执行元件。
执行ECU的指令,调节柴油机的供(喷)油量和供(喷)油正时。
执行元件为喷油器、压力控制阀、增压压力调节器等。
二、柴油机电控技术的发展及其电控燃油喷射系统的优点柴油机电控技术是在解决能源危机和排放污染两大难题的背景下,在飞速发展的电子控制技术平台上发展起来的。
柴油机共轨电控燃油喷射技术
柴油机共轨电控燃油喷射技术随着世界各国工程机械、运输车辆等数量增加,柴油机排放的尾气已经成为对地球环境的主要污染原因之一,如何采取措施保护人类赖以生存的地球环境已是当务之急。
我国从八十年代起相应制订了有关的标准,将环境保护作为大事来抓。
与此同时,世界各国也已开始寻找和探究其他方法和采取其他有效的技术措施主动地减少和控制污染物的排放。
共轨式电控燃油喷射技术正是从众多方法和措施中脱颖而出的一项较为成功的控制柴油机污染排放的新技术。
柴油机高速运转时,柴油喷射过程的时间只有千分之几秒。
实验证明,喷射过程中,高压油管各处的压力是随时间和位置的不同而变化的。
柴油的可压缩性质和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。
油管内的压力波动有时还会在喷射之后,使高压油管内的压力再次上升,达到令喷油器针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象。
由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,并使油耗增加。
此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定喷射,尤其在低速区域容易产生上述现象。
严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。
为了解决柴油机燃油压力变化所造成的缺陷,现代柴油机采用了一种称之为“共轨”的电喷技术。
1、原理一般认为,柴油机喷油技术经历了传统的纯机械操纵式喷油和现代的电控操纵式喷油两个发展阶段。
现代电控燃油喷油技术的崛起,则是计算机技术和传感检测技术迅猛发展的结果。
目前,电控喷油技术已从初期的位置控制型发展到时间控制型。
共轨式电控燃油喷射设技术正是属于后者。
共轨电喷技术是指在由高压油泵、压力传感器和电子控制装置(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。
它是由高压油泵将高压燃油输送到公共供油管,通过公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度,因此,也就减少了传统柴油机的缺陷。
柴油机共轨式电控高压喷射系统简介
柴油机共轨式电控高压喷射系统的工作原理
当电磁阀通电时,外阀 3 向上运动,
内阀下部密封锥面结合阀座(外阀下部内 锥),共轨高压油不在进入控制室 7,外 阀 3 下部外锥面与阀座分开,控制室内的 燃油通过回油管 5 回到油箱,从而控制室 7 的油压下降。针阀 9 的承压锥面的压力 作用下针阀上移,喷油器喷油,如图 10.2 (b)所示。
实现喷油器的喷油控制。 二位三通电磁阀主要由阀体、电磁线圈、
内阀和外阀组成,如图 10.2 所示。内阀 2 与电
磁线圈 4 均固定在阀体上,外阀 3 与电磁阀电枢 做成一体,电磁线圈通电和断电时,外阀 3 则上、 下运动。
柴油机共轨式电控高压喷射系统的工作原理
当电磁阀断电时,外阀 3 向下运动,
内阀下部密封锥面离开阀座(外阀下部内 锥),共轨高压油进入控制室 7,同时, 外阀 3 下部外锥面与阀座闭合控制回油管 不回油。控制活塞 8 的面积大于针阀 9 的 承压锥面面积,针阀下移不喷油,如图 10.2(a)所示。
节流孔共同进油,控制室 7的燃油压力上升迅速,控制活塞促使针阀下行断油快,
满足停油“干脆”的要求。
谢谢
柴油机共轨式电控高压喷射系统的组成
柴油机共轨式电控高压喷射系
统主要由供油系统和控制系统组
成,如图 10.1 所示。供油系统包括
油箱、低压输油泵、高压输油泵、 共轨、喷油器等元件组成。控制系 统由传感器、ECU、执行器组成。
其中执行器主要有调压阀 14 和三通 电磁阀 2。
柴油机共轨式电控高压喷射系统的组成
柴油机共轨式电控高压喷射系统的工作原理
喷油规律控制
电磁阀 2 与控制室 7 的油路由一个单向阀和节流孔并联组成(图 10.1)。 当电磁阀通电时,电磁阀关闭进油通道,打开回油通道。此时,因为单向
电喷柴油高压共轨发动机喷油嘴技术解析
电喷柴油高压共轨发动机喷油嘴技术解析喷油器的作用是根据 ECU 发出的控制信号,通过控制电磁阀的开启和关闭,将高压油轨中的燃油以最佳的喷油定时、喷油量和喷油率喷入燃烧室。
柴油机高压共轨喷油器实物图喷油器的结构可以被拆分为三个功能部件:孔式喷油嘴,液压伺服系统和电磁阀。
高压共轨柴油机喷油器解剖图柴油机高压共轨喷油器实物图柴油机高压共轨喷油器结构-线圈断电:球阀关闭控制腔压力+针阀弹簧压力 > 针阀腔压力燃油来自于高压油路,经通道流向喷油嘴,同时经节流孔流向控制腔,控制腔与燃油回路相连,途径一个受电磁阀控制其开关的泄油孔。
泄油孔关闭时,作用于针阀控制活塞的液压力超过了它在喷油嘴针阀承压面的力,结果,针阀被迫进入阀座且将高压通道与燃烧室隔离,密封。
当喷油器的电磁阀被触发,泄油孔被打开,这引起控制腔的压力下降,结果,活塞上的液压力也随之下降,一旦液压力降至低于作用于喷油嘴针阀承压面上的力,针阀被打开,燃油经喷孔喷入燃烧室。
这种对喷油嘴针阀的不直接控制采用了一套液压力放大系统,因为快速打开针阀所需的力不能直接由电磁阀产生,所谓的打开针阀所需的控制作用,是通过电磁阀打开泄油孔使得控制腔压力降低,从而打开针阀。
此外,燃油还在针阀和控制柱塞处产生泄漏,控制和泄漏的燃油量,经连接回油管,会同高压泵和压力控制阀的回油流回油箱。
采取电控喷油器;静态电阻:230毫欧;柴油机高压共轨喷油器原理-电磁阀通电:球阀开启,泻油孔泻油控制腔压力+针阀弹簧压力 <>当喷油器电磁阀未被触发时,小弹簧将电驱的球阀压向释放控制孔上,在控制腔内形成共轨高压;同样,喷嘴腔内也形成共轨高压,共轨压力对控制柱塞端面的压力和喷嘴弹簧的压力与高压燃油作用在针阀锥面上的开启力相平衡,使针阀保持关闭状态;喷油开始状态:当电磁阀被触发时,电驱将泄油口打开,燃油从阀控制室中流到上方的空腔中(从空腔通过回油管道返回油箱),使控制室压力降低;控制室压力降低,减少了作用在控制柱塞上的力,这时喷嘴针阀被打开,喷油器开始喷油;喷油结束状态:电磁阀一旦断电不被触发,小弹簧力会使电磁阀电驱下压,球阀将泄油孔关闭;泄油孔关闭后,燃油从进油孔进入控制室建立起油压(这个压力为油轨压力),这个高压作用在控制柱塞端面上,油轨压力加上弹簧力大于针阀锥面上的压力,使喷嘴针阀关闭;喷射响应=电磁阀响应+液力系统响应一般应为0.1ms~0.3ms (喷油速率控制的要求)。
高压共轨电控喷射柴油机原理
排量控制
燃油箱
喷油泵
公共
油槽
电磁阀 控制开启
喷油嘴
高压燃油由供油泵产生, 通过公共油槽进入到各喷油嘴. 喷油的开始与结束是由 喷油嘴中的电磁阀来控制着喷嘴中的针阀的开与闭来实现的.
6
7
电喷的燃油系统循环路径
喷油器
安全阀 燃油冷却器
公共油槽
燃油滤芯 2μm
低怠速: 5.1~13.3 kg/cm2 开启时: 3.1~11.3 kg/cm2
压力传感器
回油块
高压供油泵
低压齿轮泵 燃油排气泵 附加燃油滤芯 10μm 油水分离器
8
PC200-8 燃油系统图
限压阀
公共油槽
*
溢流阀
燃油滤芯
喷射器 手油泵
回油 单 向阀
供油泵
IMV 阀
齿轮泵
附加滤芯
燃油冷却器
燃油 燃油箱
(1) 限压阀: 1,850 bar (2) 溢流阀: 105 bar to 13 bar
PCV 与高压泵做在一起, 用来控制压力. 凸轮轴有三个峰, 泵的柱塞数就可降为气缸数的 1/3, 同时, 给公共油槽的加压次数与气 缸数相同, 这样就容易达到公共油槽中的压力稳定与平稳.
13
PC200-8供油泵
齿轮泵
供油泵
齿轮泵
进油阀
输油阀
14
*喷射量 *喷射时间 *喷射次数
公共油槽 压力传感器
油流减振器
燃油 回流
公共油槽
喷射压 力控制
1.燃油箱 2.燃油滤芯 3.供油泵 4.公共油槽 5.喷油器
6.ECU 7.传感器(G、 NE)
NE 传感器
G 传感器
喷油泵
柴油机电控高压燃油喷射系统
柴油机电控高压燃油喷射系统电控高压燃油喷射系统目前主要有单体泵、泵喷嘴、共轨三种。
在我国商用车柴油机上广泛采用单体泵和共轨两种。
一个理想的喷油系统应具有以下性能:高喷油压力(1000bar以上),且喷油压力大小可根据工况需要灵活调整,精确控制喷油定时、喷油量和喷油率优化控制。
1. 电控单体泵单体泵系统是带时间控制的高压燃油喷射系统,用于直喷式柴油机。
它们具有高达2050bar的瞬时喷油压力、可变的喷油起点,并可采用预喷。
该系统由燃油供给系统的低压部分和高压部分、电控单元和传感器等组成。
单体泵是通过制成一体的电磁阀的高压柴油喷射系统来工作的。
电磁阀触发的时刻就是关闭的时刻确定供油起点。
电磁阀触发时间长短决定喷油量大小。
电控单体泵安装在每个缸体外部直接由发动机凸轮轴上的喷油凸轮驱动。
高压燃油由单体泵通过高压油管、高压短接管进入喷油器,然后喷入气缸内燃烧室。
由于这种布置对气缸盖结构变动不大,因此深受商用车和柴油机的企业欢迎。
国外如奔驰、道依茨、卡特匹勒、达夫等都采用单体泵。
我国商用柴油机企业如大柴、玉柴、潍柴等也采用单体泵来满足国Ⅲ排放标准。
2. 电控高压共轨燃油喷射系统电控高压共轨燃油喷射系统是建立在直喷技术、预喷技术和电控技术基础之上的一种全新概念的喷油系统。
它主要由高压泵、带压力传感器和调压阀的共轨管、带电磁阀或压电式的喷油器、电控单元(ECU)和传感器组成。
高压共轨燃油喷射系统的优点是:①可实现高压喷射,最高可达2000bar;②喷射压力独立于发动机转速,可改善发动机低速负荷特性;③可实现预喷和后喷,调节喷油率形状,实现理想喷油规律;④喷油定时和喷油量可自由选定;⑤具有良好喷油特性,优化燃烧过程,使发动机燃油耗、烟度、噪声和排放等综合性能指标得到明显改善,有利于改进发动机扭矩特性;⑥结构简单、可靠性好、实用性强,目前已广泛应用于各国商用车柴油机。
电控高压共轨燃油喷射系统已发展到第四代。
第一代是采用喷油压力为1350bar 的电磁阀式喷油器;第二代是采用喷油压力为1600bar的电磁阀式喷油器;第三代是采用喷油压力为1600~2000bar的压电式喷油器。
高压共轨燃油喷射系统
高压共轨燃油喷射系统高压共轨燃油喷射系统是一种用于柴油发动机的燃油供应系统,可以提高燃油的喷射效率和燃烧效率。
它采用了高压共轨技术,能够在高压下将燃油喷射到燃烧室中,从而实现更好的燃烧效果。
下面是关于高压共轨燃油喷射系统的相关参考内容。
1. 工作原理:高压共轨燃油喷射系统由高压油泵、高压油管、喷油嘴和电控单元等部件组成。
工作时,高压油泵将燃油压力提升至非常高的数千巴,然后将高压燃油通过高压油管输送至喷油嘴。
电控单元控制喷油嘴的喷油时间和喷油量,喷油嘴将高压燃油以非常高的速度喷射到燃烧室中,从而实现高效燃烧。
2. 优势:高压共轨燃油喷射系统相比传统的喷油系统具有以下优势:- 更高的燃油压力:传统喷油系统中,燃油的压力由燃油泵产生,这可能导致燃油在输送过程中的压力损失。
而高压共轨系统中,燃油压力已经提前被提升至非常高的数千巴,因此输送过程中的压力损失非常小。
- 更精确的喷油控制:高压共轨系统利用电控单元对喷油嘴进行精确控制,可以准确控制喷油时间和喷油量,从而实现更好的燃油雾化和燃烧效果。
- 更低的噪音和振动:传统喷油系统中,喷油嘴的工作压力较低,容易引起喷油过程中的喷油冲击和噪音。
而高压共轨系统中,燃油已经被提升到非常高的压力,喷油过程更加平稳,可以减少噪音和振动。
- 更高的燃烧效率:高压共轨系统可以实现更好的燃油雾化效果,燃油更容易与空气混合,从而实现更好的燃烧效果。
这不仅可以提高发动机的功率和扭矩输出,还可以降低燃油消耗和排放物的排放。
3. 应用领域:高压共轨燃油喷射系统广泛应用于柴油发动机中,提供燃油喷射的精确控制和高效燃烧。
它在汽车、重型卡车、工程机械等领域得到了广泛应用。
特别是在汽车领域,高压共轨系统已经成为现代柴油发动机的标配。
4. 发展趋势:随着环保和能源效率的要求不断提高,高压共轨燃油喷射系统也在不断发展。
未来,高压共轨系统可能会采用更高的燃油压力和更精确的喷油控制技术,以进一步提高燃烧效率和抑制排放物的产生。
『专业知识』柴油发动机高压共轨电控燃油喷射技术
『专业知识』柴油发动机高压共轨电控燃油喷射技术1. 柴油机高压共轨电控燃油喷射技术的发展历程燃油喷射系统是柴油发动机的核心组成部分。
它是在一定的压力下,利用喷油器将一定数量的燃料直接喷入气缸或进气道内的燃油供给装置。
自1897年德国发明家鲁道夫·狄塞尔发明第一台柴油发动机以来,燃油喷射系统经历了由蓄压式到机械式再到电控式的发展历程。
图1 世界燃油喷射系统发展历程从电子技术控制燃油喷射的角度,经历了3个阶段。
表1展示了柴油机喷射阶段及特点。
表1 柴油机电控燃油喷射阶段及特点2. 柴油机高压共轨电控技术的工作原理及组成高压共轨电控喷油系统的主要部件包括:燃油泵、高压油轨、喷油器、ECM和各种传感器等组成。
图2 高压共轨燃油系统工作图图2是共轨燃油系统的原理图,显示了机械,流体,电气和所有关键要素之间的联系。
燃油首先由低压泵通过入口计量阀供应给高压泵,然后由高压泵产生满足要求的高压燃油,再由高压泵传递给共轨管。
共轨管主要是用于储存高压燃油的容器,为喷油器喷射做准备。
最后喷油器按照ECM的指令去控制一定量的燃油喷射到汽缸。
•高压燃油泵高压油泵将低压系统中的清洁燃油进行加压,使其产生足够的压力冲破出油阀的限制,其结构如图3所示。
图3 高压油泵结构图图4 高压油产生简图工作原理:吸油行程中,柱塞随着凸轮的转动,柱塞由上止点移动到下止点,过程中柱塞腔内容积不断增大,压力不断减小,输油泵提供的燃油不断被吸入到柱塞腔中,直至柱塞移到下止点,进油阀关闭,切断了低压燃油与柱塞腔之间的油路,吸油结束。
凸轮轴继续转动,柱塞由下止点移动到上止点,过程中柱塞腔容积不断减小,腔内燃油不断被加压至阀门预设值,此时阀门开启,腔内燃油流入共轨管中。
图4为高压油的产生简图。
•喷油器喷油器是高压共轨燃油系统中最复杂和最关键的部件,它能根据ECM传送的电子控制信号,将共轨内的高压燃油以最佳的喷油定时、喷油量、喷油率和喷雾状态喷入发动机燃烧室中进行燃烧。
解读柴油机高压共轨电控喷射系统
柴油机高压共轨电控喷射系统一、柴油机基本知识柴油发动机与汽油发动机具有基本相同的结构,都有气缸体、气缸盖、活塞、气门、曲柄、曲轴、凸轮轴、飞轮等。
但前者用压燃柴油作功,后者用点燃汽油作功,一个"压燃"一个"点燃",就是两者的根本区别点。
汽油机的燃料是在进气行程中与空气混合后进入气缸,然后被火花塞点燃作功;柴油机的燃料则是在压缩行程接近终了时直接喷注入气缸,在压缩空气中被压燃作功。
这个区别造成了柴油机在燃料供给系统的结构有其自己的特点。
柴油机的燃料喷射系统是由喷油泵、喷油器、高压油管及一些附属辅助件组成。
柴油机燃料输送的简单过程是:输油泵将柴油送到滤清器,过滤后进入喷油泵(为了保证充足的燃料并保持一定的压力,要求输油泵的供油量比喷油泵的需要量要大得多,多余的柴油就经低压管回到油箱,其它部分柴油被喷油泵压缩至高压)经过高压油管进入喷油器直接喷入气缸燃烧室中压燃。
(示意图是柴油机燃料供给系统,4是高压输油管、1、2、3是低压输油管、5、6、7、8是回油管)。
二、高压共轨电控柴油喷射系统现代先进的汽车柴油机一般采用电控喷射、共轨、涡轮增压中冷等技术,在重量、噪音、烟度等方面已取得重大突破,达到了汽油机的水平,而且相比汽油机更环保。
目前国外轻型汽车用柴油机日益普遍,奔驰、大众、宝马、雷诺、沃尔沃等欧洲名牌车都有采用柴油发动机的车型。
在电控喷射方面柴油机与汽油机的主要差别是,汽油机的电控喷射系统只是控制空燃比,柴油机的电控喷射系统则是通过控制喷油时间来调节输出的大小,而柴油机喷油控制是由发动机的转速和加速踏板位置(油门拉杆位置)来决定的。
因此,基本工作原理是计算机根据转速传感器和油门位置传感器的输入信号,首先计算出基本喷油量,然后根据水温、进气温度、进气压力等传感器的信号进行修正,再与来自控制套位置传感器的信号进行反馈修正,确定最佳喷油量的。
电控柴油喷射系统由传感器、ECU(计算机)和执行机构三部分组成。
柴油机高压共轨燃油喷射系统共3篇
柴油机高压共轨燃油喷射系统共3篇柴油机高压共轨燃油喷射系统1柴油机作为一种特殊的内燃机,具有功率大、经济性好、耐用等优点。
现在,在各类重型机械、车辆以及船舶中都广泛应用。
然而,柴油机在使用过程中,其燃料喷射系统一直是一项重要的研究课题。
过去的燃油电喷和机械泵喷嘴逐渐被淘汰,取而代之的是高压共轨燃油喷射系统,本文就来探索一下这个系统的工作原理和优点。
一、高压共轨燃油喷射系统的工作原理高压共轨燃油喷射系统是指通过高压油泵将燃油压制到高压下,然后通过共轨系统将燃油输送到喷油器,并实现喷油控制。
该系统由高压油泵、高压共轨、压力调节器、电控喷油器等部分组成。
其中高压共轨是系统的关键部分,其负责储存经过高压油泵压制的燃油,并向喷油器输送高压燃油。
通过电控器对喷油器的电磁阀进行开关控制,可使喷油器的燃油喷射量达到预期效果,从而实现精准喷油。
二、高压共轨燃油喷射系统的优点高压共轨燃油喷射系统相对于传统的电喷和机械泵喷嘴有许多优点:1. 节省燃油:高压共轨燃油喷射系统可实现精准喷油,避免了传统喷射系统中过多或过少喷油而导致的燃油浪费。
2. 噪音小:高压共轨燃油喷射系统具有较低的噪音水平,能够提升汽车的舒适性。
3. 排放低:通过高压共轨燃油喷射系统的精准喷油控制,燃油燃烧更加充分,大大减少了有害气体排放,符合现代环保要求。
4. 自适应性强:柴油机在运行时其燃油需求随着车速和负载等因素的改变而变化,高压共轨燃油喷射系统能够更精确地适应这些变化。
三、未来展望未来,随着高压共轨燃油喷射系统技术的不断升级以及制造成本的降低,其应用范围将不断扩大。
未来的柴油机燃油喷射系统不仅需要具备精准喷油、低噪音、低排放等诸多特点,还需要结合智能控制等先进技术,实现更加高效、安全、环保的燃油喷射系统。
同时,还需要进一步优化整个燃油系统的设计,提高燃油的利用率,以满足汽车燃油和环境保护等方面的需求。
结语:高压共轨燃油喷射系统是目前柴油机领域最为先进的燃油喷射系统之一。
3.5 共轨式电控燃油喷射系统
3.5 共轨式电控燃油喷射系统一、电控高压共轨系统概述1、共轨技术——将柴油喷射压力的产生和喷射过程彼此完全分开的一种供油方式,高压油泵把高压燃油输送到公共供油管(共轨),共轨将高压燃油通过高压油管输送到各缸喷油器。
共轨技术2、电控高压共轨系统——利用共轨技术,通过各种传感器检测出发动机的实际运行状态,经ECU 计算、分析、处理,对喷油量、喷油时间、喷油率、喷油压力进行精确的控制。
3、电控高压共轨系统的组成电控高压共轨系统简图二、电控高压共轨系统的特点及应用1、电控高压共轨系统的特点(1)自由调节喷油压力(共轨压力控制)。
(2)自由调节喷油量。
(3)自由调节喷油时间。
喷油的始点、终点可以方便调节。
(4)自由调节喷油率。
可实现预喷射、主喷射和后喷射,可根据排放要求实现多段喷射。
(5)更高的喷油压力。
目前可达160MPa,将来可达到200Mpa。
(6)喷油压力与实际工况相适应。
在高压共轨系统中,喷油压力(共轨压力)与发动机转速和负荷无关,可以独立控制。
由共轨压力传感器测出共轨内燃油压力,与设定的目标喷油压力进行比较后进行反馈控制。
(7)与其它电控柴油喷射系统相比,电控高压共轨系统具有较高的经济和技术优势。
(8)控制参数多,控制精确。
(9)动力性、经济性、排气净化性好。
(10)系统油压波动小。
(11)采用高速电磁开关阀控制,控制灵敏度高。
(12)适用范围广。
(13)系统成本高,维修费用高。
电控高压共轨和电控单体泵优劣势对比:轿车柴油机三种燃油喷射系统的比较2、电控高压共轨系统的应用适用于各种类型的轿车,小型、中型及重型柴油机,是目前柴油机的主流技术和发展趋势。
一汽道依茨4DC2高压共轨系统潍柴电控高压共轨柴油机三、电控高压共轨系统的组成——主要由燃油供给部分和电控系统两部分组成。
电子控制高压共轨燃油系统的组成Bosch高压共轨燃油系统(一)燃油供给系统1、燃油供给系统的组成——主要由供油泵、共轨、喷油器等组成。
电控高压共轨柴油机的喷油量与喷油规律
电控高压共轨柴油机的喷油量与喷油规律电控高压共轨柴油机是一种燃油喷射系统,采用电子控制单元(ECU)来控制柴油机的喷油量和喷油规律。
它是进一步提高柴油机性能、降低排放和燃油消耗的重要技术之一。
电控高压共轨柴油机的喷油量电控高压共轨柴油机的喷油量受到多种因素的影响,包括引入量、燃油压力和燃油喷射油嘴的开启时间等。
其中,燃油压力是最主要的因素之一,它可以直接影响喷油量。
在电控高压共轨柴油机中,燃油高压泵产生的高压燃油通过共轨供应到每个喷嘴,从而实现对喷雾的控制。
电控高压共轨柴油机的读取能力和数量都要比传统机械燃油喷射系统更高,因此它可以实现更精准的喷油量控制。
电控高压共轨柴油机的喷油规律电控高压共轨柴油机的喷油规律也很重要,它包括喷嘴开启时间和喷射时长等。
其中,喷嘴开启时间通常由ECU来控制,可以通过传感器读取预计的内部发动机参数,例如发动机速度、负载和温度等,在此基础上计算喷油量和喷嘴开启时间。
此外,还可以通过预测未来的成形空间和喷油压力等因素来进一步优化喷油时间和喷射方向。
电控高压共轨柴油机的喷油规律不仅可以改善发动机的性能、降低排放和燃油消耗,还可以提高燃油碳氢化合物的完燃率,从而减少有害物质的排放。
另外,在柴油机的喷油过程中,燃油经过喷嘴后会迅速喷雾,形成一定的雾化分布,因此通过精细控制喷油规律,可以实现更精准的喷油控制,从而达到更好的燃油经济性。
综上所述,电控高压共轨柴油机的喷油量和喷油规律对于本身性能的提高以及其环保效率的进一步优化都有着非常重要的作用,因此需要我们加强技术研发,完善控制方式,争取更好的燃油效率和更低的排放水平。
相关数据可以包括电控高压共轨柴油机的燃油喷射压力、喷油量、喷嘴开启时间、喷油规律等参数,以及它们的变化趋势和对发动机性能的影响,以进行分析。
首先,燃油喷射压力是影响电控高压共轨柴油机喷油量的重要因素之一。
现代电控高压共轨柴油机的燃油喷射压力可达到几千巴(KPa),高于传统机械喷油的压力。
电控燃油与高压共轨技术简介
电控燃油与高压共轨技术简介MMM(水利水电0班学号:0000000000)摘要:汽车节能技术主要分三大类:一是对传统内燃机技术的改进,二是整车节能技术,三是新能源汽车技术。
发动机节能是汽车节能技术的关键,而发动机节能技术的核心是提高发动机的燃烧效率,提高热效率。
关键词:电控燃油高压共轨技术汽车节能整车节能技术主要有:汽车传动系统匹配优化、减小空气阻力—汽车空气动力学设计、整车轻量化以及各种对行驶系、制动系的改进。
新能源汽车是指使用汽、柴油以外燃料的汽车,如:液化石油汽车、天然气汽车、醇类燃料汽车、二甲醚汽车、电动汽车和混合动力汽车等。
1.电控汽油机燃油喷射技术1967年德国博世公司推出D型Jetronic模拟式汽油喷射系统。
1973年博世公司推出L型Jetronic汽油喷射系统,由于采用了测量空气流量的方法控制喷油量,提高了控制精度。
同时还开发出机械式汽油喷射系统。
1979年博世公司推出了集点火与喷油于一体的Motronic数字式发动机综合电子控制系统。
在这期间美国GM公司的DEFI、FORD公司的EEC,丰田公司的TCCS纷纷出场。
这些都是综合控制的电子系统。
1995年美国在轿车上全部采用电控汽油喷射系统;欧洲的轿车采用汽油喷射系统的占90%以上。
目前汽车工业发达的国家在汽油车上均采用汽油喷射系统,以满足日益严格的排放要求。
(二)电控汽油机燃油喷射系统的优缺点1.1与化油器式发动机相比,汽油喷射系统具有以下优点:(1)、提高了发动机的充气系数,从而增加了发动机的输出功率和扭矩。
可均匀分配各缸燃油,减少了爆震现象,提高了发动机工作的稳定性,提高了汽车冷起动性能和加速性等驾驶性能。
(2)、能根据发动机负荷的变化,精确控制混合气的空燃比,适应发动机的各种工况,使汽油燃烧充分,降低油耗,减少排气污染,。
(3)、电控汽油喷射系统的缺点在于价格偏高、维修要求高。
1.2电控汽油机燃油喷射系统的组成与工作原理(1)、电控汽油机燃油喷射系统的组成按其部件功用来看,主要由进气系统、燃油控制系统和电子控制系统三部分组成。
柴油机电喷共轨原理
柴油机电喷共轨原理
柴油机电喷共轨原理是现代柴油机中广泛应用的一种燃油喷射技术。
它的工作原理如下:
1. 高压供油装置:柴油经过滤清器进入高压泵,高压泵通过叶片泵将柴油加压到较高的压力,一般为1000-2000巴。
2. 共轨系统:此时的高压柴油经过离心力作用进入共轨,也称高压油轨。
共轨是一根空心的金属管道,其内部直径非常精密,内部形成一条持续不断的高压柴油流动通道。
3. 高压喷嘴:共轨系统中的高压喷嘴由喷嘴针阀和喷嘴组成。
当喷嘴针阀打开时,高压柴油会以非常高的速度从喷嘴中喷出,并形成细小的雾化燃油。
4. 控制单元:控制单元接收各种引擎参数的反馈信息,通过计算和逻辑判断来控制喷油时间和喷油量。
通过电脉冲控制喷嘴针阀的关闭和开启,以实现准确的喷油控制和调节。
5. 工作过程:当引擎需要喷油时,控制单元会向喷嘴发送信号,喷嘴针阀打开,高压柴油通过喷嘴以雾化燃油的形式喷入燃烧室。
喷嘴关闭后,由于共轨内的柴油流动非常平稳,所以可以在下一个喷油周期中迅速再次喷油。
通过电喷共轨系统,可以实现柴油机燃油的高压供给和精准控制,使喷油过程更准确、可靠,并且可以根据引擎负荷和转速的变化来灵活调节喷油量和喷油时间,从而提高燃烧效率和动
力性能,减少尾气排放和燃油消耗。
这种技术已经成为现代柴油机的主流技术之一。
高压共轨燃油喷射系统 -回复
高压共轨燃油喷射系统 -回复
高压共轨燃油喷射系统是一种最先进的燃油喷射技术,广泛应用于现代柴油发动机中。
它通过高压共轨管将燃油供应给喷油嘴,来实现高效率的燃烧过程。
与传统的喷油系统相比,高压共轨燃油喷射系统具有以下优势:
1. 高压供油:系统可以提供更高的燃油压力,以增加燃油的细化喷射,从而提高燃烧效率和动力输出。
2. 精确控制:系统配备了高精度的电子控制器,可以实现对燃油喷射的精确控制,以适应不同的工况和驾驶需求,从而改善燃油经济性和减少尾气排放。
3. 共轨设计:系统采用了共轨结构,使得燃油的供应更加
平稳和均匀,减少了传统喷油系统中由于喷嘴开关引起的
压力波动和震动,可以提高发动机的工作稳定性和可靠性。
4. 多次喷射:系统可以实现多次喷射,通过将燃油分为多
个小的喷射量,可以更好地控制燃烧的时间和过程,减少
噪音和排放。
综上所述,高压共轨燃油喷射系统是一种先进的燃油喷射
技术,可以提高发动机的燃烧效率、动力输出和环保性能。
它已经成为现代柴油发动机中的主流技术,获得了广泛的
应用。
柴油机高压共轨电控燃油喷射技术
图!
柴油机共轨电控喷射系统示意图
"#$%! &#’$(’) *+ ,#$- .(/001(/ 2*))*3 4’#5 "1/5 637/89#*3 :;09/)
(CAD)
曲轴转角 传感器
喷油器
目标 喷油量 演算 目标 定时 演算 目标 共轨 压力 演算 预喷射 控制 喷油器
少 3-5 ;全负荷时,第二排大孔径的喷孔打开,以满足 柴油机动力性能。 ’()*+ 正 在 研 究 带 压 力 扩 大 器 的 共 轨 燃油概念系统
7!8 9:; ) <= >;?;</@AB? BC $B((B? D/AE C<B( 0B,F:G<;=HF;= ;(A,,AB?, IA@: JA;KB &A?EA?; A?L;F@AB<, 7D M 1N8++:@@JGIII+OB,F: &J<;,,+=; M "**QR)+ 90P;O%0 M ;?&’2 , 7"8 S* @: T?@;<?/@AB?/E -B@B< 2:BI CB< $B((;<FA/E U;:AFE;, "**Q 0B,F: T??BV/@AB?, CB< $B((;<FA/E U;:AFE;,7D M 1N8+:@@JGIII+OB,F:&J<;,,+ =; M 90P;O%0 M ;?&’2R"**QRW+ "**"+ 7)8 %A;,;E $B((B? D/AE 9;F:?BEB>X+ %;EJ:A 9;F:?BEB>X ./J;< , 7Q8 9:; $B((B? D/AE %A;,;E T?L;F@AB? 2X,@;( #6J E/A?;= 7D M 1N8+:@@JG M M CB<H(,+ YBH<@A@H=;+FB(R"**QR)+ 7Z8 0B,F: .<;,, D;E;/,;R 0B,F: T??BV/@AB?, CB< $B((;<FA/EU;:AFE;,7[8RS* @: "**Q, W+ T?@;<?/@AB?/E -B@B< 2:BI CB< $B((;<FA/E U;:AFE;,, 7S8 0B,F: .<;,, D;E;/,R %A;,;E T?L;F@AB? 9;F:?BEB>XR $B((B? D/AE C<B( 0B,F: CB< V;:AFE;, H,;= A? @:; FB?,@<HF@AB? A?=H,@<X /?= A? /><AFHE@H<;7[8 R 2;J@;(O;< "**Q+ 7\8 钱 人 一 + 日 本 电 装 公 司 的 #$%"’" 柴 油 机 共 轨 喷 油 系 统 7[8+ 汽 车
解析柴油机高压共轨电控喷射系统工作原理
解析柴油机高压共轨电控喷射系统工作原理柴油机高压共轨电控喷射系统是一种现代技术,可以使柴油机更加高效能,经济和环保。
该系统利用高压泵将柴油压缩送入共轨,经过高压电容器的电压信号控制,由喷油器根据需要将柴油以高压喷射到缸内,从而实现燃烧过程的控制。
柴油机高压共轨电控喷射系统由高压泵、共轨、喷油器、高压电容器、ECU等几个基本部分组成。
其工作原理主要分为加压、喷射和控制三个阶段。
1. 加压阶段在加压阶段,高压泵向共轨中注入柴油,并将其压力提高到高压状态,以保证柴油在喷射时能够达到足够的喷射压力。
高压泵是系统的“心脏”,由曲轴驱动泵柱相对转动,从而压送柴油到共轨。
高压泵的高压输出能力较稳定,而且可根据燃油需要的不同而进行调整。
共轨是系统中储存柴油的地方,用于存储高压泵通过测压阀注入的柴油。
共轨的结构设计、直径和长度等都可以根据燃油需要定制。
2. 喷射阶段在喷射阶段,高压电容器通过发射电流的方式,将柴油喷出喷油嘴,在指定的时间内在缸内进行燃烧反应。
喷油嘴是系统中喷射柴油的地方,通过高压电容器控制其喷射时间和喷射量。
由于高压共轨系统可以根据各缸的排气中心角度进行电脉冲调节,因此可以减少漏喷,增加每个喷嘴的精度,同时还可以提高柴油的燃烧效率和功率输出。
高压电容器是控制喷油时间和喷油量的重要部分,由电脉冲进行控制,并能够自适应调节,以适应不同的工作条件。
3. 控制阶段在控制阶段,ECU实时监测车辆运行状态,并根据其反馈信息来调整各部件的工作状态,以保证柴油机在任何工作条件下都能够获得最佳的燃烧效率和性能。
ECU是系统中的中央控制单元,它能够实时监测各个传感器的反馈信息,并根据实时要求来改变喷油时间和量。
此外,它还可以根据车速、负载和环境条件等因素进行自适应调节,以获得更佳的驾驶体验和性能输出。
总之,柴油机高压共轨电控喷射系统是因为其高效、节能、环保和可靠性而受到广泛欢迎的先进技术。
通过高压泵、共轨、喷油器、高压电容器、ECU等几个部分的协同工作,它可以实现喷油量、喷射时间和喷油方式的自适应调整,提高柴油机的性能、可靠性和经济性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柴油机高压共轨电控燃油喷射技术介绍摘要:传统机械发动机的喷油系统凭借其可靠性、易维护性一直在不断地发展和使用。
进入21世纪以来,随着人们对能源、环保的意识和要求日益提高,传统发动机的脉动喷油系统已经不能够满足现代发动机的要求。
因此,现代发动机的共轨燃油喷射技术在避免了传统发动机缺点的基础上,得到了快速的发展,已经成为燃油喷射的主要发展趋势。
为了更好的对高压共轨电控发动机燃油喷射系统的理解,现对高压共轨电控燃油喷射系统进行系统的介绍。
1 引言随着世界各国工程机械、运输车辆等数量增加,柴油机排放的尾气已经成为对地球环境的主要污染原因之一,如何采取措施保护人类赖以生存的地球环境已是当务之急。
我国从八十年代起相应制订了有关的标准,将环境保护作为大事来抓。
与此同时,世界各国也已开始寻找和探究其他方法和采取其他有效的技术措施主动地减少和控制污染物的排放。
共轨式电控燃油喷射技术正是从众多方法和措施中脱颖而出的一项较为成功的控制柴油机污染排放的新技术。
2 高压共轨电控燃油喷射技术发展过程20世纪40年代电控共轨燃油喷射技术首先在航空发动机上应用,20世纪50年代在赛车发动机上广泛应用。
20世纪90年代,柴油机的电控供油系统开始在实际应用中大量使用。
主要有日本电装公司和丰田汽车公司ECD-U2系统、博世公司和D-C公司电控共轨式燃油喷射系统。
国外在柴油机电控高压共轨燃油喷射系统方面的研究开展得较早而且比较深入,有多种共轨系统已经投产,并与整车进行了匹配应用。
日本电装公司的ECD-U2系统是电控高压共轨燃油喷射系统的典型代表,该系统还能实现预喷射和靴型喷射。
共轨喷射的发展大体经历了3个阶段,如表1所示。
从表1中可以看出:共轨喷射的最高喷射压力在不断提高,这样对于喷射品质的提高有着重要的意义。
压力越高,燃料雾化越好,颗粒越小越均匀,燃烧越充分,经济性、动力性和排放性均好,但这对喷射系统的要求也越高;喷射的次数不断增加,可以实现满足发动机燃烧和排放的多次喷射,可以控制燃烧的不同阶段喷油量和喷油速率,使燃烧更充分,热效率提高;在最小稳定喷射量上,3个阶段的每次的喷射量在下降,这说明每次喷射时候可以使喷射更均匀、更细密,喷油和断油更干脆,反应灵敏,响应特性好,这样有利于燃烧,减少积炭的产生。
3 高压共轨电控燃油喷射系统的组成及主要零部件介绍图 1 为高压共轨电控燃油喷射系统的基本组成图。
它主要由电控单元、高压油泵、共轨管、电控喷油器以及各种传感器等组成。
低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨,高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map 图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。
3、1 高压油泵高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。
由于共轨系统中喷油压力的产生与燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。
bosch 公司采用由柴油机驱动的三缸径向柱塞泵来产生高达 135Mpa的压力。
该高压油泵在每个压油单元中采用了多个压油凸轮,使其峰值扭矩降低为传统高压油泵的1/9 ,负荷也比较均匀,降低了运行噪声。
该系统中高压共轨腔中的压力的控制是通过对共轨腔中燃油的放泄来实现的,为了减小功率损耗,在喷油量较小的情况下,将关闭三缸径向柱塞泵中的一个压油单元使供油量减少。
日电装公司采用了一个三作用凸轮的直列泵来产生高压,如图 2 所示。
该高压油泵对油量的控制采用了控制低压燃油有效进油量的方法,其基本原理如图 3 所示。
a 柱塞下行,控制阀开启,低压燃油经控制阀流入柱塞腔;b 柱塞上行,但控制阀中尚未通电,处于开启状态,低压燃油经控制阀流回低压腔;c在达到供油量定时时,控制阀通电,使之关闭,回流油路被切断,柱塞腔中的燃油被压缩,燃油经出油阀进入高压油轨。
利用控制阀关闭时间的不同,控制进入高压油轨的油量的多少,从而达到控制高压油轨压力的目的;d 凸轮经过最大升程后,柱塞进入下降行程,柱塞腔内的压力降低,出油阀关闭,停止供油,这时控制阀停止供电,处于开启状态,低压燃油进入柱塞腔进入下一个循环。
该方法使高压油泵不产生额外的功率消耗,但需要确定控制脉冲的宽度和控制脉冲与高压油泵凸轮的相位关系,控制系统比较复杂。
3、2 共轨管共轨管将供油泵提供的高压燃油分配到各喷油器中,起蓄压器的作用, ECD-U2 系统的供轨管如图 4 所示。
它的容积应削减高压油泵的供油压力波动和每个喷油器由喷油过程引起的压力震荡,使高压油轨中的压力波动控制在 5Mpa之下。
但其容积又不能太大,以保证共轨有足够的压力响应速度以快速跟踪柴油机工况的变化。
ECD-U2 系统的高压泵的最大循环供油量为 600mm3 ,共轨管容积为94000mm3 。
高压共轨管上还安装了压力传感器、液流缓冲器(限流器)和压力限制器。
压力传感器向ECU 提供高压油轨的压力信号;液流缓冲器(限流器)保证在喷油器出现燃油漏泄故障时切断向喷油器的供油,并可减小共轨和高压油管中的压力波动;压力限制器保证高压油轨在出现压力异常时,迅速将高压油轨中的压力进行放泄。
从上述分析可见,精确设计高压共轨管的容积和形状适合确定的柴油机是并不容易的。
3、3电控喷油器电控喷油器是共轨式燃油系统中最关键和最复杂的部件,它的作用根据ECU 发出的控制信号,通过控制电磁阀的开启和关闭,将高压油轨中的燃油以最佳的喷油定时、喷油量和喷油率喷入柴油机的燃烧室。
BOSCH 和 ECD-U2 的电控喷油器的结构基本相似,都是由于传统喷油器相似的喷油嘴、控制活塞、控制量孔、控制电磁阀组成,图 5 为BOSCH 的电控喷油器结构图。
在电磁阀不通电时,电磁阀关闭控制活塞顶部的量孔 A ,高压油轨的燃油压力通过量孔 Z 作用在控制活塞上,将喷嘴关闭;当电磁阀通电时,量孔 A 被打开,控制室的压力迅速降低,控制活塞升起,喷油器开始喷油;当电磁阀关闭时,控制室的压力上升,控制活塞下行关闭喷油器完成喷油过程。
控制了喷油率的形状,需对其进行合理的优化设计,实现预定的喷油形状。
控制室的容积的大小决定了针阀开启时的灵敏度,控制室的容积太大,针阀在喷油结束时不能实现快速的断油,使后期的燃油雾化不良;控制室容积太小,不能给针阀提供足够的有效行程,使喷射过程的流动阻力加大,因此对控制室的容积也应根据机型的最大喷油量合理选择。
控制量孔 A 、 Z 的大小对喷油嘴的开启和关闭速度及喷油过程起着决定性的影响。
双量孔阀体的三个关键性结构是进油量孔、回油量孔和控制室,它们的结构尺寸对喷油器的喷油性能影响巨大。
回油量孔与进油量孔的流量率之差及控制室的容积决定了喷油嘴针阀的开启速度,而喷油嘴针阀的关闭速度由进油量孔的流量率和控制室的容积决定。
进油量孔的设计应使喷油嘴针阀有足够的关闭速度,以减少喷油嘴喷射后期雾化不良的部分。
此外喷油嘴的最小喷油压力取决于回油量孔和进油量孔的流量率及控制活塞的端面面积。
这样在确定了进油量孔、回油量孔和控制室的结构尺寸后,就确定了喷油嘴针阀完全开启的稳定、最短喷油过程,同时就确定了喷油嘴的稳定最小喷油量。
控制室容积的减少可以使针阀的响应速度更快,使燃油温度对喷油嘴喷油量的影响更小。
但控制室的容积不可能无限制减少,它应能保证喷油嘴针阀的升程以使针阀完全开启。
两个控制量孔决定了控制室中的动态压力,从而决定了针阀的运动规律,通过仔细调节这两个量孔的流量系数,可以产生理想的喷油规律。
由于高压共轨喷射系统的喷射压力非常高,因此其喷油嘴的喷孔截面积很小,如BOSC H公司的喷油嘴的喷孔直径为 0.169mm × 6 ,在如此小的喷孔直径和如此高的喷射压力下,燃油流动处于极端不稳定状态,油束的喷雾锥角变大,燃油雾化更好,但贯穿距离变小,因此应改变原柴油机进气的涡流强度、燃烧室结构形状以确保最佳的燃烧过程。
对于喷油器电磁阀,由于共轨系统要求它有足够的开启速度,考虑到预喷射是改善柴油机性能的重要喷射方式,控制电磁阀的响应时间更应缩短。
关于电磁阀的研究已由较多的文献报道,本文不再对此进行分析。
3、4高压油管高压油管是连接共轨管和电控喷油器的通道,它应有足够的燃油流量减小燃油流动时的压降,并使高压管路系统中的压力波动较小,能承受高压燃油的冲击作用,且起动时共轨中的压力能很快建立。
各缸高压油管的长度应尽量相等,使柴油机每一个喷油器有相同的喷油压力,从而减少发动机各缸之间喷油量的偏差。
各高压油管应尽可能短,使从共轨到喷油嘴的压力损失最小。
BOSCH 公司的高压油管的外经为 6mm,内径为 2.4mm ,日本电装公司的高压油管的外经为8mm ,内径为 3mm 。
4 高压共轨电控燃油喷射系统的工作原理、分类及特点柴油机高速运转时,柴油喷射过程的时间只有千分之几秒。
实验证明,喷射过程中,高压油管各处的压力是随时间和位置的不同而变化的。
柴油的可压缩性质和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。
油管内的压力波动有时还会在喷射之后,使高压油管内的压力再次上升,达到令喷油器针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象。
由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,并使油耗增加。
此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定喷射,尤其在低速区域容易产生上述现象。
严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。
为了解决柴油机燃油压力变化所造成的缺陷,柴油机采用了“共轨”的电喷技术。
4、1原理一般认为,柴油机喷油技术经历了传统的纯机械操纵式喷油和现代的电控操纵式喷油两个发展阶段。
现代电控燃油喷油技术的崛起,则是计算机技术和传感检测技术迅猛发展的结果。
目前,电控喷油技术已从初期的位置控制型发展到时间控制型。
共轨式电控燃油喷射技术正是属于后者。
共轨电喷技术是指在由高压油泵、压力传感器和电子控制装置(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。
它是由高压油泵将高压燃油输送到公共供油管,通过公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度,因此,也就减少了传统柴油机的缺陷。
ECU控制喷油器的喷油量,其大小取决于燃油轨道(公共供油管)压力和电磁阀开启时间的长短。
该技术不再采用传统的柱塞泵脉动供油的原理,而是通过供轨直接或间接的形成恒定的高压燃油,分送到每个喷油器,并借助于集成在每个喷油器上的高速电磁开关阀的启闭,定时定量的控制喷油器喷射至柴油机燃烧室的油量,从而保证柴油机达到最佳的燃烧比和良好的雾化,以及最佳的发火时间、足够的能量和最少的污染排放。