净水厂设计说明书、计算书
净水厂设计计算书
净水厂设计计算书设计计算书:净水厂设计一、引言净水厂是为了提供清洁、安全、可靠的饮用水供应服务而建立的设施。
本设计计算书旨在对净水厂的设计进行全面的计算和说明,以确保其设计符合相关标准和要求。
二、设计流程1.确定供水规模和水质要求:根据用户需求确定净水厂的设计处理量,并确定水质要求,包括对悬浮物、有机物、微生物和化学成分的要求。
2.水源调查和选择:对供水水源进行调查和评估,确定其水质和水量,并选择最适合的水源。
3.工艺流程选择:选择适当的净水工艺流程,包括预处理、混凝、絮凝、过滤、消毒等环节,并根据水源水质和水量要求进行计算。
4.工艺设备选择:根据工艺流程选择适当的设备,并进行设备数量和尺寸的计算。
常用设备包括澄清池、絮凝池、滤池、曝气池、消毒装置等。
5.设备布置和管道设计:根据工艺设备的尺寸和数量,进行设备布置和管道设计,以确保净水效果和流程的顺畅。
6.水源保护措施:根据供水水源的特点,设计并实施相应的水源保护措施,确保供水水源的安全和可靠性。
7.操作和维护方案:制定净水厂的操作和维护方案,包括设备的日常操作、维护保养和定期检查等,以确保净水厂的正常运行。
三、设计计算1.净水流程计算:根据设计处理量和工艺流程,计算净水的流程和时间,并确定各个环节的处理效果。
2.设备尺寸计算:针对各种设备,进行尺寸计算,包括澄清池的容积、滤池的面积、消毒装置的处理量等,以确保设备能够满足设计要求。
3.管道设计计算:根据净水厂的布置和管道的长度、直径等参数,进行管道设计计算,并确定管道的材料和压力等级。
4.水力计算:针对净水流程、设备和管道,进行水力计算,包括管道的流速、压力损失、泵的扬程和功率等。
5.投资和运行成本计算:根据设备和材料的价格以及净水厂的运行成本,进行投资和运行成本的计算,并进行经济效益评估。
四、设计结果与讨论根据以上计算,得到净水厂的设计结果,并对其进行讨论,包括工艺流程的合理性、设备的选择和尺寸、管道的布局以及经济效益等方面。
某县净水厂给水处理设计计算书
某县净水厂给水处理设计计算书县净水厂给水处理设计计算书1.项目背景和目的县净水厂给水处理设计的目的是为了解决该县居民饮水问题。
该县面临着水资源短缺和水质污染的双重挑战。
通过建设一座净水厂,可以有效地提高水质,保障居民的健康饮水需求。
2.设计参数(1)城市规模:县人口约30万人,预测未来15年内增长10%。
(3)水质要求:根据国家标准,出水水质需要符合饮用水标准。
3.工艺流程根据给水处理的工艺要求,设计采用以下流程:原水进水池→格栅→调节池→自流式砂滤池→混凝沉淀池→滤水池→消毒池→供水。
其中,原水经过格栅、调节池预处理后,进入砂滤池进行过滤。
滤后水进入混凝沉淀池,经过混凝沉淀后再进入滤水池,最后经消毒处理后供水。
4.工艺参数计算(4)滤水池:滤水池的水层深度一般为1~2.5m,本设计采用1.5m。
(5)混凝剂投加量:根据原水悬浮物浓度和水质要求,确定混凝剂投加量。
一般情况下,混凝剂投加量为铝盐的0.8~1.0 mg/L。
本设计按照0.9 mg/L来计算。
5.工艺图纸根据上述设计参数和工艺流程,绘制出净水厂给水处理流程图纸。
6.总结和展望通过对县净水厂给水处理的设计计算,我们可以得出合理的设施规模和工艺参数。
通过提供高效的净水处理流程,该县居民可以获得更干净、更健康的饮用水。
然而,未来水资源短缺和水质污染问题仍然存在,需要进一步加强水资源保护和管理工作。
以上是县净水厂给水处理设计计算书,设计过程中考虑到了城市规模、水质要求等因素,为解决该县的饮水问题提供了有力的支持。
希望该设计能够对相关领域的学生和专业人士有所帮助。
净水厂设计计算说明书
净水厂设计计算说明书一、引言净水厂是指将海水、淡水或含有杂质的水进行过滤、净化处理,以获得符合饮用水及工业用水标准的设施。
本设计计算说明书旨在提供一个完整的净水厂的设计计算方案,确保净水厂的正常运行和满足水质要求。
二、设计要求1.处理水质要求:根据当地的水质标准,确定净水厂需要处理水的主要指标,并确保出水质量符合国家及相关标准;2.处理能力要求:根据预计的供水量,确定净水厂的处理能力,确保满足市场需求;3.设计方案要求:考虑经济性、可行性和可持续发展,确定合适的净水厂设计方案。
三、设计计算内容1.进水水质分析及处理方案进水水质分析是净水厂设计的重要基础工作。
通过对原水水质的分析,确定需要去除的污染物种类及其浓度,以便选择合适的处理工艺和设备。
-对原水水质进行逐项分析,包括悬浮物、溶解物、微生物、有机物和无机物等;-根据原水水质分析结果,确定合适的处理工艺,如预处理、混凝、沉淀、过滤和消毒等;-计算所需处理量,确定处理设备的规格和数量。
2.设备选型与计算净水厂的设备选型与计算是确保设备运行正常并满足水质要求的重要环节。
对每个处理工艺的设备进行选型与计算,并设计出合理的设备配置方案。
-根据处理工艺,选取适合的设备,如加药装置、混凝剂投加设备、过滤设备和消毒设备等;-根据处理工艺参数和运行条件,计算设备的规格,如滤料的直径、厚度和过滤速度等;-确定设备配置方案,进行设备布置图的设计。
3.过程设计与计算过程设计与计算是净水厂设计的核心内容之一,包括净水厂的流程设计、设备布置和运行参数计算等。
-确定净水厂的处理流程,包括原水处理、混凝、沉淀、过滤和消毒等;-进行净水厂的流量和压力计算,确定管道和泵站的规格和数量;-进行各处理工艺设备的运行参数计算,如沉淀池的泥泵流量、混凝剂用量和消毒剂用量等。
4.安全与环保设计净水厂的安全与环保设计是确保净水厂运行安全和环保的重要环节。
针对净水厂可能面临的危险和环境污染问题,进行相应的设计和措施。
净水厂课程设计计算说明书
净⽔⼚课程设计计算说明书城固县给⽔⼯程设计摘要本设计为城固县给⽔⼯程设计,⼯程设计规模为76923 m3/d。
净⽔⼯程的设计主要包括配⽔⼚的设计计算和净⽔⼚的设计计算。
净⽔⼚的设计包括净⽔⼚的位置选择、⽔处理⼯艺流程的确定、处理构筑物的设计计算以及⽔⼚的平⾯和⾼程布置。
通过技术经济⽐较,确定净⽔⼚的⼯艺流程选⽤⽅案:原⽔—→静态混合器—→⽹格絮凝池—→斜管沉淀池—→V型滤池—→消毒—→清⽔池—→⼆级泵站—→城市管⽹关键词:给⽔⼯程设计、⽔⼚⼯艺、V型滤池、城市管⽹。
设计说明书⼀设计⽔量第⼀节最⾼⽇⽤⽔量⼀、各项⽤⽔量设计给⽔⼯程⾸先要确定设计⽔量。
通常将设计⽤⽔量作为设计⽔量。
设计⽤⽔量是根据设计年限内⽤⽔单位数,⽤⽔定额和⽤⽔变化情况所预测的⽤户⽤⽔总量。
设计⽤⽔量包括下列⽤⽔:1、综合⽣活⽤⽔量Q1,包括居民⽣活⽤⽔量和公共建筑及设施⽤⽔;2、⼯业企业⽣产⽤⽔量Q2;3、浇洒道路和绿地⽤⽔量Q3;4、⼯业企业⼯作⼈员⽣活⽤⽔量Q4;5、未预见⽔量及管⽹漏失⽔量Q5;6、消防⽤⽔量Qx;各⽤⽔量计算结果如下:Q 1=3×104(m3/d) Q2=3×104(m3/d) Q3=3000(m3/d) Q4=6930(m3/d)Q5=6993(m3/d)最⾼⽇⽤⽔量Qd =Q1+Q2+Q3+Q4+Q5=76923 m3/d三净⽔⼚第⼀节混合1.溶液池分成2格,每格的有效容积为3.7 m3。
有效⾼度为1.2m,超⾼0.2m,每格实际尺⼨为1.8×1.8×1.4m,置于室内地⾯上。
2.溶解池分成2格,每格的容积为1.1 m3,有效⾼度为0.8m,超⾼0.2m,每格实际尺⼨为1.2×1.2×1.0m。
池底坡度采⽤2.5%,池底设排渣管。
3.溶解池搅拌设备采⽤中⼼固定式平浆板式搅拌机。
浆板直径400mm,浆板深度为0.7mm,质量100kg. 溶解池置于地下,池顶⾼出室内地⾯0.5m。
净水厂计算书
滤池计算一、已知条件:(1)、设计水量规模:Q=100000万立方米/日(分两个系统)100000立方米/日考虑水厂自用水量,滤池为8% 1.08设计水量为:108000立方米/日Q= 1.25立方米/秒 1.25立方米/秒(2)、设计滤速7米/时7米/时(3)、采用气、水冲洗(反冲洗历时)12分钟表面扫洗强度 1.5升/秒*平方米第一阶段气冲洗强度15升/秒*平方米15升/秒*平方米反冲洗历时2分钟2分钟第二阶段气冲洗强度15升/秒*平方米15升/秒*平方米反冲洗历时4分钟4分钟水冲洗强度5升/秒*平方米5升/秒*平方米反冲洗历时4分钟4分钟第三阶段水冲洗强度5升/秒*平方米5升/秒*平方米反冲洗历时6分钟6分钟(4)、冲洗周期12小时12小时二、设计计算1、滤池工作时间:滤池24小时连续工作,其有效工作时间为:T=24-t*2/60=23.6小时23.5小时2、滤池面积滤池总面积F=Q/(V*T)=656.5349544平方米656.535平方米滤池采用10格对称布置,单格面积:8格f'=82.0668693平方米82.0669平方米3、单池平面尺寸:L=12米B=7米84平方米4、校核强制滤速:V实际= 6.869951413米/小时一格反冲洗时V强制=7.851373043米/小时一格检修,一格反冲洗时:V强制=9.159935217米/小时5、滤池高度底部反冲洗室高度为750毫米0.75米滤板厚100毫米(混凝土)0.1米承托层厚度0.1米粒径0.9~1.3毫米 1.3米砂层上水深1200毫米 1.2米超高400毫米0.8米进水渠到滤池内的水头损失取0.35米滤池底到水面的高度 3.45米滤池总高度H=4.6米 4.6米6、配水系统配水系统采用小阻力配水系统(滤头),每平方米滤板配滤头55个共计36960个冲洗水通过滤头水头损失为0.23米。
滤板平面尺寸:L=790B=790予埋d=25mm ABS管7、洗砂排水槽单槽排水量q0=546升/秒0.546米3/秒洗砂排水槽顶距滤料顶的距离定位0.5m。
(完整版)直饮水净化装置工艺设计说明计算书:自来水,24吨每天,反渗透膜
一、用水量计算用水定额取3L/人.d,总用水人数3000人,取时变化系数Kh=2.5,用水时间T=10小时。
最大日用水量为:Qdmax=3×3000=9000L/d=9m3/d最大时用水量为:Qhmax=2.5×9/10=2.25m3/h二、设备选型计算1、制水量Qh净水站设计制水能力按最高日平均时流量考虑。
因Qh=9/10 m3/h=0.9 m3/h,净水站制水能力按1.0 m3/h设计。
2、水处理流程自来水→原水箱→原水泵→砂滤罐→炭滤罐→软水器→精滤器→↑回水高压泵→一级反渗透→高压泵→二级反渗透→臭氧混合塔→成品水箱→供水泵→稳压罐→用户。
3、设备选型计算假设反渗透装置的水回收率为50%,则前处理阶段净水设备设计净水能力应为2.0 m3/h。
(1)原水箱取调节时间T=1.5h,则水箱容积V=2×1.5=3.0 m选用不锈钢水箱一个,水箱尺寸为φ1400×H2000mm。
(2)原水泵水量Q2.0 m3/h,扬程H按砂滤罐所需进水压力及管路水损考虑,选择丹麦格兰富不锈钢立式多级离心泵CR2-30型一台,流量Q2.0 m3/h,扬程H30m,功率P0.37KW。
(3)砂滤器处理水量2.0 m3/h,滤速设为7m/h,则过滤面积F为:F=Q/v=2.0/7=0.286m2 过滤器直径D=(4F/π)1/2=600mm。
砂滤层厚度1.5m,选择美国OSMONICS型砂滤器一台(带多路阀),外形尺寸为φ600×H1800mm。
(4)炭滤器处理水量2.0 m3/h,滤速设为7m/h,则过滤面积F为:F=Q/v=2.0/7=0.286m2 过滤器直径D=(4F/π)1/2=600mm。
炭滤层厚度1.5m,选择美国OSMONICS型砂滤器一台(带多路阀),外形尺寸为φ600×H1800mm。
(5)软水器由于没有详细的水质资料,无法进行计算,根据经验选择OSMONICS型软水器一台(带多路阀),外形尺寸为φ350×H1650mm。
(完整word版)自来水厂设计—计算书
目录第一部分说明书3第一章净水厂厂址选择3第二章处理流程选择及说明 4第一节岸边式取水构筑物8第二节药剂投配设备10第三节机械搅拌澄清池10第四节普通快滤池11第五节消毒间12第六节清水池14第七节送水泵站14第三章水厂的平面布置16第一节水厂的平面布置要求 16第二节基本设计标准16第三节水厂管线16第四节水厂的高程布置17第四章排泥水处理20第一节处理对象20第二节处理工序20第二部分计算书21第一章岸边式取水构筑物21第一节设计主要资料21第二节集水间计算21第三节泵站计算22第二章混凝设施26第一节药剂配制投加设备26第三章机械搅拌澄清池计算 35第一节第二反应室35第二节导流室35第三节分离室36第四节池深计算37第五节配水三角槽38第六节第一反应室39第七节容积计算40第八节进水系统40第九节集水系统41第十节污泥浓缩斗42第十一节机械搅拌澄清池,搅拌机计算43第四章普通快滤池计算48第一节设计参数48第二节冲洗强度48第三节滤池面积及尺寸49第五节配水系统49第六节洗砂排水槽50第七节滤池各种管渠计算51第八节冲洗水泵52第五章消毒处理54第一节加氯设计54第二节加滤量计算54第三节加氯间和氯库54第六章清水池计算56第一节清水池有效容积56第二节清水池的平面尺寸56第三节管道系统56第四节清水池布置56第七章送水泵站58第一节流量计算58第二节扬程计算58第三节选泵58第四节二级泵房的布置59第五节起重设备选择59第六节泵房高度计算60第七节管道计算60第八章给水处理厂的总体布置61第一节平面布置61第九章泥路计算64第一节泥、水平衡计污泥处理系统设计规模64第二节排泥水处理构筑物设计计算67结束语73致谢74参考文献75第一部分说明书第一章净水厂厂址选择净水厂一般应设在工程地质条件较好、地下水位底、承载力较大、湿陷性等不高、岩石较少的地层,以降低工程造价和便于施工.水厂还应考虑防洪措施,同时尽量把水厂设在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。
净水厂设计说明书
设计计算书1.混合设备的设计设计流量 设计流量某水厂水工艺设计,处理规模:2.7×104m 3/d,自用水量系数取5%,总处理量为28350m 3/d 。
Q=28350m 3/d=1181.25m 3/h=0.328m 3/s根据原水水质及水温,参考有关净水厂的运行经验,选精制硫酸铝为混凝剂。
最大投加量为50mg/l ,溶液浓度10%,一天调制次数n =3。
采用泵前投加。
不需加助凝剂。
溶液池一般以高架式设置,以便能依靠重力投加药剂。
池周围应有工作台,底部应设置放空管。
必要时设溢流装置。
溶液池容积按下式计算:s m cn Q W /02.4310417118150417a 32=⨯⨯⨯==溶液池设置两个,每个容积为,以便交替使用,保证连续投药,每个容积都为W 2(考虑交替使用,保证连续投药)。
取有效水深H 1=1.10m ,总深H =H 1+H 2+H 3=1.10+0.2+0.1=1.40m 。
(式中H 2为保护高,取0.2m ;H 3为贮渣深度,取0.1m )溶液池形状采用矩形,尺寸为长×宽×高=2.0×1.5×1.4m 。
(2)溶解池容积W 1=0.3×W 2=0.3×4.02=1.2 m 3 设置2个,每个容积为W 1(考虑交替使用,保证连续投药)。
溶解池一般取正方形,有效水深H 1=1.2m ,则: 面积F =W 1/H 1→边长a =F 1/2=1.0m ;溶解池深度H =H 1+H 2+H 3=1.2+0.2+0.1=1.50m 。
(式中H 2为保护高,取0.2m ;H 3为贮渣深度,取0.1m )形状为正方形长宽高为1.0×1.0×1.5m 。
池底坡度0.025.溶解池放水时间30min 2.絮凝絮凝池设计(近期)2组,每池设计流量为: Q =0.5m 3/s 。
絮凝时间t =12min ,设计平均水深h =4 m 。
净水工程设计计算书
净水工程设计计算书一、双阀滤池1) 设计数据(1)设计规模:10万吨/日,分两期实施,水厂的用水系数1.05;(2)设计流量:Q =1.05×5×104m 3/d =2187.5 m 3/h =0.6076m 3/s ;(3)设计滤速:按规模要求,单层石英砂滤料的滤速V =8~10m/h ,这里取8.1 m/h ;(4)冲洗强度:12~15L /s·m 2,取13 L /s·m 2;(5)冲洗时间:t =6min ; 2) 主要计算(1)滤池面积及尺寸滤池工作时间为24h ,冲洗周期按12h 计;滤池实际工作时间T =24-(0.1×1224)=23.8(h );(注:式中只考虑反冲洗时间,未考虑初滤水的排放时间);滤池面积:2433.2728.231.805.1100.5m VT Q F ===;采用滤池格数:N =8,布置成对称双行;则单格滤池面积:204.34833.2728m F f ===;采用滤池长宽比3.1=BL,规范要求:1.25:1~1.5:1;每格滤池尺寸:L=6.6m ,B =5.1m ;复核:因此,每格滤池实际过滤面积f =B ×L =6.6×5.1=33.66m 2;滤池实际的正常滤速h m F Q V h /12.866.3385.2187=?==校核强制滤速h m N NV V /28.912.81881=?-=-=' (2)滤池高度支承层高度 H 1采用0.58m (d10~d32的支承层顶面应高于配水系统孔眼100mm );滤料层高度 H 2采用0.7m ;砂面以上水深 H 3采用1.90m ;超高(干管) H 4采用0.27m ;故滤料总高度 H =H 1+H 2+H 3+H 4=3.45m ;(3)配水系统(每格滤池)Ⅰ、干管干管流量 =?=q f q g 13.5 L /s·m 2×33.66 m 2=0.454m 3/s; 采用管径 d g =700mm (干管应埋入池底,顶部开孔接配水支管,详大样水施1-5-5);因此,干管起端流速V g =1.18m/s ;(注:若采用d g =800mm ,则V g =0.91m/s <1.0 m/s =;Ⅱ、支管支管中心间距采用 a j =0.25m ;每格滤池支管数 n j =5225.06.622=?=?j a L 根;每根支管入口流量 s L n q q jg j /73.852454===;采用管径 d j =80mm (公称外径90mm ,查《塑料给水管水力计算表》P86);支管始端流速 V j =1.56m/s ;Ⅲ、孔眼布置支管孔眼总面积与滤池面积之比K 采用0.25%;则孔眼总面积 F k =K f =0.25%×33.66=0.08415m 2=84150mm 2;采用孔眼直径 d k =9mm ;每个孔眼面积 f k =2225.639785.041mm d k =?=π;孔眼总数 13255.6384150===k k k f F N 个;每根支管孔眼数 26521325===j k k n N n 个;支管孔眼布置:设两排,与垂线成45°夹角,向下交错排列;每根支管长度 L j =0.5B =2.55m (注:两端除去间隙,L j =2.31m );每排孔眼中心距:m n L a k j k 178.0262131.221=?==Ⅳ、孔眼水头损失支管壁厚δ=5mm ;孔眼直径与壁厚之比8.159==δkd ,查《流量系数μ值表》得流量系数μ=0.68;水头损失 m g k q g h k 2.325.068.0105.1321102122=??=???? ??=μ;Ⅴ、复核配水系统支管长度与直径之比不大于60,60875.28080.031.2<==jj d L ;孔眼总面积与支管总横截面积之比小于0.5,()5.0322.008.0785.05208415.02<=??=j j k f n F ;干管横截面积与支管横截面积之比为1.75~2.0,()()47.108.0785.0527.0785.022==j j gf n f ;孔眼中心距应小于0.2m ,a k =0.178m<0.2m ;(4)洗砂排水槽洗砂排水槽中心距采用a 0=1.70m ;排水槽根数n 0=7.11.5=3根;排水槽长度m L l 6.60==;每根排水槽排水量s L a ql q /47.1517.16.65.13000=??==;采用三角形标准断面槽中流速采用V 0=0.6m/s ;横断面尺寸m V q x 251.06.0100047.1512110002100=?==,取0.25m ;排水槽槽底厚度采用δ=0.005m ;砂层最大膨胀率e =45%;砂层厚度H 2=0.70m ;洗砂、排水槽顶距砂面厚度H e =eH 2+2.5x +δ+0.075 =0.45×0.70+2.5×0.25+0.08 =1.02m ;洗砂、排水槽总平面面积00002n l x F ==2×0.25×6.6×3=9.9m 2;复核:排水槽总平面面积与滤池面积之比,一般小于25%,%25%4.29%10066.339.90≈=?=f F ;排水槽底高出集水槽底的高度2.0100081.03 2+??=b fg H=0.56+0.2=0.76m ;槽底距集水槽起端水面的高度不小于0.05~0.20m ;(5)滤池各种管渠计算Ⅰ 进水进水总流量 Q 1=52500m 3/d =0.6076m 3/s ;采用进水渠断面:渠宽B 1=0.8m ,水深为0.6m (两根进水管);渠中流速V 1=0.66m/s ,水力坡降2.7‰;进水总管管径(每5万吨设两根进水管)Q 2=h m /75.109324205.1100.534=,则进水管采用DN700,管中流速V 2=0.79m/s ;Ⅱ 冲洗水冲洗水流量Q 3=qf =13.5×33.66=0.454m 3/s ;采用管径D 3=500mm ;管中流速V 3=2.26m/s ;Ⅲ 清水清水总流量Q 4=Q 1=0.6076m 3/s ;清水总管管径采用D 4=800mm ,则V 4=1.21m/s ;每格滤池清水管流量Q 5=Q 2=86076.0=0.076m 3/s ;采用管径D 5=300mm ,则V 5=1.04m/s ;强制滤速下,5V '=1.19m/s ;Ⅳ 排水排水流量Q 6=Q 3=0.454m 3/s ;排水渠断面:渠宽B 6=0.8m ,水深为0.6m ;渠中流速V1=0.66m/s ;(6)进水虹吸管虹吸管进水量()s m Q /0868.01824360005.1100.534=-=进;事故冲洗进水量()s m Q /101.028********.1100.534=-=事;断面面积20.217m0.40.0868===进进进V Q ω;取用断面尺寸进ω=B ×L =0.4×0.5=0.2m 2;进水虹吸管局部水头损失∑?1.22gV 2进事局=ξf h0.505m/s 0.21.01Q V ===进事进事ω ∑?=++=出口弯头进口ξξξξ290 0.5+0.8×2+1.0=3.10.048m 1.29.8120.5053.12==局f h进水虹吸管的沿程水头损失L RC V 22?进事沿=f hm 111.0)5.04.0(22.0R =+?==进χω 32.63)111.0(012.0116161===R n CL 取2m0.00115m20.11163.322=??=沿f h 则局沿+f f f h h h ==0.048+0.00115=0.049m 取f h =0.1m;(7)进水槽及配水槽进水虹吸管出口至槽底h 1取0.25m ;进水虹吸管淹没水深h 2取0.25m ;配水槽出水堰宽b 1取1.2m ;配水堰堰顶水头0.128m 1.21.840.101)b 1.84(32323=)=(进事??=Q h ;进水堰超高C 取0.35m ;则H 进=h 1+h 2+h 3+h f +C =0.25+0.25+0.128+0.1+0.35 =1.078m ,取1.05m ;(8)排水虹吸管冲洗排水量Q 排=qf =13.5×33.66=0.454m 3/s ;排水虹吸管滤速V 排=1.4~1.6m/s ,取V 排=1.5m/s ;则220.303m1.50.454===排V qf ω;采用矩形断面,其尺寸为B 2×L 2=0.45×0.675=0.3015m 2;排水虹吸管管长L=10m ;∑2g V 2排局=ξf h 0.36m 9.8121.513.12==?? L RC V 22排沿=f hm 134.0)675.054.0(23015.0R 2=+?==χω 61.59)134.0(012.0116161===R n C0.05m 100.13459.612=??=沿f h则局沿+f f f h h h ==0.36+0.05=0.41m (9)反冲洗水泵计算水泵所需的供水量Q =qf =13.5×33.66=0.454m 3/s =1634.4m 3/h ;水泵所需扬程H=H 0+h 1+h 2+h 3+h 4+h 5H 0—排水槽顶与清水池最低水位之差;(5.45m )1h —从清水池至滤池间冲洗管道中的总水头损失,计算可得h 1=1.82m ;2h —滤池配水系统的水头损失;(3.2m )3h —承托层的水头损失;(0.13m ) 4h —滤料层膨胀时水头损失m h 68.07.0)41.01)(1165.2(4=?--=; 5h —富裕水头损失;(1.5m )则H=5.45+1.82+3.2+0.13+0.68+1.5=12.78m ;选冲洗水泵两台,一用一备。
净水厂设计计算说明指导书完整版
福州市西区水厂一期扩建工程设计阐明书1自然条件1.1地形、地质福州市地处闽江下游福州盆地,盆地总面积约200Km2,四周有鼓山、旗山、五虎山莲花峰等群山环抱。
地貌类型以平原为主,地势由西北向东南倾斜,市中心散落有乌山、于山和屏山等小山,南台岛上有仓山、盖山和城门山。
市区高程普通为5~15m(黄海高程系),闽江横贯市区,由于地势较低,易受洪涝灾害,需沿江、河筑堤。
市区重要有两类地质:一是靠山丘陵地区,重要在于于山、乌山、屏山一带以及市区四周群山余脉高地和仓山区丘陵地带,容许承载力约0.25Mpa;二是淤积、冲积地区为高压缩性土,范畴较广,淤泥埋藏浅,容积承载力为0.05~0.08MPa,地下水位高,普通在地面下0.5~2.0m。
1.2气象条件福州市属于亚热带海洋性季风气候,夏季炎热多雨,冬季温暖少雨。
(1)气温年平均:19.6摄氏度极端最高:41.1摄氏度(1950年7月19日)极端最低:-2.5摄氏度(1940年1月25日)(2)水量年平均:1355.8mm年平均降水天数:151.2天24小时最大降水量:167.4mm暴雨重要浮现月份:5~9月(3)霜冻年无霜期326天(4)风常年主导风向为西北风和东南风,冬季多西北风,夏季盛行东南风。
平均风速:2.8m/s极大风速:40.7m/s基本风压:0.6KN/m2台风影响我市始于5月,结束于11月中旬,以7月中旬至9月中旬次数最多。
(5)湿度年平均相对湿度77%最大相对湿度84%最小相对湿度5%(6)蒸发量年平均蒸发量 1451.1mm1.3水文条件闽江是福建省最大河流,水量充沛。
闽江在淮安如下分为两支,北支为北港,穿越市区至马尾,将中心城区别为江北平原和南台岛两某些,长为30.5km,平均水面坡降0.15‰,枯水季水面宽150~200m。
南支为南港,又名乌龙江,经洪塘、湾边、纳入大漳溪河后来,出峡兜于马尾、长乐营前与北港又合二为一,南港长34.4km,进入河口段经亭江、倌口、琅歧流入东海。
(完整版)给水处理厂工艺设计说明计算书:河道取水,0.5万吨每天,无阀滤池
一.设计原始资料1.净产水量:5000m3/d2.水源为河水3.(1)最高浑浊度为2000NTU(2)碱度为5mg/L(3)总硬度:月平均最高368mg/L, 月平均最低156mg/L(4)PH值:6.9—7.6(5)色度:12度(6)大肠菌群数:1800CFU/100ml(7)水温:月平均最高27.7℃月平均最低6.9℃4.净化出水要求:达到《国家生活饮用水卫生标准》(GB5749-2006)要求。
5.净水厂地形图:比例尺1:2006.地形资料:拟建水厂厂址地形平坦,地质为砂质粘土,地基承载力特征值fa=600kPa,无地下水7.各种材料均可供应。
二、水厂工艺流程选择(一).确定净水厂的设计水量根据GB50013—2006规定:水处理构筑物的设计水量,应按最高日供水量加水厂自用水量确定。
水厂自用水率应根据原水水质、所采用的处理工艺和构筑物类型等因素通过计算确定,一般可采用设计水量的5%~10%。
当滤池反冲洗水采取回用时,自用水率可适当减小。
考虑滤池反冲洗水采取回用及用水安全,自用水率取8%则设计水量G=5000×(1+0.08)=5400 m3/d(二)确定净水厂工艺流程和净化构筑物的型式原水的含沙量或色度、有机物、致突变前体物等含量较高,臭味明显或为改善凝聚效果,可在常规处理前增设预处理。
原水来自河水含沙量较低,色度12度,满足GB5749-2006 《生活饮用水卫生标准》,可以不进行原水的预处理。
设计工艺流程:取水→一级泵站→管式静态混合器→穿孔旋流絮凝池→斜管沉淀池→无阀滤池→消毒剂→清水池→二级泵站→用户三、混凝剂的投配根据最高浊度,此河水水质与长江水类似,则混凝剂PAC采用碱式氯化铝(含三氧化二铝10%),投加量最高为20mg/L,无需助凝剂。
沉淀或澄清时间1.2h。
每天工作时间为18h。
1.溶解池W1和溶液池W2的确定W2=aQ/417cn=18×100×20×5400/18 /(1000×1000×10×2)=0.54m3n----液体投加混凝剂时,溶解次数应根据混凝剂投加量和配制条件等因素确定,每日不宜超过3次,取2次。
5万立方米净水厂设计计算书
5万立方米净水厂设计计算书设计计算书-5万立方米净水厂一、引言该设计计算书旨在为一个5万立方米净水厂的设计提供参考和指导。
净水厂是一个重要的基础设施,通过去除水中的悬浮物、有机物、病原体等杂质,提供符合需求的净水。
设计计算书将包括以下内容:设计概述、进水量计算、预处理设计、混凝沉淀池设计、过滤系统设计、消毒系统设计等。
二、设计概述本设计的5万立方米净水厂预计使用人口为10万人左右,并根据当地的水质要求进行设计。
设计流程包括进水量计算、预处理、混凝沉淀、过滤和消毒。
预计每天供水时间为24小时。
三、进水量计算根据设计净水厂的使用人口,结合单位居住人口平均用水量,可以计算出每天所需的进水量。
根据当地的实际情况,还要考虑进水量的储备和未来的扩展需求。
四、预处理设计预处理是净水厂的重要环节,主要用于去除水中的悬浮物、有机物和沉淀物。
设计中需要考虑预处理设备的类型,如格栅、沉砂池、软化器等,并计算出其尺寸和数量。
五、混凝沉淀池设计混凝沉淀池需要设计合适的尺寸和形状,以使得水中的悬浮物和有机物能够充分沉淀和脱落。
需要计算出混凝剂的投加量和混凝时间,并考虑污泥处理设备的布置。
六、过滤系统设计过滤系统是净水厂的核心部分,主要用于去除水中的微生物和细小颗粒物。
设计中需要选择合适的滤料,如石英砂、活性炭等,并计算出滤池的尺寸和数量。
七、消毒系统设计消毒是净水厂最后的处理步骤,可以使用化学消毒或紫外线消毒等方法。
设计中需要计算出消毒剂的投加量和消毒时间,并考虑消毒设备的选型和布置。
八、总结设计计算书涵盖了5万立方米净水厂的设计过程和各个环节的计算内容。
准确的进水量计算、预处理设计、混凝沉淀池设计、过滤系统设计和消毒系统设计等关键参数的选取,对于净水厂的正常运行和供水质量的保证至关重要。
在实际建设过程中,还需要进行具体的施工和设备选购等工作,在监测和运维中进行水质检测和调整。
净水厂的设计需要全面考虑各方面的因素,并根据实际情况进行优化和调整,以确保净水厂的安全、高效运行。
净水厂课程设计说明书
二、设计计算内容 2.1. 设计水质水量(1)、设计水质:本设计给水处理工程设计水质满足国家生活饮用水卫生标准(GB5749-2006),处理的目的是去除原水中悬浮物质,胶体物质、细菌、病毒以及其他有害万分,使净化后水质满足生活饮用水的要求。
生活饮用水水质应符合下列基本要求:水中不得含有病原微生物;水中所含化学物质及放射性物质不得危害人体健康;水的感官性状良好。
(2)、设计水量水处理构筑物的生产能力,应以最高日供水量加水厂自用水量进行设计,并以水质最不利情况进行校核。
水厂自用水量主要用于滤池冲洗和澄清池排泥等方面。
城镇水厂只用水量一般采用供水量的5%—10%,本设计取6%,则设计处理量为:dQ=q ³(1+0.06)=55000³(1+0.06)=58300(m3/d ) 式中: Q ——水厂日处理量;a ——水厂自用水量系数,一般采用供水量的5%—10%,本设计取6%;Q d ——设计供水量(m 3/d ),为5.5万m 3/d 。
根据水厂设计水量1万~5万dm 3小型水厂,5万~10万dm3为中型水厂,10万dm3以上为大型水厂的标准可知水厂为中型水厂。
2.2. 水厂工艺方案确定及技术比较(1)、给水处理厂工艺流程方案的选择及确定方案一:原水→一泵房→静态混合器→机械搅拌絮凝池→平流沉淀池→普通快滤池→清水池→二泵房→用户方案二:原水→一泵房→扩散混合器→往复式隔板絮凝池→平流沉淀池→ V型滤池→清水池→二泵房→用户(2)、方案技术比较:综上所述:根据以上各构筑物的特点以及实际情况并进行比较,本设计选用方案一较合理。
2.3给水单体构筑物设计计算 2.3.1 混凝剂配置和投加 (1)、设计参数根据原水水质及水温,参考有关水厂的运行经验,选精致硫酸铝为混凝剂。
最大投加量为20mg/L ,精致硫酸铝投加浓度为10%。
采用计量投药泵投加。
(2)、溶液池设计及计算溶液池设计为以高架式设置,以便能依靠重力投加药剂。
5万立方米净水厂设计计算书
第一章:设计原始资料一、地理条件:地形平坦,稍向西倾斜,地势平均标高22m (河岸边建有防 洪大堤)。
二、水厂位置占地面积:水厂位置距离河岸200m ,占地面积充分。
三、水文资料:河流年径流量3.76-14.82亿立方米,河流主流量靠近西岸。
取水点附近水位:五十年一遇洪水位:21.84m ; 百年一遇洪水位:23.50m ;河流平常水位:15.80m ; 河底标高:10m 。
四、气象资料及厂区地址条件:全年盛行风向:西北;全年雨量:平均63mm ;冰冻最大深度1m 。
厂区地基:上层为中、轻砂质粘土,其下为粉细沙,再下为中砂。
地基允许承载力:10-12t/m 2。
厂区地下水位埋深:3-4m 。
地震烈度位8度。
五、水质资料:浊度:年平均68NTU ,最高达3000NTU ;pH 值:7.4-6.8;水温:4.5-21.5℃;色度:年平均为11-13度;臭味:土腥味;总硬度:123.35mg/L CaCO 3;溶解氧:年平均10.81 mg/L ;Fe :年平均0.435 mg/L ,最大为0.68 mg/L ;大肠菌群:最大723800个/mL ,最小为24600个/ mL ;细菌总数:最大2800个/ mL ,最小140个/ mL 。
六、水质、水量及其水压的要求:设计水量:根据资料统计,目前在原地下水源继续供水的情况下,每天还需 5万立方米。
水质:满足现行生活饮用水水质标准。
水压:二级泵站扬程按50米考虑。
第二章:用水量的计算设计给水工程首先耍确定设计水量,通常将设计用水量作为设计水量。
设计用水量是根据设计年限用水单位数、用水定额和用水变化情况所预测的用户日用水总量。
设计用水量包括下列用水:综合生活用水量1Q ,包括居民生活用水量和公共建筑及设施用水;工业用水量2Q ;浇洒道路和绿地用水量3Q ; 未预见水量及管网漏失量4Q 。
本设计为日供水量为50000 m 3/d ,城镇水厂自用水量一般采用供水量的5%~10%,本设计取7%,,时变化系数h K 取1.5。
净水厂设计说明书计算书
广东工业大学课程设计任务书题目名称万吨/日净水厂设计学生学院土木与交通工程学院专业班级给水排水工程 11 级(1)班姓名陈梓君学号3211003484一、课程设计的内容根据所给定的原始资料,设计某城镇生活给水水厂,该设计属初步设计。
设计的内容有:1.净水厂的处理工艺流程的选择。
2.净水构筑物及设备型式的选择。
3.净水构筑物的工艺计算。
4.净水厂的总平面布置和高程布置。
5.编写设计说明书和计算书。
6.绘制净水厂的总平面布置图和高程布置图。
7.绘制处理构筑物工艺图。
二、课程设计的要求与数据要认真阅读课程设计任务书,并复习教材有关部分章节并熟悉所用规范、手册、标准图等文献资料。
要求设计选用参数合理,计算正确;说明书要有净水厂处理工艺流程及净水构筑物型式选择的理由,净水厂的总平面布置图和高程布置图要有详尽的阐述。
叙述简明扼要,文理通顺;设计计算书、说明书包括必要的计算公式、草图和图表。
图纸内容完整,布局合理,制图要规范。
保证在规定时间内,质量较好地完成任务书中所规定的设计任务。
三、课程设计应完成的工作应完成上述课程设计的内容,达到初步设计的程度。
提交设计成果,包括设计计算书、说明书及设计图纸。
设计图纸有:(1)净水厂平面布置图(1张);(2)净水厂处理流程高程布置图(1张)。
四、课程设计进程安排五、应收集的资料及主要参考文献任务书给出的原始资料、手册、标准、规范及有关的专著。
主要参考资料:1.《给水排水工程快速设计手册.给水工程》,严煦世编;2.《给水排水设计手册.城镇给水》(第3册);3.《给水排水工程师常用规范选》(上册);4.《室外给水设计规范》;5.《给水排水简明设计手册》;6.《给水工程》,严煦世编。
7.《给水排水标准图集》发出任务书日期:2014 年 6 月 23 日指导教师签名:计划完成日期: 2014 年 6 月 27 日基层教学单位责任人签章:主管院长签章:附录:一、设计资料1.水厂近期净产水量为25.2 万m3/d,要求远期发展到40 万m3/d。
水厂设计说明与计算书给水课程设计报告书
水厂设计说明与计算书第1章设计水质水量与工艺流程的确定1.1 设计水质水量1.1.1 设计水质本设计给水处理工程设计水质满足国家生活饮用水卫生标准(GB5749-2006),处理的目的是去除原水中悬浮物质,胶体物质、细菌、病毒以及其他有害万分,使净化后水质满足生活饮用水的要求。
生活饮用水水质应符合下列基本要求:(1)水中不得含有病原微生物。
(2)水中所含化学物质及放射性物质不得危害人体健康。
(3)水的感官性状良好。
基础资料:1.厂区地形平坦无高差。
2.原水水质分析表原水水质分析表3.滤砂筛分资料(请改组成所需d10=0.5mm,K80=1.8的滤料)。
4.该水厂所在地区常年主导风向为东风。
1.1.2 设计水量水处理构筑物的生产能力,应以最高日供水量加水厂自用水量进行设计,并以水质最不利情况进行校核。
Q d=Q a*K d=60000×1.5=90000m3/d水厂自用水量主要用于滤池冲洗和澄清池排泥等方面。
城镇水厂只用水量一般采用供水量的5%—10%,本设计取8%,则设计处理量为:Q=(1+a)Q d =1.08×90000=97200m3/d式中Q——水厂日处理量;a——水厂自用水量系数,一般采用供水量的5%—10%,本设计取8%;Q a——平均日设计供水量(m3/d),为6万m3/d;Q d——最高日设计供水量(m3/d);K d——供水量日变化系数,取1.5。
1. 2 给水处理流程确定1.2.1 给水处理工艺流程的选择给水处理工艺流程的选择与原水水质和处理后的水质要求有关。
一般来讲,地下水只需要经消毒处理即可,对含有铁、锰、氟的地下水,则需采用除铁、除锰、除氟的处理工艺。
地表水为水源时,生活饮用水通常采用混合、絮凝、沉淀、过滤、消毒的处理工艺。
如果是微污染原水,则需要进行特殊处理。
一般净水工艺流程选择:1.原水→简单处理(如用筛网隔虑)适用条件:水质要求不高,如某些工业冷却用水,只要求去除粗大杂质时2.原水→混凝、沉淀或澄清适用条件:一般进水悬浮物含量应小于2000-3000mg/L,短时间允许到5000-10000mg/L,出水浊度约为10-20度,一般用于水质要求不高的工业用水。
水厂设计计算说明书
净水处理构筑物设计计算宾川县二水厂工程的设计规模为2.0万m 3/d ,分两期实施。
一期工程规模为1.0万m 3/d 。
一期工程设计流量Q=2410.110000⨯=458.33 m 3/h=0.127 m 3/s 。
1.配水混合井配水井按二期设计,一次修建完成。
分为3格,每格均为正方形(2.0m ×2.0m ),有效水深2.0m ,保护高度0.5m 。
原水进入配水井中间一格后通过池壁底端的连通渠向两边均匀分流,并在外侧的两格装有推进式机械浆板混合装置,搅拌器直径0.68m ,外缘线速度4.6 m/s ,搅拌功率2.5Kw 。
向配水井内投加混凝剂后,经机械混合器快速混合,混合时间1min ,然后由配水井上端连接的DN400配水管向网格絮凝池均匀配水。
在浊度较低季节或水厂网格絮凝-斜管沉淀池检修时,可以超越网格絮凝-斜管沉淀池,投药后配水混合井直接配水到无阀滤池进行直接过滤。
]2.网格反应池 2.1设计数据(1)设计流量Q=0.127 m 3/s ; (2)反应时间t =12.5min ; (3)每个反应池有6个竖井;(4)过网流速分四档,分别为:0.25m/s ,0.19m/s ,0.10m/s ,0.07m/s ;2.2主要计算(5)平面尺寸反应池容积ϖ=Qt =0.127×12.5×60=95.25 m 3 反应池有效水深H ’=3.6 m 反应池的总面积F =46.266.325.95'==Hϖm 2反应池分6格,每格的面积f = 41.4646.266==Fm 2单格平面尺寸2.1 ×2.1m (6)反应池的总高度HH =H 1+H 2+ H 3H 1——排泥斗高度,取1.1m ; H 2——池中有效水深,取3.6m ; H 3——保护高,取0.4m ; H =1.1+3.6+0.4=5.10m根据泥斗尺寸验算斗底坡度为52.3°,排泥顺畅。
净水厂设计计算说明书2
净水厂设计计算说明书2净水厂设计计算说明书2一、引言净水厂是负责处理水源,将其转化为适合供给给城市居民使用的水的设施。
本文档将详细介绍净水厂的设计计算。
二、设计计算1.原水水质分析首先,需要对原水的水质进行分析。
通过收集水质样本,进行水质分析,包括浊度、PH值、氨氮、色度、溶解氧、硬度等指标的测定。
这些数据将用于后续的设计计算。
2.水量计算3.设计流程根据水质分析和水量计算结果,设计净水厂的处理流程。
通常包括原水进厂、预处理、混凝、沉淀、过滤、消毒等步骤。
每个步骤的操作参数、设备选型、设计流程等都需详细说明。
4.设备选型和容量计算根据处理流程,选择合适的设备进行净水处理。
对于每个处理步骤中的设备,需要进行容量计算,确保其能够满足设计时的处理需求。
例如,根据进厂水量和处理效率,计算出预处理设备的容量。
对于过滤设备,需要考虑水质要求和操作参数来确定其选型和容量。
5.设计计算示例以混凝和沉淀过程为例,进行详细的设计计算说明。
首先,根据原水的浊度和PH值,确定混凝剂的种类和投加量。
然后,根据混凝后的絮凝物去除率要求,计算出设置的沉淀池容积。
在计算过程中,需要考虑絮凝物的提升速度、沉淀池的滞留时间等因素。
6.安全运行计算三、结论本文档详细介绍了净水厂设计的计算内容,包括原水水质分析、水量计算、设计流程、设备选型和容量计算、设计计算示例以及安全运行计算等。
这些计算将确保净水厂的正常运行和安全供水。
在实际设计中,还需根据具体情况进行调整和改进。
净水厂设计计算书
净水厂设计计算书二设计计算内容一、水厂规模及水量确定综合生活用水量:Q 1=270000×250×96%=64800000L/d=64800m 3/d 生产用水量:Q 2=12000+12000+12000+8000=44000m 3/d 工业企业用水量:Q3=[(25×1600×3+35×400×3+60×400×3)+(25×1600×3+35×400×3+40×400×3)+(25×1000×3)+(25×1600×3)]/1000=639m 3/d 浇洒绿地用水量:Q 4=(Q 1 +Q 2 +Q 3 )×10%=(64800+44000+639) ×10%=10944m 3/d 未预见用水及管网漏水量: Q 5=20%×(Q 1+Q 2+Q 3+Q 4)=24077 m 3/d 设计水量:Q d =Q 1+Q 2+Q 3+Q 4+Q 5=144460 m 3/d=6019 m 3/h=1.67 m 3/s 水厂自用水量取5% Q I =1.05×TQd=6320.125 m 3/h 消防水量:Qx=55×2=110L/s=9504 m 3/d二. 给水工艺流程的确定及构筑物的选择 2.1工艺流程的确定水厂以地表水作为水源,工艺流程如图1所示。
原水混合絮凝沉淀池滤池混凝剂消毒剂清水池二级泵房用户图1 水处理工艺流程2.2构筑物形式的选择根据已选工艺流程,在设计中混合设施选用机械混合池,反应池选用折板絮凝池,沉淀池选用平流式沉淀池,滤池选用V 型滤池,采用加氯消毒。
三、给水单体构筑物设计计算(一)混凝剂配制和投加 1. 设计参数根据原水水质及水温,参考有关净水厂的运行经验,选聚合氯化铝为混凝剂。
净水厂计算书范文
净水厂计算书范文一、引言净水厂是指通过各种水处理工艺将原水转化为符合国家标准的纯净水的设施。
净水厂计算书是指在设计净水厂时所做的详细计算。
本文将以净水厂为例,介绍净水厂计算书的内容要求。
二、设计要求1.原水水质要求:根据当地水质情况,确定原水水质的各项指标,如悬浮物、溶解物、重金属等。
2.净水质量要求:根据国家标准或行业标准,确定净水的各项指标,如浊度、溶解氧、总大肠菌群等。
3.净水厂处理工艺:根据原水水质和净水质量要求,确定净水厂的处理工艺,如絮凝、混凝、过滤、消毒等。
三、工艺设计计算1.流量计算:根据原水水质和净水需求量,计算出净水厂的处理流量,包括原水的取水流量、净水的出水流量等。
2.水力计算:根据净水工艺的各个处理单元,计算出各单元的水力参数,如水头损失、差压、流速等。
3.配置计算:根据流量和水力参数,计算出净水工艺的配置,包括器材的数量、规格和布置方式等。
4.反洗计算:根据过滤器的使用情况,计算出反洗的压力、持续时间和反洗水量等。
四、设备选型计算1.设备功能计算:根据处理工艺的要求,计算出所需的设备的功能参数,如絮凝剂的用量、过滤器的处理能力等。
2.设备选型计算:根据设备的功能参数,选择合适的设备,并计算出设备的规格和数量等。
3.能耗计算:根据设备的运行参数,计算出净水厂的能耗,包括电力消耗、化学药剂的耗量等。
4.经济计算:根据设备的选型和能耗,计算出净水厂的投资成本和运行成本,包括设备购置费、人工费用、维修费用等。
五、安全措施计算1.废水处理计算:根据净水工艺的废水产生情况,计算出废水的排放量和处理方式,包括废水管道的布置和处理设备的选型等。
2.气体处理计算:根据净水工艺的气体产生情况,计算出气体的排放量和处理方式,包括气体收集、净化和排放等。
六、总结与展望本文以净水厂为例,介绍了净水厂计算书的内容要求。
净水厂计算书是净水厂设计的重要依据,涉及到原水水质、净水质量、处理工艺、设备选型和安全措施等方面的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东工业大学课程设计任务书题目名称万吨/日净水厂设计学生学院土木与交通工程学院专业班级给水排水工程 11 级(1)班姓名陈梓君学号3211003484一、课程设计的内容根据所给定的原始资料,设计某城镇生活给水水厂,该设计属初步设计。
设计的内容有:1.净水厂的处理工艺流程的选择。
2.净水构筑物及设备型式的选择。
3.净水构筑物的工艺计算。
4.净水厂的总平面布置和高程布置。
5.编写设计说明书和计算书。
6.绘制净水厂的总平面布置图和高程布置图。
7.绘制处理构筑物工艺图。
二、课程设计的要求与数据要认真阅读课程设计任务书,并复习教材有关部分章节并熟悉所用规范、手册、标准图等文献资料。
要求设计选用参数合理,计算正确;说明书要有净水厂处理工艺流程及净水构筑物型式选择的理由,净水厂的总平面布置图和高程布置图要有详尽的阐述。
叙述简明扼要,文理通顺;设计计算书、说明书包括必要的计算公式、草图和图表。
图纸内容完整,布局合理,制图要规范。
保证在规定时间内,质量较好地完成任务书中所规定的设计任务。
三、课程设计应完成的工作应完成上述课程设计的内容,达到初步设计的程度。
提交设计成果,包括设计计算书、说明书及设计图纸。
设计图纸有:(1)净水厂平面布置图(1张);(2)净水厂处理流程高程布置图(1张)。
四、课程设计进程安排五、应收集的资料及主要参考文献任务书给出的原始资料、手册、标准、规范及有关的专著。
主要参考资料:1.《给水排水工程快速设计手册.给水工程》,严煦世编;2.《给水排水设计手册.城镇给水》(第3册);3.《给水排水工程师常用规范选》(上册);4.《室外给水设计规范》;5.《给水排水简明设计手册》;6.《给水工程》,严煦世编。
7.《给水排水标准图集》发出任务书日期:2014 年 6 月 23 日指导教师签名:计划完成日期: 2014 年 6 月 27 日基层教学单位责任人签章:主管院长签章:附录:一、设计资料1.水厂近期净产水量为 25.2 万m3/d,要求远期发展到 40 万m3/d。
2.水源为河水,原水水质如下所示:4.气象资料:年平均气温22℃,最冷月平均温度4℃,最热月平均温度34℃,最高温度39℃,最低温度1℃。
常年风向东南。
5.地质资料:净水厂地区高程以下0~3米为粘质砂土,3~6米为砂石堆积层,再下层为红砂岩。
地基允许承载力为2.5~4公斤/厘米。
6.厂区地形平坦,平均高程为70.00米。
水源取水口位于水厂西北50米,水厂位于城市北面1km。
7.二级泵站扬程(至水塔)为40米。
二、设计成果格式要求(一)设计说明书及设计计算书第一部分设计说明书1.概述2.净水工艺流程的确定3.净水厂处理构筑物及设备型式选择4.处理构筑物设计要点及说明5.净水厂平面布置及高程布置说明第二部分设计计算书1.混合设备的设计2.絮凝设备的设计3.沉淀(澄清)池的设计4.滤池的设计5.投药系统及消毒系统的设计6.清水池的设计7.净水厂平面布置及高程布置(二)设计图纸1.净水厂平面布置图净水厂总平面布置图应按照初步设计要求完成。
图上应绘出主要净水构筑物、水泵站、清水池、药剂间、辅助建筑物、道路、绿化地带及围墙等,并用坐标表示其外形尺寸和相互距离,同时绘出各种连接管渠、阀门等。
构筑物管道均以单线表示。
管线上应标明管径(渠道断面尺寸)。
图中注明各生产构筑物及辅助建筑物的名称、数量及主要外形尺寸(或列表以序号表示之)等。
2.净水厂处理工艺高程布置图(纵向1:50~1:100,横向比例同平面布置图的比例)净水厂高程图上,应标出各净水构筑物之顶、底及水面标高,主要构件及管渠的标高。
第一部分 设计说明书 1.概述根据《地面水环境质量标准》(GB -3838-88),原水水质符合地面水Ⅲ类水质标准,除浊度、细菌总数和大肠菌群偏高外,其余参数均符合《生活饮用水卫生标准》(GB -5749—2006)的规定。
本水厂设计净水量为25.2万m 3/d ,为大型水厂,需设混凝剂配制的溶解池。
原水从输水管进入水厂,利用计量泵将配制好浓度的PAC 投加于压水管,并使其于管式混合器中与水充分混合,水从管式混合器经压力管进入折板絮凝池进行絮凝,后直接进入平流式沉淀池进行沉淀,接着进入V 型滤池进行过滤,得到澄清的水,在水输送到清水池的管道中,投加氯进行消毒。
最后经处理后的净水进入清水池,并经过输水管输送至二级泵站。
整个工艺流程如上,由于本设计水厂水大型水厂,设计时需预留发展地。
2.设计工艺流程:原水混 合絮凝沉淀池滤 池混凝剂消毒剂清水池二级泵房用户3.净水厂处理构筑物及设备型式选择3.1混凝3.1.1混凝剂的选择本设计选用聚合氯化铝(即PAC )。
选择理由:(1)PAC 广泛使用,且我国是研制PAC 较早的国家之一,具有成熟的使用经验可借鉴。
(2)效能优于硫酸铝,相对于硫酸铝,对水的pH 值适应性强。
(3)投加量相对于硫酸铝少,成本降低。
3.1.2混凝剂的配制和投加药剂投加采用湿式投加系统。
(1)混凝剂的配制设计混凝剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以下或半地下为宜,通常设在加药间底层。
池顶宜高出地面0.20m 左右,以减轻劳动强度,改善操作条件。
溶解池的底坡应大于2%,池底应有直径不小于100mm 的排渣管。
池壁需设超高,超高为0.2~0.3m ,用于防止搅拌溶液时溢出。
此外,还需设置溶液池,溶液池是配制一定浓度溶液的设施。
采用射流泵将溶解池内的浓药液送入溶液池,同时用自来水稀释到所需浓度以备投加。
本设计选用机械搅拌,但需采取防腐材料。
(2)混凝剂的投加投药设备采用计量泵投加的方式。
采用计量泵,不必另备计量设备,泵上有计量标志,可通过改变计量泵行程或变频调速改变药液投量,最适合用于混凝剂自动控制系统。
示意图如下:3.1.3混合设备的选择选择管式混合,即将药剂基质投入水泵压水管中以借助管中流速进行混合。
选择理由:混合方式上,由于机械混合池占地大,基建投资高,增加机械设备并相应地增加维修工作;水泵混合设备复杂,管理麻烦,机械搅拌混合耗能大,管理复杂,相比之下,管式混合具有占地极小、投资省、在管道上安装容易,维修工作量少,能快速混合,混合效果良好和管理方便等优点因而具有较大的优越性。
示意图如下:3.1.4絮凝设备的选择絮凝设备的基本要求是,原水与药剂经混合后,通过絮凝设备应形成肉眼可见的大的密实絮凝体。
反应作用在于使凝聚微粒通过絮凝形成具有良好沉淀性能的大的絮凝体。
目前国内使用较多的是各种形式的水力絮凝及其各种组合形式,主要有隔板絮凝、折板絮凝和机械絮凝。
这三种形式的絮凝池在大、中型水厂中均有使用。
隔板絮凝池构造简单,管理方便,流量变化大时,絮凝效果不稳定。
折板絮凝池对原水水量和水质变化的适应性较强,停留时间较短,并可以相应节约絮凝剂量,但造价较高。
与隔板絮凝池相比,水流条件大大改善,即在总的水流能量消耗中,有效能量消耗比例提高,絮凝时间可以缩短,池子体积减小,但建造费高,检修困难、检修费用增加。
网格絮凝池虽然效果好,水头损失小,絮凝时间较短等优点,但其会出现在末端池底积泥现象,有不完善的地方。
综上所述,本设计水厂为大型水厂,决定采用隔板絮凝池。
3.2沉淀设计采用平流式沉淀池,一般用于大,中型水厂,单池处理的水量大,具有适应性强、处理效果稳定和排泥效果好等特点,虽然平流式占地面积大。
斜管沉淀池因采用斜管组件,使沉淀效率大大提高,处理效果比平流沉淀池要好,但斜管的费用比较高,并且使用约5~10年后必须更新,还要注意斜管内滋生藻类和淤泥的问题。
综合上述,所以选择平流沉淀池。
其分设四个池子,并与混凝池合建,其宽度同样大小,同样的由于宽度较大,每个池子分别沿纵向设置一道隔墙,分成两格。
本设计采用机械排泥,不另设排泥斗,充分利用沉淀池的容积。
机械排泥效果好,一般不需定期放空清洗,并可降低劳动强度。
3.3过滤V型滤池的反冲洗采用水冲洗、气冲洗和表面扫洗相结合的方式。
冲洗水仅为常规冲洗水量的1/4,大大节约了清洁水的使用量,表面冲洗所用的水为未经过滤的滤前水,所有扫洗时不加重滤池负担,是一种滤速较高、生产能力强、节水经济的滤池。
V型滤池采用气水反冲洗技术与单纯水反冲洗方式相比,主要有以下优点:(1)较好地消除了滤料表层、内层泥球,具有截污能力强,滤池过滤周期长,反冲洗水量小特点。
可节省反冲洗水量;40~60%,降低水厂自用水量,降低生产运行成本;不易产生滤料流失现象,滤层仅为微膨胀,提高了滤料使用寿命,减少了滤池补砂、换砂费用。
(3)采用粗粒、均质单层石英砂滤料,保证滤池冲洗效果和充分利用滤料排污容量,使滤后水水质好。
综上,本设计采用V型滤池。
3.4消毒水的消毒处理是生活饮用水处理工艺中的最后一道工序,其目的在于杀灭水中的有害病原微生物(病原菌、病毒等),防止水致传染病的危害。
本设计采用氯消毒,氯消毒的加氯过程操作简单,价格较低,且在管网中有持续消毒杀菌作用。
虽然二氧化氯,消毒能力较氯强而且能在管网中保持很长时间,但是由于二氧化氯价格昂贵,且其主要原料亚氯酸钠易爆炸,国内目前在净水处理方面应用尚不多。
所以,本设计采用氯消毒。
由于本设计的水厂为大型水厂,采用自动加氯机及设置加氯间和氯库。
3.5清水池清水池容积为10%水量,选型为矩形,方便建造及节省占地面积,初定深为3-3.5m。
4.处理构筑物设计要点及说明4.1溶解池和溶液池:溶解池的规格为:L×B×H=2×2×2(m),高度中包括超高0.3 m,沉渣高度0.2 m溶液池的规格为:L×B×H=4×3×2.3(m),高度中包括超高0.3 m,沉渣高度0.3 m4.2隔板絮凝池(往复式):1)设计用水量(包括自用水量)Q=24000×1.05=252000 =2.52m3/s2)絮凝池采用2个池子,每个池子分为2格。
每格规格:L×B×H=26.23m×13.9m×2.7m3)絮凝池时间 T=20min4)池的平均有效水深为h=2.4m。
5)隔墙壁厚取0.2m。
4.3平流式沉淀池1)沉淀池的规格为:L×B×H=81m×55.6m×3.8m(高含超高)2)沉淀池个数采用4个,每个沉淀池分2格,共8格。
3)沉淀时间T=1.5h;平均流速v=15mm/s4)进水区采用穿孔墙,墙上孔口流速取0.2 m/s;设计要点:1.混凝沉淀时,出水悬浮物含量一般不超过20mg/L2.池数或分个数一般不少于2个3.池内平均水平流速,混凝沉淀一般为10~25mm/s4.沉淀时间一般采用1~3h;5.有效水深一般为3~3.5h;6.池的长宽比不应小于4:1,池的长深比不小于10:1;7.池子进水端用穿孔墙时,孔口流速不宜大于0.15~0.2m/s,洞口的断面形状宜沿水流方向逐渐扩大,以减少进口的射流;8.沉淀池的水力条件用弗劳德数Fr控制。