高中生物知识点:DNA分子结构及特点

合集下载

DNA分子的结构及其特点

DNA分子的结构及其特点

DNA分子的结构及其特点DNA分子是细胞内一种重要的生物大分子,也是生物体遗传信息的载体。

DNA的完整结构由磷酸、脱氧核糖和4种碱基组成,其中包括腺嘌呤(A)、胞嘧啶(T)、鸟嘧啶(C)和鸟嘌呤(G)。

DNA分子基本上呈一个螺旋状的双链结构,形成一个轴对称的双螺旋结构,并与RNA有很大不同。

DNA分子的特点之一是双螺旋结构,也就是双链。

这种双链由两条互补的链构成,互相交缠在一起。

每条链上都包含了相同的信息,通过碱基的氢键连接在一起。

DNA分子的另一个重要特点是其信息容量极大,可以存储大量的遗传信息。

每个细胞核内的DNA含有动植物个体的遗传信息,这一特点使得DNA成为传递遗传信息的理想分子。

另一个DNA分子的特点是其稳定性较高。

DNA分子中的磷酸链和碱基链之间的关系非常稳定,这使得DNA在传递过程中不易受到损害。

在细胞分裂、复制和修复过程中,DNA的稳定性保证了遗传信息的准确传递,并且减少了突变的可能性。

此外,DNA具有较高的复制准确性和可靠性。

在细胞分裂过程中,DNA会通过复制过程得到精确地复制,确保每个子细胞都获得了相同的遗传信息。

这种高度的复制准确性是维持生物体稳定遗传特征的基础,也是DNA分子重要的特点之一。

总的来说,DNA分子的结构及其特点使得它在生物体内发挥着重要的作用。

作为遗传信息的携带者,DNA通过稳定性、双链结构、信息容量和复制准确性等特点,确保了生物体的遗传信息的传递和稳定性,为生物体的生长发育和遗传变异提供了坚实的基础。

DNA的研究也将有助于我们更好地理解生命的奥秘,推动生物科学领域的发展和进步。

高中生物dna相关知识点总结

高中生物dna相关知识点总结

高中生物dna相关知识点总结高中生物DNA相关知识点总结一、DNA的基本概念DNA(脱氧核糖核酸)是生物体内遗传信息的主要载体。

它位于细胞核内的染色体上,具有双螺旋结构。

DNA分子由四种碱基组成:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)。

这些碱基通过氢键按照A-T和C-G的配对原则相互结合,形成碱基对。

二、DNA的结构1. 双螺旋结构:DNA由两条反平行的链组成,这两条链通过碱基对之间的氢键相互结合,形成著名的双螺旋结构。

这种结构由James Watson和Francis Crick于1953年首次提出。

2. 碱基对:DNA链上的碱基按照A与T配对,G与C配对的规律排列。

这种配对方式称为碱基互补配对原则。

3. 糖-磷酸骨架:DNA链的外部是由糖(脱氧核糖)和磷酸分子交替连接而成的骨架,称为糖-磷酸骨架。

三、DNA的复制1. 半保留复制:DNA在细胞分裂前通过半保留复制的方式产生两份相同的拷贝。

每条新的DNA分子都包含一条原始的链和一条新合成的链。

2. 解旋酶:在复制过程中,解旋酶负责将双螺旋结构分开,形成两条单链。

3. 聚合酶:DNA聚合酶在解旋后的单链上添加相应的碱基,合成新的DNA链。

4. 复制起始点:DNA复制从特定的起始点开始,称为复制起始点。

在这些位置,特定的蛋白质识别并解开DNA双螺旋。

四、DNA的转录1. 转录过程:DNA上的遗传信息通过转录过程转换成RNA分子。

这个过程主要由RNA聚合酶完成。

2. 信使RNA(mRNA):转录过程中生成的RNA分子称为信使RNA,它携带遗传信息从细胞核传递到细胞质中。

3. 编码区与非编码区:DNA上的基因分为编码区和非编码区。

编码区包含编码蛋白质的遗传信息,而非编码区则参与调控基因的表达。

五、DNA的翻译1. 遗传密码:遗传信息通过三个连续的碱基(一个密码子)在mRNA 上编码一个氨基酸。

2. 转运RNA(tRNA):tRNA分子负责将特定的氨基酸运送到核糖体,并按照mRNA上的密码子顺序进行配对。

高一生物必修一dna所有知识点

高一生物必修一dna所有知识点

高一生物必修一dna所有知识点DNA(脱氧核糖核酸)是构成生物遗传信息的分子,它是生命的基础之一。

研究DNA的结构和功能已经成为生物学的重要分支之一。

在高中生物必修一中,我们将学习DNA的所有知识点,包括DNA的组成结构、复制过程、基因表达以及基因突变等内容。

DNA的组成结构是我们理解DNA的第一步。

每个DNA分子包含两条互补的链,这个结构被称为双螺旋结构。

DNA的主要组成部分是核苷酸,它由一个五碳糖(脱氧核糖)、一个磷酸基团和一个氮碱基组成。

氮碱基包括腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。

这些碱基以特定的配对方式连接在一起,A和T之间有两个氢键连接,G和C之间有三个氢键连接。

这种配对方式使得DNA具有特异性。

DNA的复制过程是DNA分子在细胞分裂时进行的一个重要过程。

复制过程的第一步是DNA双链的解旋,这由一种叫做DNA解旋酶的酶催化完成。

解旋后,DNA聚合酶会识别模板链,从5'到3'方向合成新的互补链。

新合成的链被称为新链,原有的链被称为旧链。

DNA复制是一个半保留复制过程,意味着每个新DNA分子包含一个旧链和一个新链。

DNA的复制在生物体中具有重要的生物学意义。

细胞通过复制DNA来增加其遗传物质,以便分裂出两个完全相同的细胞。

同时,复制过程中的错误会导致突变的产生,这是生物进化和遗传多样性的基础。

DNA的基因表达是指DNA中的遗传信息被转录成RNA,并最终翻译成蛋白质的过程。

转录是DNA的一部分被复制成RNA的过程。

这一过程由RNA聚合酶催化完成,RNA聚合酶沿着DNA模板链合成新的RNA链。

翻译是指RNA的信息被转化为蛋白质的过程,这需要核糖体、tRNA和氨基酸的参与。

通过基因表达,DNA中的遗传信息被转化为生物体的各种功能。

基因突变是DNA序列的改变。

它可以是点突变,即一个碱基被替换为另一个碱基,也可以是插入、删除或重复某些碱基。

基因突变是生物多样性的一个重要来源,它产生了各种不同的表型。

高中生物DNA与RNA知识点总结

高中生物DNA与RNA知识点总结

高中生物DNA与RNA知识点总结在高中生物的学习中,DNA(脱氧核糖核酸)和RNA(核糖核酸)是非常重要的知识点。

理解它们的结构、功能以及相互关系,对于深入掌握生物遗传和生命活动的规律具有关键意义。

一、DNA 的结构与特点1、化学组成DNA 由脱氧核苷酸组成。

每个脱氧核苷酸包含一个脱氧核糖、一个磷酸基团和一个含氮碱基。

含氮碱基有腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)四种。

2、双螺旋结构DNA 是双螺旋结构,两条链反向平行。

两条链通过碱基之间的氢键连接,A 与 T 配对,G 与 C 配对,这种碱基互补配对原则保证了遗传信息的准确传递。

3、稳定性DNA 的双螺旋结构和碱基互补配对原则使得它具有较高的稳定性。

这对于遗传信息的长期保存至关重要。

二、RNA 的结构与种类1、化学组成RNA 由核糖核苷酸组成,包含核糖、磷酸基团和含氮碱基。

含氮碱基有腺嘌呤(A)、尿嘧啶(U)、鸟嘌呤(G)和胞嘧啶(C)。

2、种类(1)信使 RNA(mRNA):它携带遗传信息,从细胞核内的 DNA 转录而来,然后进入细胞质,指导蛋白质的合成。

(2)转运 RNA(tRNA):呈三叶草形状,一端携带特定的氨基酸,另一端的反密码子能与 mRNA 上的密码子互补配对,在蛋白质合成中起着运输氨基酸的作用。

(3)核糖体 RNA(rRNA):它是核糖体的组成成分之一,参与蛋白质的合成。

三、DNA 的复制1、概念DNA 的复制是以亲代 DNA 为模板合成子代 DNA 的过程。

2、过程(1)解旋:在解旋酶的作用下,DNA 双螺旋的两条链解开。

(2)合成子链:以解开的每一段母链为模板,按照碱基互补配对原则,在 DNA 聚合酶的作用下,合成与母链互补的子链。

(3)形成子代 DNA:每条新链与对应的母链盘绕成双螺旋结构,形成两个子代 DNA 分子。

(1)半保留复制:新合成的每个 DNA 分子中,都保留了原来DNA 分子中的一条链。

(2)边解旋边复制:提高了复制的效率。

高中生物23DNA、RNA结构和基因-知识讲解

高中生物23DNA、RNA结构和基因-知识讲解

DNA、RNA的结构和基因编稿:闫敏敏审稿:宋辰霞【学习目标】1、概述DNA分子结构的主要特点。

2、制作DNA分子的双螺旋结构模型。

3、讨论DNA分子的双螺旋结构模型的构建过程。

4、说明基因的概念和遗传信息的含义。

5、说明基因和遗传信息的关系。

【要点梳理】要点一、DNA分子结构1. 结构层次(1)基本元素组成:C、H、O、N、P等(2)基本组成物质:脱氧核糖、含氮碱基(A、G、C、T)、磷酸(3)DNA分子的基本组成单位——四种脱氧核苷酸(4)化学结构(1级结构):脱氧核糖核苷酸链(5)空间结构(2~4级结构):①模式图②主要特点2. 结构特点 (1)稳定性:DNA 分子双螺旋结构具有相对稳定性。

决定因素:①DNA 分子由两条脱氧核苷酸长链盘旋成粗细均匀、螺距相等的规则双螺旋结构。

②DNA 分子中脱氧核糖和磷酸交替排列的顺序稳定不变。

③DNA 分子双螺旋结构中间为碱基对,对应碱基之间形成氢键,从而维持双螺旋结构的稳定。

④DNA 分子之间对应碱基严格按照碱基互补配对原则进行配对。

⑤每个特定的DNA 分子中,碱基对的数量和排列顺序稳定不变。

(2)特异性:每种生物的DNA 分子都有特定的碱基数目和排列顺序。

(3)多样性:DNA 分子碱基对的数量不同,碱基对的排列顺序千变万化,构成了DNA 分子的多样性。

3.碱基互补配对原则及其应用(1)碱基互补配对原则:A —T 、G —C ,即由此可推知DNA 分子碱基比的共性与特性 ①共性A T 1T A ==;G C 1C G==;A C A G 1T G T C ++==++。

要点诠释:上述比值不因生物种类的不同而不同,即不具有物种特异性。

②特异性 A T G C++的比值是不定的,这恰是DNA 分子多样性和特异性的体现。

(2)碱基计算的一般规律碱基互补配对原则,进行双链DNA 中有关含N 的碱基数目、比例的计算;根据DNA 中碱基种类及配对方式,理解DNA 分子的特性。

高中生物人教2019必修2第3章第2节DNA的结构

高中生物人教2019必修2第3章第2节DNA的结构
第2节 DNA的结构
课标定位
1.DNA双螺旋结构模型的构建 分析科学家探索DNA结构的历程,理解DNA的 化学组成、平面结构和立体结构,学习科学家探 索求真的科学精神。 2.DNA的结构 通过观察DNA的结构模式图和制作DNA双螺旋 结构模型,掌握DNA双螺旋结构的主要特点。
素养阐释
1.以结构与功能相适应的观点,理解DNA的生物 特点及功能。 2.通过学习科学家探索DNA结构的历程,认同科 学探究是一个不断深化的过程;认识到科学家探 索求真的科学精神以及交流合作、技术进步、 多学科交叉渗透等对于科学的发展都具有重要 作用。 3.通过模型制作,领悟模型构建在科学研究中的 作用。
归纳提升 1.DNA分子结构的“五、四、三、二、一”
2. 借助示意图辨析DNA分子的结构
图1
图2
(1)由图1可解读出以下信息。 (2)图2是图1的简化形式,a表示氢键。
3.有关DNA分子结构的2个注意事项 (1)并非所有的DNA分子都是双链结构,有的DNA分子为单 链结构。 (2)原核细胞及真核细胞细胞器中的DNA分子为双链环状结 构。
合作探究·释疑解惑
知识点一
知识点二
DNA双螺旋结构模型的构建及DNA的结构
1.沃森和克里克在构建DNA结构模型的过程中利用了他人 的哪些经验和成果?
提示:(1)英国生物物理学家威尔金斯和富兰克林提供的 DNA衍射图谱。
(2)奥地利生物化学家查哥夫提供的信息:在DNA中,腺嘌呤 (A)的量总是等于胸腺嘧啶(T)的量;鸟嘌呤(G)的量总是等于 胞嘧啶(C)的量。
A.DNA是双螺旋结构 B.碱基严格互补配对 C.嘌呤数等于嘧啶数 D.两条脱氧核苷酸链反向平行 答案:ABC 解析:由题图可知,DNA是双螺旋结构,且两条链之间的碱基 严格互补配对,即嘌呤数等于嘧啶数;从题图中不能看出两条 链的方向。

高中生物dna复制高中生物必修2dna分子的结构知识点归纳

高中生物dna复制高中生物必修2dna分子的结构知识点归纳

高中生物dna复制高中生物必修2dna分子的结构知识点归纳DNA分子的结构是普通高中课程标准实验教科书人教版必修2中《遗传与进化》第3章第2节的内容,下面是WTT给大家带来的高中生物必修2dna分子的结构知识点归纳,希望对你有帮助。

高中生物必修2dna分子的结构知识点1、DNA的组成元素:C、H、O、N、P2、DNA的基本单位:脱氧核糖核苷酸(4种)3、DNA的结构:①由两条、反向平行的脱氧核苷酸链盘旋成双螺旋结构。

②外侧:脱氧核糖和磷酸交替连接构成基本骨架。

内侧:由氢键相连的碱基对组成。

③碱基配对有一定规律:A =T;G ≡ C。

(碱基互补配对原则)4、特点:①稳定性:DNA分子中脱氧核糖与磷酸交替排列的顺序稳定不变②多样性:DNA分子中碱基对的排列顺序多种多样(主要的)、碱基的数目和碱基的比例不同③特异性:DNA分子中每个DNA都有自己特定的碱基对排列顺序5、计算:高中生物学习方法回归课本最重要经过对一部分的同学做试卷分析,发现很多的人觉得生物的题出得很难,但实际上他们错的题更多的是最基础的内容,长时间没有回顾学过的内容,很多人已经忘了一些很基础的知识,有谁还能准确地说出性状、相对性状、显性性状、隐性性状、性状分离等概念?还有谁能记得有氧呼吸的三个步骤?或者伴性遗传病与常染色体遗传病的区别?如果不能的话,孩子们,回归课本吧!先将基础知识梳理清楚再说!多想几个为什么生物的考察的另一个重点就是通过现象看本质。

那么这就要求我们在复习的过程中除了要理解透彻基础知识外,还要多想想为什么是这样。

比如说为什么影响光合作用的因素是二氧化碳、水分、温度等,它们是怎么影响光合作用的。

错题整理,归类解决自己分析或找有经验的老师帮助分析为什么会错,如果是基础知识的不扎实,那么拿起课本再好好看一遍,强化一下,下次争取不要犯同类错误,如果是知识点间的联系不明了,那么就好好想想知识的内在联系。

一个人只有不断的消灭自己的薄弱之处,才会更快的进步。

《DNA分子的结构和特点》 说课稿

《DNA分子的结构和特点》 说课稿

《DNA分子的结构和特点》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是《DNA 分子的结构和特点》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、教学反思这几个方面来展开我的说课。

一、教材分析《DNA 分子的结构和特点》是高中生物必修 2《遗传与进化》中的重要内容。

DNA 作为遗传物质,其分子结构的揭示是现代生物学发展的重要里程碑。

这部分内容不仅是对细胞分裂、遗传规律等知识的深化和拓展,也为后续学习基因的表达、基因突变等内容奠定了基础。

教材首先通过介绍 DNA 双螺旋结构模型的构建历程,让学生体会科学家们的探索精神和科学方法。

然后详细阐述了 DNA 分子的结构特点,包括双螺旋结构、碱基互补配对原则等。

通过对这部分内容的学习,学生能够从分子水平上理解生命的奥秘,培养学生的科学思维和探究能力。

二、学情分析学生在之前的学习中,已经了解了细胞的基本结构、遗传物质的概念以及DNA 是遗传物质的实验证据等知识,对DNA 有了一定的认识。

但对于 DNA 分子的具体结构和特点,还缺乏深入的理解。

高中生具备了一定的观察能力、逻辑思维能力和抽象思维能力,但对于微观世界的认知还存在一定的困难。

因此,在教学中需要借助直观的模型、图片和动画等手段,帮助学生理解抽象的知识。

三、教学目标1、知识目标(1)简述 DNA 分子双螺旋结构的主要特点。

(2)理解碱基互补配对原则。

2、能力目标(1)通过制作 DNA 双螺旋结构模型,培养学生的动手能力和空间思维能力。

(2)通过对 DNA 分子结构的分析,培养学生的逻辑思维能力和分析问题的能力。

3、情感目标(1)体验科学家探索科学的艰辛历程,培养学生的科学精神和创新意识。

(2)认同 DNA 结构的稳定性、多样性和特异性,体会生命的神奇和美丽。

四、教学重难点1、教学重点(1)DNA 分子双螺旋结构的主要特点。

(2)碱基互补配对原则。

2、教学难点(1)DNA 分子的空间结构。

高中生物dna分子结构知识点dna分子结构

高中生物dna分子结构知识点dna分子结构

高中生物dna分子结构知识点dna分子结构DNA分子结构的主要知识点包括:
1. DNA的组成:DNA由核苷酸组成,每个核苷酸由一个磷酸基团、一个脱氧核糖糖分子和一个碱基组成。

2. DNA的碱基:DNA包含四种碱基,分别是腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。

这些碱基通过氢键的配对方式互相连接,A和T之间形成两个氢键,G和C之间形成三个氢键。

3. DNA的双螺旋结构:DNA呈现出双螺旋结构,由两个互补的链组成。

两条链以氢键相连,形成一个螺旋的结构。

碱基通过对连对的方式紧密堆叠在中央,而磷酸基团和脱氧核糖则位于外部。

4. DNA的方向性:DNA分子的两条链具有方向性,其中一个链以5'端和3'端表示,另外一个链以3'端和5'端表示。

链上的碱基以3'端与5'端的顺序排列,形成了链的方向性。

5. DNA的超螺旋结构:DNA的双螺旋结构可以进一步形成超螺旋结构,包括正超螺旋和负超螺旋。

这种结构可以帮助DNA进行复制和转录过程。

6. DNA的包装结构:DNA分子会在细胞中经过进一步的包装,形成染色体。

DNA会与核蛋白质相互作用,形成核小体和进一步的组织级别的结构。

这些是高中生物学中关于DNA分子结构的一些基本知识点,也是理解DNA功能和遗传的基础。

人教版高中生物必修二之3.2DNA分子的结构

人教版高中生物必修二之3.2DNA分子的结构

已知
A+T 总
= 54%,

G+C 总
= 46%
所以
G1+C1 1/2总
= 46%.
已知
G1 1/2总
= 22%
所以
C1 1/2总
= 46%–22%= 24%
因为G2=C1
所以
G2 1/2总
= 24%
(2)DNA分子中的脱氧核 糖和磷酸交替连接,排列 在外侧,构成基本骨架; 碱基在内侧。
(3)两条链上的碱基通 过氢键连结起来,形成碱 基对,且遵循碱基互补配 对原则。
A
T
C
G
A
T
A
T
C
G
G
C
A
T
G
C
你注意到了吗?
两条长链上的脱 氧核糖与磷酸交 替排列的顺序是 稳定不变的。
长链中的碱基对 的排列顺序是千 变万化的。
1. 胞嘧啶 2. 腺嘌呤 3. 鸟嘌呤 4. 胸腺嘧啶 5. 脱氧核糖 6. 磷酸 7. 胸腺嘧啶脱氧
核苷酸 8. 碱基对 9. 氢键 10. 一条脱氧核
苷酸链的片段
10
8
G
1
T
2
C9 3
A
45
6
7
DNA分子的结构小结
★化学元素组成:C、H、O、N、P
一分子含氮碱基
基本组成单位:四种脱氧核苷酸 一分子脱氧核糖
A —腺嘌呤 含氮碱基种类:C —胞嘧啶 因此,脱氧核苷酸也有4种:
A
G —鸟嘌呤 T —胸腺嘧啶
C
腺膘呤脱氧核苷酸
胞嘧啶脱氧核苷酸
G
T
鸟瞟呤脱氧核苷酸
胸腺嘧啶脱氧核苷酸

dna知识点总结高中

dna知识点总结高中

dna知识点总结高中一、 DNA的结构1. DNA的分子结构DNA是由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鸟嘌呤)以及磷酸、脱氧核糖分子组成的双螺旋分子。

DNA的双螺旋结构是由两条互补的链构成,这两条链通过碱基间的氢键相互连接。

DNA的碱基对遵循一定的规则,即腺嘌呤与胸腺嘧啶之间形成两条氢键,鸟嘌呤与鸟嘌呤之间形成三条氢键,这种规则保证了DNA的稳定性。

2. DNA的组织结构在细胞内,DNA会与蛋白质组合形成染色体结构。

在有丝分裂时,DNA呈现出高度螺旋缠绕的染色体形态,而在非分裂期则以染色质的形式存在于细胞核内。

3. 基因和基因组DNA是遗传信息的携带者,它携带了编码蛋白质的基因序列。

基因是DNA上的一个片段,它包含了编码蛋白质所需的信息。

基因组是一个生物体内所有基因的总和,它决定了生物的遗传特征。

二、 DNA的功能1. 存储遗传信息DNA携带了生物体所有的遗传信息,包括形态特征、生理特征和行为特征。

这些信息通过基因的表达来决定生物体的发育和功能。

2. 蛋白质合成DNA通过转录和翻译过程将信息转化为蛋白质。

转录是指将DNA上的基因信息转录成mRNA,翻译则是将mRNA上的信息翻译成蛋白质。

3. 遗传信息传递DNA通过复制过程将自身的信息传递给下一代。

在细胞分裂时,DNA会复制自身并传递给下一代细胞。

4. 参与调控细胞功能DNA还参与了细胞的调控过程,包括细胞分化、细胞增殖和细胞凋亡等。

三、 DNA的复制1. 原核生物的DNA复制原核生物DNA复制是在DNA双螺旋分子两条链上同时进行的,它是以DNA聚合酶为主要酶的酶群参与的,包括DNA聚合酶Ⅰ、Ⅱ、Ⅲ等。

2. 真核生物的DNA复制真核生物的DNA复制是在细胞有丝分裂阶段进行的,它包括DNA的解旋、引物合成、DNA聚合、粘合等多个步骤。

在这个过程中,DNA聚合酶、DNA连接酶等酶类参与了复制的各个步骤。

3. DNA复制的特点DNA复制是半保留复制,每条DNA双螺旋分子的新产物包含了一条旧链和一条新合成的链。

高中生物基础知识点之DNA的结构

高中生物基础知识点之DNA的结构

1、DNA的基本组成单位:脱氧核苷酸RNA的基本组成单位:核糖核苷酸蛋白质的基本组成单位:氨基酸多糖的基本组成单位:单糖2、1分子脱氧核苷酸由1分子磷酸、1分子脱氧核糖和1分子含氮碱基组成。

3、DNA的含氮碱基:A(腺嘌呤)、T(胸腺嘧啶)、G(鸟嘌呤)、C(胞嘧啶)RNA的含氮碱基:A(腺嘌呤)、U(尿嘧啶)、G(鸟嘌呤)、C(胞嘧啶)4、脱氧核苷酸和核糖核苷酸的区别:碱基略有不同(脱氧核苷酸含T不含U)五碳糖不同(脱氧核苷酸含脱氧核糖,核糖核苷酸含核糖)5、DNA双螺旋结构的主要特点:DNA由两条反向平行的脱氧核苷酸链盘旋成双链结构;脱氧核糖和碱基交替排列在外构成基本骨架;碱基通过氢键连接成碱基对。

6、碱基互补配对原则:A与T配对(AT对间以2个氢键相连)G与C配对(GC对间以3个氢键相连)(适用与双链结构)7、根据A=T,G=C→A+G=T+C(嘌呤=嘧啶)A/T=G/C=1;8、双链DNA:含AGCT,且A=T;G=C单链DNA:含AGCT,且A不一定等于T,G不一定等于 C双链RNA:含AGCU,且A=U,G=C.单链RNA:含AGCU,且A不一定等于U,G不一定等于 C1、DNA复制的场所:细胞核、叶绿体、线粒体2、DNA复制的时间:有丝分裂间期和减数第一次分裂前的间期3、DNA复制条件:模板(亲代DNA的两条链)原料(脱氧核苷酸) 能量(ATP)酶(解旋酶、DNA聚合酶)4、DNA复制特点:边解旋边复制;半保留复制。

5、DNA复制意义:将遗传信息从亲代传给子代,保证了遗传信息的连续性。

6、1个双链被N15标记的DNA,放在只含N14的环境中培养,复制N代后,含N15的链有2条;含N15的DNA有2个;含N14的链有2(n+1)-2;含N14的DNA有2n个。

7、DNA复制N代后需要腺嘌呤脱氧核苷酸数目为:(2n—1)*ADNA在进行第N代复制时需要腺嘌呤脱氧核苷酸数目为:(2n-1)*A8、DNA能精确复制的原因:双螺旋结构;碱基互补配对原则。

高中关于DNA知识点总结

高中关于DNA知识点总结

高中关于DNA知识点总结DNA(脱氧核糖核酸)是一种生物分子,被认为是生物体内存储遗传信息的分子基础。

它是由很多个核苷酸分子通过磷酸二酯键连接起来的长链分子。

DNA携带处生物体的遗传信息,因此它是生物体遗传的基础。

DNA的结构DNA由两条互补的链条组成。

每条链上的核苷酸由糖和磷酸分子组成,而糖分子与核苷酸的碱基连接。

DNA的主要碱基有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。

其中,A与T之间通过双氢键连接,G与C之间通过三氢键连接。

这种碱基之间的配对关系使得DNA的两条链能够互相配对,形成双螺旋的结构。

DNA的功能DNA是生物体存储遗传信息的分子基础。

它通过传递遗传信息来控制生物体的生长、发育和功能的运作。

DNA中的信息是以一种特殊的方式被传递的,这种方式是通过DNA中的碱基序列来实现的。

这种碱基序列对生物体的遗传信息进行了编码,它包含了生物体的所有遗传信息,并在生物体的生长和发育过程中起着至关重要的作用。

DNA的复制DNA的复制是生物体生长和繁殖过程中进行的一项非常关键的工作。

它是DNA分子如何被复制的过程。

在细胞分裂过程中,DNA需要被复制,以确保每个新产生的细胞都有一份完整的遗传信息。

DNA的复制是由DNA聚合酶酶催化的反应来完成的。

在这个过程中,DNA的两条链被解开,并且通过碱基配对原则进行互补合成。

最终,两份完全相同的DNA分子被复制出来。

DNA的转录DNA的转录是指DNA信息被转换成RNA(核糖核酸)的过程。

在这个过程中,DNA上的信息需要被传递到RNA分子上,以用于蛋白质的合成。

在转录的过程中,DNA的一部分单链上的信息被反转录成与DNA上的信息互补的RNA链。

这个RNA链被称为mRNA(信使RNA),它携带了DNA上的信息,并将其传递给其他细胞中的核糖体。

核糖体根据mRNA中的信息来合成特定的蛋白质。

DNA的翻译DNA的翻译是指mRNA上的信息被翻译成蛋白质的过程。

dna一级结构二级结构三级结构特点

dna一级结构二级结构三级结构特点

dna一级结构二级结构三级结构特点
DNA的一级结构是指四种核苷酸按照任意顺序连接而成的线性结构,表示该DNA
分子的化学构成。

其特征包括:
1.由于碱基可以以任何顺序排列,构成了DNA分子的多样性。

2.每个DNA分子所具有的特定的碱基排列顺序构成了DNA分子的特异性。

DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所生成的双螺旋结构,其特
征包括:
1.DNA由两条互相平行的脱氧核苷酸长链盘绕而成,且为反向平行。

2.DNA中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架。

3.两条链上的含氮碱基排列在内侧,并遵循碱基互补配对原则(即A与T,G与C配对)
通过氢键结合形成碱基对。

DNA的三级结构是指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构,其特征
包括:
1.超螺旋结构是其主要形式,环状分子的额外螺旋可以形成超螺旋。

2.超螺旋可分为正超螺旋和负超螺旋两类,它们在不同类型的拓扑异构酶作用下或特
殊情况下可相互转变。

综上所述,DNA的一级、二级和三级结构各有其特点,一级结构主要是碱基的排列顺序和多样性,二级结构则是双螺旋结构,三级结构则是超螺旋结构。

高中生物dna的结构知识点

高中生物dna的结构知识点

高中生物dna的结构知识点高中生物dna的结构知识点(一)1、DNA的元素组成:C、H、O、N、P2、DNA分子的结构:DNA的双螺旋结构,两条反向平行脱氧核苷酸链,外侧磷酸和脱氧核糖交替连结,内侧碱基对(氢键)碱基互补配对原则。

3、模型图解:4、DNA分子的结构特性(l)稳定性:DNA分子中脱氧核糖和磷酸交替连接的方式不变;两条链间碱基互补配对的方式不变。

(2)多样性:DNA分子中碱基时排列顺序多种多样。

(3)特异性:每种DNA有别于其他DNA的特定的碱基排列顺序。

高中生物dna的结构知识点(二)1.基本单位DNA分子的基本单位是脱氧核苷酸。

每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。

由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。

2.分子结构DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。

DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。

DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。

应注意以下几点:⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。

⑵5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5'端;另一端的的3号碳原子端称为3'端。

⑶反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'~5',另一条为5'~~3'。

dna分子结构特点

dna分子结构特点

dna分子结构特点DNA是脱氧核糖核酸的缩写,是一种携带遗传信息的生物分子,在细胞内起着非常重要的作用。

DNA分子的结构具有许多特点,其中最重要的特点包括双螺旋结构、碱基配对、磷酸二酯键和脱氧核糖糖基。

DNA分子的双螺旋结构是其最显著的特点之一。

DNA分子由两条螺旋状的链组成,这两条链以螺旋的形式相互缠绕在一起,形成了一个双螺旋的结构。

每条链都由一系列的核苷酸组成,核苷酸是由一个含氮碱基、一个磷酸基团和一个脱氧核糖糖基组成的分子。

这两条链是通过碱基配对相互连接在一起的,其中腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,而鸟嘌呤(G)与胞嘧啶(C)之间形成三个氢键。

这种碱基配对的规律性保证了DNA分子的稳定性和准确性。

DNA分子的碱基配对是其结构的关键特点之一。

碱基配对是指DNA 分子中的碱基之间的特定配对关系,即A与T之间形成两个氢键,G与C之间形成三个氢键。

这种碱基配对的规律性保证了DNA分子在复制过程中的准确性,因为每个碱基只能与其配对的碱基结合,从而保证了DNA的遗传信息的准确传递。

第三,DNA分子中的磷酸二酯键是其结构的重要特点之一。

磷酸二酯键是连接相邻核苷酸的键,它由一个磷酸基团和两个脱氧核糖糖基组成。

磷酸二酯键的形成使得DNA分子中的核苷酸能够通过共价键相互连接在一起,形成一个连续的链条。

这种链条结构使得DNA 分子具有一定的稳定性和可塑性,可以在复制和转录过程中进行解旋和复原。

DNA分子中的脱氧核糖糖基是其结构的重要组成部分之一。

脱氧核糖糖基是由一个脱氧核糖和一个含氮碱基组成的分子,它连接在磷酸基团的一个碳原子上,形成了核苷酸的基本结构。

脱氧核糖糖基的存在使得DNA分子具有特定的化学性质和生物学功能,可以在细胞内进行复制、转录和翻译等生物学过程。

DNA分子的结构具有双螺旋、碱基配对、磷酸二酯键和脱氧核糖糖基等特点,这些特点保证了DNA分子在遗传信息传递过程中的稳定性和准确性。

通过深入了解DNA分子的结构特点,可以更好地理解DNA在生物学过程中的重要作用,为相关研究和应用提供理论基础。

高中生物dna的结构知识点

高中生物dna的结构知识点

高中生物dna的结构知识点高中生物dna的结构知识点(一)1、DNA的元素组成:C、H、O、N、P2、DNA分子的结构:DNA的双螺旋结构,两条反向平行脱氧核苷酸链,外侧磷酸和脱氧核糖交替连结,内侧碱基对(氢键)碱基互补配对原则。

3、模型图解:4、DNA分子的结构特性(l)稳定性:DNA分子中脱氧核糖和磷酸交替连接的方式不变;两条链间碱基互补配对的方式不变。

(2)多样性:DNA分子中碱基时排列顺序多种多样。

(3)特异性:每种DNA有别于其他DNA的特定的碱基排列顺序。

高中生物dna的结构知识点(二)1.基本单位DNA分子的基本单位是脱氧核苷酸。

每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。

由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。

2.分子结构DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。

DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。

DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。

应注意以下几点:⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。

⑵5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5'端;另一端的的3号碳原子端称为3'端。

⑶反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'~5',另一条为5'~~3'。

2017高中生物DNA分子结构知识点

2017高中生物DNA分子结构知识点

2017⾼中⽣物DNA分⼦结构知识点 ⾼中⽣物的学习不仅需要讲究⽅法和技巧,更要掌握好正确的⾼中⽣物复习⽅法,这样才能够达到事半功倍的效果。

下⾯是店铺为⼤家整理的⾼中⽣物DNA分⼦结构知识点,希望对⼤家有所帮助! ⾼中⽣物DNA分⼦结构知识点 ⼀、DNA分⼦结构 1 .DNA的元素组成和基本单位 元素组成:C、H、O、N、P 基本单位:脱氧核苷酸 由⼀个脱氧核糖、⼀个磷酸和⼀个含氮碱基组成.其中组成DNA的碱基有两类四种:腺嘌呤(A),鸟嘌呤(G),胞嘧啶(C)、胸腺嘧啶(T);因此形成的脱氧核苷酸也有四种分别是:腺嘌呤脱氧核苷酸,鸟嘌呤脱氧核苷酸,胞嘧啶脱氧核苷酸 2. DNA分⼦的平⾯和⽴体结构 ①两条长链按反向平⾏⽅式盘旋成双螺旋结构 ②脱氧核糖和磷酸交替连接构成基本⾻架,排列在外侧,碱基成对排列在内侧③碱基互补配对原则: A—T、G—C 3、DNA分⼦的结构特性 (l)稳定性:DNA分⼦中脱氧核糖和磷酸交替连接的⽅式不变;两条链间碱基互补配对的⽅式不变。

(2)多样性:DNA分⼦中碱基时排列顺序多种多样。

(3)特异性:每种DNA有别于其他DNA的特定的碱基排列顺序。

⼆、DNA复制的过程 1、复制的概念:是指以亲代DNA为模板合成⼦代DNA的过程。

2、复制的时间:有丝分裂间期和减数第⼀次分裂的间期 3、复制条件 ①模板:DNA的两条链 ②能量:ATP ③原料:游离的四种脱氧核苷酸 ④酶:解旋酶、DNA聚合酶等 4、特点:边解旋边复制 5、DNA准确复制的原因: 1)、DNA分⼦独特的双螺旋结构,为复制 提供精确的模板, (2)、碱基互补配对,保证了复制能够准确 地进⾏。

6、DNA复制的意义 DNA分⼦通过复制,将遗传信息从亲代传给了⼦代,从⽽保持了遗传信息的连续性。

7、意义:保证了亲⼦两代之间性状相象。

⾼考⽣物核⼼考点预测 遗传规律类 【命题特点】在命题思路上,遗传规律的题⽬重在对遗传规律的理性思考⽅⾯的考查,单纯的概念等⼩知识点考查的概率较低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中生物知识点:DNA分子结构及特点
1953年4月25日发表在英国《自然》杂志上的一篇论文《核酸的分子结构——脱氧核糖核酸的一个结构模型》,揭开了DNA的结构之迷。

沃森、克里克和维尔金斯三人也因此共同获得了1962年的诺贝尔生理学或医学奖。

那么,DNA分子的结构到底是怎样的呢?
1.基本单位
DNA分子的基本单位是脱氧核苷酸。

每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。

由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。

2.分子结构
DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。

DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。

DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。

应注意以下几点:
⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。

⑵5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5'端;另一端的的3号碳原子端称为3'端。

⑶反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'~5',另一条为5'~~3'。

⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。

双链DNA分子中,A=T,C=G(指数目),A%=T%,C%=G%,可据此得出:
①A+G=T+C:即嘌呤碱基数与嘧啶碱基数相等;
②A+C(G)=T+G(C):即任意两不互补碱基的数目相等;
③A%+C%=T%+G%= A%+ G%= T%+ C%=50%:即任意两不互补碱基含量之和相等,占碱基总数的50%;
④(A1+T1)/(C1+G1)=(A2+T2)/(C2+G2)=(A+T)/(C+G)=A/C= T/ G:即双链DNA及其任一条链的(A+T)/(C+G)为一定值;
⑤(A1+C1)/(T1+G1)=(T2+G2)/(A2+C2)=1/[(A2+C2)/(T2+G2)]:DNA分子两条链中的(A+C)/(T+G)互为倒数;双链DNA分子的(A+C)/(T+G)=1。

根据以上推论,结合已知条件可方便的计算DNA分子中某种碱基的数量和含量。

3.结构特点
⑴稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。

⑵多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。

⑶特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。

相关文档
最新文档