初中数学 第19章 四边形单元测试题
《常考题》初中八年级数学下册第十九章《一次函数》习题(含答案解析)
一、选择题1.如图,点O为平面直角坐标系的原点,点A在x轴正半轴上,四边形OABC是菱形.已知点B坐标为(3,3),则直线AC的函数解析式为()A.y=33x+3B.y=3x+23C.y=﹣33x+3D.y=﹣3x+232.如图,直线y=-2x+2与x轴和y轴分别交与A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或5+1 B.3或5C.2或5D.3或5+13.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.4.甲,乙两车分别从A,B两地同时出发,相向而行.乙车出发2h后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x(h),甲,乙两车到B地的距离分别为y1(km),y2(km),y1,y2关于x的函数图象如图.下列结论:①甲车的速度是45akm/h;②乙车休息了0.5h;③两车相距a km时,甲车行驶了53h.正确的是( )A .①②B .①③C .②③D .①②③ 5.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→B .CDE A →→→ C .A E C B →→→ D .A E D C →→→6.在数轴上,点A 表示-2,点B 表示4.,P Q 为数轴上两点,点Р从点A 出发以每秒1个单位长度的速度向左运动,同时点Q 从点B 出发以每秒2个单位长度的速度向左运动,点Q 到达原点О后,立即以原来的速度返回,当点Q 回到点B 时,点Р与点Q 同时停止运动.设点Р运动的时间为x 秒,点Р与点Q 之间的距离为y 个单位长度,则下列图像中表示y 与x 的函数关系的是( )A .B .C .D . 7.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m <B .12m > C .m 1≥ D .1m < 8.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录: 蟋蟀每分钟鸣叫的次数 温度/°F144 76152 78160 80168 8217684 ) A .178 B .184 C .192 D .2009.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④ 10.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,02⎛⎫ ⎪ ⎪⎝⎭C .1010⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭11.函数2y x x=+-()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限 12.在直角坐标系中,点()2,3A -、()4,3B 、()5,C a 在同一条直线上,则a 的值是( )A .-6B .6C .6或3D .6或-6 13.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小 14.一个一次函数的图象与直线112y x =-平行,与x 轴、y 轴的交点分别为A ,B ,并且过点(1,5)--,则在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有( ) A .4个 B .5个C .6个D .7个 15.如图,在平面直角坐标系中,已知A(1,1),B(3,5),要在x 轴上找一点P ,使得△PAB 的周长最小,则点P 的坐标为( )A .(0,1)B .(0,2)C .(43,0)D .(43,0)或(0,2) 二、填空题16.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.17.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③18.如图,在平面直角坐标系中,(0,2)A ,(4,2)B ,点P 是x 轴上任意一点,当PA PB +有最小值时,P 点的坐标为________.19.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒.20.若点()14,y -,()22,y 都在直线2y x =-+上,则1y __________2y (填“>”或“=”或“<”)21.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 22.某一列动车从A 地匀速开往B 地,一列普通列车从B 地匀速开往A 地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.根据图像进行探究,图中t 的值是__.23.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.24.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.25.已知直线()0y kx b k =+≠过()1,0和()0,2-,则关于x 的不等式0kx b +<的解集是______.26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题27.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标;(2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积. 28.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值.所挂物体质量x/kg 0 1 2 3 4 5 弹簧长度y/cm 28 30 32 34 36 38(1)本题反映的是弹簧的长度y 与所挂物体的质量x 这两个变量之间的关系,其中自变量是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)29.一次函数()0y kx b k =+≠满足,当112x -≤≤,121y -≤≤,求这条直线的函数解析式.30.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x 千米,应付给个体车主的月费用是1y 元,应付给出租车公司的月租费用是2y 元,1y ,2y 分别与x 之间的函数关系图象如图,观察图象回答下列问题:(1)求1y ,2y 分别与x 之间的函数关系式;(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2400千米,那么这个单位租哪一家的车合算,并说明理由?。
第19章 四边形 核心素养整合与提升-2022-2023学年八年级下册初二数学(沪科版)
第19章四边形核心素养整合与提升-2022-2023学年八年级下册初二数学(沪科版)1. 引言四边形是初中数学中重要的几何概念之一,它们在数学和实际生活中都有广泛的应用。
本章将重点介绍四边形的定义、性质、分类和相关定理等内容,并通过练习题和实际问题来加深学生对四边形的理解和应用能力。
2. 四边形的定义和性质四边形是由四条线段组成的图形,它的特点是有四个顶点、四条边和四个内角。
四边形的性质有以下几点:•相邻两边不能共线:如果四边形的相邻两边共线,那么它就不是四边形,而是一条线段或一条直线。
•相邻两边不能相交:如果四边形的相邻两边相交,那么它就不是四边形,而是一个多边形。
•对角线的性质:四边形的对角线有以下性质:–对角线互相垂直–对角线互相平分–对角线的长度关系3. 四边形的分类根据四边形的不同性质和特点,可以将四边形分为以下几种常见的类别:•矩形:四条边都相等且对角线相等的四边形。
•正方形:即特殊的矩形,四条边相等且对角线相等且互相垂直的四边形。
•平行四边形:相对的两边平行的四边形。
•菱形:对角线相等且互相垂直的四边形。
•梯形:两条边平行的四边形。
•矩形:所有边长和角度均相等的四边形。
•一般四边形:没有特殊性质的四边形。
4. 四边形的计算与应用四边形的计算和应用是实际生活中的重要问题之一。
在本章中,我们将重点介绍四边形的周长和面积的计算方法,以及与实际问题的关联。
4.1. 四边形的周长计算四边形的周长是指四边形的四条边的总长度。
计算四边形的周长需要知道每条边的长度,并将它们相加。
对于不规则四边形,可以通过分段计算每一条边的长度再相加。
4.2. 四边形的面积计算四边形的面积是指四边形所覆盖的平面区域的大小。
对于不规则四边形,可以使用面积的近似计算方法,如将其分割成多个简单图形的面积之和,再进行计算。
对于特殊形状的四边形,如矩形和正方形,可以直接使用相应的公式进行计算。
4.3. 实际问题的应用四边形的应用非常广泛,它们可以用于解决各种实际问题。
华师大版初中数学八下第19章综合测试试题试卷含答案1
第19章综合测试一、选择题(共10小题) 1.下列语句正确的是( ) A .对角线相等的四边形是矩形 B .一组邻边相等的四边形是菱形 C .对角线相等的四边形是正方形D .三个角是直角的四边形是矩形 2.已知矩形ABCD ,下列结论错误的是( )A .AB DC =B .AC BD =C .AC BD ⊥D .180A C ∠+∠=︒3.四边形ABCD 的对角线AC BD 、互相平分,要使它成为矩形,需要添加的条件是( ) A .AB CD =B .AC BD =C .AB BC =D .AC BD ⊥4.如下图,在菱形ABCD 中,AE AF ,分别垂直平分BC CD ,,垂足分别为E F ,,则EAF ∠的度数是( )A .90︒B .60︒C .45︒D .30︒5.已知四边形ABCD ,下列说法正确的是( ) A .当AD BC AB DC =,∥时,四边形ABCD 是平行四边形 B .当AD AB AB DC ==,时,四边形ABCD 是菱形C .当AC BD AC =,与BD 互相平分时,四边形ABCD 是矩形 D .当AC BD AC BD =⊥,时,四边形ABCD 是正方形6.如下图,在矩形ABCD 中,对角线AC BD ,交于点O ,以下说法错误的是( )A .90ABC ︒∠=B .AC BD =C .OA OB =D .OA AB =7.如下图,在菱形ABCD 中,5AB =,对角线6AC =.若过点A 作AE BC ⊥,垂足为E ,则AE 的长为( )A .4B .2.4C .4.8D .58.如下图,四边形ABCD 是菱形,对角线AC BD ,相交于点O DH AB ⊥,于点H ,连接OH ,若20DHO ︒∠=,则ADC ∠的度数是( )A .120︒B .130︒C .140︒D .150︒9.如下图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF BC ∥,分别交AB CD ,于E F ,,连接PB PD 、,若28AE PF ==,,则图中阴影部分的面积为( )A .18B .16C .12D .1010.如下图,矩形ABCD 中,104AB AD ==,,点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的左上方作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .143B .103C .4D .1二、填空题(共6小题)11.如下图,小聪把一块含有30︒角的直角三角尺ABC 的两个顶点A C ,放在长方形纸片DEFG 的对边上,若AC 刚好平分BAE ∠,则DAC ∠的度数是________.12.如下图,在菱形ABCD 中,120BAD CE AD ︒∠=⊥,,且CE BC =,连接BE 交对角线AC 于点F ,则EFC ∠=________.13.如下图,在矩形ABCD 中,E F ,分别是AD BC ,的中点,M 是AF 和BE 的交点,N 是CE 和DF 的交点.若四边形EMFN 是正方形,则AB 与BC 之间的数量关系是________.14.如下图所示,直线经过正方形ABCD 的顶点A ,分别过正方形的顶点B D 、作BF a ⊥于点F DE a ⊥,于点E .若53DE BF ==,,则EF 的长为________.15.如下图,已知正方形ABCD 的边长为4,对角线AC 与BD 相交于点O ,点E 在DC 边的延长线上.若15CAE ︒∠=,则CE =________.16.如下图,在矩形ABCD 中,20cm BC =,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快________s 后,四边形ABPQ 成为矩形.三、解答题(共7小题)17.如下图,在四边形ABCD 中,AB CD AB AD =∥,,对角线AC BD 、交于点O AC ,平分BAD ∠.求证:四边形ABCD 为菱形.18.已知:如下图,AC BD 、相交于点O ,且点O 是AC BD 、的中点,点E 在四边形ABCD 的形外,且90AEC BED ︒∠=∠=.求证:四边形ABCD 是矩形.19.如下图,在矩形ABCD 中,点E F 、在BC 上,且BF CE AE DF =,、相交于点O . 求证:AE DF =.20.如下图,D 是ABC △的边AB 的中点,DE BC CE AB AC ∥,∥,与DE 相交于点F ,连接AB CD ,.(1)求证:AD CE =;(2)当ABC △满足什么条件时,四边形ADCE 是菱形?请说明理由.21.如下图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM DN ,.(1)求证:四边形BMDN 是菱形;(2)若48AB AD ==,,求菱形BMDN 的周长和对角线MN 的长.22.如下图,矩形ABCD ,延长CD 至点E ,使DE CD =,连接AC AE ,,过点C 作CF AE ∥交AD 的延长线于点F ,连接EF .(1)求证:四边形ACFE 是菱形;(2)连接BE 交AD 于点G .当230AB ACB ︒=∠=,时,求BG 的长.23.如下图,在ABC △中,AB AC AD =,是BC 边上的中线,点E 是AD 边上一点,过点B 作BF EC ∥,交AD 的延长线于点F ,连接BE CF ,.(1)求证:BDF CDE△≌△.(2)若12DE BC=,求证:四边形BECF是正方形.第19章综合测试答案解析一、 1.【答案】D【解析】解:A .对角线相等的平行四边形是矩形,故不符合题意; B .由菱形的定义可知:一组邻边相等的平行四边是菱形,故不符合题意; C .对角线相等平分且垂直的四边形是正方形,故不符合题意; D .三个角是直角的四边形是矩形,故符合题意; 故选:D . 2.【答案】C【解析】解:∵四边形ABCD 是矩形,90AB DC AC BD A B C D ︒==∠=∠=∠=∠=∴,,, 180A C ︒∠+∠=∴,只有AB BC =时,AC BD ⊥,∴A 、B 、D 不符合题意,只有C 符合题意,故选:C .3.【答案】B【解析】解:需要添加的条件是AC BD =;理由如下:∵四边形ABCD 的对角线AC BD 、互相平分, ∴四边形ABCD 是平行四边形,AC BD =∵,∴四边形ABCD 是矩形(对角线相等的平行四边形是矩形);故选:B . 4.【答案】B【解析】解:连接AC ,AE ∵垂直平分边BC ,AB AC =∴,又∵四边形ABCD 是菱形,AB BC =∴, AB AC BC ==∴,ABC ∴△是等边三角形,60B ︒∠=∴, 120BCD ︒∠=∴,又AF ∵垂直平分边CD ,∴在四边形AECF 中,36018012060EAF ︒︒︒︒∠=−−=.故选:B . 5.【答案】C【解析】解:∵一组对边平行且相等的四边形是平行四边形,∴A 不正确;∵两组对边分别相等的四边形是平行四边形, ∴B 不正确;∵对角线互相平分且相等的四边形是矩形, ∴C 正确;∵对角线互相垂直平分且相等的四边形是正方形, ∴D 不正确;故选:C . 6.【答案】D【解析】解:∵四边形ABCD 是矩形,90ABC AC BD OA OC OB OD ︒∠====∴,,,, OA OB =∴,故A 、B 、C 正确, 故错误的是D , 故选:D . 7.【答案】C【解析】解:连接BD ,交AC 于O 点,∵四边形ABCD 是菱形,5AB BC CD AD ====∴,122AC BD AO AC BD BO ⊥==∴,,,90AOB ︒∠=∴, 6AC =∵,3AO =∴,4BO ==∴,8DB =∴,∴菱形ABCD 的面积是11682422AC DB ⨯=⨯⨯=,24BC AE =∴, 5BC AB ==∵,244.85AE ==∴, 故选:C .8.【答案】C【解析】解:∵四边形ABCD 是菱形,OB OD AC BD ADC ABC =⊥∠=∠∴,,,DH AB ⊥∵, 12OH OB BD ==∴, 20DHO ︒∠=∵,9070OHB DHO ︒︒∠=−∠=∴, 70ABD OHB ︒∠=∠=∴,2140ADC ABC ABD ︒∠=∠=∠=∴,故选:C . 9.【答案】B【解析】解:作PM AD ⊥于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,ADC ABC AMP AEP PBE PBN PFD PDM PFC PCN S S S S S S S S S S =====△△△△△△△△△△,,,,∴,12882DFP PBE S S ==⨯⨯=△△∴, 8816S =+=阴∴,故选:B . 10.【答案】A【解析】解:过点F 作FH CD ⊥,交直线CD 于点Q ,则90EHF ︒∠=,如下图所示:∵四边形ABCD 为矩形,90ADE ︒∠=∴,ADE EHF ∠=∠∴,∵在正方形AEFG 中,90AEF AE EF ︒∠==,,90AED HEF ︒∠+∠=∴, 90HEF EFH ︒∠+∠=∵,AED EFH ∠=∠∴,在ADE △和EHF △中,ADE EHF AED EFH AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE EHF AAS ∴△≌△,4AD EH ==∴,由题意得:2410t t +=+, 解得:143t =, 故选:A .二、11.【答案】150︒【解析】解:AC ∵平分BAE ∠,30CAE BAC ︒∠=∠=∴,180120DAB BAC CAE ︒︒∠=−∠−∠=∴,150DAC DAB BAC ︒∠=∠+∠=∴;故答案为:150︒.12.【答案】105︒【解析】解:∵菱形ABCD 中,120BAD ︒∠=1120602AB BC CD AD BCD ACB ACD BCD ︒︒===∠=∠=∠=∠=∴,,, ACD ∴△是等边三角形CE AD ⊥∵1302ACE ACD ︒∠=∠=∴ 90BCE ACB ACE ︒∠=∠+∠=∴CE BC =∵45E CBE ︒∠=∠=∴1801804530105EFC E ACE ︒︒︒︒︒∠=−∠−∠=−−=∴故答案为:105︒13.【答案】2BC AB =【解析】解:∵四边形ABCD 是矩形,90AB CD ABC DCB ︒=∠=∠=∴,,∵点F 是BC 中点,BF FC =∴,且90ABC DCB AB CD ︒∠=∠==,,()ABF DCF SAS ∴△≌△AFB DFC ∠=∠∴,∵四边形EMFN 是正方形,90AFD ︒∠=∴,90AFB DFC ︒∠+∠=∴,45AFB DFC ︒∠=∠=∴,且90ABF DCF ︒∠=∠=,4545AFB BAF DFC FDC ︒︒∠=∠=∠=∠=∴,,AB BF CD CF ==∴,,2BC AB =∴,故答案为:2BC AB =.14.【答案】8【解析】解:∵四边形ABCD 是正方形,90BAD AB AD ∠=︒=∴,,90BAF EAD ︒∠+∠=∴,BF a DE a ⊥⊥∵,,90AED AFB ︒∠=∠=∴90BAF ABF ︒∠+∠=∴,ABF EAD ∠=∠∴,AFB DEA ∴△≌△,53AF ED AE BF ====∴,,538EF AF AE =+=+=∴,故答案为:815.【答案】4−【解析】解:∵四边形ABCD 是正方形,45ACD ︒∠=∴,30E ACD CAE ︒∠=∠−∠=∴,28AE AD ==∴,DE ==∴4CE DE DC =−=−∴,故答案为:4−.16.【答案】4【解析】解;设最快x 秒,四边形ABPQ 成为矩形,由BP AQ =得3202x x =−.解得4x =,故答案为:4.三、17.【答案】证明:AB CD ∵∥,OAB DCA ∠=∠∴,AC ∵平分BAD ∠.OAB DAC ∠=∠∴,DCA DAC ∠=∠∴,CD AD AB ==∴,AB CD ∵∥,∴四边形ABCD 是平行四边形,AD AB =∵,∴四边形ABCD 是菱形.18.【答案】证明:连接EO ,如下图所示:O ∵是AC BD 、的中点,AO CO BO DO ==∴,,∴四边形ABCD 是平行四边形,在EBD Rt △中,O ∵为BD 中点,12EO BD =∴, 在AEC Rt △中,O ∵为AC 的中点,12EO AC =∴, AC BD =∴,又∵四边形ABCD 是平行四边形,∴平行四边形ABCD 是矩形.19.【答案】证明:∵四边形ABCD 是矩形,90B C AB DC ︒∠=∠==∴,,BF CE =∵,BF EF CE EF +=+∴,即BE CF =,在ABE △和DCF △中,AB DC B C BE CF =⎧⎪∠=∠⎨⎪=⎩,()ABE DCF SAS ∴△≌△,AE DF =∴.20.【答案】(1)证明:DE BC CE AB ∵∥,∥,∴四边形BCED 是平行四边形,BD CE =∴,D ∵是ABC △的边AB 的中点,AD BD =∴,AD CE =∴;(2)解:当ABC △满足ABC △是直角三角形,90ACB ︒∠=时,四边形ADCE 是菱形;理由如下: 由(1)得:AD CE AD CE =∥,,∴四边形ADCE 是平行四边形,90ACB D ∠=︒∵,是ABC △的边AB 的中点,12CD AB AD ==∴, ∴四边形ADCE 是菱形. 21.【答案】(1)证明:∵四边形ABCD 是矩形,90AD BC A OB OD ︒∠==∴∥,,,, MDO NBO DMO BNO ∠=∠∠=∠∴,.MN ∵是BD 的垂直平分线OD OB =∴,在DMO △和BNO △中,MDO NBO DMO BNO OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DMO BNO AAS ∴△≌△,OM ON =∴.OB OD =∵,∴四边形BMDN 是平行四边形.MN BD ⊥∵,∴四边形BMDN 是菱形.(2)解:设MD MB x ==,则8AM x =−.在AMB Rt △中,由勾股定理得:222(8)4x x =−+,解得:5x =.即5MB =,∴菱形BMDN 的周长为5420⨯=.在ABD Rt △中,由勾股定理得:BD ===,BO =∴在BOM Rt △中,由勾股定理得:OM ===,由(1)得:OM ON =,MN =∴.22.【答案】(1)证明:∵四边形ABCD 是矩形,90ADC ︒∠=∴,AF CE ⊥∴,CD DE =∵,AE AC EF CF ==∴,,EAD CAD ∠=∠∴,AE CF ∵∥,EAD AFC ∠=∠∴,CAD CFA ∠=∠∴,AC CF =∴,AE EF AC CF ===∴,∴四边形ACFE 是菱形;(2)解:如下图,∵四边形ABCD 是矩形,90ABC BCE CD AB ︒∠=∠==∴,,2AB CD DE ==∵,,4BC CE ==∴,BE ==∴,90AB CD DE BAE EDG AGB DGE ︒==∠=∠=∠=∠∵,,, ()ABG DEG AAS ∴△≌△,BG EG =∴,12BG BE ==∴23.【答案】(1)证明:AD ∵是BC 边上的中线,AB AC =, BD CD =∴,BF EC ∵∥,DBF DCE ∠=∠∴,BDF CDE ∠=∠∵,()BDF CDE ASA ∴△≌△;(2)证明:BDF CDE ∵△≌△,BF CE DE DF ==∴,,BF CE ∵∥,∴四边形BECF 是平行四边形,AB AC AD =∵,是中线,∴四边形BECF 是菱形,1122DE BC DE DF EF ===∵,,EF BC =∴,∴四边形BECF 是正方形.。
初中数学 第19章 平行四边形综合检测题(三)及答案
第19章 平行四边形综合检测题(三)一、选择题(每题3分,共30分)1、一块均匀的不等边三角形的铁板,它的重心在( )A.三角形的三条角平分线的交点B.三角形的三条高线的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点 2、如图1,如果□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对3、平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cmB.6cm 和8cmC.8cm 和10cmD.10cm 和12cm4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A.AC =BD ,AB =CD ,AB ∥CDB.AD //BC ,∠A =∠CC.AO =BO =CO =DO ,AC ⊥BDD.AO =CO ,BO =DO ,AB =BC5、如图2,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 为( )A.平行四边形 B 、矩形 C 、菱形 D. 正方形6、如图3,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A.S 1 > S 2B.S 1 = S 2C.S 1<S 2D.S 1、S 2 的大小关系不确定 7、矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为( )A.3cm 2B. 4cm 2C. 12cm 2D. 4cm 2或12cm 28、如图4,菱形花坛 ABCD 的边长为 6m ,∠B =60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( ) A.123m B.20m C.22m D.24m图3A DCBHEFG图2OABD C图19、如图5,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( ) A .3B .23C .5D .2510、如图6,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3走2走到正方形O 3KJP 的中心O 4,一共走了31 2 m ,则长方形花坛ABCD 的周长是( ) A.36 m B.48 mC.96 mD.60 m二、填空题(每题3分,共30分)11、如图7, 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于___.12、如图8,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).13、如图9,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则PP ′=___.14、已知菱形有一个锐角为60°,一条对角线长为6cm ,则其面积为___cm 2.图6图4FEDCBA图5D CBA 图7图9图8 KNM Q CB15、如图10,在梯形ABCD 中,已知AB ∥CD ,点E 为BC 的中点, 设△DEA 的面积为S 1,梯形ABCD 的面积为S 2,则S 1与S 2的关系为___.16、如图11,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1四边形ABCD 的中点四边形.如果AC =8,BD =10,那么四边形A 1B 1C 1D 1的面积为___.17、如图12,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为___. 18、将一张长方形的纸对折,如图13所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.三、解答题(共40分)19、如图14,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于D ,折痕分别交边AB 、BC 于点F 、E ,若AD =2,BC =8.求BE 的长.……第一次对折第二次对折第三次对折图13图11A 1B 1C 1D 1D ABC D ABCEF图12FE DCBA 图14图10ED CB A20、在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有___组;(2)请在图15的三个平行四边形中画出满足小强分割方法的直线; (3)由上述实验操作过程,你发现所画的饿两条直线有什么规律?21、如图16,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G . (1)线段AF 与GB 相等吗?(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.ABCDABCDDCBA图15图1622、如图17,已知□ABCD 中,E 为AD 的中点,CE 的延长线交BA 的延长线于点E .(1)试说明线段CD 与F A 相等的理由;(2)若使∠F =∠BCF ,□ABCD 的边长之间还需再添加一个什么条件?请你补上这个条件,并说明你的理由(不要再增添辅助线).23、如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. (1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.ECDBAOABCDE F图1724、已知:如图19,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB 延长线上一点,且DE =BF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可). (1)连结____________;(2)猜想:______=______; (3)证明:25、如图20,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F .(1)试说明OE =OF ;(2)如图21,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE =OF ”还成立吗?如果成立,请给出说明理由;如果不成立,请说明理由.O C图19DABEF图20EM F CO DBA图21EFOCMDAB参考答案一、1,C ;2,D ;3,D ;4,C ;5,C ;6,A ;7,D ;8,B ;9,D ;10,C .二、11,30°;12,=;13,14,;15,1212S S =;16,20;17,7;18,15、2n -1.三、21,由题意得△BEF ≌△DFE,∴DE=BE,∵在△BDE 中,DE=BE,∠DBE=45°,∴∠BD E=∠DBE=45°,∴∠DEB=90°,∴DE ⊥BC.∴EC=12(BC -AD)= 12(8-2)=3.∴BE=5;22,(1)无数;(2)只要两条直线都过对角线的交点即可;(3)这两条直线过平行四边形的对称中心(或对角线的交点); 23,:(1)四边形ABCD 是平行四边形,AO CO ∴=.又ACE △是等边三角形,EO AC ∴⊥,即DB AC ⊥.∴平行四边形ABCD 是菱形;(2)ACE △是等边三角形,60AEC ∴∠=.EO AC ⊥,1302AEO AEC ∴∠=∠=.2AED EAD ∠=∠,15EAD ∴∠=.45ADO EAD AED ∴∠=∠+∠=.四边形ABCD 是菱形,290ADC ADO ∴∠=∠=.∴四边形ABCD 是正方形.24,(1)说明△CED ≌△CEA 即可,(2)BC =2AB ,理由略;25,(1)四边形ABCD 是矩形.连结OE .∵四边形ABCD 是平行四边形,∴DO =OB ,∵四边形DEBF 是菱形,∴DE =BE ,∴EO ⊥BD ,∴∠DOE = 90°,即∠DAE = 90°,又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.(2)解:∵四边形DEBF 是菱形,∴∠FDB =∠EDB ,又由题意知∠EDB =∠EDA ,由(1)知四边形ABCD 是矩形,∴∠ADF =90°即∠FDB +∠EDB +∠ADE =90°,则∠ADB = 60°,∴在Rt △ADB 中,有AD ∶AB =1:3,即3=BCAB;26,(1)连结AF ;(2)猜想AF =AE ;(3)连结AC ,交BD 于O ,因为四边形ABCD 是菱形,所以AC ⊥BD 于O ,DO =BO ,因为DE =BF ,所以EO =BO 所以AC 垂直平分EF ,所以AF =AE ;27,(1)因为四边形ABCD 是正方形,所以∠BOE =∠AOF =90°,OB =OA ,又因为AM ⊥BE ,所以∠MEA +∠MAE =90°=∠AFO +∠MAE ,所以∠MEA =∠AFO ,所以Rt △BOE 可以看成是绕点O 旋转90°后与Rt △AOF 重合,所以OE =OF ;(2)OE =OF 成立.证明:因为四边形ABCD是正方形,所以∠BOE=∠AOF=90°,OB=OA又因为AM BE,所以∠F+∠MBF=90°=∠B+∠OBE,又因为∠MBF=∠OBE,所以∠F=∠E,所以Rt△BOE可以看成是由Rt△AOF绕点O旋转90°以后得到的,所以OE=OF;。
(易错题精选)初中数学四边形经典测试题附答案(1)
(易错题精选)初中数学四边形经典测试题附答案(1)一、选择题1.下列说法中正确的是( )A .有一个角是直角的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直平分的四边形是正方形D .两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.【详解】A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.2.如图,在四边形ABCD 中,90,150,BAD BCD ADC ∠=∠=︒∠=o 连接对角线BD ,过点D 作//DE BC 交AB 于点,E 若23,AB AD CD =+=,则CD =( )A .2B .1C .13+D 3【答案】B【解析】【分析】 先根据四边形的内角和求得∠ABC 30︒=,再根据平行线的性质得到∠AED 30︒=,∠EDB=∠DBC ,然后根据三角形全等得到∠ABD=∠DBC ,进而得到EB=ED ,最后在Rt ADE V 中,利用勾股定理即可求解.【详解】解:在四边形ABCD 中∵90,150,BAD BCD ADC ∠=∠=︒∠=o∴∠ABC 30︒=∵//DE BC∴∠AED 30︒=,∠EDB=∠DBC在Rt ABD V 和Rt BCD △中 ∵AD CD BD BD =⎧⎨=⎩∴Rt ABD Rt BCD ≅V V∴∠ABD=∠DBC∴∠EDB=∠ABD∴EB=ED ∵23AB =+在Rt ADE △中,设AD=x,那么DE=2x,AE=232x +-()2222322x x x ++-=解得:121;73x x ==+(舍去)故选:B .【点睛】此题主要考查四边形的内角和、全等三角形的判断、平行线的性质和勾股定理的应用,熟练进行逻辑推理是解题关键.3.如图,小莹用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,BC 长为10cm .当小莹折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).则此时EC =( )cmA .4B 2C .22D .3【答案】D【解析】【分析】 根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF ,在Rt △ABF 中,利用勾股定理计算出BF=6,则CF=BC ﹣BF=4,设CE=x ,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到:42+x2=(8﹣x)2,然后解方程即可.【详解】解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴6=∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3∴EC的长为3cm.故选:D【点睛】本题考查了折叠的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠的性质和矩形的性质,根据勾股定理得出方程是解题关键.4.下列命题错误的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 5.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.6.如图,矩形ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点M,CN⊥AN于点N.则DM+CN 的值为(用含a 的代数式表示)( )A.a B.45a C2D3【答案】C【解析】【分析】根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,cos45°=DM CNDE CE,所以DM+CN=CDcos45°;再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°, ∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=22a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =7.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC 为底.②若以边PC 为底.③若以边PB 为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD 中,∵∠ABC=60°,AB=1,∴△ABC ,△ACD 都是等边三角形,①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P 与点A 重合时,PD 值最小,最小值为1;②若以边PC 为底,∠PBC 为顶角时,以点B 为圆心,BC 长为半径作圆,与BD 相交于一点,则弧AC (除点C 外)上的所有点都满足△PBC 是等腰三角形,当点P 在BD 上时,PD 31③若以边PB 为底,∠PCB 为顶角,以点C 为圆心,BC 为半径作圆,则弧BD 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点D 重合时,PD 最小,显然不满足题意,故此种情况不存在;上所述,PD的最小值为31故选D.【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC 【答案】A【解析】根据矩形的性质和全等三角形的性质找出全等三角形应用排它法求欠妥即可:∵AD=DE,DO∥AB,∴OD为△ABE的中位线.∴OD=OC.∵在Rt△AOD和Rt△EOD中,AD=DE,OD=OD,∴△AOD≌△EOD(HL).∵在Rt△AOD和Rt△BOC中,AD=BC,OD=OC,∴△AOD≌△BOC(HL).∴△BOC≌△EOD.综上所述,B、C、D均正确.故选A.9.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG ≌△GBE;④EG=EF,其中正确的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】由平行四边形的性质可得AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD,即可得BO=DO=AD=BC,由等腰三角形的性质可判断①,由中位线定理和直角三角形的性质可判断②④,由平行四边形的性质可判断③,即可求解.【详解】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD∵BD=2AD∴BO=DO=AD=BC,且点E是OC中点∴BE⊥AC,∴①正确∵E、F、分别是OC、OD中点∴EF∥DC,CD=2EF∵G是AB中点,BE⊥AC∴AB=2BG=2GE,且CD=AB,CD∥AB∴BG=EF=GE,EF∥CD∥AB∴四边形BGFE是平行四边形,∴②④正确,∵四边形BGFE是平行四边形,∴BG=EF,GF=BE,且GE=GE∴△BGE≌△FEG(SSS)∴③正确故选D.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,直角三角形的性质,三角形的中位线及等腰三角形的性质,熟练运用这些性质进行推理是本题的关键.10.如图,菱形ABCD中,对角线BD与AC交于点O, BD=8cm,AC=6cm,过点O作OH ⊥CB于点H,则OH的长为( )A.5cm B.52 cmC.125cm D.245cm【答案】C 【解析】【分析】根据菱形的对角线互相垂直平分求出OB 、OC ,再利用勾股定理列式求出BC ,然后根据△BOC 的面积列式计算即可得解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,111163,842222OC AC OB BD ==⨯===⨯= 在Rt △BOC 中,由勾股定理得,2222345BC OB OC =+=+=∵OH ⊥BC ,1122BOC S OC OB CB OH ∴=⋅=⋅V ∴1143522OH ⨯⨯=⨯ ∴125OH =故选C .【点睛】本题考查了菱形的性质,勾股定理,三角形的面积,熟记性质是解题的关键,难点在于利用两种方法表示△BOC 的面积列出方程.11.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】 ∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度=2205OB C +=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2, 即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.12.如图,四边形ABCD 的对角线相交于点O ,且点O 是BD 的中点,若AB =AD =5,BD =8,∠ABD =∠CDB ,则四边形ABCD 的面积为( )A .40B .24C .20D .15【答案】B【解析】【分析】根据等腰三角形的性质得到AC ⊥BD ,∠BAO=∠DAO ,得到AD=CD ,推出四边形ABCD 是菱形,根据勾股定理得到AO=3,于是得到结论.【详解】∵AB =AD ,点O 是BD 的中点,∴AC ⊥BD ,∠BAO =∠DAO ,∵∠ABD =∠CDB ,∴AB ∥CD ,∴∠BAC =∠ACD ,∴∠DAC =∠ACD ,∴AD =CD ,∴AB =CD ,∴四边形ABCD 是菱形,∵AB =5,BO 12=BD =4, ∴AO =3,∴AC =2AO =6,∴四边形ABCD 的面积12=⨯6×8=24, 故选:B .【点睛】本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.13.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x ,y ,z ,则111x y z++的值为( ) A .1B .23C .12D .13【答案】C【解析】分析:根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.详解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x 、y 、z ,那么这三个多边形的内角和可表示为:2180x x -⨯()+2180y y -⨯()+2180z z ()-⨯=360,两边都除以180得:1﹣2x+1﹣2y +1﹣2z =2,两边都除以2得:1x +1y +1z =12. 故选C .点睛:解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.14.如图,在ABCD Y 中,8AC =,6BD =,5AD =,则ABCD Y 的面积为( )A .6B .12C .24D .48【答案】C【解析】【分析】 由勾股定理的逆定理得出90AOD ∠=o ,即AC BD ⊥,得出ABCD Y 是菱形,由菱形面积公式即可得出结果.【详解】∵四边形ABCD 是平行四边形, ∴142OC OC AC ===,132OB OD BD ===, ∴22225OA OD AD +==,∴90AOD ∠=o ,即AC BD ⊥,∴ABCD Y 是菱形,∴ABCD Y 的面积11862422AC BD =⨯=⨯⨯=; 故选C .【点睛】本题考查平行四边形的性质、勾股定理的逆定理、菱形的判定与性质,熟练掌握平行四边形的性质,证明四边形ABCD 是菱形是解题的关键.15.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB =,则EFGH 的面积是( )A.6 B.8 C.9 D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF 2 AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE 2EF22AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH2DE=2,∴EFGH的面积为EH2=(2)2=8,故选:B.本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.16.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.17.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .18.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,将边长为4的菱形OBCD 的边OB 固定在x 轴上,开始时30DOB ∠=︒,现把菱形向左推,使点D 落在y 轴正半轴上的点D ¢处,则下列说法中错误的是( )A .点C '的坐标为()4,4B .60CBC '∠=︒ C .点D 移动的路径长度为4个单位长度D .CD 垂直平分BC '【答案】C【解析】【分析】 先证明四边形OBC′D′是正方形,且边长=4,即可判断A ;由平行线的性质得∠OBC 的度数,进而得到60CBC '∠=︒,即可判断B ;根据弧长公式,求出点D 移动的路径长度,即可判断C ;证明CD ⊥BC ′,BC′=BC=2BE ,即可判断D .【详解】∵四边形OBCD 是菱形,∴OB=BC=CD=OD ,∴OB=BC ′=C ′D ′=OD ′,∵∠BOD′=90°,∴四边形OBC′D′是正方形,且边长=4,∴点C '的坐标为()4,4,故A 不符合题意.∵30DOB ∠=︒,OD ∥BC ,∴∠OBC=180°-30°=150°,∵∠OBC ′=90°,∴60CBC '∠=︒,故B 不符合题意.∵点D 移动的路径是以OD 长为半径,圆心角为∠DOD ′=90°-30°=60°的弧长,∴点D 移动的路径长度=604180π⨯=43π,故C 符合题意. 设CD 与BC′交于点E ,∵在菱形OBCD 中,∠C=30DOB ∠=︒,∵60CBC '∠=︒,∴∠BEC=180°-60°-30°=90°,即CD ⊥BC ′,∴BC′=BC=2BE ,∴CD 垂直平分BC ',故D 不符合题意.故先C .【点睛】本题主要考查菱形的性质,正方形的判定和性质以及点的坐标,熟练掌握菱形的性质和正方形性质,含30°角的直角三角形的性质,是解题的关键.19.如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于( )A .1B .2C .3D .4【答案】C【解析】试题分析:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD ﹣MC=3,故选C.考点:平行四边形的性质.20.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:3605 72,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.。
2019年精选沪科版初中八年级下册数学第19章 四边形19.4 综合与实践 多边形的镶嵌练习题九十八
2019年精选沪科版初中八年级下册数学第19章四边形19.4 综合与实践多边形的镶嵌练习题九十八第1题【单选题】如果仅用一种正多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是( )A、正三角形B、正四边形C、正六边形D、正八边形【答案】:【解析】:第2题【单选题】下列图形中,不能镶嵌成平面图案的( )A、正三角形B、正四边形C、正五边形D、正六边形【答案】:【解析】:第3题【单选题】用形状、大小完全相同的下列图形不能进行密铺的是( )A、等腰三角形B、平行四边形C、正五边形D、正六边形【答案】:【解析】:第4题【单选题】小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密铺地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是( )A、B、C、D、【答案】:【解析】:第5题【单选题】只用下列一种正多边形不能镶嵌成平面图案的是( )A、正三角形B、正方形C、正五边形D、正六边形【答案】:【解析】:第6题【单选题】下列正多边形不能镶嵌为平面图形的是( )A、正三角形B、正方形C、正五边形D、正六边形【答案】:【解析】:第7题【单选题】张明的父母打算购买一种形状和大小都相同的正多边形瓷砖来铺地板,为了保证铺地板时既没缝隙,又不重叠,则所购瓷砖形状不能是( )A、正三角形B、正方形C、正六边形D、正八边形【答案】:【解析】:第8题【单选题】一幅平面图案,在某个顶点处由四个正多边形镶嵌而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为( )A、正三角形B、正方形C、正五边形D、正六边形【答案】:【解析】:第9题【单选题】只用下列哪一种正多边形可以进行平面镶嵌( )A、正五边形B、正六边形C、正八边形D、正十边形【答案】:【解析】:第10题【填空题】如图,用三个完全相同的正五边形地砖平铺地面,则空余的角度是______度.【答案】:【解析】:第11题【填空题】用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为______.【答案】:【解析】:第12题【解答题】如图是以正八边形为“基本图形”构成的一种密铺图案.图中间的四边形是什么四边形,请说说你的理由.【答案】:【解析】:第13题【解答题】小红家购买了一套新房,准备用一种地板砖镶嵌新居地面,要求地板砖都是正多边形,且每块地板砖的各边长都相等,各个角也都相等、某家装饰材料市场有如下五种型号的地砖,它们每个角的度数分别为60°、90°、108°、120°、135°,你认为这些地板砖哪些适用?请说明你的理由.【答案】:【解析】:第14题【解答题】试用三角形和梯形这两种多边形拼展平面图案.【答案】:【解析】:第15题【综合题】正在改造的人行道工地上,有两种铺设路面材料:一种是长为acm、宽为bcm的矩形板材(如图1),另一种是边长为ccm的正方形地砖(如图2).用多少块如图2所示的正方形地砖能拼出一个新的正方形?(只要写出一个符合条件的答案即可),并写出新正方形的面积;现用如图1所示的四块矩形板材铺成一个大矩形(如图3)或大正方形(如图4),中间分别空出一个小矩形和一个小正方形.①试比较中间的小矩形和中间的小正方形的面积哪个大?大多少?②如图4,已知大正方形的边长比中间小正方形的边长多20cm,面积大3200cm^2 .如果选用如图2所示的正方形地砖(边长为20cm)铺设图4中间的小正方形部分,那么能否做到不用切割地砖就可直接密铺(缝隙忽略不计)呢?若能,请求出密铺所需地砖的块数;若不能,至少要切割几块如图2的地砖?【答案】:无【解析】:。
新初中数学几何图形初步经典测试题及答案
新初中数学几何图形初步经典测试题及答案一、选择题1.如图,在平行四边形ABCD 中,4AB =,7AD =,ABC ∠的平分线BE 交AD 于点E ,则DE 的长是( )A .4B .3C .3.5D .2【答案】B【解析】【分析】 根据平行四边形的性质可得AEB EBC ∠=∠,再根据角平分线的性质可推出AEB ABE ∠=∠,根据等角对等边可得4AB AE ==,即可求出DE 的长.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴AEB EBC ∠=∠∵BE 是ABC ∠的平分线∴ABE EBC ∠=∠∴AEB ABE ∠=∠∴4AB AE ==∴743DE AD AE =-=-=故答案为:B .【点睛】本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A .35°B .45°C .55°D .65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A .【点睛】本题考查余角、补角的计算.3.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )A .210824(3) cm -B .()2108123cm -C .()254243cm -D .()254123cm -【答案】A【解析】【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.【详解】解:设正六棱柱的底面边长为acm ,高为hcm ,如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,∴BD =12a cm ,AD =32a cm , ∴AC =2AD =3a cm ,∴挪动前所在矩形的长为(2h +3a )cm ,宽为(4a +12a )cm , 挪动后所在矩形的长为(h +2a 3a )cm ,宽为4acm , 由题意得:(2h +3)−(h +2a 3a )=5,(4a +12a )−4a =1, ∴a =2,h =9−23∴该六棱柱的侧面积是6ah =6×2×(9−232108(3) cm -;故选:A .【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.4.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.5.下面四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .【答案】C【解析】【分析】根据三棱柱的展开图的特点作答.【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;C 、是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是.故选C .【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.6.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )A .8B .9C .10D .11【答案】C【解析】【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.【详解】解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小∵四边形ABCD 是正方形B D ∴、关于AC 对称PB PD =∴PB PE PD PE DE ∴+=+=2,3BE AE BE ==Q6,8AE AB ∴==226810DE ∴=+=;故PB PE +的最小值是10,故选:C .【点睛】本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.7.如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是( )A.斗B.新C.时D.代【答案】C【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“时”相对的字是“奋”;“代”相对的字是“新”;“去”相对的字是“斗”.故选C.点睛:本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.8.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误..的是()A.BC=AB-CD B.BC=12(AD-CD) C.BC=12AD-CD D.BC=AC-BD【答案】B【解析】试题解析:∵B是线段AD的中点,∴AB=BD=12 AD,A、BC=BD-CD=AB-CD,故本选项正确;B、BC=BD-CD=12AD-CD,故本选项错误;C、BC=BD-CD=12AD-CD,故本选项正确;D、BC=AC-AB=AC-BD,故本选项正确.故选B.9.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于()A.38°B.104°C.142°D.144°【解析】∵∠AOC=76°,射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°−∠AOM=180°−38°=142°,故选C.点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.10.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为()A.2B31C3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离3,3【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离=AC=3,故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.13.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED =50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.14.下列图形中,不是三棱柱的表面展开图的是( )A .B .C .D .【答案】D【解析】利用棱柱及其表面展开图的特点解题.解:A 、B 、C 中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D 不能围成三棱柱.故选D .15.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C、∵∠B=30°,∠DAB=30°,∴AD=DB,∴点D在AB的中垂线上,正确;D、∵∠CAD=30°,∴CD=12 AD,∵AD=DB,∴CD=12 DB,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.16.下列图形中,不是正方体平面展开图的是()A.B.C.D.【答案】D【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体;而D选项,上底面不可能有两个,故不是正方体的展开图.故选:D.【点睛】本题考查四棱柱的特征及正方体展开图的各种情形,难度适中.17.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A.B. C.D.【答案】C【解析】【分析】由三棱柱侧面展开图示是长方形,但只需将平行四边线变形成一个长方形,再根据长方形围成的三棱柱不能为斜的进行判断即可.【详解】因为三棱柱侧面展开图示是长方形,所以平行四边形要变形成一个长方形,如图所示:又因为长方形围成的三棱柱不是斜的,所以排除A、B、D,只有C符合.故选:C.【点睛】考查了学生空间想象能力和三棱柱的展示图形,解题关键是抓住三棱柱侧面展开图示是长方形和长方形围成的三棱柱不能为斜的.18.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切【答案】A【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.【详解】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A.【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.19.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条【答案】C【解析】解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.20.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.。
2019年精选初中八年级下册数学第19章 四边形19.1 多边形内角和沪科版复习巩固含答案解析第二十二篇
2019年精选初中八年级下册数学第19章四边形19.1 多边形内角和沪科版复习巩固含答案解析第二十二篇第1题【单选题】<h1 class="q-tigan">一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为( )A、13B、15C、16D、15或16或17【答案】:【解析】:第2题【单选题】将图1中五边形纸片ABCDE的A点以BE为折线往下折,A点恰好落在CD上,如图2所示,再分别以图2的AB,AE为折线,将C,D两点往上折,使得A,B,C,D,E五点均在同一平面上,如图3所示,若图1中∠A=124°,则图3中∠CAD的度数为何( )A、56B、60C、62D、68【答案】:【解析】:第3题【单选题】为了让州城居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能进行平面镶嵌的是( )A、正三角形B、正方形C、正五边形D、正六边形【答案】:【解析】:第4题【单选题】下列说法正确的是( )A、对角线互相垂直的四边形是菱形B、两条对角线互相垂直平分的四边形是正方形C、对角线互相垂直的四边形是平行四边形D、对角线相等且互相平分的四边形是矩形【答案】:【解析】:第5题【单选题】正六边形的每个内角都是( )A、60°B、80°C、100°D、120°【答案】:【解析】:第6题【单选题】正六边形的内角和为( )A、1080°B、900°C、720°D、540°【答案】:【解析】:第7题【填空题】六边形的对角线有______条.【答案】:【解析】:第8题【填空题】若点M取在多边形的一条边上(不是顶点),再将点M与n边形个顶点连结起来,将此多边形分割成9个三角形,则n边形是______边形.【答案】:【解析】:第9题【填空题】如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是______.【解析】:第10题【填空题】每一个多边形都可以按图甲的方法分割成若干个三角形.根据图甲的方法,图乙中的七边形能分割成______个三角形,那么n边形能分割成______个三角形.【答案】:第11题【解答题】求出下列图形中的x值.?【答案】:【解析】:第12题【解答题】(1)如图,已知△ABC,试画出AB边上的中线和AC边上的高;(2)有没有这样的多边形,它的内角和是它的外角和的3倍?如果有,请求出它的边数,并写出过这个多边形的一个顶点的对角线的条数.【答案】:【解析】:第13题【作图题】画出下面多边形的全部对角线.【答案】:【解析】:第14题【综合题】研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.定义:六个内角相等的六边形叫等角六边形.研究性质①如图1,等角六边形ABCDEF中,三组正对边AB与DE,BC与EF,CD与AF分别有什么位置关系?证明你的结论.②如图2,等角六边形ABCDEF中,如果有AB=DE,则其余两组正对边BC与EF,CD与AF相等吗?证明你的结论.③如图3,等角六边形ABCDEF中,如果三条正对角线AD,BE,CF相交于一点O,那么三组正对边AB与DE,BC与EF,CD与AF分别有什么数量关系?证明你的结论.探索判定三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?【答案】:【解析】:。
2019年秋浙教版初中数学八年级下册《特殊平行四边形与梯形》单元测试(含答案) (191)
八年级数学下册《特殊平行四边形与梯形》测试卷学校:__________ 题号一二三总分得分评卷人得分一、选择题1.(2分)已知一个四边形的对角线互相垂直,则顺次连结这个四边形的四边中点所得的四边形是()A.矩形B.菱形C.等腰梯形D.正方形2.(2分)如图,等腰梯形ABCD中,AD BC BD DC∥,⊥,点E是BC边的中点,ED AB∥,则BCD等于()A.30B.70C.75D.603.(2分)下列各图中,为轴对称图形的是()4.(2分)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()A.(10+213)cm B.(10+13)cm C.22cm D.18cm5.(2分)下列说法正确的是()A.有两个角为直角的四边形是矩形B.矩形的对角线互相垂直C.等腰梯形的对角线相等D.对角线互相垂直的四边形是菱形6.(2分)四边形ABCD中,AC交BD于点O,再添加一个条件,仍不能判定四边形ABCD 是矩形的是()A.AB=AD B.OA=OB C.AC=BD D.DC⊥BC7.(2分)顺次连结等腰梯形上、下底及对角线中点所构成的四边形是()A.矩形 B.等腰梯形 C.菱形 D.对边不平行的四边形A.B.C.D.8.(2分)下列特征中,等腰梯形具有而直角梯形没有的是 ( ) A .一组对边平行B .两腰不相等C .两角相等D .对角线相等9.(2分)判断四边形是菱形应满足的条件是( ) A .对角线相等 B .对角线互相垂直 C .对角线互相平分 D .对角线互相垂直平分10.(2分)如图,一块长a (m ),宽b (m )的矩形土地被踩出两条小路(过A ,B 间任意一点作AD 的平行线,被每条小路截得的线段的长都是2 m ),若小路①,②的面积分别为S 1,,S 2,则( ) A .S l >S 2B .S l <S 2C .S l =S 2D .无法确定11.(2分)如图,将矩形ABCD 沿AE 折叠,已知∠CED ′=60°则∠AED 等于( ) A .75°B .60°C .55°D .50°评卷人 得分二、填空题12.(3分)如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222AB CD,再顺次连结四边形2222AB CD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是 .13.(3分)如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点E ,交AB 于点F ,F 为垂足,连接DE ,则∠CDE = 度.14.(3分)如图,在直角梯形ABCD 中,AB//CD ,AD ⊥CD ,AB=1cm ,AD=2cm ,CD=4cm , 则BC= .15.(3分)若梯形的上、下底分别是2和5,一腰长为4,则另一腰x 的取值范围是 .16.(3分)如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是度.17.(3分)已知正方形的边长为a,则正方形内任意一点到四边的距离之和为.18.(3分)如图,已知梯形ABCD,添加一个条件,使其成为等腰梯形,则这个条件可以是.19.(3分)已知等腰梯形的周长为25 cm,上、下底分别为7 cm和8 cm,则腰长为.20.(3分)如图,四边形ABCD是菱形,△AEF是正三角形,点E,F分别在BC,CD上,且AB=AE,则∠B= .解答题21.(3分)如图,在矩形ABCD中,CE⊥BD,∠DCE:∠ECB=3:1,那么∠ACB= 度.评卷人得分三、解答题22.(6分)如图,在△ABC中,D为BC边的中点,过D点分别作DE∥AB交AC于点E,DF∥AC交AB于点F.(1)证明:△BDF≌△DCE;(2)如果给△ABC添加一个条件,使四边形AFDE成为菱形,则该条是;如果给△ABC添加一个条件,使四边形AFDE成为矩形,则该条件是 .(均不再增添辅助线)请选择一个结论进行证明.23.(6分)在梯形ABCD中,DC∥AB,E是DC延长线上一点,BE∥AD,BE=BC,∠E=50o,试求梯形ABCD的各角的度数.请问此时梯形ABCD是等腰梯形吗?为什么?24.(6分)如图①,四边形ABCD是等腰梯形,AB∥DC,由4个这样的等腰梯形可以拼出图②所示的平行四边形.(1)求四边形ABCD的四个内角的度数;(2)试探究四边形ABCD的四条边之间存在的等量关系,并说明理由;(3)请用两种不同的方法,在图③和图④的梯形ABCD内画一条直线,将梯形ABCD分成面积相等的两部分(只要所画的直线位置不同,便视为两种不同的方法);(4)现有图①中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请画出大致示意图.25.(6分)如图所示,等腰梯形ABCD中,AD∥BC,AE∥DC,DF∥AB,求证:AE=DF.26.(6分)如图,菱形ABCD中,∠ABC=60°,有一度数为60°的∠MAN绕点A旋转. (1)如图①,若∠MAN的两边AM,AN分别交BC,CD于点E,F,则线段CE,DF的大小关系如何?请证明你的结论.(2)如图②,若∠MAN的两边AM,AN分别交BC,CD的延长线于点E,F,则线段CE,DF的大小关系还有(1)中的结论吗?请说明你的理由.27.(6分)如图,在Rt△ABC中,∠C=90°,D为AB边的中点,DE⊥AC于E,DF⊥BC于F,连结EF,求证:EF=12 AB.28.(6分)如图①、②、③,图中点E,D分别是正△ABC、正方形ABCM、正五边形ABCMN中以 C点为顶点的相邻两边上的点,且BE=CD,DB交AE 于P点.(1)求图①中,∠APD的度数;(2)图②中,∠APD的度数为,图③中,∠APD的度数为;(3)根据前面的探索,你能否将其推广到一般的正n边形中?若能,写出推广问题和结论;若不能,请说明理由.29.(6分)如图,任意剪一个三角形纸片ABC,设它的锐角为∠A,首先用对折的方法得到高AN,然后按图中所示的方法分别将含有∠B,∠C的部分向里折,找出AB,AC的中点D,E,同时得到两个折痕DF,EG,分别沿折痕DF,EG剪下图中的三角形①,②,并按图中箭头所指的方向分别旋转180°.(1)你能拼成一个什么样的四边形?并说明你的理由.(2)请你利用这个图形,证明三角形的面积公式:12S=⨯⨯底高.30.(6分)如图,对角线是宽的两倍的同样大小的两个矩形拼成L型图案.求∠AFH,∠DCH,∠FHD的度数.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.D3.C4.A5.C6.A7.C8.D9.D10.C11.B评卷人得分二、填空题12.142n -13.60 14.13 15.1<x<7 16.12017.2a18.AB=CD 等 19.5cm 20.80° 21.67.5 评卷人 得分三、解答题22.(1)证明: ∵AB DE ∥,∴ FBD EDC ∠=∠ ∵AC DF ∥,∴ECD FDB ∠=∠ 又∵DC BD =∴BDF ∆≌DCE ∆ (2)AC AB =;90=∠A °① 证明:∵AB DE ∥ AC DF ∥ ∴四边形AFDE 为平行四边形 又∵AC AB = ∴ C B ∠=∠ ∴C EDC ∠=∠ ∴EC ED = 由BDF ∆≌DCE ∆可得:EC FD = ∴FD ED =∴四边形AFDE 为菱形 ② 证明:同理可证四边形AFDE 为平行四边形 ∵90=∠A ∴四边形AFDE 为矩形23.思路:梯形ABCD 的各角的度数分别为50o ,130o ,130o ,50o ,梯形ABCD 是等腰梯形,证明略.24.(1)60°,60°,l20°,l20°;(2)AB=2AD=2DC=2BC ; (3)DP+AQ=PC+QB(4)答案不唯一25.证明AE=CD,DF=AB26.(1)CE=DF,连结AC,证△AEC≌△AFD;(2)CE=DF仍成立,证法与(1)类似27.连结CD,证四边形CEDF是矩形28.(1)∠APD=60° (2)90°,108° (3)若点E,D分别是正n边形ABC……M中以 C为顶点的相邻的两邻边上的点,且BE=CD,DB交AE于P点,则∠APD=0 (2)180 nn-⨯29.(1)矩形;(2)略30.∠AFH=45°,∠DCH=15°,∠FHD=105°。
华东师大版初中八年级数学下册第19章单元测试卷含答案(2套)
第19章矩形、菱形、正方形单元检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列命题中正确的是( B )A.有一组邻边相等的四边形是菱形 B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形 D.一组对边平行的四边形是平行四边形2.如图,在矩形ABCD中,AC与BD相交于点O,若∠DBC=30°,则∠AOB等于( D )A.120° B.15° C.30° D.60°3.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连结AE,CF,则四边形AECF是( C )A.梯形 B.矩形 C.菱形 D.正方形,第2题图),第3题图),第5题图),第6题图) 4.一个菱形的周长为8 cm,高为1 cm,则这个菱形的两邻角的度数之比为( D )A.2∶1 B.3∶1 C.4∶1 D.5∶15.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断中不正确的是( D )A .四边形AEDF 是平行四边形B .如果∠BAC =90°,那么四边形AEDF 是矩形C .如果AD 平分∠BAC ,那么四边形AEDF 是菱形D .如果AD ⊥BC 且AB =AC ,那么四边形AEDF 是正方形6.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( D )A .AF =AEB .△ABE ≌△AGFC .EF =2 5D .AF =EF7.如图,一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是21 cm 2,则该矩形的面积为( A )A .60 cm 2B .70 cm 2C .120 cm 2D .140 cm 28.如图,正方形ABCD 的边长为1,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( C )A .1 B. 2 C .1-22D.2-4 ,第7题图),第8题图),第9题图),第10题图)9.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m ,32),反比例函数y =k x的图象与菱形对角线AO 交于D 点,连结BD ,当DB ⊥x轴时,k的值是( D )A.1 B.-1 C. 3 D.- 310.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG,CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是( C )A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,E为BC的中点,且∠AED=90°,AD=10,则AB的长为__5__.,第11题图) ,第13题图),第14题图) ,第15题图) 12.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是__20__.13.如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E,F不重合,已知△ACD的面积为3,则图中阴影部分两个三角形的面积和为__3__.14.如图,▱ABCD的两条对角线AC,BD相交于点O,AB=5,AC=4,BD=2,小明说:“这个四边形是菱形.”他说这话的根据是__对角线互相垂直的平行四边形是菱形__.15.▱ABCD中,给出下列四个条件:①AC⊥BD;②∠ADC=90°;③BC=CD;④AC=BD.其中选两个条件能使▱ABCD是正方形的有__①②、①④、②③、③④__.(填上所有正确结果的序号)16.如图,在矩形纸片ABCD 中,AB =12,BC =5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A ′处,则AE 的长为__103__. ,第16题图) ,第17题图),第18题图)17.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF ,若菱形ABCD 的边长为2 cm ,∠A =120°,则EF =18.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =kx +b(k >0)和x轴上,已知点B 1(1,1),B 2(3,2),则点B n 的坐标为__(2n -1,2n -1)__.三、解答题(共66分)19.(8分)如图,在矩形ABCD 中,两条对角线AC ,BD 相交于点O ,E 是AC 上的一点,且BO =2AE ,∠AOD =120°,求证:BE ⊥AC.解:∵四边形ABCD 是矩形,∴OB =OA ,又∵OB =2AE ,∴AE =OE ,又∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形.又∵AE =OE ,∴BE ⊥AO ,即BE ⊥AC20.(8分)如图,在菱形ABCD中,AC为对角线,点E,F分别是边BC,AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=2,求线段AE的长.解:(1)用SAS证△ABE≌△CDF (2)∵∠B=60°,∴△ABC是等边三角形,∴BE=CE=1,AE⊥BC,∴AE=AB2-BE2=22-12= 321.(10分)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连结DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连结AE,试判断AE与DF的位置关系,并说明理由.解:(1)△ADC≌△ABC,△ADF≌△ABF,△CDF≌△CBF (2)AE ⊥DF.理由如下:设AE与DF相交于点H,易证△ADF≌△ABF,∴∠ADF=∠ABF,再证△ADE≌△BCE,∴∠DAE=∠CBE,∵∠ABF+∠CBE =90°,∴∠ADF+∠DAE=90°,∴∠DHA=90°,∴AE⊥DF22.(9分)如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE 于点F,FG∥AC交CD于点G.求证:四边形ACGF是菱形.解:易证四边形ACGF是平行四边形,再证AC=AF,故四边形ACGF 是菱形23.(9分)如图,△ABC中,AB=AC,D是BC的中点,DE∥AB交AC于点E,DF∥AC交AB于点F.(1)求证:四边形AFDE是菱形;(2)当∠ABC等于多少度时,四边形AFDE是正方形?请说明理由.解:(1)易证四边形AFDE是平行四边形,∵D为BC中点,DE∥AB,DF∥AC,∴DE=12AB,DF=12AC,∵AB=AC,∴DE=DF,∴四边形AFDE是菱形(2)当∠ABC=45°时,四边形AFDE是正方形,理由略24.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连结DO并延长到点E,使OE=OD,连结AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.解:(1)∵OA=OB,OE=OD,∴四边形AEBD为平行四边形,∵AB =AC,AD平分∠BAC,∴AD⊥BC,即∠ADB=90°,∴四边形AEBD为矩形(2)当∠BAC=90°时,四边形AEBD为正方形,理由如下:∵∠BAC=90°,AD平分∠BAC,AD⊥BC,∴∠DAB=∠DBA=45°,∴BD=AD,∴矩形AEBD为正方形25.(12分)已知,在△ABC 中,∠BAC =90°,∠ABC =45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,连结CF.(1)如图①,当点D 在线段BC 上时,求证:CF +CD =BC ;(2)如图②,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;(3)如图③,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变:①请直接写出CF ,BC ,CD 三条线段之间的关系;②若正方形ADEF 的边长为2,对角线AE ,DF 相交于点O ,连结OC ,求OC 的长度.解:(1)∵∠BAC =90°,∠ABC =45°,∴∠ACB =∠ABC =45°,∴AB =AC ,可证△BAD ≌△CAF(SSS),∴BD =CF ,∵BC =BD +CD ,∴CF +CD =BC (2)BC =CF -CD (3)①CD -CF =BC ②由题知,∠BAC =90°,∠ABC =45°,∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∵∠BAD =90°-∠BAF ,∠CAF =90°-∠BAF ,∴∠BAD =∠CAF ,又∵AB =AC ,∴△BAD ≌△CAF(SAS),∴∠ACF =∠ABD ,∵∠ABC =45°,∴∠ABD =135°,∴∠ACF =∠ABD =135°,∴∠FCD =90°,∴△FCD 为直角三角形,∵DE =2,∴DF =2DE =22,∴OC =12DF = 2四边形测试题一、选择题(本大题共5小题,每小题5分,共25分;在每小题列出的四个选项中,只有一项符合题意)1.若菱形的周长为48 cm,则其边长是()A.24 cmB.12 cmC.8 cmD.4 cm2.如图3-G-1,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()图3-G-1A.30°B.60°C.90°D.120°3.如图3-G-2所示,在菱形ABCD中,不一定成立的是()图3-G-2A.四边形ABCD是平行四边形B.AC⊥BDC.△ABD是等边三角形D.∠CAB=∠CAD4.如图3-G-3,在矩形ABCD中,O是对角线AC,BD的交点,点E,F分别是OD,OC的中点.如果AC=10,BC=8,那么EF的长为()A.6 B.5 C.4 D.3图3-G-35.如图3-G-4,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()图3-G-4A.4 3B.4C.2 3D.2二、填空题(本大题共5小题,每小题5分,共25分)6.在菱形ABCD中,若对角线AC=8 cm,BD=6 cm,则边长AB=________ cm.7.矩形两对角线的夹角为120°,矩形的宽为3,则矩形的面积为__________.8.如图3-G-5所示,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD,BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为________.图3-G-59.已知菱形ABCD的面积为24 cm2,若对角线AC=6 cm,则这个菱形的边长为________cm.10.如图3-G-6,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是________(只填写序号).图3-G-6三、解答题(本大题共5小题,共50分)11.(6分)如图3-G-7所示,已知四边形ABCD是菱形,对角线AC与BD相交于点O,AB=5,AO=4,求BD的长.图3-G-712.(8分)如图3-G-8,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.图3-G-813.(12分)如图3-G-9①,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠DCE =90°,AB与CE交于点F,ED与AB,BC分别交于M,H.(1)求证:CF=CH;(2)如图②,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形?并证明你的结论.图3-G-914.(12分)如图3-G-10,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF∶∠FDC=3∶2,DF⊥AC,则∠BDF的度数是多少?图3-G-1015.(12分)如图3-G-11,▱ABCD的对角线AC,BD相交于点O,BD=12 cm,AC =6 cm,点E在线段BO上从点B以1 cm/s的速度运动,点F在线段OD上从点O以2 cm/s 的速度运动.(1)若点E,F同时运动,设运动时间为t秒,当t为何值时,四边形AECF是平行四边形?(2)在(1)的条件下,①当AB为何值时,四边形AECF是菱形?②四边形AECF可以是矩形吗?为什么?图3-G-111.B 2.B3.C [解析] 灵活掌握菱形的性质定理即可判断. 4.D [解析] ∵四边形ABCD 是矩形,∴AB =CD ,∠ABC =90°.∵AC =10,BC =8,由勾股定理得AB =102-82=6,∴CD =AB =6.∵点E ,F 分别是OD ,OC 的中点,∴EF =12CD =3.故选D . 5.A [解析] 设AC 与BD 交于点E ,则∠ABE =60°.根据菱形的周长求出AB =16÷4=4.在Rt △ABE 中,求出BE =2,根据勾股定理求出AE =42-22=2 3,故可得AC =2AE =4 3.6.5 [解析] 如图,∵在菱形ABCD 中,对角线AC =8 cm ,BD =6 cm ,∴AO =12AC=4 cm ,BO =12BD =3 cm .∵菱形的对角线互相垂直,∴在Rt △AOB 中,AB =AO 2+BO 2=42+32=5(cm ).7.9 3 [解析] 根据勾股定理求得矩形的另一边长为3 3,所以面积是9 3.8.3 [解析] 可证得△AOE ≌△COF ,所以阴影部分的面积就是△BCD 的面积,即矩形面积的一半.9.5 [解析] 菱形ABCD 的面积=12AC·BD.∵菱形ABCD 的面积是24 cm 2,其中一条对角线AC 长6 cm ,∴另一条对角线BD 的长为8 cm .边长=32+42=5 (cm ).10.③ [解析] 由题意得BD =CD ,ED =FD ,∴四边形EBFC 是平行四边形.①BE ⊥EC ,根据这个条件只能得出四边形EBFC 是矩形;②BF ∥CE ,根据EBFC 是平行四边形已可以得出BF ∥CE ,因此不能根据此条件得出▱EBFC 是菱形;③AB =AC ,∵⎩⎨⎧AB =AC ,DB =DC ,AD =AD ,∴△ADB ≌△ADC(SSS),∴∠BAD =∠CAD ,∴△AEB ≌△AEC(SAS),∴BE =CE ,∴四边形BECF 是菱形. 11.解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,DO =BO. ∵AB =5,AO =4,∴BO =AB 2-AO 2=52-42=3, ∴BD =2BO =6.12.解:(1)证明:∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC , ∴∠ADB =90°.∵四边形ADBE 是平行四边形, ∴▱ADBE 是矩形.(2)∵AB =AC =5,BC =6,AD 是BC 边上的中线,∴BD =DC =6×12=3.在Rt △ACD 中,AD =AC 2-DC 2=52-32=4, ∴S 矩形ADBE =BD·AD =3×4=12.13.解:(1)证明:∵AC =CE =CB =CD ,∠ACB =∠ECD =90°, ∴∠A =∠B =∠D =∠E =45°. 在△BCF 和△ECH 中, ⎩⎨⎧∠B =∠E ,BC =EC ,∠BCF =∠ECH ,∴△BCF ≌△ECH(ASA), ∴CF =CH.(2)四边形ACDM 是菱形.证明:∵∠ACB =∠DCE =90°,∠BCE =45°, ∴∠ACE =∠DCH =45°.∵∠E =45°,∴∠ACE =∠E ,∴AC ∥DE , ∴∠AMH =180°-∠A =135°=∠ACD. 又∵∠A =∠D =45°,∴四边形ACDM 是平行四边形. ∵AC =CD ,∴四边形ACDM 是菱形.14.解:(1)证明:∵AO =CO ,BO =DO , ∴四边形ABCD 是平行四边形, ∴∠ABC =∠ADC.∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADC =90°, ∴四边形ABCD 是矩形.(2)∵∠ADC =90°,∠ADF ∶∠FDC =3∶2, ∴∠FDC =36°.∵DF ⊥AC ,∴∠DCO =90°-36°=54°. ∵四边形ABCD 是矩形,∴OC =OD ,∴∠ODC =54°, ∴∠BDF =∠ODC -∠FDC =18°.15.解:(1)若四边形AECF 是平行四边形, 则AO =OC ,EO =OF.∵四边形ABCD 是平行四边形, ∴BO =OD =6 cm , ∴EO =6-t ,OF =2t , ∴6-t =2t ,∴t =2,∴当t =2时,四边形AECF 是平行四边形. (2)①若四边形AECF 是菱形, ∴AC ⊥BD ,∴AO 2+BO 2=AB 2,∴AB =36+9=3 5, 即当AB =3 5时,四边形AECF 是菱形. ②不可以.理由:若四边形AECF 是矩形,则EF =AC , ∴6-t +2t =6,∴t =0,则此时点E 在点B 处,点F 在点O 处, 显然四边形AECF 不可以是矩形.四边形全章综合测试1.如图,E F 、是ABCD 对角线AC 上两点,且AE CF =,连结DE 、BF ,则图中共有全等三角形的对数是( )A.1对B.2对C.3对D.4对2.如图,在在平行四边形ABCD 中,对角线AC BD ,相交于点O ,E F ,是对角线AC 上的两点,当E F ,满足下列哪个条件时,四边形DEBF 不一定是是平行四边形( ) A.OE OF = B.DE BF = C.ADE CBF ∠=∠ D.ABE CDF ∠=∠ABF ECD3.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角线是否都为直角D .测量其中三角形是否都为直角4.如果一个四边形绕对角线的交点旋转90,所得的图形与原来的图形重合,那么这个四边形一定是( ) A.平行四边形B.矩形C.菱形D.正方形5. 已知点(20)A ,、点B (12-,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,在平行四边形ABCD 中,AC BD ,相交于点O .下列结论:①OA OC =,②BAD BCD ∠=∠,③AC BD ⊥,④180BAD ABC ∠+∠=.其中,正确的个数有( ) A.1个B.2个C.3个D.4个7.如图,平行四边形ABCD 中,AB3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是() A.6B.8C.9D.108.把长为10cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,如果剪掉..部分的面积为12cm 2,则打开后梯形的周长是 ( )A 、(10+25)cmB 、(12+25)cmC 、22cmD 、20cm9.如图,正方形ABCD 的边长为2,点E 在AB 边上,四边形EFGB 也为正方形,设AFC △的面积为S ,则( )A.2S =B. 2.4S = C.4S =D.S 与BE 长度有关10.梯形ABCD 中,AD ∥BC ,E 、F 为BC 上点,且DE ∥AB ,AF ∥DC ,DE ⊥AF 于G ,若AG =3,DG =4,四边形ABED 的面积为36,则梯形ABCD 的周长为( )A .49B .43C .41D .4611. 已知:如图,正方形ABCD ,AC 、BD 相交于点O ,E 、F 分别为BC 、CD 上的两点,BE=CF ,AE 、BF 分别交BD 、AC 于M 、N 两点, 连结OE 、OF.下列结论,其中正确的是( ).①AE=BF ;②AE ⊥BF ;③OM=ON=12DF ;④CE+CF=22AC .(A )①②④ (B )①②(C )①②③④(D )②③④12.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =23,那么AP 的长为 .13.(7分)如图,在ABC △中,AB BC =,D、E、F分别是BC 、AC 、AB 边上的中点.(1) 求证:四边形BDEF 是菱形;(2) 若12AB =cm ,求菱形BDEF 的周长.AFBDCEGBF A E ABCDOMENFACE GF EDCBA14.(7分)如图,将一张矩形纸片A B C D ''''沿EF 折叠,使点B '落在A D '' 边上的点B 处;沿BG 折叠,使点D '落在点D 处,且BD 过F 点.⑴试判断四边形BEFG 的形状,并证明你的结论. ⑵当∠BFE 为多少度时,四边形BEFG 是菱形.15.(7分)如图,四边形ABCD 为平行四边形,E 为AD 上的一点,连接EB 并延长,使BF=BE ,连接EC 并延长,使CG=CE ,连接FG .H 为FG 的中点,连接DH . (1) 求证:四边形AFHD 为平行四边形;(2)若CB=CE ,∠BAE=600 ,∠DCE=200 求∠CBE 的度数.16.(7分)如图,梯形ABCD 中,120AD BC AB DC ADC =∠=∥,,,对角线CA平分DCB ∠,E 为BC 的中点,试求DCE △与四边形ABED 面积的比.17.(8分)在矩形纸片ABCD 中,33AB =,6BC =,沿EF 折叠后,点C 落在AB 边上的点P处,点D 落在点Q 处,AD 与PQ 相交于点H ,30BPE ∠=.ADBEC(1)求BE 、QF 的长; (2)求四边形PEFH 的面积.18.(本题12分)如图,四边形ABCD 位于平面直角坐标系的第一象限,B 、C 在x 轴上,A 点函数xy 2上,且AB ∥CD ∥y 轴,AD ∥x 轴,B (1,0)、C (3,0)。
精选2019-2020年沪科版初中数学八年级下册第19章 四边形19.1 多边形内角和习题精选第二十四篇
精选2019-2020年沪科版初中数学八年级下册第19章四边形19.1 多边形内角和习题精选第二十四篇第1题【单选题】一个多边形最少可分割成五个三角形,则它是( )边形A、8B、7C、6D、5【答案】:【解析】:第2题【单选题】把一张形状是矩形的纸片剪去其中某一个角,剩下的部分是一个多边形,则这个多边形的内角和不可能是( )。
A、720°B、540°C、360°D、180°【答案】:【解析】:第3题【单选题】一个多边形截去一个角后所形成的多边形的内角和是1260°,那么原多边形的边数不可能是( )A、8B、9C、10D、11【答案】:【解析】:第4题【单选题】一个多边形的内角和是900°,则这个多边形的边数为( )A、6B、7C、8D、9【答案】:【解析】:第5题【填空题】若一个多边形的边数为8,则这个多边形的外角和为______.【答案】:【解析】:第6题【填空题】一个多边形的每一个外角都等于72°,则这个多边形是______边形.【答案】:【解析】:第7题【填空题】试写出用n边形的边数n表示对角线总条数S的式子:______.【答案】:【解析】:第8题【填空题】如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为______【答案】:【解析】:第9题【填空题】一个七边形的外角和是______.【答案】:【解析】:第10题【填空题】从多边形的一个顶点可以作出6条多边形的对角线,则该多边形的边数是______.【答案】:【解析】:第11题【解答题】如图所示模板,按规定AB,CD的延长线相交成80°的角,因交点不在板上不便测量,工人师傅测得∠BAE =122°,∠DCF=155°,此时AB,CD的延长线相交所成的角是否符合规定?为什么?【答案】:【解析】:第12题【解答题】一个多边形的内角和加上它的外角和等于900°,求此多边形的边数.【答案】:【解析】:第13题【解答题】一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.【答案】:【解析】:第14题【综合题】如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.若∠F=70°,则∠ABC+∠BCD=______°;∠E=______°;探索∠E与∠F有怎样的数量关系,并说明理由;给四边形ABCD添加一个条件,使得∠E=∠F,所添加的条件为______.【答案】:【解析】:第15题【综合题】解答题定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.性质探究:请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD是凹四边形.求证:∠BCD=∠B+∠A+∠D.性质应用:如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,∠AEC=102°,则∠B=______°.【答案】:无【解析】:。
初中数学 第十九章《四边形》单元总复习题(含答案)
第十九章《四边形》提要:本章重点是四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.本章难点在于四边形的概念及四边形不稳定性的理解和应用.在前面学习三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思不容易理解,所以是难点.习题一、填空题1.如图19-1,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是:.2.用黑白两种颜色的正六边形地面砖按如图19-2所示的规律,拼成若干个图形:(1)第4个图形中有白色地面砖块;(2)第n个图形中有白色地面砖块.3.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是___________________.4.在正方形ABCD所在的平面内,到正方形三边所在直线距离相等的点有__个.5.四边形ABCD为菱形,∠A=60°, 对角线BD长度为10c m,则此菱形的周长c m.6.已知正方形的一条对角线长为8c m,则其面积是__________c m2.7.平行四边形ABCD中,AB=6c m,AC+BD=14c m,则∠AOC的周长为_______.8.在平行四边形ABCD中,∠A=70°,∠D=_________, ∠B=__________.9.等腰梯形ABCD中,AD∠BC,∠A=120°,两底分别是15c m和49c m,则等腰梯形的腰长为______.10.用一块面积为450c m2的等腰梯形彩纸做风筝,为了牢固起见,用竹条做梯形的对角线,对角线恰好互相垂直,那么至少需要竹条c m.11.已知在平行四边形ABCE中,AB=14cm,BC=16cm,则此平行四边形的周长为cm. 12.要说明一个四边形是菱形,可以先说明这个四边形是形,再说明图19-2图19-1ABCDO图19-3(只需填写一种方法)13.如图19-3,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有 个等腰直角三角形.14.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (2)菱形可以由两个能够完全重合的 拼合而成; (3)矩形可以由两个能够完全重合的 拼合而成. 15.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm . 16.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .17.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为___________cm .18.如图19-4,根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .19.已知菱形的两条对角线长为12cm 和6cm ,那么这个菱形的面积为 2cm . 20.如图19-5,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上)二、选择题21.给出五种图形:∠矩形; ∠菱形; ∠等腰三角形(腰与底边不相等); ∠等边三角形; ∠平行四边形(不含矩形、菱形).其中,能用完全重合的含有300角的两块三角板拼成的图形是( )A .∠∠B .∠∠∠C .∠∠∠∠D .∠∠∠∠∠22.如图19-6,设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是( )AB C D图19-611图19-4 A BCO图19-523.四边形ABCD 中,∠A ︰∠B ︰∠C ︰∠D =2︰2︰1︰3,则这个四边形是( ) A .梯形 B .等腰梯形C .直角梯形D .任意四边形24.要从一张长40c m ,宽20c m 的矩形纸片中剪出长为18c m ,宽为12c m 的矩形纸片则最多能剪出( ) A .1张 B .2张 C .3张 D .4张25.如图19-7,在平行四边形ABCD 中,CE 是∠DCB 的平分线,F 是AB 的中点,AB =6,BC =4,则AE ︰EF ︰FB 为( )A .1︰2︰3B . 2︰1︰3C . 3︰2︰1D . 3︰1︰2 26.下列说法中错误的是( )A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形. 27.下列说法正确的是( )A .任何一个具有对称中心的四边形一定是正方形或矩形;B .角既是轴对称图形又是中心对称图形;C .线段、圆、矩形、菱形、正方形都是中心对称图形;D .正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条.28.点A 、B 、C 、D 在同一平面内,从∠AB //CD ;∠AB =CD ;∠BC //AD ;∠BC =AD 四个条件中任意选两个,能使四边形ABCD 是平行四边形的选法有( ) A .∠∠ B .∠∠ C . ∠∠ D . ∠∠29.已知ABCD 是平行四边形,下列结论中不一定正确的是( )A .AB =CD B .AC =BDC .当AC ∠BD 时,它是菱形 D .当∠ABC =90°时,它是矩形 30.平行四边形的两邻边分别为6和8,那么其对角线应( )A .大于2,B .小于14C .大于2且小于14D .大于2或小于1231.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有 ( ) A .4种 B .5种 C .7种 D .8种32.下列说法中,错误的是 ( ) A .平行四边形的对角线互相平分 B .对角线互相平分的四边形是平行四边形 C .菱形的对角线互相垂直 D .对角线互相垂直的四边形是菱形33.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( )A .1个B .2个C .3个D .4个34.如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( )A D CB F E 图19-7 ·A .矩形B .菱形C .正方形D .菱形、矩形或正方形 35.如图19-8,直线a ∠b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( ) A .变大 B .变小 C .不变 D .无法确定36.如图19-10,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果 60=∠BAF ,则DAE ∠ 等于 ( )A . 15B . 30C . 45D . 6037.如图19-11,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∠AB 交AC 于点E ,DF ∠AC 交AB于点F ,那么四边形AFDE 的周长是 ( ) A .5 B .10 C .15 D .2038.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∠CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形; (3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形其中正确的说法是 ( ) A .(1)(2) B .(1)(3)(4) C .(2)(3) D .(2)(3)(4) 三、解答题39.如图19-12,已知四边形ABCD 是等腰梯形, CD //BA ,四边形AEBC 是平行四边形.请说明:∠ABD =∠ABE .40.如图19-13,在∠ABC 中,点O 是AC 边上的一动点, 过点O 作直线MN //BC , 设MNA BC D EF图19-9 图19-10 图19-11 D A EBC图19-12交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)说明EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?说明你的结论.41.如图19-14,AD 是∠ABC 的角平分线,DE ∠AC 交AB 于点E ,DF ∠AB 交AC 于F . 试确定AD 与EF 的位置关系,并说明理由.42.如图19-15,在正方形ABCD 的边BC 上任取一点M ,过点C 作CN ∠DM 交AB 于N ,设正方形对角线交点为O ,试确定OM 与ON 之间的关系,并说明理由.43.如图19-16,等腰梯形ABCD 中,E 为CD 的中点,EF ∠AB 于F ,如果AB =6,EF =5,AE B CF O N M D图19-13 A EB DC F1图19-142O图19-15 A BN M C D O AD求梯形ABCD 的面积.44.如图19-17,有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分可看成半径为1.5米的圆形(如左下图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套或四套的两种方案中选取一种,在右下方 14×20方格纸内画出设计示意图.(提示:∠画出的圆应符合比例要求; ∠为了保证示意图的清晰,请你在有把握后才将设计方案正式画在方格纸上.说明:正确地画出了符合要求的三个圆得5分,正确地画出了符合要求的四个圆得8分.)45.如图19-18, 在正方形ABCD 中, M 为AB 的中点,MN ∠MD ,BN 平分∠CBE 并交MN 于N .试说明:MD =MN .46.如图19-19, 中,DB=CD , 70=∠C ,AE ∠BD 于E .试求DAE ∠的度数.D A B C ME N图19-18图19-17ABCD47.如图19-20, 中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG ,100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.48..工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图19-21∠),使AB=CD,EF=GH ;(2)摆放成如图∠的四边形,则这时窗框的形状是 形,根据的数学道理是: ;(3)将直角尺靠紧窗框的一个角(如图∠),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图∠),说明窗框合格,这时窗框是 形,根据的数学道理是: .(图∠) (图∠) (图∠) (图∠)49.如图19-22,已知平行四边形ABCD ,AE 平分∠DAB 交DC 于E ,BF 平分∠ABC 交DC于F ,DC =6c m ,AD =2c m ,求DE 、EF 、FC 的长.图19-19图19-20图19-21ABCD图19-2250.如图19-23,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE =15°,试求∠COE的度数。
新课标人教版初中数学八年级下册第十九章19.2特殊的平行四边形--正方形的判定-精品课件
练习1:判断 (1)四个角都相等的四边形是正方形 (2)四条边都相等的四边形是正方形 (3)对角线相等的菱形正方形 (4)对角线互相垂直的矩形是正方形 (5)对角线垂直且相等的四边形是正方形 (6)四边相等,有一角是直角的四边形是 正方形
例2 已知:在正方形ABCD中,A′、B ′、C ′、 D ′分别从顶点A、B、C、D沿AB、BC、CD、 DA方向同时以同样速度向B、C、D、A移动。
D
M
A
E
F
C
N
B
练习2(2019年山东省济南市中考试题)如图,是 一块在电脑屏幕上出现的矩形色块图,由5种颜色 不同的正方形组成。设中间最小的一个正方形边 长为1,则这个矩形的面积是
练习4 (2019年陕西省中考题)如图,在矩形 ABCD中,点E、F分别在AB、CD上,BF平行 于DE。若AD=12cm,AB=7cm,且AE:EB=5: 2,求阴影部分的面积。
例题3:已知正方形ABCD中,Q在CD上,且 DQ=QC,P在BC上,AP=CD+CP; 求证:AQ 平分∠DAP.
证明:延长AQ交BC延长线与E,
∵四边形ABCD是正方形, ∴AD=CD,AD∥CD;
A
D
∴∠D=∠QCE,∠DAQ=∠E, 又∵DQ=CQ,
Q
∴⊿ADQ≌⊿ECQ (AAS).
∴∴ACDD==CCEE,,又∴AADP==CCDD,+CP=CE+CP=EPB.
①AE与BF相等吗?为什么?
②AE与BF是否垂直?说明你的理由。
A
D
F G
BE
C
练习7:如图,已知正方形ABCD中,
E、F分别为BC和DC上的点,且
沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)
密学校 班级姓名 学号密 封 线 内 不 得 答 题沪科版8年级数学(下)第19章《四边形》单元测试卷满分:150分,一、单选题(共10题;共40分)1.下列给出的条件中,能识别一个四边形是菱形的是( )A. 有一组对边平行且相等,有一个角是直角B. 两组对边分别相等,且有一组邻角相等C. 有一组对边平行,另一组对边相等,且对角线互相垂直D. 有一组对边平行且相等,且有一条对角线平分一个内角2.下列条件不能判定四边形ABCD 为平行四边形的是( )A. AB=CD,AD=BC B. AB ∥CD ,AB=CD C. AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC 3.如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件中不一定能判定这个四边形是平行四边形的是( )A. AB ∥DC ,AD=BCB. AD ∥BC ,AB ∥DCC. AB=DC ,AD=BCD. OA=OC ,OB=OD 4.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =120°,AD =2,点E 是BC 的中点,连结OE ,则OE 的长是( )A.B. 2C. 2D. 45.已知一个多边形的内角和是900°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形 6.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ∠A=∠C ,∠B=∠DB. AB ∥CD ,AB=CD C. AB ∥CD ,AD ∥BC D. AB=CD ,AD ∥BC 7.菱形ABCD 中,已知AC=6,BD=8,则此菱形的周长为( )A. 5B. 10C. 20D. 408.如图,过平行四边形ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的过平行四边形AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 不能确定 9.下列图中不是凸多边形的是( )A. B. C. D.10.一个多边形的内角和与外角和为540°,则它是( )边形。
初中数学四边形专题训练50题含参考答案
初中数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的边数是( )A .4B .5C .6D .7 2.如图,用一根绳子检查一平行四边形书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对角线AC ,BD 就可以判断,其推理依据是( )A .矩形的对角线相等B .矩形的四个角是直角C .对角线相等的四边形是矩形D .对角线相等的平行四边形是矩形3.在Rt ABC 中,90,30,4,C A BC D E ∠=︒∠=︒=、分别为AC AB 、边上的中点,连接DE 到F ,使得2EF ED =,连接BF ,则BF 长为( )A .2B .C .4D .4.一个多边形的内角和是外角和的5倍,这个多边形边数为( ) A .14 B .12 C .10 D .8 5.在平面直角坐标系中,矩形ABCD 的位置如图所示,其中(1,1)B --,点A 在第二象限,//AB y 轴,3,4AB BC ==,则顶点D 的坐标为( )A.(3,2)B.(2,2)C.(3,3)D.(2,3)6.下列选项中,能判定四边形ABCD是平行四边形的是()A.AB//CD,AD=BC B.∠A=∠D,∠B=∠CC.AB//CD,∠A+∠B=180°D.∠A=∠C,∠B+∠D=180°7.下列命题正确的是()A.同一边上两个角相等的梯形是等腰梯形B.一组对边平行,一组对边相等的四边形是平行四边形C.如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形D.对角线互相垂直的四边形面积等于对角线乘积的一半8.下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直9.如图,已知点D、E分别是△ABC的边AB、CB的中点,若AB=8,CE=6,AC=10,则△BDE的周长为()A.12B.15C.19D.2410.一个正多边形的每个外角都等于36°,那么它是()A.正五边形B.正六边形C.正八边形D.正十边形11.如图,将一边长AB为4的矩形纸片折叠,使点D与点B重合,折痕为EF,若EF=)A .32B .28C .30D .36 12.将如图甲所示的长方形沿着虚线剪开得到两个全等三角形,现拼成如图乙所示的图形,取BC 的中点O ,连接OA ,OD ,AD ,若22.5ACB ∠=︒,4BC =,则AOD △的周长是( )A .4B .C .4D .4+13.如图,ABD △是等边三角形,CBD △是等腰三角形,且BC DC =,点E 是边AD 上的一点,满足//CE AB ,如果8AB =,6CE =,那么BC 的长是( )A .6B .CD .14.如图,在矩形ABCD 中,3AB =,6BC =,点O 为对角线AC 和BD 的交点,延长BA 至E ,使AE AB =,以AE 为边向右侧作矩形AEFG ,点G 在AD 上,若4AG =,过点O 的一条直线平分该组合图形的面积,并分别交EF 、BC 于点P 、Q ,则2PQ 的值为( )A .39B .40C .41D .42 15.凸n 边形恰好只有三个内角是钝角,这样的多边形边数n 的最大值是( ) A .7 B .6 C .5 D .4 16.如图,点E 为菱形ABCD 边上的一个动点,并沿A →B →C →D 的路径移动,设点E 经过的路径长为x ,∠ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .17.如图,AB CD =,AD BC =,4=AD ,6BE =,DCE △的面积为3,则四边形ABCD 的面积为( )A .10B .12C .15D .2018.如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( )A .817B .715C .1517D .815 19.如图,矩形ABCD 中,2AB =,4BC =.点E ,G 分别在边BC ,AD 上,点F ,H 在对角线AC 上.若四边形EFGH 是菱形,则AG 的长是( )A .2BC .52D 20.如图,矩形ABCD 中,6,8AB BC ==.点E 、F 分别为边BC 、AD 上一点,连接EF ,将矩形ABCD 沿着EF 折叠,使得点A 落到边CD 上的点A '处,且2DA A C '=',则折痕EF 的长度为( )A .B .C D二、填空题21.▱ABCD 中,AC 、BD 交于点O ,已知6AB =,8AC =,10BD =,则DOC 的周长为______.22.如图,平行四边形OABC 的边OA 在x 轴上,顶点C 在反比例函数y =k x的图象上,BC 与y 轴相交于点D ,且D 为BC 的中点,若平行四边形OABC 的面积为6,则k =_____.23.四边形具有不稳定性.如图,矩形ABCD 按箭头方向变形成平行四边形A B C D '''',当变形后图形面积是原图形面积的一半时,则A '∠=________.24.如图,ABCD 的对角线交于点O .点M ,N ,P ,Q 分别是ABCD 四条边上不重合的点.下列条件能判定四边形MNPQ 是平行四边形的有_____(填序号). ∠,AQ CN AM CP ==;∠,MP NQ 均经过点O :∠NQ 经过点O ,AQ CN =.25.如图,DE 为ABC ∆的中位线,点F 在DE 上,且AFC ∠为直角,若6AC cm =,8BC cm =,则DF 的长为__________cm .26.在ABCD 中,3AD =,2AB =,则ABCD 的周长是______.27.如图,在▱ABCD 中,对角线 AC 、BD 相交于 O ,E 为 DC 边的中点,如果▱ABCD 的周长为 24, 且12AB BC =,则 OE 的长为_______.28.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段,当图中存在30角时,AE 的长为__________厘米.29.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,则BE 的长为________.30.各角都相等的十五边形的每个内角的度数是_____度.31.如图,在Rt ABC 中,90ACB ∠=︒,以斜边AB 为边向下作正方形ADEB ,过点E 作EF BC ∥交AC 于点F ,过点C 作CG BE ∥交EF 于点G ,连接DG ,若3AF =,15DE =,则四边形CGEB 的面积为______.32.如图,矩形ABCD的两条对角线相交于点O,CD=A为圆心,AD长为半径画弧,此弧恰好经过点O,并与AB交于点E,则图中阴影部分的面积为_____.33.如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.34.在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B,在AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,则此正方形落在x轴正半轴的顶点坐标为_____.35.如图,在矩形ABCD中,点E在BC上,连接AE、DE,若2==,AD DE∠=︒,则CE的长为______________.BAE15AE=,四边形ABCD是平行四边形,且顶点A、B、36.如图,在半圆O中,直径10C在半圆上,点D在直径AE上,连接CE,若8AD=,则CE长为________.37.如图,正方形ABCD内接于圆O,点E为BC上一点,连接BE,若15∠=,CBE5BE =,则正方形ABCD 的边长为________,BE 的长为________.38.如图,ABCD 的顶点A 、B 的坐标分别是()1,0-、()0,2-,顶点C 、D 均在函数(0,0)k y k x x =>>的图象上,AD 交y 轴于点E ,若612ABE ABCD S S ==四边形,则k 的值为_____________.39.如图,将边长为4的正方形ABCD 纸片沿EF 折叠,点C 落在AB 边上的点G 处,点D 与点H 重合, CG 与EF 交于点P ,取GH 的中点Q ,连接PQ ,则GPQ 的周长最小值是__________.40.在ABC 中,已知45ABC ∠=,BD AC ⊥于D ,2CD =,3AD =,则BD 的长为________.三、解答题41.如图,二次函数2y x bx c =-++的图像经过()0A 1,,()03B -,两点.(1)求这个抛物线的解析式及顶点坐标;(2)在抛物线的对称轴上是否存在一点P ,使得O 、B 、C 、P 四点为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.42.如图,点A 在双曲线y=(x >0)上,点B 在双曲线y=﹣(x <0)上,且AB 平行于x 轴,BC∠AO 交x 轴于点C ,交双曲线y=﹣(x <0)于点D ,连接AD . (1)设点A 的纵坐标为n ,用n 表示AB 的长为_________;(2)当OC=3时,求点D 的坐标.43.已知:如图,四边形DEBF 是平行四边形,且AE CF =.求证:四边形ABCD 是平行四边形.44.已知:点D 是ABC ∆的边BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,且BE CF =.(1)如图1,求证:AE AF =;(2)如图2,若90BAC ︒∠=,连接AD 交EF 于M ,连接BM 、CM ,在不添加任何辅助线的情况下,直接写出图中所有与AEF ∆面积相等的等腰三角形.45.已知:如图,已知∠O 的半径为1,菱形ABCD 的三个顶点A 、B 、D 在∠O 上,且CD 与∠O 相切.(1)求证:BC 与∠O 相切;(2)求阴影部分面积.46.在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.【动手操作】某数学小组对图1的矩形纸片ABCD 进行如下折叠操作:第一步:如图2,把矩形纸片ABCD 对折,使AD 与BC 重合,得到折痕MN ,然后把纸片展开;第二步:如图3,将图2中的矩形纸片沿过点B 的直线折叠,使得点A 落在MN 上的点A '处,折痕与AD 交于点E ,然后展开纸片,连接AA ',BA ',EA .【问题解决】(1)观察猜想:A BC '∠=______度(2)请判断图3中ABA '△的形状,并说明理由;(3)如图4,折痕BE 与MN 交于点F ,BA '的延长线交直线CD 于点P ,若1MF =,7BC =,请求出PD 的长.47.如图,在矩形ABCD 中,E 是对角线AC 上一点(不与A 、C 重合),过点E 作EF //CD ,且EF =DC ,连接DE 、BF 、CF .(1)如图1,若AE=AB,求证:四边形ABFE是菱形.DE∠AC时,求线段BF的长.(2)如图2,若AB=2,BC48.已知:ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点.(1)如图∠,求证:DF=BE;(2)如图∠,连接DE、BF,求证:四边形DEBF是平行四边形.49.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP∠AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP= 度;(2)求证:NM=NP;(3)当∠NPC为等腰三角形时,求∠B的度数.参考答案:1.B【分析】根据n 边形从一个顶点出发可引出()3n -条对角线,得出32n -=,求出n 即可.【详解】解:设这个多边形的边数是n ,由题意得32n -=,解得5n =.故选:B .【点睛】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n 边形从一个顶点出发可引出()3n -条对角线是解题的关键.2.D【分析】根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【详解】解:这种做法的依据是对角线相等的平行四边形为矩形,故选D .【点睛】本题主要考查对矩形的性质和判定的理解和掌握,能熟练地运用矩形的性质解决实际问题是解此题的关键.3.C【分析】根据直角三角形的性质求出AB ,进而求出AE 、EB ,根据三角形中位线定理得到DE ∠BC ,得到∠AED =∠AED =60°,根据等边三角形的判定定理和性质定理解答即可.【详解】解:在Rt ∠ABC 中,∠C =90°,∠A =30°,BC =4,∠AB =2BC =8,∠ABC =60°,∠E 为AB 边上的中点,∠AE =EB =4,∠D 、E 分别为A C 、AB 边上的中点,∠DE ∠BC ,∠∠AED =∠AED =60°,∠∠BEF =∠ABC =60°,在Rt ∠AED 中,∠A =30°,∠AE =2DE ,∠EF =2DE ,∠AE =EF ,∠∠BEF 为等边三角形,∠BF =BE =4,故选:C .【点睛】本题考查的是三角形中位线定理、等边三角形的判定和性质、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 4.B【分析】设这个多边形有n 条边,根据内角和是它的外角和的5倍,列出方程,然后解方程即可.【详解】解:设这个多边形有n 条边.由题意得:(2)1803605n -⨯︒=︒⨯,解得n =12.故这个多边形的边数是12.故选B【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握多边形的内角和公式为:2180()n -⨯︒,外角和为360°.5.A【分析】由矩形的性质可得3AB CD ==,4CB AD ==,////AD BC x 轴,////AB CD y 轴,则可求点D 坐标. 【详解】解:四边形ABCD 是矩形3AB CD ∴==,4CB AD ==,//AD BC ,//AB CD ,且//AB y 轴,////AD BC x ∴轴,////AB CD y 轴,(1,1)B --,3AB =,4BC =,∴点C 横坐标为3,点A 纵坐标为2,∴点D 坐标为(3,2),故选:A .【点睛】本题考查了矩形的性质,坐标与图形性质,熟练运用矩形的性质是本题的关键. 6.C【分析】平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定定理逐个分析即可解答.【详解】解:A、AB//CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;B、∠A=∠D,∠B=∠C不能判定四边形ABCD是平行四边形,故此选项错误;C、因为∠A+∠B=180°,所以AD//BC,又因为AB//CD,所以四边形ABCD是平行四边形,故此选项正确;D、∠A=∠C,∠B+∠D=180°不能判定四边形ABCD是平行四边形,故此选项错误;故选C.【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.7.D【详解】试题分析:A、同一底上两个角相等的梯形可能是等腰梯形也可能是直角梯形,故A选项错误;B、一组对边平行且相等的四边形不一定是平行四边形,故B选项错误;C、如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形对角线相等且互相垂直,不是任意的四边形,故C选项错误;D、对角线互相垂直的四边形面积等于对角线乘积的一半,故D选项正确.故选D.考点:1.等腰梯形的判定;2.平行四边形的判定;3.正方形的判定.8.D【详解】试题分析:根据特殊四边形的性质逐一作出判断:A .梯形的对角线不一定相等,命题错误;B.当菱形满足一个角是直角,即为正方形时,菱形的对角线相等,命题错误;C.当矩形满足一组邻边相等,即为正方形时,矩形的对角线互相垂直,命题错误;D.当平行四边形满足一组邻边相等,即为菱形时,平行四边形的对角线可以互相垂直,命题正确.故选D.考点:特殊四边形的性质.9.B【分析】根据三角形中位线定理得到DE=12AC=5,根据中点定义可得BE=CE=6,BD=12AB=4,再根据三角形的周长公式得到BD+BE+DE,计算即可.【详解】解:∠点D、E分别是△ABC的边AB、CB的中点,∠DE=12AC=5,BE=CE=6,BD=12AB=4,∠△BDE的周长=BD+BE+DE=4+6+5=15,故选:B.【点睛】本题考查三角形中位线性质,熟练掌握三角形中位线性质是解题的关键.10.D【详解】试题分析:正多边形的边数=外角和÷每个外角的度数.考点:多边形的外角11.A【分析】连接BD交EF于O,由折叠的性质可推出BD∠EF,BO=DO,然后证明∠EDO∠∠FBO,得到OE=OF,设BC=x,利用勾股定理求BO,再根据∠BOF∠∠BCD,列出比例式求出x,即可求矩形面积.【详解】解:连接BD交EF于O,如图所示:∠折叠纸片使点D与点B重合,折痕为EF,∠BD∠EF,BO=DO,∠四边形ABCD是矩形,∠AD∠BC∠∠EDO=∠FBO在∠EDO和∠FBO中,∠∠EDO=∠FBO,DO=BO,∠EOD=∠FOB=90°∠∠EDO∠∠FBO(ASA)∠OE =OF =12EF ∠四边形ABCD 是矩形,∠AB =CD =4,∠BCD =90°,设BC =x ,BD∠BO , ∠∠BOF =∠C =90°,∠CBD =∠OBF ,∠∠BOF ∠∠BCD , ∠OB BC =OF CD,即:2x 解得:x =8,∠BC =8,∠S 矩形ABCD =AB •BC =4×8=32,故选:A .【点睛】本题考查矩形的折叠问题,熟练掌握折叠的性质,全等三角形的判定,以及相似三角形的判定与性质是解题的关键.12.D【分析】根据直角三角形斜边的中线等于斜边的一半可得AOC 和BOD 均为等腰三角形,由22.5ACB ∠=︒,可得:45AOB DOC ∠=∠=︒,证得AOD △为等腰直角三角形,根据勾股定理求得AD =【详解】解:由题意可知ABC 与DBC △全等,且都为直角三角形,∠点O 是BC 的中点, ∠122OA OD BC BO CO =====, ∠AOC 和BOD 均为等腰三角形,∠22.5ACB ∠=︒,∠22.5OAC ∠=︒,∠45AOB OAC ACB ∠=∠+∠=︒,同理可得:45DOC ∠=︒,∠18090AOD AOB COD ∠=︒-∠-∠=︒,在Rt AOD 中,AD∠AOD △的周长是224AD OA OD ++=+=+故选:D .【点睛】本题考查了矩形的性质,全等三角形的性质,直角三角形斜边的中线,勾股定理等知识,根据题意证出AOD △为等腰直角三角形是解题的关键.13.B【分析】连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,先确定AC 为对称轴,得到∠BAC =∠DAC ,∠ACB =∠ACD ,由CE∥AB ,可得∠ECA =∠BAC =∠EAC ,得等腰三角形AE =CE =6,求出AF =AE cos60°=3,EF =AE sin60°=EFGC 为矩形,求出GB = AF +FG -AB =1,在Rt △BCG 中,由勾股定理BC【详解】解:连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,∠△ABC 为等边三角形,△BCD 为等腰三角形,AC 为对称轴,∠∠BAC =∠DAC ,∠ACB =∠ACD ,∠CE∥AB ,∠∠ECA =∠BAC =∠EAC ,∠AE =CE =6,∠AF =AE cos60°=61=32⨯,∠EF =AE sin60°=6 ∠CE∥AB ,EF ∠AB , CG ∠AB ,∠FE ∠EC ,CG ∠EC ,∠∠EFG =∠FEC =∠CGF =90°∠四边形EFGC 为矩形,∠EF =CG CE =FG =6,∠GB = AF +FG -AB =3+6-8=1,在Rt ∠BCG 中,由勾股定理BC =故选择:B .【点睛】本题考查等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理,掌握等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理是解题关键.14.B【分析】根据题意可得PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,根据三角形中位线定理可得133,22ON BC AN ===,∠ANO =∠ABC =90°,32,2NH AM ==,∠AMH =90°,再由勾股定理可得OH 的长,再证明∠ASO ∠∠CQO ,可得SO =OQ ,即可求解.【详解】解:∠过点O 的一条直线平分该组合图形的面积,∠PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,∠四边形ABCD 是矩形,∠AO =CO ,又∠点N 是AB 的中点,∠133,22ON BC AN ===,ON ∠BC , ∠∠ANO =∠ABC =90°,同理:32,2NH AM ==,∠AMH =90°,∠HT∠NO,∠四边形MHTN为矩形,∠MH=NT=2,MT=MN=3,∠TO=1,∠HO=∠AD∠BC,∠∠DAC=∠BCA,∠ASO=∠CQO,在∠ASO和∠CQO中,∠DAC ACBASO CQOAO CO∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ASO∠∠CQO(AAS),∠SO=OQ,同理PH=SH,∠2PQ HO==∠240PQ=.故选:B【点睛】本题考查了矩形的性质,三角形中位线定理,全等三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是本题的关键.15.B【分析】由题意知在n边形的外角中恰好有3个锐角,则其余(n-3)个外角是直角或钝角,而n个外角中最多只能有4个直角或3个钝角,而4个直角已不可能,所以n-3≤3,由此即得答案.【详解】解:因为n 边形恰好只有三个内角是钝角,所以在n 边形的外角中恰好有3个锐角,所以其余(n -3)个外角是直角或钝角,又由于n 边形的外角和是360°,其n 个外角中最多只能有4个直角或3个钝角,而4个直角显然已不可能,所以n -3≤3,解得n ≤6,即n 的最大值为6.故选B.【点睛】本题考查了多边形的内角、外角的概念与外角和,从多边形的外角的角度入手分析是解题的关键.16.D【分析】分三段来考虑点E 沿A→B 运动,∠ADE 的面积逐渐变大;点E 沿B→C 移动,∠ADE 的面积不变;点E 沿C→D 的路径移动,∠ADE 的面积逐渐减小,据此选择即可.【详解】解:点E 沿A →B 运动,∠ADE 的面积逐渐变大,设菱形的边长为a ,∠A =β, ∠AE 边上的高为AB sinβ=a •sinβ,∠y =12•a •sinβ,点E 沿B →C 移动,∠ADE 的面积不变;点E 沿C →D 的路径移动,y =12(3a ﹣x )•sinβ,∠ADE 的面积逐渐减小.故选:D .【点睛】本题考查了动点问题的函数图像,分析判断几何动点问题的函数图象的题目一般有两种类型:(1)观察型(函数的图象有明显的增减性差异):根据题目描述,只需确定函数值在每段函数图象上随自变量的增减情况或变化的快慢即可得解.(2)计算型:先根据自变量的取值范围对函数进行分段,再求出每段函数的解析式,最后由每段函数的解析式确定每段函数的图象.17.B【分析】根据两组对边分别相等的四边形是平行四边形证明四边形ABCD 是平行四边形,再根据DCE △的面积为3计算出DH ,最后根据平行四边形的面积公式即可得到答案.【详解】解:过点D 作DH CE ⊥,垂足为H ,∠AB CD =,AD BC =,∠四边形ABCD 是平行四边形,∠2CE BE BC BE AD =-=-=, ∠112322DCE S CE DH DH =⨯=⨯⨯=, ∠3DH =,∠4312ABCD S BC DH =⨯=⨯=,故选:B .【点睛】本题考查平行四边形的判断,解题的关键是熟知两组对边分别相等的四边形是平行四边形.18.C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∠四边形ABCD 为矩形,∠CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∠在∠AFD 和∠EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∠AFD EFB ∆∆≌(AAS ),∠AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∠315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.【分析】连接EG 交AC 于O ,根据菱形和矩形的性质证明∠CEO ∠∠AGO ,推出AO=CO ,由勾股定理求出AC 得到AO ,再证明∠AOG ∠∠ADC ,得到AG AO AC AD=,代入数值即可求出AG .【详解】解:连接EG 交AC 于O ,∠四边形EFGH 是菱形,∠EG ∠FH ,OE=OG ,∠四边形ABCD 是矩形,∠∠B =∠D =90°,AD BC ∥,∠∠ACB =∠CAD ,∠∠CEO ∠∠AGO ,∠AO=CO ,∠AC ==∠12AO AC == ∠∠AOG =∠D =90°,∠OAG =∠CAD ,∠∠AOG ∠∠ADC , ∠AG AO AC AD=,=, ∠AG =52故选:C .【点睛】此题考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定及性质,相似三角形的判定及性质,是图形类的综合题,熟练掌握各知识点是解题的关键.【分析】由2DA A C '=',6DC =,可求出DA ',A C '的长,再根据折叠和勾股定理可求出DF 和FA ',依据三角形相似可求出NC 、NA ',进而求出MF ,最后根据勾股定理求出EF .【详解】解:如图,过点E 作EM AD ⊥,垂足为M ,2DA A C ''=,6DC =, 243DA DC '==,123A C DC '==, 由折叠得,AF FA =',6AB A B =''=,设DF x =,则8FA FA x ='=-,在Rt DFA ∆'中,由勾股定理得,2224(8)x x +=-,解得3x =,即3DF =,835FA FA ∴='=-=,1809090NAC DA F ∠'+∠'=︒-︒=︒,90NAC A NC ∠'+∠'=︒,DA F A NC ∴∠'=∠',90C D ∴∠=∠=︒,∴∠A NC '∽∠FA D ',∴A C NC A N FD A D FA ''=='',即2345NC A N '==, 解得83NC =,103A N '=, 108633B N A B A N NC ∴'=''-'=-==, ∴∠()A CN ENB AAS '≅∆',103EN A N ∴='=, 108633EC EN NC MD ∴=+=+==, 633MF ∴=-=,在Rt EFM ∆中,EF故选:A .【点睛】本题考查矩形的性质、折叠轴对称、相似三角形、全等三角形以及勾股定理等知识,掌握折叠的性质和直角三角形的边角关系是得出答案的前提,建立图形中线段之间的关系是解决问题的关键.21.15【分析】根据平行四边形的对角线互相平分,求得OC 与OD 的长,继而可求得答案. 【详解】解:四边形ABCD 是平行四边形,142OC AC ∴==,152OD BD ==,6CD AB ==, OCD ∴△的周长为:64515CD OC OD ++=++=.故答案为:15.【点睛】本题重点考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:∠平行四边形两组对边分别平行;∠平行四边形的两组对边分别相等;∠平行四边形的两组对角分别相等;∠平行四边形的对角线互相平分.22.3-【分析】由D 为BC 的中点,平行四边形OABC 的面积为6,可得∠OCD 的面积为平行四边形OABC 的面积的14,再根据反比例函数系数k 的几何意义即可求出答案. 【详解】解:∠D 为BC 的中点,平行四边形OABC 的面积为6,∠∠OCD 的面积为6×14=1.5, ∠12|k |=1.5, ∠k <0,∠3k =-.故答案为:3-.【点睛】本题考查了反比例函数k 的几何意义,平行四边形的性质,求得∠OCD 的面积是解题的关键.23.30︒【分析】根据矩形和平行四边形的面积公式可知,平行四边形A 'B 'C 'D '的底边A D ''边上的高等于A B ''的一半,据此可得∠A '为30°.【详解】解:如图,过点B '作B E A D '⊥''于点E .设矩形ABCD 的边AD 长为a ,AB 长为b ,B E '长为c ,则ABCD S ab =矩形,A B C D Sac ''''=. ∠12A B C D ABCDS S ''''=矩形, ∠12ac ab =, ∠12c b =, ∠sin A '12c b ==, ∠30A ∠'=︒.【点睛】本题主要考查了四边形的不稳定性、矩形与平行四边形的面积公式、解直角三角形等相关知识,熟记特殊角的三角函数值是解答本题的关键.24.∠∠##∠∠【分析】∠根据平行四边形的性质结合已知条件,证明AMQ CPN ≌,DQP BNM ≌,可得MQ NP =,MN PQ =,根据两组对边相等的四边形是平行四边形,即可判断∠,∠根据平行四边形是中心对称图形,即可判断∠,根据已知条件不能判断∠.【详解】解:∠四边形ABCD 是平行四边形A C ∴∠=∠,B D ∠=∠,,AD BC AB CD == ∠,AQ CN AM CP ==∠AMQ CPN ≌∠MQ NP =,AQ CN AM CP ==∴,DQ BN DP BM ==又B D ∠=∠DQP BNM ∴≌MN PQ ∴=∴四边形MNPQ 是平行四边形故∠正确 ∠四边形ABCD 的对角线交于点O ,,MP NQ 均经过点O :,OQ ON OM OP ∴==∴四边形MNPQ 是平行四边形故∠正确∠NQ 经过点O ,AQ CN =,,M P 的位置未知,不能判断四边形MNPQ 是平行四边形 故∠不正确故答案为:∠∠【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.25.1【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出EF ,结合图形计算即可.【详解】∠DE 为△ABC 的中位线, ∠DE=12BC=4(cm), ∠∠AFC 为直角,E 为AC 的中点, ∠FE=12AC=3(cm),∠DF=DE−FE=1(cm),故答案为1cm.【点睛】此题考查三角形中位线定理,解题关键在于掌握其性质定义.26.10【分析】平行四边形的两组对边相等,以此便可求解.【详解】解:如图:平行四边形ABCD 的周长为:2()2(32)10AD AB +=⨯+=.故答案是:10.【点睛】本题考查平行四边形两组对边相等的性质,解题的关键是掌握其性质. 27.4【分析】直接利用三角形中位线的性质,证明EO =AB ,然后根据平行四边形的性质列方程得出答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =DC ,BO =DO ,又∠E 为DC 边的中点,∠EO 是△DBC 的中位线,∠EO =12BC , ∠EO =AB∠▱ABCD 的周长为24,∠设AB =x ,则BC =2x ,则2(x +2x )=24,解得:x =4,故EO =4.故答案为4.【点睛】此题主要考查了平行四边形的性质、三角形中位线的性质等,正确得出EO 是△DBC 的中位线是解题关键.28 8-【分析】分∠ABE=30°或∠AEB=30°或∠ABA′=30°时三种情况,利用锐角三角函数进行求解即可.【详解】解:当∠ABE=30°时,∠AB=4cm ,∠A=90°,; 当∠AEB=30°时,则∠ABE=60°,∠AB=4cm ,∠A=90°,∠AE=AB·tan60°=;当∠ABE=15°时,∠ABA′=30°,延长BA′交AD 于F ,如下图所示,设AE=x ,则EA′=x ,sin 60x EF ==︒∠x +=∠8x =-∠8AE =-cm .8- 【点睛】本题考查了矩形与折叠,以及分类讨论的数学思想,分类讨论是解答本题的关键.29.2.5【分析】由折叠的性质可得CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,在Rt △AEG 中利用勾股定理求出x 的值.【详解】解:由题意,点C 与点H ,点B 与点G 分别关于直线EF 对称,∠CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,∠四边形ABCD 是正方形,∠∠A=90°,∠AE 2+AG 2=EG 2,∠B 落在边AD 的中点G 处,∠AG=2,∠(4-x )2+22=x 2,解得:x=2.5,∠BE=2.5.故答案为:2.5.【点睛】本题考查了折叠问题与勾股定理以及正方形的性质,掌握翻折的性质是解题的关键.30.156【分析】根据多边形的内角和公式即可得出结果.【详解】解:∠十五边形的内角和=(15﹣2)•180°=2340°,又∠十五边形的每个内角都相等,∠每个内角的度数=2340°÷15=156°.故答案为156.【点睛】本题考查了多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n ﹣2)•180°.31.81【分析】先证明四边形CGBE 是平行四边形, 然后证明CGF BAC ≌,再解直角三角形即可求得BH 的长度,进而根据BE BH ⨯即可求得答案.【详解】如图,设,AB CG 交于点H ,四边形ADEB 是正方形,15AB BE ∴==,EF BC ∥,CG BE ∥,∴四边形CGBE 是平行四边形,15CG BE AB ∴===,BE AB ⊥,CG AB ∴⊥,90ABC HCB ∴∠+∠=︒,90ACB ∠=︒,∴90ABC CAB ∠+∠=︒,HCB CAB ∴∠=∠,EF BC ∥,HCB CGF ∴∠=∠,90GFC ACB ∠=∠=︒,CGF BAC ∴∠=∠,∴CGF BAC ≌,CB FC ∴=,设CB x =,则3AC AF FC x =+=+,Rt ABC 中,222AB AC BC =+,即()222153x x =++,解得9x =或12x =-(舍), 9312,9AC BC ∴=+==,93cos 155BC CBA AB ∴∠===, 327cos 955HB BC CBA ∴=⋅∠=⨯=, ∴平行四边形CGEB 的面积为BE BH ⨯2715815BE BH =⨯=⨯=, 故答案为:81.【点睛】本题考查了正方形的性质,平行四边形的判定,全等三角形的性质与判定,勾股定理,解直角三角形等知识,熟练掌握知识间的联系,是解答本题的关键.32.43π 【分析】根据题意得到ADO ∆是等边三角形,从而得到角度,再结合特殊角的直角三角形三边关系得到4=AD ,8AC =,分别求出ACD S ∆=83AOD S π=扇形,43AOE S π=扇形,最后根据图形得到=ACD AOD AOE S S S S ∆-+阴影扇形扇形,代值求解即可. 【详解】解:矩形ABCD 的两条对角线相交于点O ,OA OB OC OD ∴===,以点A 为圆心,AD 长为半径画弧,此弧恰好经过点O ,AO AD OD ∴==,即ADO ∆是等边三角形,60DAO ∴∠=︒,30OAE ∠=︒,在Rt ACD ∆中,30ACD OAE ∠=∠=︒,90ADC ∠=︒,CD =4=AD ,8AC =, 11422ACD S AD CD ∆∴==⨯⨯ 260843603AOD S ππ︒=⨯⨯=︒扇形, 230443603AOE S ππ︒=⨯⨯=︒扇形, 844=333ACD AOD AOE S S S S πππ∆∴-+=+=阴影扇形扇形,故答案为:43π 【点睛】本题考查阴影图形面积,对于不规则图形面积求解,我们要根据题中图形转化为规则图形面积间接表示出来,在求解此题过程中涉及到矩形的性质、等边三角形的判定与性质、特殊角度的直角三角形三边关系、三角形面积公式和扇形面积公式,将阴影部分面积转化为常见图形面积来间接求解是解决问题的关键.33.2【分析】根据平行四边形性质求出AD∠BC ,由平行线的性质可得∠AEB=∠CBE ,然后由角平分线的定义知∠ABE=∠AEB ,所以∠ABE=∠AEB ,即可得AB=AE ,由此即可求出DE 的长.【详解】∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠AEB=∠CBE .∠BE 平分∠ABC ,∠∠ABE=∠CBE ,∠∠ABE=∠AEB ,∠AB=AE=3,∠DE=AD-AE=5-3=2.故答案是:2.【点睛】本题考查了平行四边形性质、三角形的角平分线的定义,平行线的性质的应用,证得AB=AE 是解题的关键.34.(1.5,0)或(1,0).。
四边形单元测试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载
四边形单元测试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------第十九章四边形单元测试卷一、精心选一选(每小题2分,共20分)1.如图1,在ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中面积相等的平行四边形有()对.A.3B.4C.5D.62.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③一组对边相等,一组对角相等的四边形是平行四边形.其中正确的有().A.0个B.1个C.2个D.3个3.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是().A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∥A=∥CC.AO=BO=CO=DOD.AO=CO,BO=DO,AB=BC4.能判定四边形ABCD是平行四边形的题设是().A. AB∥CD, AD=BCB.∥A=∥B,∥C=∥DC.AB=CD,AD=BCD. AB=AD,CB=CD5.在给定的条件中,能画出平行四边形的是().A.以60cm为一条对角线,20cm、34cm为两邻边B.以6cm、10cm为对角线,8cm为一边C.以20cm、36cm为对角线,22cm为一边D.以6cm为一条对角线,3cm、10cm为两邻边6.正方形具有而菱形不一定具有的性质是().A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直7.下列说法:①对角线互相垂直且相等的四边形是矩形;②对角线互相垂直平分的四边形是菱形;③对角线互相垂直的矩形是正方形;④对角线相等的菱形是正方形;⑤对角线互相垂直且相等的平行四边形是正方形;⑥对角线互相垂直且相等的四边形是正方形.其中错误的有().A.1个B.2个C.3个D.4个8.如果平行四边形四个内角的平分线能围成一个四边形,那么这个四边形是().A.矩形B.正方形C.菱形D.等腰梯形9.如图2,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积().A.B.C. D.10.如图3,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,则PQ的长为()A.12B.13C.14D.15二、耐心填一填(每小题3分,共30分)11.如图4所示,木板两边是线段,把两把曲尺的一边紧靠木板边缘,再看木板另一边上刻度是否相等,就可以判断木板的两个边缘是否平行,其根据是__________________________________________________。
初中数学-专题19 四边形-学案
10、 (2014 年云南省,第 22 题 7 分)如图,在平行四边形 ABCD 中,∠C=60°, M、N 分别是 AD、BC 的中点,BC=2CD. (1)求证:四边形 MNCD 是平行四边形; (2)求证:BD= MN.
这道题并不难,主要考 察相关基础知识哦!
11、(2014•泰州,第 23 题,10 分)如图,BD 是△ABC 的角平分线,点 E, F 分别在 BC、AB 上,且 DE∥AB,EF∥AC. (1)求证:BE=AF;
夯实基础才是高分的 王道呀!
A.( ,3)、(﹣ ,4)
B.( ,3)、(﹣ ,4)
C.( , )、(﹣ ,4)
D.( , )、(﹣ ,4)
∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°, 4、(2014·台湾,第 12 题 3 分)如图,D 为△ABC 内部一点,E、F 两点 分别在 AB、BC 上,且四边形 DEBF 为矩形,直线 CD 交 AB 于 G 点.若 CF =6,BF=9,AG=8,则△ADC 的面积为何?( )
懦弱的人只会裹足丌前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。
(2)若∠ABC=60°,BD=6,求四边形 ADEF 的面积.
考点二 矩形
【趣味导学】
人体黄金矩形 :1.头部轮廓:头部长(颅顶至颏部)与宽(两侧 颧弓突端中间距)2.面部轮廓:眼水平线的面宽为宽,前发际颏底间为 长。 3.鼻部轮廓:鼻翼为宽,鼻根至鼻下点间距为长。 4.唇部轮廓 : 静止状态时,上下唇峰间距为宽,口角间距为长。 5.外耳轮廓:耳屏 至耳轮外缘间距为宽,耳轮上缘至耳垂下缘间距为长。 6.上颌前牙轮 廓:切牙,侧切牙,尖牙最大的远近中径为宽,龈径为长。 7.躯干轮 廓:肩宽与臀宽的平均数为宽,肩峰至臀底间距为长。 8.手部轮廓 : 手指并拢时,掌指关节水平线为宽,腕关节至食指尖间距为长。
(专题精选)初中数学四边形经典测试题及答案解析
(专题精选)初中数学四边形经典测试题及答案解析一、选择题1.在四边形ABCD 中,两对角线交于点O ,若OA =OB =OC =OD ,则这个四边形( ) A .可能不是平行四边形B .一定是菱形C .一定是正方形D .一定是矩形【答案】D【解析】【分析】根据OA=OC, OB=OD ,判断四边形ABCD 是平行四边形.然后根据AC=BD ,判定四边形ABCD 是矩形.【详解】解:这个四边形是矩形,理由如下:∵对角线AC 、BD 交于点O ,OA= OC, OB=OD ,∴四边形ABCD 是平行四边形,又∵OA=OC=OD=OB ,∴AC=BD ,∴四边形ABCD 是矩形.故选D .【点睛】本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.2.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若4AB =,6AC =,则BD 的长为( )A .11B .10C .9D .8 【答案】B【解析】【分析】根据勾股定理先求出BO 的长,再根据平行四边形的性质即可求解.【详解】∵6AC =,∵AB ⊥AC ,∴BO=2234+=5∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.3.如图,在菱形ABCD 中,点E 在边AD 上,30BE ADBCE ⊥∠=︒,.若2AE =,则边BC 的长为( )A 5B 6C 7D .22【答案】B【解析】【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出3,在Rt △ABE 中,由勾股定理得:BE 2+22=3)2,解得:2,即可得出结果. 【详解】∵四边形ABCD 是菱形,∴AD BC BC AB =,∥.∵BE AD ⊥.∴BE BC ⊥.∴30BCE ∠=︒,∴2EC BE =, ∴223AB BC EC BE BE ==-=.在Rt ABE △中,由勾股定理得)22223BE BE +=, 解得2BE =,∴36BC BE ==故选B.【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键.4.正九边形的内角和比外角和多( )A .720︒B .900︒C .1080︒D .1260︒【答案】B【分析】根据多边形的内角和公式求出正九边形的内角和,减去外角和360°即可.【详解】∵正九边形的内角和是(92)1801260-⨯=o o,∴1260360-=o o 900︒,故选:B.【点睛】此题考查多边形的内角和公式、外角和,熟记公式是解题的关键.5.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )A .3B .4C .5D .6【答案】D【解析】【分析】 根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.【详解】∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点,32184EF ∴==>.∴PEF V 是等腰三角形,存在三种情况:①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;②当EF 为腰,F 为顶角顶点时,186,Q∴在BC 上存在一个点P ,使PEF V 是等腰三角形;③当EF 为底,P 为顶角顶点时,点P 一定在EF 的垂直平分线上,∴EF 的垂直平分线与矩形的交点,即为点P ,存在两个点.综上所述,满足题意的点P 的个数是6.故选D .【点睛】本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.6.如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则DGCF=()A.23B.22C.33D.32【答案】B 【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则22 AD AGAC AF==,∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴22 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.7.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=483x -+.故选C .8.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( )A .8B .9C .10D .12【答案】A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数. 解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A .考点:多边形内角与外角.9.如图,四边形ABCD 是菱形,30ACD ∠=︒,2BD =,则AC 的长度为( )A .3B .2C .4D .2【答案】A【解析】【分析】 由菱形的性质,得到AC ⊥BD ,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO ,即可求出AC 的长度.【详解】解,如图,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵2BD =,∴BO=1,在Rt △OBC 中,30BCO ACD ∠=∠=︒,∴BC=2, ∴22213CO =-=; ∴23AC =;故选:A.【点睛】本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC 的长度.10.如图,在矩形ABCD 中,AB m =,6BC =,点E 在边CD 上,且23CE m =.连接BE ,将BCE V 沿BE 折叠,点C 的对应点C '恰好落在边AD 上,则m =( )A .33B .3C 3D .4【答案】A【解析】【分析】设AC′=x ,在直角三角形ABC′和直角三角形DEC′中分别利用勾股定理列出关于x 和m 的关系式,再进行求解,即可得出m 的值.【详解】解:设AC′=x ,∵AB=m ,BC=6,23CE m =, 根据折叠的性质可得:BC′=6,EC′=23CE m =, ∴C ′D=6-x ,DE=13m ,在△ABC ′中,AB 2+AC′2=BC′2,即2226x m +=,在△DEC ′中,C′D 2+DE 2=C′E 2,即()22212633x m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 化简得:()2236x m -=,代入2226x m +=中,得:()222366x x -=-,解得:x=3或x=6,代入2226x m +=,可得:当x=3时,m=33或33-(舍),当x=6时,m=0(舍),故m 的值为33,故选A.【点睛】本题考查了折叠的性质,勾股定理,解一元二次方程,有一定难度,解题的关键是根据折叠的性质运用勾股定理求解.11.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN .若四边形MBND 是菱形,则AM MD等于( )A .35B .23C .38D .45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a ,由四边形BMDN 是菱形知BM=MD ,设AM=b,则BM=MD=2a-b.在Rt △ABM 中,由勾股定理即可求值.试题解析:∵四边形MBND 是菱形,∴MD=MB .∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.12.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点()5,3D在边AB上,以C为中心,把CDB△旋转90︒,则旋转后点D的对应点'D的坐标是( )A.()2,10B.()2,0-C.()2,10或()2,0-D.()10, 2或()2,0-【答案】C【解析】【分析】先根据正方形的性质求出BD、BC的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q四边形OABC是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB△逆时针旋转90︒,此时旋转后点B的对应点B'落在y轴上,旋转后点D的对应点D¢落在第一象限由旋转的性质得:2,5,90B D BD BC BC CBD B'''''====∠=∠=︒10OB OC B C''∴=+=∴点D¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.13.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-= ∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =,3OD =∴2221OA AD OD =+=∴21OC OA ==. 故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.14.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF V ,CDG V ,DAH V 全等,AEH △,BEF V ,CFG △,DGH V 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D .2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG V ,∴CDG V 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ^^,EM GN =,∵正方形ABCD 的边长为4,即4AB CD AD BC ====,∴4MN =,设EM GN x ==,则42EG FH x ==-,∵正方形EFGH 的面积与ABE △面积相等, 即2114(42)22x x ?-,解得:121,4x x ==, ∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=V ABE S , ∵ABE △,BCF V ,CDG V ,DAH V 全等,∴2====V V V V ABE BCF CDG DAH S S S S ,∵正方形ABCD 的面积4416=⨯=,AEH △,BEF V ,CFG △,DGH V 也全等, ∴1(4=V AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=V ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.15.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =V V , ∴18EFCABCD S S =V 四边形, ∴1176824AGH EFC ABCD S S S +=+=V V 四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.16.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .4【答案】A【解析】【分析】 因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形,故④选项正确,故选A .【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.17.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB ,则EFGH 的面积是( )A .6B .8C .9D .12【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF=22AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE=2EF=2×2AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH=2DE=22,∴EFGH的面积为EH2=(22)2=8,故选:B.【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.18.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD 于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.16【答案】D【解析】先证明四边形ABEF 是平行四边形,再证明邻边相等即可得出四边形ABEF 是菱形,得出AE ⊥BF ,OA=OE ,OB=OF=12BF=6,由勾股定理求出OA ,即可得出AE 的长. 【详解】如图所示:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE=∠AEB ,∵∠BAD 的平分线交BC 于点E ,∴∠DAE=∠BAE ,∴∠BAE=∠BEA ,∴AB=BE ,同理可得AB=AF ,∴AF=BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴四边形ABEF 是菱形,∴AE ⊥BF ,OA=OE ,OB=OF=12BF=6, ∴2222=106AB OB --=8,∴AE=2OA=16.故选D .【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF 是菱形是解决问题的关键.19.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连结BF ,交AC 于点M ,连结DE ,BO .若∠BOC =60°,FO =FC ,则下列结论:①AE =CF ;②BF 垂直平分线段OC ;③△EOB ≌△CMB ;④四边形是BFDE 菱形.其中正确结论的个数是( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用ASA定理证明△AOE≌△COF,从而判断①;利用线段垂直平分线的性质的逆定理可得结论②;在△EOB和△CMB中,对应直角边不相等,则两三角形不全等,从而判断③;连接BD,先证得BO=DO, OE=OF,进而证得OB⊥EF,因为BD、EF互相垂直平分,即可证得四边形EBFD是菱形,从而判断④.【详解】解:∵矩形ABCD中,O为AC中点∴∠DCA=∠BAC,OA=OC,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,故①正确∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故②正确;∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,∴BO≠BM,∴△EOB与△CMB不全等;故③错误;连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,且BO=DO由①可知△AOE≌△COF,∴OE=OF∴四边形EBFD是平行四边形由②可知,OB=CB,OF=FC又∵BF=BF∴△OBF≌△OCF∴BD⊥EF∴平行四边形EBFD是菱形,故④正确所以其中正确结论的个数为3个;故选:C.【点睛】本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识.20.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:3605 72,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.。
人教版苏科版初中数学—特殊的平行四边形(单元测试卷)
特殊的平行四边形单元测试卷班级小组姓名成绩(满分120)一、选择题(共10小题,每题3分,共30分)1.如图,矩形ABCD的两条对角线相交于点O,60AD=,则AC的长是()∠=︒,2AODA.2B.4C.D.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.矩形ABCD的对角线AC、BD相交于点O,120∆的周长为()AODAC=,则ABO∠=︒,8A.16B.12C.24D.204.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB BC⊥⊥D.AB BD=B.AC BD=C.AC BD5.如图,将矩形ABCD沿对角线BD折叠,使点C和点C'重合,若2AB=,则C D'的长为()A.1B.2C.3D.46.如图,四边形ABCD为平行四边形,延长AD到E,使DE AD=,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB BE=B.BE DC⊥C.90⊥ADB∠=︒D.CE DE7.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B '处,若2AE =,6DE =,60EFB ∠=︒,则矩形ABCD 的面积是()A.12B.24C.D.8.如图,长方形ABCD 中,M 为CD 中点,今以B 、M 为圆心,分别以BC 长、MC 长为半径画弧,两弧相交于P 点.若70PBC ∠=︒,则MPC ∠的度数为何?()A.20B.35C.40D.559.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若:3:5OE AO =,则AD AB 的值为()A.12B.3C.23D.2210.如图,点E 是矩形ABCD 的边CD 上一点,把ADE ∆沿AE 对折,点D 的对称点F 恰好落在BC 上,已知折痕AE =,且34EC BF FC AB ==,那么该矩形的周长为()A.72cmB.36cm C.20cm D.16cmO二、填空题(共5小题,每题3分,共15分)11.如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB =,BC =,则图中阴影部分的面积为.12.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 边上运动,当ODP ∆是腰长为5的等腰三角形时,点P 的坐标为.13.如图,将矩形ABCD 沿对角线AC 剪开,再把ACD ∆沿CA 方向平移得到△111A C D ,连结1AD 、1BC .若30ACB ∠=︒,2AC =,1CC x =,则下列结论:①△11A AD ≅△1CC B ;②当1x =时,四边形11ABC D 是菱形;③当2x =时,1BDD ∆为等边三角形;其中正确的是(填序号).14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE AC ⊥交AB 于E ,若4BC =,8AB =,则BE 的长为.15.如图,在矩形ABCD中,点E是边CD的中点,将ADE∆沿AE折叠后得到AFE∆,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).三、解答题(共10小题,共75分,)16.(9分)如图,将ABCD的边AB延长至点E,使AB BE=,连接DE,EC,DE交BC于点O.(1)求证:ABD BEC∆≅∆;(2)连接BD,若2BOD A∠=∠,求证:四边形BECD是矩形.17.(9分)如图,在ABC∆中,AB BC=,BD平分ABC∠.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.18.(9分)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且2AB=,求BC的长.=,连接AF,DE交于点O.求19.(9分)如图,在矩形ABCD中,E,F为BC上两点,且BE CF证:∆≅∆;(1)ABF DCE∆是等腰三角形.(2)AOD20.(9分)在矩形ABCD中,点E是BC上一点,AE AD=,DF AE⊥,垂足为F;求证:DF DC=.21.(10分)如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 的中点,连接AF ,CE .(1)求证:BEC DFA ∆≅∆;(2)求证:四边形AECF 是平行四边形.22.(10分)如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N .(1)求证:CM CN =;(2)若CMN ∆的面积与CDN ∆的面积比为3:1,求MN DN的值.23.(10分)如图,在ABCD 中,DE AB ⊥,BF CD ⊥,垂足分别为E ,F .(1)求证:ADE CBF ∆≅∆;(2)求证:四边形BFDE 为矩形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19章 四边形单元测试题
一、选择题(每小题3分,共30分)
1、□ABCD 中,∠A ﹕∠B ﹕∠C ﹕∠D 的值可以是( )
A 、1﹕2﹕3﹕4
B 、3﹕4﹕4﹕3
C 、3﹕3﹕4﹕4
D 、3﹕4﹕3﹕4
2、如果等边三角形的边长是4,那么连接各边中点所成的三角形的周长是( ) A 、2 B 、4 C 、6 D 、8
3、已知平行四边形的一条边长为12,则下列各组数据中能分别作为它的两条对角线的长的是( )
A 、6和10
B 、8和14
C 、10和16
D 、10和40 4、菱形、矩形、正方形都具有的性质是( )
A 、对角线相等
B 、对角线互相垂直
C 、对角线互相平分
D 、对角线平分一组对角 5、若菱形的周长是40,两邻边所夹的锐角为30°,则菱形的面积为( ) A 、20 B 、30 C 、40 D 、50
6、如图1,在等腰梯形ABCD 中,AB ∥,对角线AC 平分∠BAD ,∠B=60°,CD=2㎝,则此梯形的面积为( ) A 、33㎝2 B 、60㎝2 C 、36㎝2 D 、12㎝2
图1 图2 图3
7、从等腰三角形底边上任一点分别作两腰的平行线所形成的平行四边形的周长等于这个等腰三角形的( )
A 、周长
B 、周长的一半
C 、腰长
D 、腰长的两倍
8、如图2,在菱形ABCD 中,B E ⊥AD,B F ⊥CD,点E 、F 是垂足,AE=ED ,则∠EBF 等于( )
A 、75°
B 、60°
C 、50°
D 、45° 9、如图3,在矩形ABCD 中,AD=30,AB=20,若点
E 、
F 三等
分对角线AC ,则△ABE 的面积为( ) A 、60 B 、100 C 、150 D 、200
10、如图4,正方形ABCD 中,∠DAF=25°,AF 交对角线BD
于点E ,那么∠BEC 等于( )
A 、45°
B 、60°
C 、70°
D 、75° 图4
二、填空题:(每小题3分,共27分)
11、若一个多边形的每个外角都等于90°,则这个多边形是 边形,内角和是 ; 12、已知AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加的条件是
(填一个你认为正确的条件即可);
13、依次连接菱形各边中点,所得的四边形是 ;
14、菱形的周长为12㎝,较大的一个内角为120°,那么较短的对角线长为 ㎝; 15、如图5,矩形ABCD 的长为8㎝,宽为6㎝,O 是对称中心,则途中阴影部分的面积
是 ;
图5 图6 图7
16、已知等腰梯形的两底分别是10㎝和20㎝,腰长为89㎝,则此梯形的面积为 ; 17、如图6,在□ABCD 中,DB=DC ,∠C=70°,A E ⊥BD 于点E ,则∠DAE= ; 18、如图7,矩形ABCD 的周长为20㎝,两条对角线相较于点O ,过点O 作E F ⊥AC,分别
交AD 、BC 于点E 、F ,连接CE ,则△CDE 的周长为 ;
19、如图8,在梯形ABCD 中,A B ∥CD ,中位线EF 与对角线AC 、BD 交于M 、N 两点,
若EF=18㎝,MN=8㎝,则AB 的长为 ;
三、解答题:(共43分)
20、如图,D 是AB 上一点,CF ∥AB ,DF 交AC 于点E ,
AE=EC ,求证:四边形ADCF 是平行四边形。
(6分)
D C
B A F E D
C B A A F
E D C B
E D C B A 图8
N
M
F E D C
B
A
D C
A
B O F E A B F E C
D E B C A D F E O ·
A
B C
D
E
F
21、如图,在四边形ABCD 中,A E ⊥BD 于点E ,C F ⊥BD 于点F ,AE=CF, BF=DE.问四
边形ABCD 是否为平行四边形?说明你的理由。
(7分)
22、已知菱形的边长为a ,一边与两条对角线的夹角的差为30°,求菱形的面积及各角的度
数。
(6分)
23、如图,延长正方形ABCD 的边BC 到点E ,使得CE=CA,连接AE 交CD 于点F 。
求∠AFC 的度数。
(8分)
24、如图,在等腰梯形ABCD 中,A D ∥BC,AB=CD ,对角线AC ⊥BD ,AD=4㎝,
BC=10㎝,求梯形ABCD 的面积。
(8分)
25、如图,在正方形ABCD 中,点E 和点F 分别在BC 和CD 上,且∠EAF=45°,
求证:EF=BE+DF 。
(8分)
F E D C B A F E D C B A A D C
B O F
E
D C
B
A。