一次函数函数优质课课件

合集下载

一次函数专题(优秀课件)

一次函数专题(优秀课件)
一次函数专题(优秀课件)
本课件旨在介绍一次函数的概念、性质以及应用。通过丰富的图像和实例, 帮助学生掌握一次函数的基本知识,并运用于实际生活中。
预备知识
数轴及其应用
学习数轴的表示方法以及在实际问题中的应 用。
点、直线、平面与向量的基本概念
掌握点、直线、平面和向量的基本概念和特 征。
直线方程的表示方法及性质
一次函数的变形及 其图像
研究一次函数的变形形式, 探索其对图像的影响。
一次函数的复合与 反函数
介绍一次函数的复合运算和 反函数的概念及计算方法。
课堂练习与评价

练习题与解答
提供一些针对一次函数知识的 练习题和详细解答。
讲解与展示
互动问答与评价
通过教师的讲解和学生的展示, 加深对一次函数的理解。
通过互动问答和评价,激发学 生的思考和参与度。
了解直线方程的不同表示方法及其性质。
线性函数的定义、图像、性质
学习线性函数的定义,绘制其图像并了解其 性质。
一次函数的定义
1 什么是一次函数
介绍一次函数的定义和 特点。
2 一次函数的标准式
及相关概念
学习一次函数的标准表 示形式以及与之相关的 概念。
3 一次函数的图像及
其性质
绘制一次函数的图像, 并讨论其性质和变化规 律。
一次函数的应用
1
一次函数解决实际问题的方法
2
和步骤
介绍使用一次函数解决实际问题的基
本方法和步骤。
3
一次函数在实际生活中的应用
探索一次函数在实际问题中的应用场 景,如经济、物理等领域。
一次函数的不等式及其应用
探讨一次函数不等式的求解方法及实 际应用。
一次函数的拓展

《一次函数》课件

《一次函数》课件

REPORTING
经济问题中的一次函数
总结词:经济模型
详细描述:一次函数在经济领域中常被用作简化经济模型,例如,消费和收入之 间的关系、生产成本和产量之间的关系等。通过一次函数,可以更直观地理解经 济现象和预测未来的经济趋势。
物理问题中的一次函数
总结词:物理定律
详细描述:在物理学中,许多定律和公式都可以用一次函数来表示,例如,重力与距离的关系、电流与电压的关系等。通过 一次函数,可以更准确地描述物理现象和预测实验结果。
2023
《一次函数最新》 ppt课件
REPORTING
2023
目录
• 一次函数简介 • 一次函数的表达式 • 一次函数的应用 • 一次函数的解析方法 • 一次函数的实际案例
2023
PART 01
一次函数简介
REPORTING
一次函数的定义
一次函数是形如y=kx+b的函 数,其中k和b是常数,k≠0。
一次函数在数学问题中的应用
线性规划
利用一次函数解决资源分 配问题,实现资源利用的 最大化。
代数方程求解
通过一次函数表示代数方 程,简化方程求解过程。
几何图形面积计算
利用一次函数计算几何图 形的面积,如三角形、矩 形等。
一次函数与其他数学知识的结合
与二次函数的结合
利用一次函数和二次函数的性质 ,解决更复杂的数学问题。
一次函数是线性函数的一种, 它的图像是一条直线。
一次函数在平面坐标系中表示 为一条直线,该直线经过点 (0,b)和斜率为k。
一次函数的图像
一次函数的图像是一 条直线,其斜率为k ,截距为b。
通过代入不同的x值 ,可以求出对应的y 值,从而得到函数的 图像。

一次函数全章ppt课件

一次函数全章ppt课件
一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值, 变量y都有唯一的值与它对应,那么我们称y是x的函数(function),其中x是自变 量.
2.函数的表示法:三种方法 ①图象法 ②列表法 ③关系式法
完整版ppt课件
22
2 一次函数与正比例函数
完整版ppt课件
23
1.理解一次函数和正比例函数的概念,以及它们之间的关系. 2.能根据所给条件,写出简单的一次函数、正比例函数表达式.
汽车速度v s v2
300
25
100
12
3
3
滑行距离s
完整版ppt课件
9
(2)给定一个v值,你能求出相应的s值吗?

(3)其中对于给定的每一个速度v,滑行距离s对应有几个值?
只有一个值
完整版ppt课件
10
议一议
上面的问题中,有什么共同特点?
【解析】都有两个变量:①时间 t 、相应的高度 h ; ②层数n、物体总数y;③汽车速度v、滑行距离s. 如果给定其中一个变量(自变量)的值,就能确定另一个变量(因变量)的 值.
完整版ppt课件
30
【例题】
【例1】写出下列各题中y与x之间的关系式,并判断y是否为x的一次函 数?是否为正比例函数? (1)汽车以60km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间 的关系. (2)圆的面积y (cm2)与它的半径x (cm)之间的关系. (3)一棵树现在高50 cm,每个月长高2 cm,x月后这棵 树的高度为y cm.
完整版ppt课件
15
【跟踪训练】
下面各题中分别有几个变量?你能将其中某个变量看成是另一个变量的函 数吗?
(1)每一个同学购一本代数书,书的单价为2元, 则x个同学共付y元.

一次函数课件ppt

一次函数课件ppt
掌握如何根据直线的方程求解一次函数,并了解直线的性质。
一次函数与两直线的交点
了解如何通过两直线的交点求解一次函数的解析式。
一次函数与抛物线的交点
了解如何通过抛物线的交点求解一次函数的解析式。
一次函数在实际问题中的应用
一次函数与最值问题
掌握如何利用一次函数解决最值问题。
一次函数与不等式问题
了解如何利用一=kx+b(k,b是常数,k≠0)中,当b=0时, y=kx(k是常数,k≠0),此时称y是x的正比例函 数。
一次函数的表达式
表达式
y=kx+b(k,b是常数,k≠0)
变量的取值范围
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而 减小。
截距的意义
b是常数项,表示与y轴的交点坐标。当b>0时,交点在y 轴的正半轴上;当b<0时,交点在y轴的负半轴上;当 b=0时,交点在原点。
03 一次函数的应用
一次函数在代数中的应用
一次函数与一元一次方程的关系
01
了解如何用一次函数解决一元一次方程的问题。
一次函数的单调性
02
掌握如何根据函数的单调性求解函数的值域和定义域。
一次函数的零点
03
了解如何通过零点将函数进行分类,并求解函数的零点。
一次函数在几何中的应用
直线方程与一次函数的关系
一次函数的图像
图像的绘制
描点法,先确定自变量x的取值范 围,然后分别在坐标系中找出对
应的y值,描点、连线即可得到一 次函数的图像。
图像的性质
当k>0时,直线呈上升趋势;当 k<0时,直线呈下降趋势。截距b 的取值决定了直线与y轴交点的位 置。

一次函数课件ppt

一次函数课件ppt

奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算

分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。

19.2.2 一次函数的概念 课件(共23张PPT)

19.2.2  一次函数的概念   课件(共23张PPT)
4.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒 增加2 m/s.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.

初二数学《一次函数》课件

初二数学《一次函数》课件

进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。

一次函数ppt课件免费

一次函数ppt课件免费

线性关系判断方法
01
观察法
通过观察散点图或数据表,判断两个变量之间是否存在线性关系。
02 03
计算法
通过计算相关系数r的值,判断两个变量之间的线性关系强度。当|r|接 近于1时,表示两个变量之间存在较强的线性关系;当|r|接近于0时,表 示两个变量之间不存在线性关系。
残差分析法
通过绘制残差图或计算残差平方和,判断回归模型是否符合线性关系。 如果残差图呈现随机分布且残差平方和较小,则表明回归模型符合线性 关系。
实际应用问题建模与求解
01
02
03
列方程
根据实际问题中的条件, 列出反映问题中数量关系 的方程。
解方程
运用一次函数的运算技巧, 求解所列出的方程。
检验与作答
将求得的解代入原方程进 行检验,确认解的合理性, 并根据实际问题要求进行 作答。
03
一次函数图像变换规律
平移变换规律
一次函数 y = kx + b (k ≠ 0) 的图像是一条直线, 01 当 b 值发生变化时,图像会沿着 y 轴上下平移。
当 b > 0 时,图像向上平移 b 个单位;当 b < 0 02 时,图像向下平移 |b| 个单位。
平移后的直线斜率不变,仍为 k。 03
伸缩变换规律
01 当 k > 1 时,图像的斜率增大,函数值增长的速 度变快,图像相对于原直线更陡峭。
02 当 0 < k < 1 时,图像的斜率减小,函数值增长 的速度变慢,图像相对于原直线更平缓。
学习数学不仅仅是为了应付考试,更重要的是培养解决实际问题的能力。通过学习和应用一 次函数,可以强化数学与实际生活的联系,提高数学应用意识。
拓展数学思维

《函数》一次函数PPT优秀课件

《函数》一次函数PPT优秀课件

0
t
• 如果A,B间路程为200千米,一辆汽车从 A地到B地行驶的速度v与行驶时间t是怎样 的变化关系? 200 v v t V是t的函数吗? V是t的函数 速度v随时间t的变化 的图象是什么?

0
t
面积问题
若正方形的边长 为x,则面积y与边长x之 间的关系是什么?
x
y=x2
y是x的函数吗? y是x的函数 面积y随边长x的 变化的图象是什么?
K线图
记录的是某一种股票上市以 来的每天的价格变动情况.
心电图
记录的是心脏本身的生物电在每 一心动周期中发生的电变化情况.
1.函数
• 函数是刻画变量之间的关系的常用模型, 其中最为简单的是一次函数。什么是函数? 他对应的图像有什么特点?用函数能解决 现实生活中的那些问题? • 你想了解这些吗? • 让我们一起来走进函数世界吧!
o
y
x
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
励志学习的名言警句 1、在强者的眼中,没有最好,只有更好。 2、成功是努力的结晶,只有努力才会有成功。 3、只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 4、拥有梦想只是一种智力,实现梦想才是一种能力。 5、生命之灯因热情而点燃,生命之舟因拼搏而前行。 6、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 7、没有天生的信心,只有不断培养的信心。 8、成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。 9、自己打败自己的远远多于比别人打败的。 10、当一个小小的心念变成行为时,便能成了习惯,从而形成性格,而性格就决定你一生的成败。 11、忍耐力较诸脑力,尤胜一筹。 12、高峰只对攀登它而不是仰望它的人来说才有真正意义。 13、你可以这样理解impossible(不可能)——I'm possible(我是可能的)。 14、自己打败自己是最可悲的失败,自己战胜自己是最可贵的胜利。 15、你可以选择这样的三心二意:信心恒心决心;创意乐意。 16、成功与不成功之间有时距离很短——只要后者再向前几步。 17、呈概率分布,关键是你能不能坚持到成功开始呈现的那一刻。 18、书是易事,思索是难事,但两者缺一,便全无用处 19、动是成功的阶梯,行动越多,登得越高。 20、天比昨天好,就是希望。 21、力的人影响别人,没能力的人,受人影响。 22、做的事情总找得出时间和机会; 23、要自卑,你不比别人笨。不要自满,别人不比你笨。 24、面对机遇,不犹豫;面对抉择,不彷徨;面对决战,不惧怕! 25、个人先从自己的内心开始奋斗,他就是个有价值的人。 26、超越自己,向自己挑战,向弱项挑战,向懒惰挑战,向陋习挑战。 27、不必每分钟都学习,但求学习中每分钟都有收获。 28、取时间就是争取成功,提高效率就是提高分数。 29、紧张而有序,效率是关键。 30、永远不要以粗心为借口原谅自己。

一次函数课件(共36张PPT)

 一次函数课件(共36张PPT)

3 2
∴ 2k+b=0,
1
b=2.
O 1 2 3 x 解得 k=-1,
b=2.
∴y=-x+2.
情景导课
反思小结: 确定正比例函数的解析式需要一个条件,确定 一次函数的解析式需要两个条件.
情景导课
问题1 前面,我们学习了一次函数及其图象和性 质,你能写出两个具体的一次函数解析式吗?如何画出 它们的图象?
19-2.2 一次函数(3) 第 3 课时
待定系数法求一次函数 的解析式
人教版八年级数学下册
情景导课
教材导读
练习展示
反思小结
测评反馈
拓展延伸
阅读教材第93页至95页,明确学习目标
学习目标:
1、学会运用待定系数法和数形结合思想求一次函数解析式;了 解两个条件确定一个一次函数;一个条件确定一个正比例函数, 能根据函数的图象确定一次函数的表达式,培养学生的数形结 合能力. 2、了解分段函数的表示及其图象. 3、能通过函数解决简单的实际问题
下列问题:
y
(1)求出y关于x的函
120
数解析式.
80
(2)根据关系式计算,
小明经过几个月才能存够
40
200元?
O 12 3 4 x
y=20x+40
(1)填写下表.
购买量 0.5 1 1.5 2 2.5 3 3.5 4 …
/kg
付款金额/ 元
2.5
5
7.5
10 12.5 15
17.5 20

(2)写出购买量关于付款金额的函数解析式,并画出 函数图象.
分析:从题目可知,种子的价格与 购买种子量 有关。
若购买种子量为0≤x≤2时,种子价格y为: y=5x 。

《一次函数》PPT优质版9人教版

《一次函数》PPT优质版9人教版

函数y=-2x+3图像比 函数y=-2x图像向正 上方高出3个单位.
函数y=kx+b图象是函数 y=kx图象向正上(下)方 平移|b|个单位.
y=-2x+3 y=-2x
例2.画出函数y=3x+2与y=-3x+2的图象:
1.列表: x
0
1
y=3x+2 2.描点: y=-3x+2
x
0
1
y=kx+b b k+b
A.y 3x 2 C.y 1 x 1
3
B.y 3 3x
D . y 3 1 x
拓展:
对于一次函数y=(a+4)x+2a-1,如果y随x的增大而增大, 且它的图象与y轴的交点在x轴的下方,试求a的取值范 围
1
已知点(2,m)、(-3,n)都在直线y= 6 x +1 上,试比较 m 和n的大小.你能想出几种判断的方法?
性质
y随x的增大而增大
y随x的增大而减小
画图常用 (0,b) (0,0) (0,b) (0,b) (0,0) (0,b) 的两个点 (1,k+b) (1,k) (1,k+b) (1,k+b) (1,k) (1,k+b)
大大不过四,大小不过二,小大不过三,小小不过一
练习:
1.判断下列各图中的函数k、b的符号.
一次函数 第二课时
温故知新
复习旧知识:
1、什么是一次函数?什么是正比例函数?二 者什么区别和联系?
答: 形如 y=kx+b (k、b是常数 k≠0) 的函数叫
做一次函数. 形如 y=kx (k是常数 k≠0) 的函数叫做正比例函数.
区别是:是否有常数项b.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

860 880 900
(2)设工资总额y(元), 销售产品数x(件), 写出y与
3、某弹簧的自然长度为3cm,在弹性限度 内,所挂物体的质量x每增加1千克,弹簧长度 y增加0.5cm,填写下表:
x/千克 y/cm 0 1 2 3 4 5
3
3.5
4
4.5
5
5.5
是一次函数的是 (1)(2)(6) , 是正比例函数的是 (1)(6) 。
互动平台:
两人一组各写出3个一次函数, 并由同桌指出K和b的值。 例如:
y=2x-4 k=
b=
应用拓展
例1:已知函数y=(m+1)x+(m2-1),当m取什么值时, y 是x的一次函数?当m取什么值时,y是x的正比例函数?
解:(1)因为y是x的一次函数 所以 m+1 ≠ 0 m≠-1
(2)因为y是x的正比例函数 所以 m2-1=0 m=1或-1 又因为 m≠ -1 所以 m=1
应用拓展
1、已知函数

2、若y=(m-2) x 则
a
b的 值 .
y 5x
m 1
a b
a b
+2 是正比例函数,
+m是一次函数. 求m的值.
(1) y=50x+1200 (2)y=20x+800
(3)y=0.5x+3 (4)y=7x-25
1、这些函数中自变量是什么?函数是什么? 2、在这些函数式中,关于自变量与因变 量的次数是几次? 3、这四个解析式的共同结构特征是什么?
小组合作探究
这三个函数有什么共同点?
(1) y=50x+1200 (2) y=20x+800 (3) y=0.5x+3
(1)你能写出y与x之间的关系吗?
y=0.5x+3
(2)你能说说上述表达式中0.5和3的实际意义各是 什么吗?
情境四
4、 有人发现,在20℃~25℃时,蟋蟀每分鸣
叫次数y与温度x(单位:℃)有关,即y的值约是 x的7倍与25的差.
y=7x-25(20≤x≤25)
小组合作探究
这四个函数有什么共同点?
(4)c=7t-25
(20≤t≤25)
上述四个问题中的函数的表达式: 1、自变量x与因变量y的次数都是一次,且等 号两边都是整式 2、都是y(因变量)等于x(自变量)乘常数加常 数的形式
概念:
一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫 做一次函数。 (1)y=-5x-1200 K=-5 b=-1200
1250 1300 1350 1400 1450
(2)设x年后, 黑颈鹤的数量为y(只),写出y与 x的关系式
y=50x+1200
情境二
2、 某公司员工工资实行“底薪+提成”制度,
每月底薪800元,每销售一件产品加提成20元.
(1)完成下表
销售产品数 (件) 工资总额 (元)
0 800
1
2
3
4
5
820 840

特别地, 当b=0时,y=kx+b就变成了y=kx(k为常 数且k≠0),称y是x的正比例函数。
一次函数
正比例函数
练一练
5、判断下列函数关系式中,Y是否为X的 一次函数?是否为正比例函数?
(1)y=2x
(2)y=-x-4 (4)y=x2 -3x
1 (3) y x
(5)y=8x2
(6)y=3x
(3)如果某人本月应缴所得税19.2元,那么此人 本月工资、薪金是多少元? 解:当y=19.2时, 19.2=0.05x-40
x=1184
即本月工资、薪金是1184元。
时间x(时)之间的关系; (2)圆的面积y (c m2)与它的半径x ( cm)之间的关系; (3)一棵树现在高5 0 厘米,每个月长高2 厘米,x 月后这棵树的 高度为y 厘米。
解:(1) y=60x , y是x的 一次函数,也是x的正比例函数。 (2) y= πx2, y不是x的正比例函数,也不是x的一次函数。
3、在一次函数 y
k
kx 3 中,当 x 3 时 y 6 ,
C、5 D、-5
的值为( B)
A、-1
B、1
4、若一次函数 y=kx+3的图象经过点(-1,2) ,
1 则k=_____________
例2、一次函数 y kx b ,当x=1时,y=5; 当x=-1时,y=1.求k和b的值.
解:(1)y=25 + 0.2(X-50) (2)25+0.2(150-50)=25+20=45(元) (3)(53.6-25)/0.2+50=143+50=193(次)
7、做一做: 写出下列各题中y与 x之间的关系式,并判 断:y是否为x的一次函数?是否为正比例函数?
(1)汽车以60千米/时的速度匀速行驶,行驶路程为y(千米)与行驶
(1)当月收入大于800元而又小于1300元时, 写出应缴所得税y(元)与月收入x(元) 之间 的关系式 解:当月收入大于800元而小于1300元时,
y=0.05×(x-800) y = 0.05 x -40
(2)某人月收入为960元,他应缴所得税多少元?
解:当x=960时,y=0.05×960-40=8(元)
y=50-0.1x 0 ≤ x ≤ 500
(3) 你能写出x的取值范围吗?
应用拓展
6、某地区电话的月租费为25元,可打 50次电话(每次3分钟),超过50次后, 每次0.2元, (1)写出每月电话费y(元)与通话次数x (x50)的函数关系式; (2)求出月通话150次的电话费; (3)如果某月通话费53.6元,求该月的通 话次数。
(3) y=2x + 50, y是x的一次函数,但不是x的正比例函数。
8、 我国现行个人工资、薪金所得税征收办法规定: 月收入低于800元的部分不收税; 月收入超过800元但低 于1300元的部分征收5%的所得税……如某人月收入 1160元,他应缴个人工资、薪金所得税为(1160-800)
×5%=18(元)。
解: 因为当x=1时,y=5;当x=-1时,y=1 所以 k b5

-k b1
解得k=2,b=3.
拔高要求
2
例3、某辆汽车油箱中原有油50升,汽车每
行驶1千米耗油0.1升。
(1) 完成下表 路程x/千米
剩余油量y/升
0 50
50 45
100 40
150 35
200 …… 30 ……
(2) 你能写出y与x的关系吗?
情境一
1、黑颈鹤被称为鸟类中的大熊猫,因数量少,被定为国家一 级保护动物,列入世界濒危物种。近年来,由于威宁草海生态的 改变,草海人民保护环境的意识增强,每年到草海越冬的黑颈鹤 数量都在增加,根据1985年以来的记录,来草海越冬的黑颈鹤平 均每年以50只的速度增加,据统计,2012年到草海越冬的黑颈鹤 数量为1200只.(1)完成下表: 年份(x年) 1年后 2年后 3年后 4年后 5年后 数量(y只)
相关文档
最新文档