函数的单调性解不等式
函数的简单性质-单调性
求最值
求函数最大值
在闭区间上,如果函数在某区间内单 调递增,那么该函数在此区间内取得 最大值。同样,如果函数在某区间内 单调递减,那么该函数在此区间内取 得最小值。
求函数最小值
在闭区间上,如果函数在某区间内单 调递增,那么该函数在此区间内取得 最小值。同样,如果函数在某区间内 单调递减,那么该函数在此区间内取 得最大值。
对于函数$f(x) = x^{3} - 3x^{2} + 2$,其导数为$f'(x) = 3x^{2} - 6x$。要使$f(x)$在区间$( - infty,a)$上是 增函数,需要满足$f'(x) > 0$,即$3x^{2} - 6x > 0$, 解得$x < 0$或$x > 2$。因此,当$a < 0$或$a > 2$ 时,函数$f(x) = x^{3} - 3x^{2} + 2$在区间$( infty,a)$上是增函数。
反例应用
在研究经济发展时,需要考虑到各种因素对经济的影响,包括政策、技术、人口等。通过 找到单调性的反例,可以更全面地了解经济发展的实际情况,为政策制定提供更有针对性 的建议。
06 习题与解答
习题
判断函数$f(x) = x^{2} - 2x$在 区间$( - infty,a)$上是减函数的
条件是什么?
单调性与奇偶性的关系
总结词
函数的奇偶性是指函数图像关于原点对称的性质,而单调性是指函数值随自变量变化的 趋势。虽然奇偶性和单调性是函数的两种不同性质,但它们之间也存在一定的关系。例 如,奇函数在对称轴两侧的函数值是相等的,因此奇函数在对称轴两侧的单调性是一致
的。
详细描述
对于奇函数,如果它在某个区间内单调递增,那么它在该区间内关于原点对称的区间内 也单调递增;同样地,如果奇函数在某个区间内单调递减,那么它在该区间内关于原点 对称的区间内也单调递减。而对于偶函数,由于其图像关于y轴对称,因此偶函数在任
函数的单调性与最值讲义
函数的单调性与最值【知识要点】1.函数的单调性(1)单调函数的概念自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的概念若是函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.〔3〕判定函数单调性的方式①依照概念;①依照图象;①利用函数的增减性;①利用导数;①复合函数单调性判定方式。
2.函数的最值求函数最值的方式:①假设函数是二次函数或可化为二次函数型的函数,经常使用配方式;①利用函数的单调性求最值:先判定函数在给定区间上的单调性,然后利用单调性求最值; ①全然不等式法:当函数是分式形式且分子、分母不同次时经常使用此法。
【温习回忆】一次函数(0)y kx b k =+≠具有以下性质: (1)当0k >时,函数y 随x 的增大而增大 (2)当0k <时,函数y 随x 的增大而减小 二次函数y =ax 2+bx +c (a ≠0)具有以下性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上,对称轴为直线x =-2b a ;当x <2ba-时,y 随着x 的增大而减小;当x >2ba-时,y 随着x 的增大而增大; (2)当a <0时,函数y =ax 2+bx +c 图象开口向下,对称轴为直线x =-2b a ;当x <2ba-时,y 随着x 的增大而增大;当x >2ba-时,y 随着x 的增大而减小; 提出问题:①如以下图为一次函数y=x ,二次函数y=x 2和y=-x 2的图象,它们的图象有什么转变规律?这反映了相应的函数值的哪些转变规律?①这些函数走势是什么?在什么范围上升,在什么区间下降?①如何明白得图象是上升的?如何用自变量的大小关系与函数值的大小关系表示函数的增减性?①概念:一样地,设函数f(x)的概念域为I ,若是关于概念域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是增函数. 简称为:步伐一致增函数.几何意义:增函数的从左向右看, 图象是 的。
高中数学破题致胜微方法(函数的奇偶性全析):十五、利用函数的奇偶性和单调性解不等式 (1)
1利用函数的奇偶性和单调性解不等式函数的奇偶性和单调性是函数的重要性质,同时它也能应用到解决实际问题中去,今天我们就来看用这两种性质解不等式.要注意,当我们遇到的不等式中,没有给出函数解析式,或者解析式很复杂时,就可以考虑借助函数的性质来辅助解题.先看例题:例:已知定义在R 上的偶函数,f (x )在[0,)+∞单调递增,且f (1)=0,则不等式(2)0f x -≥的解集是______.所以不等式的解集为:{|31}x x x ≥≤或练:已知函数21()ln(1||)1f x x x =+-+,若()(21)f x f x >-,则实数x 的取值范围是( ) 首先通过观察函数含有绝对值和平方,应该是一个偶函数,所以f (x )在[0,)+∞单调递增;由偶函数的性质将原不等式转化为:(||)(|21|)f x f x >- 等价于解不等式|||21|x x >- 两边平方得:22441x x x >-+ 整理得:23410x x -+< (31)(1)0x x --<所以x 的取值范围是1(,1)3练:已知函数f (x )是奇函数,且在(0,)+∞上是增函数,f (-3)=0,则()0xf x <的解集是( ) 解:同上面的题目,函数是抽象函数,且为奇函数由已知f (-3)=0,则原不等式等价于0()0(3)x f x f <⎧⎨>=-⎩或 0()0(3)x f x f >⎧⎨<=-⎩2再根据函数的单调性,30x -<< 03x <<所以解集为(3,0)(0,3)-练习:1.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足|1|(2)(a f f ->,则a 的取值范围是________.2.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是________.。
考点04 函数单调性的5种判断方法及3个应用方向(解析版)
专题二函数考点4 函数单调性的5种判断方法及3个应用方向【方法点拨】一、函数单调性的判断及解决应用问题的方法1.判断函数单调性的常用方法(1)定义法;(2)图象法;(3)利用函数的性质“增+增=增,减+减=减”判断;(4)复合函数的单调性根据“同增异减”判断;(5)导数法2.求函数的单调区间先定定义域,在定义域内求单调区间.单调区间不连续时,要用“和”或“,“连接,不能用“U”连接.3.单调性的应用的三个方向(1)比较大小:将自变量转化到同一个单调区间内,利用函数的单调性比较大小;(2)解函数型不等式:利用函数单调性,由条件脱去“f”;(3)求参数值或取值范围:利用函数的单调性构建参数满足的方程(组)、不等式(组).【高考模拟】1.函数()||1f x x =-与()()2g x x x =-的单调递增区间分别为( ) A .[1,+∞),[1,+∞) B .(﹣∞,1],[1,+∞) C .(1,+∞),(﹣∞,1] D .(﹣∞,+∞),[1,+∞)【答案】A 【分析】先对()f x ,()g x 进行化简,再求单调区间即可. 【解析】 解:()1,111,1x x f x x x x -≥⎧=-=⎨-+<⎩,()f x ∴在[)1,+∞上单调递增,()()222()211g x x x x x x -=-==--, ()g x ∴在[)1,+∞上单调递增,故选:A.2.函数y =)A .3,2⎛⎤-∞- ⎥⎝⎦B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3-∞-【答案】D 【分析】求出函数y =y =.【解析】由题意,230x x +≥,可得3x ≤-或0x ≥,函数y =(][),30,-∞-⋃+∞,令23t x x =+,则外层函数y =[)0,+∞上单调递增,内层函数23t x x =+在上(],3-∞-单调递减,在[)0,+∞上单调递增,所以,函数y =(],3-∞-.故选:D. 【点睛】方法点睛:求解函数的单调区间一般有以下几种方法:一是图象法,主要适用与基本初等函数及其在基本初等函数的基础上进行简单变化后的函数以及分段函数,可以借助图像来得到函数的单调区间;二是复合函数法,主要适用于函数结构较为复杂的函数,采用换元的思想将函数解析式分解为多层,利用同增异减的原理来求解;三是导数法,对于可导函数,可以解相应的导数不等式来求解函数的单调区间.3.函数()f x 在区间()4,7-上是增函数,则使得()3=-y f x 为增函数的区间为( ) A .()2,3- B .()1,7-C .()1,10-D .()10,4--【答案】C 【分析】先将函数()3=-y f x 看作函数()f x 向右平移3个单位所得到,再判断增区间即可. 【解析】函数()3=-y f x 可以看作函数()f x 向右平移3个单位所得到,故由函数()f x 在区间()4,7-上是增函数,得()3=-y f x 在区间()1,10-上是增函数. 故选:C.4.函数()2f x x x =-的单调减区间是( ) A .[]1,2 B .[]1,0-C .[]0,2D .[2,)+∞【答案】A 【分析】将函数写成分段函数的形式,即()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩再根据解析式得到函数的单调区间;【解析】()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩∴直接通过解析式,结合二次函数图象得:(,1),(2,)-∞+∞递增,在[]1,2递减,故选:A.5.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是( ) A .[3,)-+∞ B .(,3]-∞- C .(,5)-∞ D .[3,)+∞【答案】B 【分析】利用二次函数的性质,比较对称轴和区间端点的大小,列不等式可得a 的取值范围. 【解析】函数f(x)的对称轴是1x a =-,开口向上,则14a -≥,解得3a ≤- 故选:B6.若函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,则实数a 的取值范围为( ). A .(1,)+∞ B .(,1)-∞ C .(0,)+∞ D .(,0)-∞【答案】D 【分析】直接由单调性的定义求解即可 【解析】解:任取12,(0,)x x ∈+∞,且12x x <,因为函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,所以12()()f x f x <,即22120ax ax ---<,所以221211()0a x x -<,21212212()()0x x x x a x x +-⋅<⋅, 因为120x x <<,所以210x x +>,210x x ->,22120x x ⋅>,所以0a <. 故选:D7.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A .3a ≤- B .3a ≥-C .5a ≤D .5a ≥【答案】A【分析】求出二次函数的对称轴,根据单调区间与对称轴之间的关系建立条件,即可求出a 的取值范围. 【解析】 解:二次函数2()2(1)2f x x a x =+-+的对称轴为2(1)(1)12a x a a -=-=--=-,抛物线开口向上,∴函数在(-∞,1]a -上单调递减,要使()f x 在区间(-∞,4]上单调递减, 则对称轴14a -, 解得3a-.故选:A . 【点睛】本题主要考查二次函数的图象和性质,根据二次函数单调性与对称轴之间的关系是解决本题的关键. 8.“1m ”是“函数1()2ln f x x mx x=-+单调递减”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【分析】求出()y f x =的导函数,利用()y f x =单调递减,则()0f x '≤恒成立,求出m 的范围,比较所求范围和条件中给定范围的关系,得出结论. 【解析】 由221()f x m x x '=--,若函数()y f x =单调递减,必有当(0,)x ∈+∞时,2210m x x--≤恒成立,可化为2111m x ⎛⎫≥--+ ⎪⎝⎭,可得m 1≥.故“1m ”是“函数1()2ln f x x mx x =-+单调递减”的充分不必要条件. 故选:A. 9.若函数2()1f x x =-的定义域是(﹣∞,1)∪[2,5),则其值域为( ) A .(﹣∞,0)B .(﹣∞,2]C .10,2⎛⎤ ⎥⎝⎦D .1(,0),22⎛⎤-∞⋃ ⎥⎝⎦【答案】D 【分析】分x<1和x ∈[2,5)两种情况,利用反比例函数的性质得出函数的值域. 【解析】由题意可得:当x<1时,则x ﹣1<0所以y ∈(﹣∞,0) 当x ∈[2,5)时,则x ﹣1∈[1,4),所以y ∈1,22⎛⎤⎥⎝⎦所以函数的值域为1(,0),22⎛⎤-∞⋃ ⎥⎝⎦.故选:D.10.若关于x 的不等式342xx a+-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞【答案】D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【解析】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.11.若01m n <<<且1mn =,则2m n +的取值范围是( )A.)+∞ B .[3,)+∞C.)+∞D .(3,)+∞【答案】D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【解析】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >, 函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <; (2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形; (3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论. 12.函数()()2404xf x x x x x =++>+的最小值为( ) A .2 B .103C .174D .265【答案】C 【分析】 令4t x x =+,利用基本不等式求得4t ≥,构造函数()1g t t t=+,证明出函数()g t 在[)4,+∞上为增函数,由此可求得函数()f x 的最小值. 【解析】令4t x x =+,则21144x x t x x==++,因为0x >,所以44t x x =+≥=,又2414x y x t x x t =++=++,令()1g t t t=+,其中4t ≥, 任取1t 、[)24,t ∈+∞且12t t >,即124t t >≥,则()()()()()121221121212121212111t t t t t t g t g t t t t t t t t t t t --⎛⎫⎛⎫--=+-+=-+= ⎪ ⎪⎝⎭⎝⎭, 124t t >≥,120t t ∴->,121t t >,()()120g t g t ∴->,即()()12g t g t >,所以,函数()g t 在[)4,+∞上为增函数,因此,()()min 1174444f xg ==+=. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.13.若函数1y ax =+在区间[]1,3上的最大值是4,则实数a 的值为( ) A .-1 B .1C .3D .1或3【答案】B 【分析】分0a >和0a <两种情况求解,0a >时,1y ax =+在区间[]1,3上为增函数,从而可求出其最大值,当0a <时,1y ax =+在区间[]1,3上为减函数,从而可求出其最大值,进而可得答案 【解析】解:当0a >时,1y ax =+在区间[]1,3上为增函数,则当3x =时,y 取得最大值,即314a +=,解得1a =;当0a <时,1y ax =+在区间[]1,3上为减函数,则当1x =时,y 取得最大值,即14a +=,解得3a =舍去, 所以1a =, 故选:B14.函数2y ax =+在[1,2]上的最大值与最小值的差为3,则实数a 为( ) A .3 B .-3 C .0 D .3或-3【答案】D 【分析】讨论a 的取值,判断函数的单调性,求出函数的最值,作差即可求解. 【解析】解:①当0a =时,2=2y ax =+,不符合题意;②当0a >时,2y ax =+在[]1,2上递增,则()()2223a a +-+=,解得3a =; ③当0a <时,2y ax =+在[]1,2上递减,则()()2223a a +-+=,解得3a =-.综上,得3a =±, 故选:D .15.已知函数24()2tx t f x x --+=+在区间[1,2]-上的最大值为2,则实数t 的值为( )A .2或3B .1或3C .2D .3【答案】A 【分析】 函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+,根据绝对值的最大值为2进行分类讨论检验即可. 【解析】 由题函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+ ()24422tx t f x t x x --+==-+++的最大值为4t -或1t -当41t t -≥-时,即52t ≤时,最大值42t -=解得:2t =;当41t t -<-时,即52t >时,最大值12t -=解得:3t = 综上所述:t 的值等于2或3. 故选:A 【点睛】解决本题的关键是利用单调性求出42t x -++的范围,再结合绝对值的性质进行求解. 16.若函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R ,则实数a 的取值范围为( ) A .1[2,1)B .1(0,)7C .1[7,1)2D .1[2,1]【答案】C 【分析】根据分段函数的值域为R ,具有连续性,由12log y x =是减函数,可得(21)3y a x a =-+也是减函数,故得210a -<,(21)231a a -⨯+-,可得答案. 【解析】解:函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R , 由12log y x =是减函数,(21)3y a x a ∴=-+也是减函数,故得210a -<, 解得:12a <, 函数()f x 的值域为R ,12(21)23log 21a a -⨯+=-,解得:17a. ∴实数a 的取值范围是1[7,1)2.故选:C .17.若函数()f x 是R 上的减函数,0a >,则下列不等式一定成立的是( ) A .2()()f a f a < B .1()f a f a ⎛⎫<⎪⎝⎭C .()(2)f a f a <D .2()(1)f a f a <-【答案】D 【分析】根据函数单调性,以及题中条件,逐项判断,即可得出结果. 【解析】因为函数()f x 是R 上的减函数,0a >,A 选项,()21a a a a -=-,当1a >时,2a a >,所以2()()f a f a <;当01a <<时,2a a <,所以2()()f a f a >,即B 不一定成立; B 选项,当1a >时,1a a >,所以1()f a f a ⎛⎫< ⎪⎝⎭;当01a <<时,1a a <,所以1()f a f a ⎛⎫> ⎪⎝⎭,即B 不一定成立;C 选项,0a >时,2a a >,则()(2)f a f a >,所以C 不成立;D 选项,()2221311024a a a a a ⎛⎫--=-+=-+> ⎪⎝⎭,则21a a >-;所以2()(1)f a f a <-,即D一定成立. 故选:D.18.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( ) A .(4)(0)(4)f f f -<< B .(0)(4)(4)f f f <-< C .(0)(4)(4)f f f <<- D .(4)(0)(4)f f f <<-【答案】C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【解析】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.19.若定义在R 上的偶函数()f x 在[)0,+∞上是减函数,则下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【解析】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误; C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确; D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C20.设函数()f x 是(),-∞+∞上的减函数,又若a R ∈,则( ) A .()()2f a f a >B .()()2f a f a < C .()()2f a a f a +<D .()()211f a f +≤【答案】D 【分析】利用特殊值法可判断ABC 选项的正误,利用函数的单调性可判断D 选项的正误. 【解析】对于A 选项,取0a =,则2a a =,()()2f a f a ∴=,A 选项错误; 对于B 选项,取0a =,则2a a =,所以,()()2f af a =,B 选项错误;对于C 选项,取0a =,则2a a a +=,所以,()()2f a a f a +=,C 选项错误;对于D 选项,对任意的a R ∈,211a +≥,所以,()()211f a f +≤,D 选项正确.故选:D.21.函数()f x 的定义域为,(1)0,()f f x '=R 为()f x 的导函数,且()0f x '>,则不等式()()20x f x ->的解集是( )A .(,1)(2,)-∞⋃+∞B .(,1)(1,)-∞⋃+∞C .(0,1)(2,)+∞D .(,0)(1,)-∞⋃+∞【答案】A 【分析】依题意可得()f x 再定义域上单调递增,又()10f =,即可得到1x <时,()0f x <;1 x >时,()0f x >;再分类讨论分别计算最后取并集即可;【解析】解:由题意可知()f x 在(),-∞+∞单调递增,又()10f =,1x <时,()0f x <;1 x >时,()0f x >; 对于()()2 0x f x ->,当2x >时,不等式成立, 当12x <<时,()20, 0x f x -<>,不等式不成立; 当1x <时,20x -<,且()0f x <, 不等式成立不等式的解集(,1)(2,)-∞⋃+∞ 故选:A .22.已知定义在R 上的函数()f x 的导函数为'()f x ,且满足'()()0f x f x ->,()20212021f e =,则不等式1ln 3f x ⎛⎫<⎪⎝⎭)A .()6063,e +∞B .()20210,eC .()2021,e +∞D .()60630,e【答案】D 【分析】由题意构造新函数()()xf x F x e =,得到函数的单调性,对问题进行变形,由单调性转化为求解不等式问题,即可得到结果 【解析】 由题可设()()x f x F x e=,'()()0f x f x ->,则2'()()'()()'()0x x x xf x e f x e f x f x F x e e--==>, 所以函数()F x 在R 上单调递增,2021(2021)(2021)1f F e==,将不等式1ln 3f x ⎛⎫< ⎪⎝⎭1ln 311ln ln 3311ln ln 33x x x f x f x e e e ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⋅=, 可得1ln 13F x ⎛⎫< ⎪⎝⎭,即1ln (2021)3F x F ⎛⎫< ⎪⎝⎭,有1ln 20213x <,故得60630x e <<,所以不等式1ln 3f x ⎛⎫< ⎪⎝⎭()60630,e ,故选:D. 【点睛】关键点睛:本题的解题关键是构造新函数,然后运用函数单调性求解不等式,通常情况构造新函数的形式如:()()xf x F x e =、()()F x xf x =或者()()f x F x x =等,需要结合条件或者问题出发进行构造.23.已知函数2()121xf x =-+,且()41(3)xf f ->,则实数x 的取值范围是( ). A .(2,)+∞ B .(,2)-∞C .(1,)+∞D .(,1)-∞【答案】D 【分析】用导数判断函数()f x 的单调性,再解不等式即可. 【解析】 因为()()22ln 2021x xf x -=<+',所以函数2()121x f x =-+在R 上单调递减, 由于()41(3)xf f ->所以413x-<,得1x <故选:D 【点睛】关键点点晴:判断函数()f x 的单调性是解题的关键.24.已知定义在R 上的函数()f x 满足()13f =,对x ∀∈R 恒有()2f x '<,则()21f x x ≥+的解集为( ) A .[)1,+∞ B .(],1-∞C .()1,+∞D .(),1-∞【答案】B 【分析】构造新函数()()21F x f x x =--,利用导数判断()F x 单减,又(1)0F =可解1x ≤. 【解析】令()()21F x f x x =--,则()()2F x f x ''=-, 又因为对x ∀∈R 恒有()2f x '< 所以()()20F x f x ''=-<恒成立, 所以()()21F x f x x =--在R 上单减. 又(1)(1)210F f =--=, 所以()0F x ≥的解集为(],1-∞ 故选:B 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式; (2)复合函数型不等式;(3)抽象函数型不等式; (4)解析式较复杂的不等式;25.已知函数f (x ) f (2a 2-5a +4)<f (a 2+a +4) ,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭∪(2,+∞)B .[2,6)C .10,2⎛⎤ ⎥⎝⎦∪[2,6)D .(0,6)【答案】C 【分析】由解析式知()f x 在定义域上递增,由已知函数不等式有2222544a a a a ≤-+<++,即可求解a 的取值范围. 【解析】由题意,()f x 在[2,)+∞上单调递增,∵22(254)(4)f a a f a a -+<++,即2222544a a a a ≤-+<++, ∴260a a -<或22520a a -+≥,可得26a ≤<或102a <≤. 故选:C 【点睛】关键点点睛:利用函数的单调性,列不等式求参数的范围.易错点是定义域容易被忽略.26.已知函数()f x 的图象关于y 轴对称,当0x ≥时,()f x 单调递增,则不等式(2)(1)f x f x >-的解集为__________. 【答案】1(,1)(,)3-∞-⋃+∞ 【分析】由题意可得()f x 为偶函数,再由偶函数的性质可将(2)(1)f x f x >-,转化为(2)(1)f x f x >-,再由当0x ≥时,()f x 单调递增,可得21x x >-,从而可求出x 的范围 【解析】解:依题意,()f x 为偶函数,当0x ≥时,()f x 单调递增,要满足(2)(1)f x f x >-,则要求21x x >-,两边平方得22412x x x >-+,即23210x x +->,即(1)(31)0x x +->,解得1(,1)(,)3x ∈-∞-⋃+∞. 故答案为:1(,1)(,)3-∞-⋃+∞.27.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.【答案】()1,+∞ 【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可.【解析】因为()xf x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+' ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增.()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞ 故答案为:()1,+∞ 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;28.已知定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,则不等式(1)01f x x +≥-的解集为___________.【答案】[]3,1-- 【分析】先由定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,画出()f x 的草图,结合图像对(1)01f x x +≥-进行等价转化,解不等式即可.【解析】()f x 是定义域为R 的奇函数,且在区间(0,)+∞上为严格减函数,有()20f =,∴()f x 在区间(,0)-∞上为严格减函数且()20f =,可作出()f x 的草图:不等式(1)01f x x +≥-可化为:()1010x f x ->⎧⎨+≥⎩或()1010x f x -<⎧⎨+≤⎩对于()1010x f x ->⎧⎨+≥⎩,当1x >时()12,10x f x +>+<,无解;对于()1010x f x -<⎧⎨+≤⎩,当1x <时()12,10x f x +<+≤,由图像观察,210x -≤+≤解得:31x -≤≤- 所以不等式(1)01f x x +≥-的解集为[]3,1--.故答案为:[]3,1-- 【点睛】常见解不等式的类型:(1)解一元二次不等式用图像法或因式分解法; (2)分式不等式化为标准型后利用商的符号法则; (3)高次不等式用穿针引线法; (4)含参数的不等式需要分类讨论.29.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.【答案】4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R上恒成立,列不等式解得a 的范围. 【解析】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭.故答案为:4,3⎛⎫+∞ ⎪⎝⎭【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式.30.设函数3,1()1+1,1x x f x x x x ≤⎧⎪=⎨->⎪⎩,则不等式()26()f x f x ->的解集为_________.【答案】()3,2- 【分析】先判断函数的单调性,再解抽象不等式. 【解析】当1x >时,31+1y x x=-是增函数,此时1y >; 当1x ≤时, y x =是增函数,此时1y ≤, 所以函数()f x 是单调递增函数,()()2266f x f x x x ->⇔->,解得:32x -<<,所以不等式的解集是()3,2-. 故答案为:()3,2-。
函数单调性教案
函数单调性教案一、教学目标1.了解函数单调性的概念和判断方法。
2.学会应用函数的单调性进行函数图像的描绘和函数不等式的求解。
3.培养学生观察问题、分析问题、解决问题的能力。
二、教学重点掌握函数单调性的判断方法。
三、教学难点能够熟练应用函数单调性进行函数图像的描绘和函数不等式的求解。
四、教学过程1.导入新课:讲解函数的单调性概念和意义。
函数的单调性是指函数在定义域内是否呈现上升或下降的趋势。
若对于定义域内的任意两个实数x1和x2,当x1<x2时,有f(x1)<f(x2)成立,则函数f(x)在该定义域内是递增的;若对于定义域内的任意两个实数x1和x2,当x1<x2时,有f(x1)>f(x2)成立,则函数f(x)在该定义域内是递减的。
2.讲解函数单调性的判断方法。
(1)对于一阶导数f'(x)的符号判断方法:当f'(x)>0时,函数f(x)在该区间单调递增;当f'(x)<0时,函数f(x)在该区间单调递减。
(2)对于二阶导数f''(x)的符号判断方法:当f''(x)>0时,函数f(x)在该区间上是上凸的,即函数在该区间内是单调递增的;当f''(x)<0时,函数f(x)在该区间上是下凸的,即函数在该区间内是单调递减的。
3.通过例题巩固掌握单调性的判断方法。
例题1:判断函数f(x)=x^3-3x^2+2x+1在定义域[-∞,+∞]的单调性。
解:首先求函数f(x)的一阶导数f'(x)=3x^2-6x+2,二阶导数f''(x)=6x-6。
(1)分析f''(x)的符号,当6x-6>0时,即x>1时,f''(x)>0,函数图像上凸,此时函数递增;当6x-6<0时,即x<1时,f''(x)<0,函数图像下凸,此时函数递减。
函数的单调性与最值
1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0)结论f(x0)为最大值f(x0)为最小值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x2”.()(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.()(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(5)所有的单调函数都有最值.( )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( )1.下列函数中,①y =1x -x ;②y =x 2-x ;③y =ln x -x ;④y =e x -x ,在区间(0,+∞)内单调递减的是__________.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________. 4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为_____________.题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________.(2)函数f (x )=log 12(x 2-4)的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________.命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在[12,2]上的值域为[12,2],则a =________.题型三 函数单调性的应用命题点1 比较大小 例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系)命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎪⎪⎭⎫ ⎝⎛x 1<f (1)的实数x 的取值范围是______________.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________. (2)已知⎩⎨⎧≥<+-=1,1,1)2()(x a x x a x f x满足对任意x 1≠x 2,都有0)()(2121>--x x x f x f 成立,那么a 的取值范围是________.思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x的取值范围是__________.(2)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是__________.1.确定抽象函数单调性解函数不等式典例(14分)函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维点拨(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点.要构造出f(M)<f(N)的形式.解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤 (1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法. [失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练 (时间:40分钟)1.下列函数f (x )中,①f (x )=1x ;②f (x )=(x -1)2;③f (x )=e x ;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号)2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎪⎭⎫⎝⎛-21,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________.4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.6.函数f (x )=⎪⎩⎪⎨⎧<≥1,21,log 21x x x x的值域为________.7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.8.函数f (x )=x⎪⎭⎫⎝⎛31-log 2(x +2)在区间[-1,1]上的最大值为________.9.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1. (1)求f (1),f (19)的值;(2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.B 组 专项能力提升(时间:20分钟)11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.12.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_________.14.已知函数f (x )=lg(x +ax -2),其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.。
理解函数的单调性与不等式模拟试题
理解函数的单调性与不等式模拟试题函数的单调性与不等式模拟试题函数的单调性与不等式是高中数学中重要的内容,涉及到函数的增减性、极值点、不等式求解等知识点。
通过理解函数的单调性与不等式的关系,我们可以更好地解决相关的试题。
本文将以模拟试题的形式,深入探讨函数的单调性与不等式的应用。
1. 题目一已知函数$f(x) = 2x^2 - 5x + 3$,求函数$f(x)$的单调增区间及单调减区间。
解析:为了确定$f(x)$的单调性,我们需要求出函数的导数。
设$f'(x)$为$f(x)$的导数,则有$f'(x) = 4x - 5$。
当$f'(x) > 0$时,$f(x)$单调增;当$f'(x) < 0$时,$f(x)$单调减。
解不等式$f'(x) > 0$:$4x - 5 > 0$解得$x > \frac{5}{4}$,即$x$的取值范围为$(\frac{5}{4}, +\infty)$。
解不等式$f'(x) < 0$:$4x - 5 < 0$解得$x < \frac{5}{4}$,即$x$的取值范围为$(-\infty, \frac{5}{4})$。
所以,函数$f(x)$的单调增区间为$(\frac{5}{4}, +\infty)$,单调减区间为$(-\infty, \frac{5}{4})$。
2. 题目二已知函数$g(x) = x^3 - 3x^2 + 2$,求函数$g(x)$在区间$[-1, 2]$上的最大值和最小值。
解析:要求函数在区间$[-1, 2]$上的最大值和最小值,我们可以通过求解函数的极值点来实现。
首先,我们求函数的导数。
设$g'(x)$为$g(x)$的导数,则有$g'(x) =3x^2 - 6x$。
为了找到极值点,我们需要解方程$g'(x) = 0$:$3x^2 - 6x = 0$解得$x = 0$或$x = 2$。
2023年新高考数学一轮复习4-2 应用导数研究函数的单调性(知识点讲解)解析版
专题4.2 应用导数研究函数的单调性(知识点讲解)【知识框架】【核心素养】考查利用导数求函数的单调区间或讨论函数的单调性以及由函数的单调性求参数范围,凸显数学运算、逻辑推理的核心素养.【知识点展示】(一)导数与函数的单调性1.在(,)a b 内可导函数()f x ,'()f x 在(,)a b 任意子区间内都不恒等于0.'()0()f x f x ≥⇔在(,)a b 上为增函数.'()0()f x f x ≤⇔在(,)a b 上为减函数.2.利用导数研究函数的单调性的方法步骤:①确定函数f(x)的定义域;②求导数f ′(x);③由f ′(x)>0(或f ′(x)<0)解出相应的x 的取值范围,当f ′(x)>0时,f(x)在相应区间上是增函数;当f ′(x)<0时,f(x)在相应区间上是减增函数.特别提醒:讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(二)常用结论1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.【常考题型剖析】题型一:判断或证明函数的单调性例1.(2017·山东·高考真题(文))若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是( )A .()2xf x -= B .()2f x x = C .()-3xf x = D .()cos f x x =【答案】A 【解析】 【详解】对于A,令()e 2x x g x -=⋅,11()e (22ln )e 2(1ln )022x x x x xg x ---'=+=+>,则()g x 在R 上单调递增,故()f x 具有M 性质,故选A.例2.(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.例3.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 【答案】(1)答案见解析;(2) 和()11a ---,. 【解析】 【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标. 【详解】(1)由函数的解析式可得:()232f x x x a '=-+,导函数的判别式412a ∆=-,当14120,3a a ∆=-≤≥时,()()0,f x f x '≥在R 上单调递增,当时,的解为:12113113,33a ax x --+-==, 当113,3a x ⎛⎫--∈-∞ ⎪ ⎪⎝⎭时,单调递增;当113113,33a a x ⎛⎫--+-∈ ⎪ ⎪⎝⎭时,单调递减;当113,3a x ⎛⎫+-∈+∞ ⎪ ⎪⎝⎭时,单调递增;综上可得:当时,在R 上单调递增,当时,在113,3a ⎛⎫---∞ ⎪ ⎪⎝⎭,113,3a⎛⎫+-+∞ ⎪ ⎪⎝⎭上单调递增,在⎣⎦上单调递减. (2)由题意可得:()3200001f x x x ax =-++,()200032f x x x a '=-+,则切线方程为:()()()322000000132y x x ax x x a x x --++=-+-,切线过坐标原点,则:()()()32200000001320x x ax x x a x --++=-+-,整理可得:3200210x x --=,即:()()20001210x x x -++=,解得:,则,()0'()11f x f a '==+切线方程为:()1y a x =+, 与联立得321(1)x x ax a x -++=+,化简得3210x x x --+=,由于切点的横坐标1必然是该方程的一个根,()1x ∴-是321x x x --+的一个因式,∴该方程可以分解因式为()()2110,x x --=解得121,1x x ==-,()11f a -=--,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和()11a ---,. 【总结提升】1.利用导数研究函数的单调性的关键在于准确判定导数的符号,易错点是忽视函数的定义域.2.当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.讨论的标准有以下几种可能:(1)f ′(x )=0是否有根;(2)若f ′(x )=0有根,求出的根是否在定义域内; (3)若在定义域内有两个根,比较两个根的大小. 题型二:求函数的单调区间例4.(2012·辽宁·高考真题(文))函数y=12x 2-㏑x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞)【答案】B 【解析】 【详解】对函数21ln 2y x x =-求导,得211x y x x x='-=-(x>0),令210{0x x x -≤>解得(0,1]x ∈,因此函数21ln 2y x x =-的单调减区间为(0,1],故选B例5.(2016·北京·高考真题(理))设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+, (1)求a ,b 的值;(2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2)()f x 的单调递增区间为(,)-∞+∞. 【解析】 【详解】试题分析:(Ⅰ)根据题意求出,根据(2)22,(2)1f e f e =+=-'求a,b 的值即可;(Ⅱ)由题意判断的符号,即判断1()1x g x x e -=-+的单调性,知g(x)>0,即>0,由此求得f(x)的单调区间.试题解析:(Ⅰ)因为()a x f x xe bx -=+,所以()(1)a x f x x e b -=-+'. 依题设,(2)22,{(2)1,f e f e =+=-'即222222,{1,a a eb e e b e --+=+-+=- 解得2,e a b ==.(Ⅱ)由(Ⅰ)知2()x f x xe ex -=+. 由21()(1)x x f x e x e --=-+'及20x e ->知,与11x x e --+同号.令1()1x g x x e -=-+,则1()1x g x e -=-+'. 所以,当时,,在区间上单调递减; 当时,,在区间上单调递增. 故是在区间上的最小值,从而.综上可知,,.故的单调递增区间为.【总结提升】1.利用导数求函数单调区间的方法(1)当导函数不等式可解时,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,解出方程的实根,按实根把函数的定义域划分区间,确定各区间f ′(x )的符号,从而确定单调区间.(3)若导函数的方程、不等式都不可解,根据f ′(x )结构特征,利用图象与性质确定f ′(x )的符号,从而确定单调区间.温馨提醒:所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.2.解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. 题型三: 利用函数的单调性解不等式例6.(2015·全国·高考真题(理))设函数'()f x 是奇函数()f x (x ∈R )的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞【答案】A 【解析】 【详解】构造新函数()()f xg x x=,()()()2'xf x f x g x x -=',当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =.所以()()0f x g x x=>可得01x <<,此时()0f x >,又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.点睛:本题主要考查利用导数研究函数的单调性,需要构造函数,例如()()xf x f x '-,想到构造()()f xg x x=.一般:(1)条件含有()()f x f x '+,就构造()()x g x e f x =,(2)若()()f x f x -',就构造()()xf xg x e =,(3)()()2f x f x +',就构造()()2x g x e f x =,(4)()()2f x f x -'就构造()()2xf xg x e =,等便于给出导数时联想构造函数.例7.(2017·江苏·高考真题)已知函数()3x x 1f x =x 2x+e -e-,其中e 是自然数对数的底数,若()()2f a-1+f 2a 0≤,则实数a 的取值范围是_________.【答案】1[1,]2-【解析】 【详解】因为31()2e ()ex x f x x x f x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+,所以数()f x 在R 上单调递增,又2(1)(2)0f a f a -+≤,即2(2)(1)f a f a ≤-,所以221a a ≤-,即2210a a +-≤, 解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 【总结提升】比较大小或解不等式的思路方法(1)根据导数计算公式和已知的不等式构造函数,利用不等关系得出函数的单调性,即可确定函数值的大小关系,关键是观察已知条件构造出恰当的函数.(2)含有两个变元的不等式,可以把两个变元看作两个不同的自变量,构造函数后利用单调性确定其不等关系.题型四:利用函数的单调性比较大小 例8.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】 由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭ 所以11tan 44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>, 故选:A例9.(2007·陕西·高考真题(理))已知f (x )是定义在(0,+∞) 上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ). A .af (b )≤bf (a ) B .bf (a )≤af (b ) C .af (a )≤f (b ) D .bf (b )≤f (a )【答案】A【解析】 【详解】因为xf ′(x )≤-f (x ),f (x )≥0,所以()f x x ⎡⎤⎢⎥⎣⎦′=2'()()xf x f x x -≤22()f x x -≤0, 则函数()f x x在(0,+∞)上单调递减.由于0<a <b ,则()()f a f b a b≥,即af (b )≤bf (a ) 例10.(2013·天津·高考真题(文))设函数()2x f x e x =+-,2()ln 3g x x x =+-若实数,a b 满足()0f a =,()0g b =则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<【答案】A 【解析】 【详解】试题分析:对函数()2x f x e x =+-求导得()=1x f x e '+,函数单调递增,()()010,110f f e =-=+,由()0f a =知01a <<,同理对函数2()ln 3g x x x =+-求导,知在定义域内单调递增,(1)-20g =<,由()0g b =知1b >,所以()0()g a f b <<.例11.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C. 【总结提升】1.在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.2.构造函数解不等式或比较大小一般地,在不等式中若同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的和、差、积、商的新函数,再借助导数探索新函数的性质,进而求出结果.常见构造的辅助函数形式有:(1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→()[]'f x x; (4)f ′(x )+f (x )→[e x f (x )]′; (5)f ′(x )-f (x )→()[]'x f x e. 题型五:根据函数的单调性求参数范围例12.(2014·全国·高考真题(文))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是A .(],2-∞-B .(],1-∞-C .[)2,+∞D .[)1,+∞【答案】D 【解析】 【详解】 试题分析:,∵函数()ln f x kx x =-在区间()1,+∞单调递增,∴在区间()1,+∞上恒成立.∴,而在区间()1,+∞上单调递减,∴.∴的取值范围是[)1,+∞.故选D .例13.(2019·北京·高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】 -1; (],0-∞. 【解析】 【分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围. 【详解】若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞例14.(2014·全国·高考真题(理))若函数()cos 2sin f x x a x =+在区间(,)62ππ内是减函数,则实数a 的取值范围是_______. 【答案】2a ≤ 【解析】()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫=-+=-+=-+∈ ⎪⎝'⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【总结提升】由函数的单调性求参数的取值范围的方法(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围.(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围. 题型六:利用导数研究函数的图象例15.(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【解析】 【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,2102164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D.例16.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.例17.(2017·浙江·高考真题)函数y ()y ()f x f x ==,的导函数的图象如图所示,则函数y ()f x =的图象可能是A .B .C .D .【答案】D 【解析】 【详解】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.【规律方法】函数图象的辨识主要从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 题型七:与函数单调性相关的恒成立问题例18.(2022·广东·执信中学高三阶段练习)已知函数 ()e xf x x =-,则 ()f x 的单调递增区间为________; 若对任意的()0,x ∞∈+, 不等式 ln 2e 1xx ax+-≥恒成立, 则实数 a 的取值范围为________.【答案】 (0,)+∞(填[)0,∞+亦可) 1(,]2-∞【解析】 【分析】求出函数导数,利用导数求函数单调区间,不等式恒成立可分离参数后求函数()e ln x g x x x x =⋅--的最小值,令ln t x x =+换元后可根据单调性求最值. 【详解】 ()1x f x e =-',令()0f x '>,可得()f x 的单调递增区间(0,)+∞ (或[)0+∞,亦可); ln 2e 1x x ax+-≥可化为2e ln x a x x x ≤⋅--. 令()e ln x g x x x x =⋅--=ln e e ln x x x x ⋅--=ln e (ln )x x x x +-+, 设ln t x x =+,则()e =-t h t t ,由()e xf x x =-在[)0+∞,上单调递增可知, 0()(0)e 01h t h ≥=-=,则21a ≤, 故解得12a ≤.故答案为:(0,)+∞(填[)0,∞+亦可);12a ≤例19.(2022·全国·高三专题练习)已知函数()()e ln xf x m x m =+∈R ,若对任意正数12,x x ,当12x x >时,都有()()1212f x f x x x ->-成立,则实数m 的取值范围是______. 【答案】[)0,∞+ 【解析】 【分析】令()()g x f x x =-,进而原题等价于()g x 在()0,∞+单调递增,从而转化为()e 10x mg x x'=+-≥,在()0,∞+上恒成立,参变分离即可求出结果.【详解】由()()1212f x f x x x ->-得,()()1122f x x f x x ->- 令()()g x f x x =-,∴()()12g x g x > ∴()g x 在()0,∞+单调递增,又∵()()e ln xg x f x x m x x =-=+-∴()e 10xmg x x'=+-≥,在()0,∞+上恒成立,即()1e x m x ≥- 令()()1e x h x x =-,则()()e 110xh x x '=-++<∴()h x 在()0,∞+单调递减,又因为()()01e 00h =-⨯=,∴0m ≥.故答案为:[)0,∞+.例20.(2010·全国·高考真题(理))设函数()21x f x e x ax =---.(1)若0a =,求()f x 的单调区间;(2)若当0x ≥时()0f x ≥恒成立,求a 的取值范围.【答案】(1) f (x )在(-∞,0)单调减少,在(0,+∞)单调增加;(2) a 的取值范围为(-∞,12]. 【解析】 【分析】 (1)a =0时,()1x f x e x=--,()1x f x e '=-.分别令f ′(x )<0,f ′(x )>0可求()f x 的单调区间;(2求导得到)f ′(x )=e x -1-2ax .由(1)知e x ≥1+x ,当且仅当x =0时等号成立.故问题转化为f ′(x )≥x -2ax =(1-2a )x ,从而对1-2a 的符号进行讨论即可得出结果. 【详解】 (1)a =0时,()1x f x e x=--,()1x f x e '=-.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加 (2)()12x f x e ax'-=-.由(1)知1x e x ≥+,当且仅当x =0时等号成立.故f ′(x )≥x -2ax =(1-2a )x ,从而当1-2a ≥0,即a ≤时,f ′(x )≥0(x ≥0),而f (0)=0,于是当x ≥0时,f (x )≥0.由1x e x ≥+ (x ≠0)得1x e x -≥- (x ≠0),从而当a >时,f ′(x )< 1x e -+2a (1x e --)=x e - (1x e -)(x e -2a ),故当x ∈(0,ln2a )时, f ′(x )<0,而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0, 综上可得a 的取值范围为(-∞,]. 【规律方法】处理此类问题,往往利用“构造函数法”、“分离参数法”.。
利用函数性质解不等式5大题型
利用函数性质解不等式5大题型高中数学解不等式主要分为两类,一类是利用不等式性质直接解出解集(如二次不等式,分式不等式,指对数不等式等);另一类是利用函数的性质,尤其是函数的单调性进行运算。
利用函数性质解不等式一般情况以选择题形式出现,考查的角度较多,除了基础的函数性质,有时候还需要构造函数结合导数知识,考验学生的观察能力和运用条件能力,难度较大。
一、利用单调性、奇偶性解不等式原理1、解()()f m f n <型不等式(1)利用函数的单调性,去掉函数符号“f ”,将“抽象”的不等式问题转化为“具体”的不等式问题求解;(2)若不等式一边没有函数符号“f ”,而是常数(如()<f m a ),那么我们应该将常数转化带有函数符号“f ”的函数值再解。
2、()f x 为奇函数,形如()()0f m f n +<的不等式的解法第一步:将()f n 移到不等式的右边,得到()()>-f m f n ;第二步:根据()f x 为奇函数,得到()()>-f m f n ;第三步:利用函数的单调性,去掉函数符号“f ”,列出不等式求解。
二、构造函数解不等式的技巧1、此类问题往往条件较零散,不易寻找入手点,所以处理这类问题要将条件与结论结合分析,在草稿上列出条件能够提供什么,也列出要得出结论需要什么,两者对接通常可以确定入手点;2、在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能具备乘除关系的函数,在构造时多进行试验与项的调整;3、此类问题处理的核心要素是单调性与零点,对称性和图象知识辅助手段,所以要能够确定构造函数的单调性,猜出函数的零点,那么问题便易于解决了。
三、利用函数性质解不等式的要点1、构函数:根据所解不等式的结构特征和已知条件构造相应的函数,把不等式看作一个函数的两个函数值大小比较问题;2、析性质:分析所构造函数的相关性质,主要包括函数定义域、单调性、奇偶性、周期性等;3、巧转化:根据函数的单调性,把函数值大小比较转化为某个单调区间内自变量大小比较;4、写解集:解关于自变量的不等式,写出解集。
利用函数的单调性证明具有条件a+b=1的一些不等式
易求 得 )的导数 为 : ) = f(
2 [
令 g : ()
一 巫
】
,0 <f< 1 , ( )
例 2 已知 a b∈R 且 a+6=1 求 证 :a+ , , , (
)+) 莩 ( ≥ 61
证明 . 构造函数 ):( )1一 + + (
求 ( 的 数 :( : 堑 得g ) 导 为g 去 f ,)
当 0 < < 1时 . f ) > 0 = f = >当 0 < £< l时 .
g( )早 碉 远 瑁 , t
例 5 设 8 6∈R 且 口+6=l求证 : + 1 , , ,
而 号< l, 1 ( >( 当 <时 >一 g 一 z ) 1
, =
口
D
r
,
例 3 已知 a 6∈R 且 a+b=1求证 :a+ , , , ( 时, 两边 相等 ) ,
) +( ≥ 2 6+ 1) 5
.
若 口一: l。寺 <≤ 令 =, 6 >≥ , 6号 1 0
且 a+b=1时 , 不等式 成立 , 原
野% 4 靴6 6 6髦 毛鸥 黾 娩 §9雪
中学 数学杂 志
21 00年第 3期
: _
:。 。
、 .0 . .
。 ’ ,I|
l _ … -
,
利用函数的单调性证明具有条件
甘肃成县陇南师范高等专科学校数 学系
一
=1的一些不等式
720 450 东洪平
+
易求得 )的导数 为 :
,
+ +( +I ) ≥ 1一 故 当 ≥ 1时 ( ) 。
,
易 证 <<时 > 当 < 验 当 l ( 0 丢 )j
高中数学讲义:利用函数性质与图像解不等式
利⽤函数性质与图像解不等式高中阶段解不等式大体上分为两类,一类是利用不等式性质直接解出解集(如二次不等式,分式不等式,指对数不等式等);一类是利用函数的性质,尤其是函数的单调性进行运算。
相比而言后者往往需要构造函数,利用函数单调性求解,考验学生的观察能力和运用条件能力,难度较大。
本章节以一些典型例题来说明处理这类问题的常规思路。
一、基础知识:(一)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x "Î<Û<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x $Î=,则()0,x a x Î时,()0f x <;()0,x x b Î时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+(2)()()()()()()()'''2f x f x g x f x g x g x g x æö-=ç÷èø4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点。
所以处理这类问题要将条件与结论结合着分析。
在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么。
两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数。
在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图像只是辅助手段。
所以如果能够确定构造函数的单调性,猜出函数的零点。
数学函数不等式知识点总结
数学函数不等式知识点总结一、常见的函数不等式类型在数学中,函数不等式涉及到各种类型的函数,常见的函数类型包括线性函数、二次函数、指数函数、对数函数等。
这些函数类型在不等式中都有着各自的特点和解法方法。
接下来我们将针对这些常见的函数类型分别进行介绍。
1.1 线性函数不等式线性函数的一般形式为:f(x) = ax + b,其中a和b为常数,且a≠0。
线性函数不等式的形式为:ax + b > 0或者ax + b < 0。
解线性函数不等式最常用的方法就是通过解一元一次不等式,首先将不等式化为一元一次不等式,然后通过移项、乘除以常数等基本操作进行解答。
1.2 二次函数不等式二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
二次函数不等式的形式为:ax^2 + bx + c > 0或者ax^2 + bx + c < 0。
解二次函数不等式的方法通常有两种,一种是通过画出二次函数的图像,找出函数的取值范围;另一种是通过配方法或者公式法解出二次函数的解析式。
1.3 指数函数不等式指数函数的一般形式为:f(x) = a^x,其中a为正实数且a≠1。
指数函数不等式的形式为:a^x > b或者a^x < b。
解指数函数不等式的方法通常是通过取对数进行化简,然后再求解对数不等式的解。
1.4 对数函数不等式对数函数的一般形式为:f(x) = loga(x),其中a为正实数且a≠1。
对数函数不等式的形式为:loga(x) > b或者loga(x) < b。
解对数函数不等式的方法通常也是通过取对数进行化简,然后再求解对数不等式的解。
需要注意的是,对数函数的定义域为正实数,所以在解对数函数不等式时需要考虑函数的定义域。
二、函数不等式的解法方法解函数不等式的方法通常有几种常见的技巧和步骤,下面我们将对这些解法方法进行介绍。
2.1 移项法移项法是解一元一次不等式的常用方法,通过将不等式中的项移到一边,使得不等式变为一个不含未知数的式子,然后再求解不等式。
利用单调性处理不等式问题
利用单调性处理不等式问题函数的单调性是高考的重点和热点内容之一,特别是单调性质的应用更加突出,通过以下几个例题帮助同学们学会怎样利用单调性解与不等式结合的试题,掌握基本方法,形成应用意识.一、运用函数的单调性比较大小例1 如果0<a <1,那么下列不等式中正确的是( )A.(1-a )31>(1-a )21B.log (1-a )(1+a )>0C.(1-a )3>(1+a )2D.(1-a )1+a >1 解析:因函数(1)x y a =-在R 上是单调递减函数,故(1-a)31>(1-a)21.选择A.例2 已知0<a <b <1,设a a ,a b ,b a ,b b 中的最大值是M ,最小值是m ,则M = ,m =_________.解析:由x y a =在R 上为减函数得a b a a >;由x y b =在R 上为减函数得a b b b >;由a y x =在R +上为增函数得a a b a >;由b y x =在R +上为增函数得b b b a >,即最小值为b a ;最大值为ab 。
注意:我们在比较对数式和指数式的大小时往往利用幂函数、指数函数、对数函数的单调性来比较。
二、运用函数的单调性定义的逆用脱去“f ”号。
例3 已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,求x 的范围。
解析:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即x 的范围是{x |2<x <6}.注意:借此类问题时,千万不能忽视函数的定义域。
函数专题:利用函数单调性与奇偶性解不等式的6种常见考法-【题型分类归纳】
函数专题:利用函数单调性与奇偶性解不等式的6种常见考法一、单调性定义的等价形式(1)函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x f x f x x .(2)函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x f x f x x .二、定义法判断函数奇偶性判断()f x -与()f x 的关系时,也可以使用如下结论:如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数; 如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 三、利用单调性、奇偶性解不等式原理 1、解()()<f m f n 型不等式(1)利用函数的单调性,去掉函数符号“f ”,将“抽象”的不等式问题转化为“具体”的不等式问题求解;(2)若不等式一边没有函数符号“f ”,而是常数(如()<f m a ),那么我们应该将常数转化带有函数符号“f ”的函数值再解。
函数的单调性
g(x)max g(1)=本-1题是恒成立问题,用到一个重要的转化:
m≥f(x)恒成立 m f(x)max
a〉- 1
m f(x)恒成立 m f(x)min
练习6:已知函数f(x)=2ax - x3,x (0,1],a 0, 若f(x)在(0,1]上是增函数,求a的取值范围。
A. ( , 3 ) B. ( , 2 ) C. ( 3 , 5 ) D. (2 , 3 )
22
22
解: y' x'cos x x(cos x)' (sin x)'
cos x xsin x cos x xsin x
y
y sin x
2
o
3 x
如图,当x ( , 2 )时,sin x 0, x sin x 0,
y y f (x)
2
o1
x o 12
x
(C)
(D)
例5:求 f (x) 2x3 6ax2 7(a 0) 的单调减区间
解:
f (x)=6x2 12ax
令f (x) 0,即6x2 12ax 0 即x(x 2a) 0
(1)当2a 0时,即a 0, 则0 x 2a
(1)设x1、x2是给定区间的任意两个 值,且x1< x2.
(2)作差f(x1)-f(x2),并变形.
(3)判断差的符号(与0比较),从而 得函数的单调性.
例1:讨论函数y=x2-4x+3的单调性.
解:取x1<x2∈R, f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3) =(x1+x2)(x1-x2)-4(x1-x2) = (x1-x2)(x1+x2-4) 则当x1<x2<2时, x1+x2-4<0, f(x1)>f(x2), 那么 y=f(x)单调递减。 当2<x1<x2时, x1+x2-4>0, f(x1)<f(x2), 那么 y=f(x)单调递增。 综上 y=f(x)单调递增区间为(2,+∞) y=f(x)单调递减区间为(-∞,2)。
函数的单调性(2)全面版
因此,f(x)的递增区间是: (2k2,2k2)k (Z);
递减区间是:
(2k23,2k43)k (Z).
3
3
(2)f(x)=x/2-ln(1+x)+1
解:函数的定义域是(-1,+∞), f(x)1 1 x1 .
2 1x 2(1x)
由 f(x)0即 2(x11x)0,得x<-1或x>1.
单调函数的图象特征
G=(a,b)
y
y
减函 数
增函 数
oa
bx
oa
bx
若 f(x) 在G上是增函数或减函数, 则 f(x) 在G上具有严格的单调性。
G 称为单调区间
二、新课:
我们已经知道,曲线y=f(x)的切线的斜率就是函数y=
f(x)的导数.
从函数y=x2-4x+3的图像可以看到:
在区间(2,+∞)内,切线的斜
例1:确定函数f(x)=x2-2x+4在哪个区间内是增函数,哪个 区间内是减函数.
解: f(x)2x2.
由2x-2>0,解得x>1,因此,当 x(1,)时,f(x)是增函 数; 令2x-2<0,解得x<1,因此,当 x(,1)时,f(x)是减函 数. 例2:讨论f (x)=x3-6x2+9x-3的单调性.
[ 1 , ) 3
变式:设f(x)=ax3+x恰有三个单调区间,试确定a的取值 范围,并求其单调区间.
故a<0,其单调区间是: 单调递增区间:( 1 , 1 ).
3a 3a
单调递减区间:
( ,
1 )和 (
3a
1 , ). 3a
例4:若函数 f(x)1x31a2x(a1)x1在区间 32
函数单调性的应用
2
a≥(2-a)×1+1,
7. 已知函数 () = ቐ
( − 2), ≥ 2,
满足对任意的实数 1 ≠ 2 ,都有
− 1, < 2
13
(−∞, ]
8
(1 )−(2 )
< 0 成立,则实数 的取值范围为_______________.
1
( )
2
1 −2
2
1
,+∞.
2
a(x+2)+1-2a
1-2a
方法二:f(x)=
=a+
,∵f(x)在(-2,+∞)上单调递
x+2
x+2
1
增,∴1-2a<0,∴a>2.
(1,2)
4. 已知函数 y=loga(2-ax)在[0,
1]上是减函数,
则实数 a 的取值范围是________.
【解析】 设 u=2-ax,∵a>0,且 a≠1,
2 − > 0,
[解析] 由已知可得 ൞ + 3 > 0,
解得 −3 < < −1 或 > 3 ,所以实数 的
2 − > + 3,
取值范围为 (−3, −1) ∪ (3, +∞) .
1
2. 已知函数 () 为 上的减函数,则满足 (| |) < (1) 的实数 的取值范围
− 2 < 0,
1 2
[解析] 由题意知函数 () 是 上的减函数,于是有 ൝
( − 2) × 2 ≤ ( ) − 1,
2
由此解得 ≤
13
13
,即实数 的取值范围是 (−∞, ] .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时有: (2)当 0<a < 1时有: ) 时有
3x − 2 > 0 2x > 0
2 x> 3 x>0
3x − 2 < 2 x
∴
x<2
2 < x< 2 3
时有: 解: 1)当 a > 1时有: ( ) 时有
3x − 2 > 0 2x > 0
( a > 0,且a ≠ 1 ) 且
已知函数 f(x)=loga (3 x − 2)
2 x> 3 x>0
x>2
3x − 2 > 2 x
∴x > 2
若 f ( x ) > loga ( 2x ), 求x 的取值范围
x
x < 0 或 f ( x) > f (−1)
或-1<x<0
的解为x>1 ∴f(x)>0的解为 的解为
5. 已知偶函数 f ( x ) 的定义 域为R, 满足条件: 域为 满足条件 上是增函数 (1)在 [ 0, +∞ ) ) 2) (2) f ( 1 ) = 0 则不等式f 则不等式 ( x ) > 0的解为 的解为 X>1或 x<–1
4. 已知奇函数 f ( x ) 的定义 ∪ 域为( − ∞ , 0) (0 , +∞ ) 且满足条件: 且满足条件 (1)在 0,+∞) ) ( 上是增函数 (2)f ( 1 ) = 0 ) 则不等式f 则不等式 ( x ) > 0的解为 的解为 X > 1 或 -1< x <0
由已知得f y 在 解: 由已知得 ( x )在 − ∞, 0) ( 上也是增函数(可证), 上也是增函数(可证), 且 f ( -1 ) = 0 x > 0 ∴有 x 1 -1 f (0 ) > f (1)
⇔ f(x1)>f(x2) ⇔
; ; ; ;
x1 = x2 x1 > x2
(x1 = x2 ) (x 1 < x2 )
提高型练习
2. 求函数
y = log 1 1 ( 2 − x )
2
的定义域
解:依题意有 依题意有
2–x <1 即 2–x>0 ∴所求函数的定义 域为 { x| 1 < x < 2}
岳阳市第十四中学
利用函数的单调性解不等式
回顾指数函数、 回顾指数函数、对数函数的图像与性质
指数函数 y = a x 0<a<1 y a>1 定义域: 定义域:R 定义域:R 定义域: 值域: 值域 ( 0 , + ∞ ) 值 域:(0 , + ∞ ) 过点(0 1),即 过点(0 ,1),即x=0 时 y=1 x a>1时 a>1时,在R上是增函数 0<a<1时 0<a<1时,在R上是减函数
1 0
图
像
性
质
回顾指数函数、 回顾指数函数、对数函数的图像与性质
对数函 数 y = logax
y
a>1
定义域:( 0 , + ∞ ) 定义域: 值 域:R
过点(1 0)即 过点(1 ,0)即x = 1时y = 0 1时 0 1 x a > 1 时: )上是增函数 在( 0 , + ∞ )上是增函数 0 < a < 1时: 1时 )上是减函数 在( 0 , + ∞ )上是减函数
log 1 (2 − x) > 0
2
log 1 (3x − 1) > −3 3. 解不等式 :
2
解:原不等式等价于 log 1 (3x − 1) > log 1 8
3 −1 > 0 3x − 1 < 8
x
2
3x > 1
2
即
3x < 9
∴所求不等式的解集 为{x| 0 < x < 2}
性 质
0<a<1
图
像
基础型练习
1. 解下列不等式 (1)2 x > 4 ) (2)2 -x < 3 ) (3)lgx > 2 ) (4) log 1 x > 2 )
2
解: x > 2 解: x > log 1 3
2
解: x > 100 解:0 < x <
1 4
1 ∴0 ≤ x < 2
归纳方法
1 2
观察不等式两端 的特点, 的特点, 化为同类函数
借助函数的单调 去掉“ 性,去掉“ f “
归纳方法
3
注意定义域及单调 区间(特别是对数 区间( 函数中真数大于0) 函数中真数大于 )
岳阳市第十四中学
谢谢大家!ຫໍສະໝຸດ 思考题解:∵ 0∈[-1,1] ∈ 已知奇函数f(x)在定义域 已知奇函数 在定义域 [-1,1]上是减函数,解不 , 上是减函数 上是减函数, 等式f 等式 ( 2x- 1 ) > 0 ∴有 ∴ f(0) = 0
− 1 ≤ 2 x − 1 ≤ 1 2 x − 1 < 0
小结: 小结:
指数函数、 指数函数、对数函数不等式的解法 1. 将不等式两边变成底数相同; 将不等式两边变成底数相同; 2. 利用函数单调性,注意函数的定义域; 利用函数单调性,注意函数的定义域; 3. 若y=f(x)在区间 上是增 减)函数,则对于 1,x2 ∈D, 在区间D上是增 函数, 在区间 上是增(减 函数 则对于x 2 有: (1) f(x1)<f(x2 )⇔ x1 < x2 (x1 > x 2) (2) f(x1)=f(x2) (3)