人教版七年级数学下册第六章 实数练习题

合集下载

人教版初1数学7年级下册 第6章(实数)综合练习题(含解析)

人教版初1数学7年级下册 第6章(实数)综合练习题(含解析)

人教版初1数学7年级下册第6章(实数)综合练习题一.选择题(共10小题)1.(2020秋•沙坪坝区校级期末)边长为1的正方形从如图所示的位置开始在数轴上顺时针滚动,当正方形某个顶点落在数字2023时停止运动,此时与2023重合的点是( )A.点A B.点B C.点C D.点O2.(2021•霍邱县一模)数轴上A,B,C,D四点中,两点之间的距离最接近于+1的是( )A.点A和点B B.点B和点C C.点C和点D D.点A和点C 3.(2021春•郾城区期末)下列说法错误的是( )A.﹣1的立方根是﹣1B.3的平方根是C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和14.(2021•福州模拟)若实数a,b,c,d在数轴上的对应点的位置如图所示,则①a>﹣4;②b+d<0;③|a|<c2;④c<的结论中,正确的是( )A.①②B.①④C.②③D.③④5.(2021•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a>﹣2B.|a|>b C.a+b>0D.b﹣a<0 6.(2021春•仓山区校级期中)下列说法正确的是( )A.等于±2B.2和﹣都是实数C.无理数和数轴上的点一一对应D.7.(2021•东莞市二模)如图所示,数轴上A,B两点表示的数分别1,,则⊙A的直径长为( )A.﹣1B.1﹣C.2﹣2D.2﹣28.(2021春•荣昌区校级月考)对于实数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当b<a时,min{a,b}=b,例如:min{1,﹣2}=﹣2.已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则a﹣b的立方根为( )A.﹣1B.1C.﹣2D.29.(2021春•福田区校级期中)对于实数a和b,定义两种新运算:①a*b=(|a﹣b|+a+b),②a⊗b=a11b,则(5⊗3)*(3⊗5)=( )A.355B.533C.533﹣355D.533+35510.(2021春•武昌区期中)已知≈0.5981,≈1.289,≈2.776,则≈( )A.27.76B.12.89C.59.81D.5.981二.填空题(共10小题)11.(2021•福州模拟)已知a是整数,且a<<a+1,则a的值是 .12.(2019秋•鹿邑县期末)已知A,B,C是数轴上的三个点,且C在B的左侧.点A,B 示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是 .13.(2019秋•东台市期末)在,3.14,0,0.101 001 000 1…,中,无理数有 个.14.(2020秋•朝阳区校级期中)若的小数部分为 .15.(2020秋•淮阴区期中)如图,正方形OABC的边OC落在数轴上,点C表示的数为1,点P表示的数为﹣1,以P点为圆心,PB长为半径作圆弧与数轴交于点D,则点D表示的数为 .16.(2020春•西城区校级期中)已知4a+1的算术平方根是3,则a﹣10的立方根是 .17.(2018秋•平谷区期末)已知,a,b是正整数.(1)若是整数,则满足条件的a的值为 ;(2)若是整数,则满足条件的有序数对(a,b)为 .18.(2015秋•萧山区期末)一个长为3,宽为2的长方形从表示﹣1的点开始绕着逆时针翻转90°到达E点,则E点所表示的数是 .19.(2009•连云港模拟)元宵联欢晚会上,魔术师刘谦表演了一个魔术,用几个小正方形拼成一个大的正方形,现有四个小正方形的面积分别为a、b、c、d,且这四个小正方形能拼成一个大的正方形,则这个大的正方形的边长为 .20.已知a、b是有理数,x是无理数,如果是有理数,则等于 .三.解答题(共10小题)21.(2020秋•北碚区校级期末)众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.【提示:b3﹣a3=(b﹣a)(b2+ab+a2).】(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.22.(2021春•西城区校级期中)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1.(1)对10进行1次操作后变为 ,对200进行3次操作后变为 ;(2)对实数m恰进行2次操作后变成1,则m的取值范围是 .(3)恰需要进行3次操作后变为1的所有正整数中,最大的是 .23.(2021春•黄埔区期中)已知一个正数m的两个不同的平方根是2a+3和1﹣3a,求m的值.24.(2021春•长白县期中)判断下面各式是否成立①;②;③.探究:(1)你判断完上面各题后,发现了什么规律?并猜想:= (2)用含有n的代数式将规律表示出来,说明n的取值范围,并给出证明.25.(2020秋•未央区期中)若含根号的式子a+b可以写成式子m+n的平方(其中a,b,m,n都是整数,x是正整数),即a+b=(m+n)2,则称a+b为子母根式,m+n为a+b的子母平方根,例如,因为3+2=(1+)2,所以1是3+2的子母平方根.(1)已知2+是a+b的子母平方根,则a= ,b= .(2)若m+n是a+b的子母平方根,用含m,n的式子分别表示a,b.(3)已知21﹣12是子母根式,直接写出它的一个子母平方根.26.(2020秋•越秀区期末)如图,数轴上点A,C对应的实数分别为﹣4和4,线段AC=8cm,AB=2cm,CD=4cm,若线段AB以3cm/秒的速度向右匀速运动,同时线段CD以1cm/秒的速度向左匀速运动.(1)问运动多少秒时BC=2cm?(2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.27.(2020秋•吉安期中)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而1<<2于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是 ,小数部分是 ;(2)如果5+的小数部分为a,5﹣的整数部分为b,求a+b的值.28.(2020秋•广安期末)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离 .(2)若数轴上表示点x的数满足|x﹣1|=3,那么x= .(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|= .29.(2021春•硚口区期中)某同学想用一块面积为400cm2的正方形纸片,(如图所示)沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2,请你用所学过的知识来说明能否用这块纸片裁出符合要求的纸片.30.(2019秋•锦江区校级期末)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,当点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,当点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|.回答下列问题:(1)数轴上表示1和6的两点之间的距离是 数轴上表示2和﹣3的两点之间的距离是 .(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是 ,若|AB|=3,那么x为 .(3)当x是 时,代数式|x+2|+|x﹣1|=7.(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q 同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点?(请写出必要的求解过程).参考答案一.选择题(共10小题)1.(2020秋•沙坪坝区校级期末)边长为1的正方形从如图所示的位置开始在数轴上顺时针滚动,当正方形某个顶点落在数字2023时停止运动,此时与2023重合的点是( )A.点A B.点B C.点C D.点O【考点】实数与数轴.【专题】数形结合;数与式;应用意识.【分析】滚动四次一个循环,用2023除以4,商即是循环的次数,由余数即可得到与2023重合的点.【解答】解:∵2023÷4=504......3,∴与2023重合的点即是滚动后与3重合的点,而与1重合的是C,与2重合的是B,与3重合的是A,∴与2023重合的是A,故选:A.【点评】本题考查数轴上点表示的数,解题的关键是理解与2023重合的点即是与3重合的点.2.(2021•霍邱县一模)数轴上A,B,C,D四点中,两点之间的距离最接近于+1的是( )A.点A和点B B.点B和点C C.点C和点D D.点A和点C 【考点】实数与数轴;估算无理数的大小.【专题】实数;二次根式;应用意识.【分析】先估算+1的大小,然后根据选项即可判断.【解答】解:∵.∴.AB=﹣1﹣(﹣2.5)=1.5,BC=1﹣(﹣1)=2、CD=3.5﹣1=2.5、AC=1﹣(﹣2.5)=3.5.故+1最接近的是点C和点D之间的距离.故选:C.【点评】本题考查无理数的估算大小、实数与数轴的关系.关键在于利用数轴,找到点之间的距离.3.(2021春•郾城区期末)下列说法错误的是( )A.﹣1的立方根是﹣1B.3的平方根是C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和1【考点】平方根;算术平方根;立方根.【专题】运算能力.【分析】根据立方根的定义和求法,平方根的定义和求法,以及算术平方根的定义和求法,逐项判定即可.【解答】解:A、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;B、3的平方根是±,原说法错误,故此选项符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:B.【点评】此题考查了立方根、平方根、算术平方根.解题的关键是熟练掌握立方根的定义,平方根的定义,以及算术平方根的定义.4.(2021•福州模拟)若实数a,b,c,d在数轴上的对应点的位置如图所示,则①a>﹣4;②b+d<0;③|a|<c2;④c<的结论中,正确的是( )A.①②B.①④C.②③D.③④【考点】实数与数轴.【专题】实数;运算能力.【分析】①根据在数轴上,右边的点表示的数比左边的大即可判断;②根据异号两数的加法法则判断;③注意到c是一个真分数,所以c2<1,而|a|>3,从而作出判断;④先判断c2与d的大小,再开方即可.【解答】解:①根据在数轴上,右边的点表示的数比左边的大可知:a>﹣1,符合题意;②异号两数相加,取绝对值较大数的符号,取d的符号正号,所以b+d>0,不符合题意;③∵|a|>3,c2<1,∴|a|>c2,不符合题意;④∵c2<1,d>2,∴c2<d,∴c<,符合题意;故选:B.【点评】本题考查了实数与数轴,解题的关键是注意到c是一个真分数,所以c2<1.5.(2021•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a>﹣2B.|a|>b C.a+b>0D.b﹣a<0【考点】绝对值;实数与数轴.【专题】实数;运算能力;推理能力.【分析】根据图象逐项判断对错.【解答】解:A.由图象可得点A在﹣2左侧,∴a<﹣2,A选项错误,不符合题意.B.∵a到0的距离大于b到0的距离,∴|a|>b,B选项正确,符合题意.C.∵|a|>b,a<0,∴﹣a>b,∴a+b<0,C选项错误,不符合题意.D.∵b>a,∴b﹣a>0,D选项错误,不符合题意.故选:B.【点评】本题考查数轴与绝对值,解题关键是掌握数轴上点的意义及绝对值的含义.6.(2021春•仓山区校级期中)下列说法正确的是( )A.等于±2B.2和﹣都是实数C.无理数和数轴上的点一一对应D.【考点】算术平方根;实数与数轴;实数大小比较.【专题】实数;推理能力.【分析】A,根据算术平方根的定义判断.B,根据实数的定义判断.C,根据实数与数轴的对应关系判断.D,根据无理数比较大小判断.【解答】解:=2,A选项错误,不符合题意.2和﹣都是实数,B选项正确,符合题意.实数和数轴上的点一一对应,C选项错误,不符合题意.>1,D选项错误,不符合题意.故选:B.【点评】本题考查实数的大小比较与算式平方根,解题关键是掌握实数与平方根,算术平方根的意义.7.(2021•东莞市二模)如图所示,数轴上A,B两点表示的数分别1,,则⊙A的直径长为( )A.﹣1B.1﹣C.2﹣2D.2﹣2【考点】实数与数轴.【专题】数形结合;应用意识.【分析】根据已知条件可以求出线段AB的长度,然后根据直径等于2倍的半径,即可解答.【解答】解:∵数轴上A、B两点表示的数分别为1和,∴AB=﹣1,∵⊙A的直径为2AB=2﹣2.故选:C.【点评】本题考查知识点为求数轴上两点间的距离,解本题关键,求两点间的距离用大数减去小数,圆的直径等于2倍的半径.8.(2021春•荣昌区校级月考)对于实数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当b<a时,min{a,b}=b,例如:min{1,﹣2}=﹣2.已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则a﹣b的立方根为( )A.﹣1B.1C.﹣2D.2【考点】算术平方根;立方根;实数大小比较.【专题】数与式;运算能力.【分析】根据a,b的范围即可求出a﹣b的立方根.【解答】解:∵min{,a}=a,min{,b}=.∴a<,b.∵a,b是两个连续的正整数.∴a=5,b=6.∴a﹣b=﹣1.∴a﹣b的立方根等于﹣1.故选:A.【点评】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.9.(2021春•福田区校级期中)对于实数a和b,定义两种新运算:①a*b=(|a﹣b|+a+b),②a⊗b=a11b,则(5⊗3)*(3⊗5)=( )A.355B.533C.533﹣355D.533+355【考点】实数的运算.【专题】实数;运算能力.【分析】直接利用根据新定义进而将原式变形得出答案.【解答】解:(5⊗3)*(3⊗5)=533*355=(|533﹣355|+533+355)=(355﹣533+533+355)=×2×355=355.故选:A.【点评】此题主要考查了实数运算,正确将原式变形是解题关键.10.(2021春•武昌区期中)已知≈0.5981,≈1.289,≈2.776,则≈( )A.27.76B.12.89C.59.81D.5.981【考点】立方根.【专题】实数;运算能力.【分析】先将化简成含有的式子再计算.【解答】解:==×=10≈2.776×10=27.76.故选:A.【点评】本题考查求立方根的计算,解题关键是熟练掌握根式运算方法.二.填空题(共10小题)11.(2021•福州模拟)已知a是整数,且a<<a+1,则a的值是 3 .【考点】估算无理数的大小.【专题】实数;运算能力.【分析】由27<36<64可得<<,从而得出a的值.【解答】解:∵<<,∴3<<4,∴a=3.故答案为3.【点评】本题考查无理数的估算,解题关键是将a与a+1转化与进行比较.12.(2019秋•鹿邑县期末)已知A,B,C是数轴上的三个点,且C在B的左侧.点A,B 示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是 ﹣1 .【考点】实数与数轴.【专题】数形结合.【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=BC﹣OB=4﹣3=1,∵C在B的左侧,∴点C表示的数是﹣1.故答案为:﹣1.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)13.(2019秋•东台市期末)在,3.14,0,0.101 001 000 1…,中,无理数有 2 个.【考点】无理数.【专题】常规题型.【分析】根据无理数的定义求解即可.【解答】解:在,3.14,0,0.101 001 000 1…,中,,0.101 001 000 1…是无理数,无理数有2个.故答案为:2.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.14.(2020秋•朝阳区校级期中)若的小数部分为 ﹣3 .【考点】估算无理数的大小.【分析】先估算出的范围,再得出答案即可.【解答】解:∵3<<4,∴的整数部分为3,小数部分为﹣3,故答案为:﹣3.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.15.(2020秋•淮阴区期中)如图,正方形OABC的边OC落在数轴上,点C表示的数为1,点P表示的数为﹣1,以P点为圆心,PB长为半径作圆弧与数轴交于点D,则点D表示的数为 ﹣1 .【考点】实数与数轴;勾股定理.【分析】根据勾股定理求出PB的长,即PD的长,再根据两点间的距离公式求出点D 对应的数.【解答】解:由勾股定理知:PB===,∴PD=,∴点D表示的数为﹣1.故答案是:﹣1.【点评】此题考查了正方形的性质,勾股定理和实数与数轴,得出PD的长是解题的关键.16.(2020春•西城区校级期中)已知4a+1的算术平方根是3,则a﹣10的立方根是 ﹣2 .【考点】算术平方根;立方根.【分析】根据算术平方根定义得出4a+1=9,求出a=2,求出a﹣10的值,再根据立方根定义求出即可.【解答】解:∵4a+1的算术平方根是3,∴4a+1=9,∴a=2,∴a﹣10的立方根是﹣2,故答案为:﹣2.【点评】本题考查了平方根,立方根,算术平方根的应用,解此题的关键是能关键题意求出a的值,难度适中.17.(2018秋•平谷区期末)已知,a,b是正整数.(1)若是整数,则满足条件的a的值为 3 ;(2)若是整数,则满足条件的有序数对(a,b)为 (3,7)或(12,28) .【考点】估算无理数的大小.【专题】实数.【分析】(1)依据是整数,可得=1,即可得出满足条件的a的值为3;(2)依据若是整数,分两种情况即可得出满足条件的有序数对(a,b)为(3,7)或(12,28).【解答】解:(1)若是整数,则=1,∴满足条件的a的值为3,故答案为:3;(2)若是整数,则①当a=3,b=7时,=+=2;②设a=3×n2,则=,∴=,∴,∴b=,∵b是正整数,∴(n﹣1)2=1,即n=2,∴当a=12,b=28时,=+=+=1,满足条件的有序数对(a,b)为:(3,7)或(12,28),故答案为:(3,7)或(12,28).【点评】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,分情况讨论是解决第(2)问的难点.18.(2015秋•萧山区期末)一个长为3,宽为2的长方形从表示﹣1的点开始绕着逆时针翻转90°到达E点,则E点所表示的数是 ﹣3 .【考点】实数与数轴.【分析】根据两点间的距离公式可求E点所表示的数.【解答】解:﹣1﹣2=﹣3.故E点所表示的数是﹣3.故答案为:﹣3.【点评】此题考查了实数与数轴,关键是熟练掌握两点间的距离公式.19.(2009•连云港模拟)元宵联欢晚会上,魔术师刘谦表演了一个魔术,用几个小正方形拼成一个大的正方形,现有四个小正方形的面积分别为a、b、c、d,且这四个小正方形能拼成一个大的正方形,则这个大的正方形的边长为 .【考点】算术平方根.【专题】应用题;压轴题.【分析】利用正方形的面积公式计算即可求解.【解答】解:设大正方形的边长为x,则它的面积为x2,在本题中大正方形的面积为四个小正方形面积的和有x2=a+b+c+d,∴x=故答案为:.【点评】本题主要考查了利用算术平方根的定义解决实际问题,主要利用了正方形的面积公式和算术平方根的概念求解.20.已知a、b是有理数,x是无理数,如果是有理数,则等于 ﹣ .【考点】无理数.【专题】创新题型.【分析】先对分式进行化简,由于分式的结果是有理数,设分式的结果为m,得到关于m的方程,由m、a、b是有理数,x是无理数,确定m的系数和结果均为0,求出m和的值.【解答】解:==∵x是无理数,∴x﹣2≠0,所以原式=∵是有理数,设=m,则4bmx+2017m=3ax﹣2018整理,得3a﹣4mb=因为m、a、b是有理数,x是无理数,∴解得m=﹣,==﹣=﹣【点评】本题考查了分式的化简、及无理数、有理数的相关知识,题目难度较大,掌握有理数除以无理数若等于有理数,则该有理数一定为0是解决本题的关键.三.解答题(共10小题)21.(2020秋•北碚区校级期末)众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.【提示:b3﹣a3=(b﹣a)(b2+ab+a2).】(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.【考点】实数与数轴.【专题】数与式;推理能力.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【解答】解:(1)∵133﹣113≠12,∴12不是复合数,设“正点”P所表示的数为x(x为正整数),则a=x﹣1,b=x+1,∴(x+1)3﹣(x﹣1)3=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除.(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,∴m2﹣n2=7,∵m,n都是正整数,∴,∴,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点评】本题是新定义题,主要考查学生的阅读理解能力,解决本题的关键是掌握“复合数”的定义.22.(2021春•西城区校级期中)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1.(1)对10进行1次操作后变为 3 ,对200进行3次操作后变为 1 ;(2)对实数m恰进行2次操作后变成1,则m的取值范围是 4≤m<16 .(3)恰需要进行3次操作后变为1的所有正整数中,最大的是 255 .【考点】估算无理数的大小.【专题】创新题型;能力层次.【分析】(1)根据[a]的含义和无理数的估计可求.(2)根据[a]的含义倒推m的范围.(3)根据[a]的含义求出这个数的范围,再求最大值.【解答】解:(1)[]=3.200进行第一次操作:[]=14,第二次操作后:[]=3.第三次操作后:[]=1.故答案为:3,1.(2)∵[x]=1.∴1≤x<2.∴1≤<4.∴1≤m<16.∵操作两次.∴≥2.∴m≥4.∴4≤m≤16.故答案为:4≤m<16.(3)设这个数是p,∵[x]=1.∴1≤x<2.∴1≤<2.∴1≤m<4.∴1≤<16.∴1≤p<256.∵3次操作,故p≥16.∴16≤p<256.∵p是整数.∴p的最大值为255.故答案为:255.【点评】本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.23.(2021春•黄埔区期中)已知一个正数m的两个不同的平方根是2a+3和1﹣3a,求m的值.【考点】平方根.【专题】二次根式;运算能力.【分析】一个正数的两个平方根互为相反数,根据它们的和为0,求出a的值,然后求出平方根,最后根据平方根的平方求出m的值.【解答】解:根据题意得:(2a+3)+(1﹣3a)=0,2a+3+1﹣3a=0,﹣a=﹣4,a=4,∴2a+3=2×4+3=11,∴m=112=121.【点评】这道题考查平方根的定义,一个正数的两个平方根之间的关系,一个正数和它的平方根的关系,解题的关键是这两个平方根互为相反数,它们的和为0.24.(2021春•长白县期中)判断下面各式是否成立①;②;③.探究:(1)你判断完上面各题后,发现了什么规律?并猜想:= 5 (2)用含有n的代数式将规律表示出来,说明n的取值范围,并给出证明.【考点】算术平方根.【专题】规律型.【分析】(1)利用已知得出=,即可得出命题正确,同理即可得出其他正确性;(2)利用(1)的方法,可以得出规律,并加以证明即可.【解答】解:(1)①;==2;②;==3;③,==4;∴=5;(2)∴=n,证明:===n.∴=n(n≥2).【点评】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键.25.(2020秋•未央区期中)若含根号的式子a+b可以写成式子m+n的平方(其中a,b,m,n都是整数,x是正整数),即a+b=(m+n)2,则称a+b为子母根式,m+n为a+b的子母平方根,例如,因为3+2=(1+)2,所以1是3+2的子母平方根.(1)已知2+是a+b的子母平方根,则a= 7 ,b= 4 .(2)若m+n是a+b的子母平方根,用含m,n的式子分别表示a,b.(3)已知21﹣12是子母根式,直接写出它的一个子母平方根.【考点】平方根.【专题】新定义;实数;符号意识;运算能力.【分析】(1)由(2+)2=a+b,即7+4=a+b,从而得出答案;(2)由(m+n)2=a+b,即(m2+6n2)+2mn=a+b,从而得出答案;(3)由21﹣12=32﹣2×2×3+(2)2=(3﹣2)2,根据子母平方根的定义可得答案.【解答】解:(1)根据题意知(2+)2=a+b,∴4+4+3=a+b,即7+4=a+b,∴a=7,b=4,故答案为:7,4;(2)根据题意知(m+n)2=a+b,则m2+2mn+6n2=a+b,即(m2+6n2)+2mn=a+b,∴a=m2+6n2,b=2mn;(3)∵21﹣12=32﹣2×2×3+(2)2=(3﹣2)2,∴3﹣2是21﹣12的子母根式.【点评】本题主要考查平方根,解题的关键是掌握子母平方根的定义和完全平方公式.26.(2020秋•越秀区期末)如图,数轴上点A,C对应的实数分别为﹣4和4,线段AC=8cm,AB=2cm,CD=4cm,若线段AB以3cm/秒的速度向右匀速运动,同时线段CD以1cm/秒的速度向左匀速运动.(1)问运动多少秒时BC=2cm?(2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.【考点】实数与数轴;一元一次方程的应用.【专题】数与式;几何直观;推理能力.【分析】(1)设运动t秒时,BC=2cm,然后分点B在点C的左边和右边两种情况讨论,根据题意列出方程求解即可;(2)根据时间=路程和÷速度和,进行计算即可求解;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.【解答】解:(1)设运动t秒时,BC=2cm,①当点B在点C的左边时,由题意得:3t+2+t=6,解得:t=1;②当点B在点C的右边时,由题意得:3t﹣2+t=6,解得:t=2.∴t的值是1或2.(2)(2+4)÷(3+1)=1.5(秒).答:线段AB与线段CD从开始相遇到完全离开,共经过1.5秒的时间.(3)存在关系式BD﹣AP=3PC.设运动时间为t秒,①当t=3时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,PA+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即BD﹣AP=3PC;②当3<t<时,点C在点A和点B之间,0<PC<2;当点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC当PC=时,有BD=AP+3PC,即BD﹣AP=3PC.③当t=时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2AP+3PC=4PC,当PC=时,有BD=AP+3PC,即BD﹣AP=3PC,∵P在C点左侧或右侧∴PD的长有2种可能,即5或3.5.【点评】本题考查两点间的距离,并综合了数轴、一元一次方程和线段长短的比较,难度较大,注意对第三问进行分情况讨论,不要漏解.27.(2020秋•吉安期中)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而1<<2于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是 5 ,小数部分是 ﹣5 ;(2)如果5+的小数部分为a,5﹣的整数部分为b,求a+b的值.【考点】估算无理数的大小.【专题】实数;数感.【分析】(1)估算的近似值,即可得出的整数部分和小数部分;(2)求出a、b的值,再代入计算即可.【解答】解:(1)∵<<,∴5<<6,∴的整数部分为5,小数部分为﹣5,故答案为:5,﹣5;(2)∵2<<3,∴7<5+<8,∴5+的小数部分a=5+﹣7=﹣2,∵2<<3,∴﹣3<﹣<﹣2,∴2<5﹣<3,∴5﹣的整数部分为b=2,∴a+b=﹣2+2=3﹣2.【点评】本题考查无理数的估算,掌握算术平方根的意义是正确估算的前提.28.(2020秋•广安期末)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离 7 .(2)若数轴上表示点x的数满足|x﹣1|=3,那么x= ﹣2或4 .(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|= 6 .【考点】绝对值;实数与数轴.【专题】计算题;实数.【分析】(1)根据两点间的距离公式计算可得;(2)由|x﹣1|=3表示的意义为:在数轴上到表示1和x的点的距离为3,据此解答可得;(3)由|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,据此解答可得.【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.【点评】本题考查了整式的加减,数轴,利用了两点间的距离公式,线段上的点到线段的两端点的距离的和等于线段的距离.29.(2021春•硚口区期中)某同学想用一块面积为400cm2的正方形纸片,(如图所示)沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2,请你用所学过的知识来说明能否用这块纸片裁出符合要求的纸片.【考点】算术平方根.【分析】先设长方形纸片的长为3x(x>0)cm,则宽为2x cm,根据长方形的面积公式有3x⋅2x=300,解得x=5(负数舍去),易求长方形纸片的长是15,再去比较15。

人教版七年级数学下册第六章 实数 单元练习

人教版七年级数学下册第六章 实数 单元练习

第六章 实数一、单选题1.1.44的算术平方根是( )A .1.2B .﹣1.2C .±1.2D .以上都是 2.9的平方根是( )A .±3B .3C .±4.5D .4.533m -的立方根,则( )A .3m =B .m 是小于3的实数C .m 是大于3的实数D .m 可以是任意实数 4.下列各式正确的是( )A 4=±B .2=C .3=D 2=- 5.下列各数中,无理数是( )A B C D .236 )A .0和1之间B .1和2之间C .2和3之间D .3和4之间7.在下列实数中:120192019,0,最大的数是( )A .12019B C .2019 D .0 8.已知实数a 、b 在数轴上的位置如图所示,下列结论错误的是( )A .a <0<bB .1<b <|a|C .1<﹣a <bD .﹣b <a <19.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为( )A .180B .182C .184D .186 10.现规定一种新的运算“*”;m*n=(m +n)m−n ,那么51*22=( ) A .B .5C .3D .9二、填空题 11.若一个数的平方根就是它本身,则这个数是______.12.已知a 是64的立方根,2b -3是a 的平方根,则11a - 4b 的算术平方根为______.13_________12(填“>”或“<”) 14.规定一种新运算:2,b a b a ⊗=÷如4343240.5 ,⊗=÷=则23-⊗=_____.三、解答题15.已知m 、n =0,求2m ﹣n 的值.16.求下列各式中的x(1)x 3﹣0.027=0(2)(x ﹣2)2=9.17.设2x =+x 的整数部分为a ,小数部分为b ,求a 、b 的值.18.观察下列等式:11283274641,2,3,4,225510101717-=-=-=-=⋅⋅⋅根据你发现的规律,解答下列问题: (1)写出第6个等式.(2)用关于n (n 是正整数)的等式表示这个规律.19.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =. 例如:因为328=,所以()3(8)23g g ==, 因为1021024=,所以()10(1024)210g g ==. (1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫ ⎪⎝⎭的值; ①已知(3)g p =.求(18)g 和316g ⎛⎫ ⎪⎝⎭的值.答案1.A 2.A 3.D 4.D 5.A 6.C 7.C 8.B 9.C 10.D 11.01213.>14.4-15.816.(1)x =0.3;(2)x =5或x =﹣117.a ,b 的值分别为3.18.(1)21637;(2)32211n n n n n -=++. 19.(1)1;5;(2)①3.807,0.807;①12p +;4p -。

最新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)

最新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)

人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是()A.33B.-33 C. 3 D.132.下列实数中无理数是()A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±206.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a23<b,且a、b是两个连续的整数,则|a+b|= .5.若的值在两个整数a与a+1之间,则a=.6.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.7.请写出一个大于8而小于10的无理数:.8.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.三、解答题(38分)1.(6分)已知实数a,b满足a-14+|2b+1|=0,求b a的值.2.(6分)已知,求的算术平方根.3.(6分)计算:(1)9×(﹣32)+4+|﹣3|(2) .4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{ …}; 无理数集合:{ …}; 正实数集合:{ …}; 整数集合:{ …}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-42.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y 0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算|1|++-19.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于。

人教版数学七年级下册第六章《实数》同步练习含答案试卷分析解析

人教版数学七年级下册第六章《实数》同步练习含答案试卷分析解析

《实数》同步练习一、选择题(每小题只有一个正确答案)1.下列各数中,为无理数的是( )A. B. C. 13 D. 2.下列各数中最小的是( )A. π-B. 3- D. 03.在数轴上标注了四段范围,如图,则表示 8的点落在( )A. 段①B. 段②C. 段③D. 段④4.在17-,-π,0,3.14,,0.3133-中,无理数的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个5的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间6.化简()101612π-⎛⎫-++- ⎪⎝⎭的结果为( )A. B. 2+ C. 2- D.7.定义新运算:对任意有理数a ,b ,都有a ⊕b=1a +1b ,例如2⊕1=12+11,那么(﹣2)⊕3的值是( ) A. 16 B. 56 C. ﹣56 D. ﹣168.已知整数a 0,a 1,a 2,a 3,a 4,……,满足下列条件:00a =,101a a =-+,212a a =-+,323a a =-+,…,以此类推,则2017a 的值为( )A. -1007B. -1008C. -1009D. -2016二、填空题9.201322-⎛⎫⨯+-= ⎪⎝⎭________.10.比较下列各组数大小:(Ⅰ)π________3.14 ________0.5.11.规定用符合[]x 表示一个实数的整数部分,例如[]3.693=,1=,按此规定,1⎤=⎦__________. 12.如果a =(-99)0,b =(-0.1)-1,c =(-53)-2,那么a 、b .c 三数大小关系为__________.(用“>”连接)13.已知6的小数部分为a ,6的小数部分为b ,则()2017a b +=__________.三、解答题14.计算: ()013π-+--.15.计算:()()0211432120.95103235⎛⎫⎛⎫÷----⨯+-⨯÷- ⎪ ⎪⎝⎭⎝⎭16, 2,0,﹣12及它们的相反数,并比较所有数的大小,按从小到大的顺序用“<”连接起来.17.(1)若x 、y 都是实数,且8y =++,求3x y +的立方根.(2a ,小数部分为b ,求2a b +-的值.18.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下: 我们称使等式1a b ab -=+成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)判断数对(2-,1),(3,12)是不是“共生有理数对”,写出过程; (2)若(a ,3)是“共生有理数对”,求a 的值;(3)若(m ,n )是“共生有理数对”,则(n -,m -)“共生有理数对”(填“是”或“不是”);说明理由;(4)请再写出一对符合条件的 “共生有理数对”为(注意:不能与题目中已有的“共生有理数对”重复)参考答案1.D2.A3.C4.B5.D6.A7.D8.C9.610.>>11.312.a> c>b13.114.215.解析:原式=3÷4+1-1-3÷(-3)=3÷4+1=1.7516.解:如图所示:故﹣2<﹣12<0<12<2. 17.解:(1)由题意可知,30x -≥,30x -≥,解得:3x =,∴8y =,∴333827x y +=+⨯=3=;(2)∵<<,∴34<<,∴的整数部分为3a =,小数部分为3b =-,∴22336a b +=+=.18.解析:(1)-2-1=-3,(-2) ×1+1=-1,-3≠-1,故(2-,1)不是共生有理数对; 3-12=52,3×12+1=52,故(3,12)是共生有理数对; (2)由题意得:331a a -=+,解得2a =-. (3)是.理由:()n m n m ---=-+, ()11n m mn -⋅-+=+,∵(m ,n )是“共生有理数对”∴m-n=mn+1,∴-n+m=mn+1,∴(-n ,-m )是“共生有理数对”;(4)(4,35)或(6,)等(答案不唯一,只要不和题中重复即可).。

人教版七年级数学下册第六章《实数》同步练习(含答案)

人教版七年级数学下册第六章《实数》同步练习(含答案)

第六章 实数 6.1 平方根 第1课时 算术平方根基础题知识点1 算术平方根一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.1.(2017·桂林)4的算术平方根是( B )A .4B .2C .-2D .±22.(2018·南京)94的值等于( A ) A.32B .-32C .±32D.81163.0.49的相反数是( B )A .0.7B .-0.7C .±0.7D .04.下列说法正确的是( A )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根 D .以上说法都不对5.求下列各数的算术平方根: (1)121; (2)1; (3)964; (4)0.01.解:(1)因为112=121,所以121的算术平方根是11,即121=11.(2)因为12=1,所以1的算术平方根是1,即1=1. (3)因为(38)2=964,所以964的算术平方根是38,即964=38. (4)因为(0.1)2=0.01,所以0.01的算术平方根是0.1,即0.01=0.1.6.求下列各式的值: (1)81; (2)144289; (3) 1 000 000. 解:(1)因为92=81,所以81=9. (2)因为(1217)2=144289,所以144289=1217. (3)因为1 0002=1 000 000, 所以 1 000 000=1 000.知识点2 估计算术平方根一般采用“夹逼法”确定其值所在的范围.具体地说,先找出与被开方数相邻的两个能开得尽方的整数,分别求其算术平方根,即可确定所要求的数的算术平方根在哪两个整数之间. 7.(2017·柳州期末)估算65的值介于( D )A .5到6之间B .6到7之间C .7到8之间D .8到9之间8.一个正方形的面积为50 cm 2,则该正方形的边长约为( C )A.5 cm B.6 cm C.7 cm D.8 cm9用“>”或“<”填空).知识点3 用计算器求一个正数的算术平方根10.我们可以利用计算器求一个正数a的算术平方根,其操作方法是顺序进行按键输入:a=.小明按键输入16=显示的结果为4,则他按键输入1600=后显示的结果为40.11.用计算器求下列各式的值(结果精确到0.001):(1)800;(2)0.58;(3) 2 401.解:(1)28.284.(2)0.762.(3)49.000.易错点对算术平方根的意义理解不清12.(-6)2的算术平方根是( A )A.6 B.±6 C.-6 D. 613.(2018·安顺)4的算术平方根为( B )A.± 2 B. 2 C.±2 D.2中档题14.下列各数,没有算术平方根的是( B )A.2 B.-4 C.(-1)2D.0.115.若一个数的算术平方根等于它本身,则这个数是( D )A.1 B.-1 C.0 D.0或116.(2017·广州期中)已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是( D ) A.a+1 B.a+1 C.a2+1 D.a2+117.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )A.B与C B.C与D C.E与F D.A与B18.(2017·广州四校联考期中)已知a,b为两个连续整数,且a<15<b,则a+b的值为7.19.(教材P41探究变式)如图,将两个边长为3的正方形分别沿对角线剪开,将所得的4个三角形拼成一个大的正方形,则这个大正方形的边长是6.20.(教材P43探究变式)观察:已知 5.217≈2.284,521.7≈22.84,填空:(1)0.052 17≈0.228__4,52 170≈228.4;(2)若x≈0.022 84,则x≈0.000__521__7.21.比较下列各组数的大小:(1)12与14;(2)-5与-7;(3)5与24;(4)24-12与32.解:(1)12<14.(2)-5>-7.(3)5>24.(4)24-12>32.综合题22.(教材P43例3变式)国际比赛的足球场长在100 m 到110 m 之间,宽在64 m 到75 m 之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m 2,请你判断这个足球场能用作国际比赛吗?并说明理由.解:这个足球场能用作国际比赛.理由:设足球场的宽为x m ,则足球场的长为1.5x m ,由题意,得1.5x 2=7 560. ∴x 2=5 040.由算术平方根的意义可知x = 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71. ∴70<x <71.∴105<1.5x <106.5. ∴100<1.5x <110. ∴符合要求.∴这个足球场能用作国际比赛.23.(教材P48习题T11变式)(1)通过计算下列各式的值探究问题: ①42=4;162=16;02=0;(19)2=19. 探究:对于任意非负有理数a ,a 2=a .②(-3)2=3;(-5)2=5;(-1)2=1;(-2)2=2.探究:对于任意负有理数a ,a 2=-a .综上,对于任意有理数a ,a 2=|a|.(2)应用(1)所得的结论解决问题:有理数a ,b 在数轴上对应的点的位置如图所示,化简:a 2-b 2-(a -b )2+|a +b|.解:a 2-b 2-(a -b )2+|a +b| =|a|-|b|-|a -b|+|a +b| =-a -b +a -b -a -b =-a -3b.第2课时 平方根基础题知识点1 平方根(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.这就是说,如果x 2=a ,那么x 叫做a 的平方根,记作±(2)求一个数a 的平方根的运算,叫做开平方,平方与开平方互为逆运算.正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.1.(2018·贺州)4的平方根是( C )A .2B .-2C .±2D .16 2.±8是64的( A )A .平方根B .相反数C .绝对值D .算术平方根 3.13是一个数的平方根,则这个数是( D ) A .1B .3C .±19D.194.下列说法中,不正确的是( D ) A .6是36的平方根B .-6是36的平方根C .36的平方根是±6D .36的平方根是65.下列说法正确的是( D )A .任何非负数都有两个平方根B .一个正数的平方根仍然是正数C .只有正数才有平方根D .负数没有平方根6.计算: ±425=±25,-425=-25,425=25. 7.填表:a 2 -2 37 ±37 ±9 ±15 a 244949949812258.(1)16; (2)2536; (3)0.008 1.解:(1)因为(±4)2=16,所以16的平方根是±4. (2)因为(±56)2=2536,所以2536的平方根是±56.(3)因为(±0.09)2=0.008 1,所以0.008 1的平方根是±0.09.知识点2 平方根与算术平方根的关系正数a 的正的平方根就是这个数的算术平方根,记作 a. 9.(2017·广州期中)下列说法正确的是( A ) A .-5是25的平方根 B .25的平方根是-5C .-5是(-5)2的算术平方根D .±5是(-5)2的算术平方根 10.下列各式中,正确的是( D )A.4=±2 B .±9=3 C.(-3)2=-3 D.(-3)2=311.求下列各数的平方根与算术平方根: (1)25;解:25的平方根是±5,算术平方根是5.(2)0;解:0的平方根是0,算术平方根是0.(3)110 000. 解:110 000的平方根是±1100,算术平方根是1100.12.求下列各式的值: (1)225; (2)-3649; (3)±144121. 解:(1)∵152=225,∴225=15. (2)∵(67)2=3649,∴-3649=-67. (3)∵(1211)2=144121,∴±144121=±1211.易错点 忽视一个正数的平方根有两个13.若x +3是4的平方根,则x =-1或-5.中档题14.(2017·广州期中)对于2-3来说( C )A .有平方根B .只有算术平方根C .没有平方根D .不能确定 15.(易错题)(2017·广州四校联考期中)16的平方根等于( D ) A .2 B .-4 C .±4D .±2 16.(易错题)若x 2=16,则5-x 的算术平方根是( D )A .±1B .±4C .1或9D .1或317.(2017·玉林期末)已知325.6≈18.044,那么± 3.256≈±1.804__4. 18.“平方根”节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日,请你再写出21世纪你喜欢的一个“平方根”节(题中所举例子除外)2025年5月5日.19.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2; (2)-42; (3)-(a 2+1). 解:(1)±3.(2)没有平方根,因为-42是负数.(3)没有平方根,因为-(a 2+1)是负数.20.(教材P48习题T8变式)求下列各式中x 的值:(1)4x 2-1=0;解:4x 2=1. x 2=14.x =±12.(2)(2017·广州四校联考期中)(2x-1)2=25.解:2x-1=5或2x-1=-5.解得x=3或x=-2.21.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.解:依题意,得2a-1=9且3a+b-1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b的平方根为±3,即±a+2b=±3.综合题22.(易错题)(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少?(2)已知a-1和5-2a都是m的平方根,求a与m的值.解:(1)根据题意,得(2a-1)+(a-5)=0.解得a=2.∴这个非负数是(2a-1)2=(2×2-1)2=9.(2)根据题意,分以下两种情况:①当a-1与5-2a是同一个平方根时,a-1=5-2a.解得a=2.此时,m=12=1;②当a-1与5-2a是两个平方根时,a-1+5-2a=0.解得a=4.此时,m=(4-1)2=9.综上所述,当a=2时,m=1;当a=4时,m=9.6.2 立方根基础题知识点1 立方根(1)一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根,即如果x 3=a ,那么x 叫做a 3a a 是被开方数,3是根指数.3-a =-3a.(2)求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是正数;负数的立方根是负数;0的立方根是0.1.(2018·恩施)64的立方根为( C )A .8B .-8C .4D .-4 2.(2018·济宁)3-1的值是( B )A .1B .-1C .3D .-33.若一个数的立方根是-3,则这个数为( B ) A .-33B .-27C .±33D .±274.下列说法中,不正确的是( D ) A .0.027的立方根是0.3 B .-8的立方根是-2 C .0的立方根是0D .125的立方根是±55.下列计算正确的是( C ) A.30.012 5=0.5 B.3-2764=34C.3338=112D .-3-8125=-256.-13是-127的立方根,-16164的立方根是-54.7.求下列各数的立方根: (1)0.216;解:∵0.63=0.216,∴0.216的立方根是0.6,即30.216=0.6.(2)0;解:∵03=0,∴0的立方根是0,即30=0.(3)-21027;解:∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-43,即3-21027=-43.(4)-5.解:-5的立方根是3-5.8.求下列各式的值:(1)30.001;解:30.001=0.1.(2)3-343125;解:3-343125=-75.(3)-31-1927.解:-31-1927=-23.知识点2 用计算器求立方根9.用计算器计算328.36的值约为( B )A.3.049 B.3.050 C.3.051 D.3.05210.一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( A )A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm之间D.7 cm~8 cm之间11.计算:325≈2.92(结果精确到0.01).易错点立方根与平方根相混淆12.立方根等于本身的数为0,1或-1.中档题13.(易错题)32的立方根是( A )A.33 B.39 C.2 D.314.下列说法正确的是( D )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数的平方根小C.如果一个数有立方根,那么它一定有平方根 D.3a与3-a互为相反数15.若a2=(-5)2,b3=(-5)3,则a+b的值为( D )A.0 B.±10C.0或10 D.0或-10 16.已知2x+1的平方根是±5,则5x+4的立方根是4.17.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:被开方数扩大到原来的1__000倍,则立方根扩大到原来的10倍;(3)根据你发现的规律填空:①已知33≈1.442,则33 000≈14.42,30.003≈0.144__2; ②已知30.000 456≈0.076 97,则3456≈7.697. 18.求下列各式的值: (1)-3-0.125; 解:原式=0.5.(2)-3729+3512; 解:原式=-9+8=-1.(3)30.027-31-124125+3-0.001. 解:原式=0.3-31125+(-0.1) =0.3-15-0.1=0.19.比较下列各数的大小: (1)39与3; 解:39> 3.(2)-342与-3.4. 解:-342<-3.4.20.求下列各式中x 的值:(1)8x 3+125=0;解:8x 3=-125. x 3=-1258.x =-52.(2)(2017·广州期中)(2x -1)3=-8. 解:2x -1=-2. 解得x =-12.21.将一个体积为0.216 m 3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.解:设每个小立方体铝块的棱长为x m ,则 8x 3=0.216. ∴x 3=0.027.∴x=0.3.∴6×0.32=0.54(m 2).答:每个小立方体铝块的表面积为0.54 m 2.综合题22.请先观察下列等式: 32+27=2327, 33+326=33326, 34+463=43463, …(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.解:(1)35+5124=535124,36+6215=636215. (2)3n +n n 3-1=n 3nn 3-1(n >1,且n 为整数).6.3 实数基础题知识点1 实数的概念及其分类1.(2018·玉林)下列实数中,是无理数的是( B ) A .1B. 2C .-3D.132.下列说法中,正确的是( C )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .正实数包括正有理数和正无理数D .实数可以分为正实数和负实数两类知识点2 实数与数轴上的点的关系实数和数轴上的点是一一对应的,反过来,数轴上的每一个点必定表示一个实数.3.若在数轴上画出表示下列各数的点,则与原点距离最近的点是( B ) A .-1B .-12C.32D .2知识点3 实数的相反数、绝对值、倒数实数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即|a|=⎩⎪⎨⎪⎧a ,当a>0时;0,当a =0时;-a ,当a<0时.4.-2的相反数是( C )A.- 2 B.22C. 2 D.-225.π是1π的( B )A.绝对值B.倒数C.相反数D.平方根6.(2017·广州期中)3-8的绝对值是2.7知识点4 实数的运算实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.8.(2018·包头)计算-4-|-3|的结果是( B )A.-1 B.-5 C.1 D.59.计算364+(-16)的结果是( B )A.4 B.0 C.8 D.12 10.计算:(1)33+53;解:原式=(3+5) 3=8 3.(2)|1-2|+|3-2|.解:原式=2-1+3- 2=3-1.11.计算(结果保留小数点后两位):(1)π-2+3;解:原式≈3.142-1.414+1.732≈3.46.(2)|2-5|+0.9.解:原式≈2.236-1.414+0.9≈1.72.易错点对无理数的判断有误12.下列说法正确的是( D )A.33是分数 B.227是无理数 C. π-3.14是有理数 D.3-83是有理数中档题13.下列各组数中,互为相反数的一组是( C ) A .-|-2|与3-8B .-4与-(-4)2C .-32与|3-2|D .-2与1214.有一个数值转换器,原理如下:当输入的x 为4时,输出的y 是( C )A .4B .2 C. 2D .- 215.(2017·宁夏)实数a 在数轴上的位置如图所示,则|a -3|=3-a .16.点A 在数轴上和原点相距3个单位长度,点B 在数轴上和原点相距5个单位长度,则A ,B 两点之间的距离是17.把下列各数分别填入相应的集合中.-15,39,π,3.14,-327,0,-5.123 45…,0.25,-32. (1)有理数集合:{-15,3.14,-327,0,0.25,…};(2)无理数集合:{39,π,-5.123 45…,-32,…};(3)正实数集合:{39,π,3.14,0.25,…};(4)负实数集合:{-15,-327,-5.123 45…,-32,…}.18.求下列各式中的实数x. (1)|x|=45;解:x =±45.(2)|x -2|= 5. 解:x =2± 5.19.计算:(1)23+32-53-32; 解:原式=(2-5)3+(3-3) 2 =-3 3.(2)|3-π|+|4-π|. 解:原式=π-3+4-π =1.20.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值.解:由题意可知ab =1,c +d =0,e =±2,f =64, ∴e 2=(±2)2=2,3f =364=4. ∴12ab +c +d 5+e 2+3f =12+0+2+4=612.综合题21.阅读下列材料:如果一个数的n(n 是大于1的整数)次方等于a ,这个数就叫做a 的n 次方根,即x n=a ,则x 叫做a 的n 次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2. 回答问题:(1)64的6次方根是±2,-243的5次方根是-3,0的10次方根是0; (2)归纳一个数的n 次方根的情况.解:当n 为偶数时,一个正数的n 次方根有两个,它们互为相反数;当n 为奇数时,一个数的n 次方根只有一个.负数没有偶次方根.0的n 次方根是0.章末复习(二) 实数分点突破知识点1 平方根、算术平方根、立方根 1.(2017·泰州)2的算术平方根是( B )A .± 2 B. 2 C .- 2 D .2 2.(2018·铜仁)9的平方根是( C )A .3B .-3C .3和-3D .81 3.(2018·荆门)8的相反数的立方根是( C ) A .2B.12C .-2D .-124.下列各式正确的是( A ) A .±31=±1B.4=±2C.(-6)2=-6 D.3-27=3知识点2 实数的分类5.把下列各数分别填在相应的集合中:5,-6,38,0,π5,3.141 592 6,227,-16,-234.101 001 000 1…(相邻两个1之间依次多1个0).知识点3 相反数、绝对值、倒数 6.9的倒数等于( D ) A .3B .-3C .-13D.137.实数1-2的相反数是2-1,绝对值是2-1.知识点4 无理数的估算及实数的大小比较8.(2018·贺州)在-1,1,2,2这四个数中,最小的数是( A ) A .-1 B .1 C. 2 D .29.(2018·南通)如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数2-5的点P 应落在( B )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上知识点5 实数的运算 10.求下列各式的值:(1)(2017·广州期末)38-9;解:原式=2-3=-1.(2)(2017·南宁期末)-32+|2-3|-(-2)2;解:原式=-9+3-2-2=-8- 2.(3)121+7×(2-17)-31 000.解:原式=11+27-1-10=27.易错题集训11.下列说法正确的是( D )A.-4没有立方根B.1的立方根是±1C.136的立方根是16D.-5的立方根是3-512.下列说法中,正确的有( B )①只有正数才有平方根;②a一定有立方根;③-a没意义;④3-a=-3a;⑤只有正数才有立方根.A.1个B.2个C.3个D.4个常考题型演练13.关于12的叙述,错误的是( A )A.12是有理数B.面积为12的正方形边长是12C.12在3与4之间D.在数轴上可以找到表示12的点14.(2017·钦州期末)下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的有( A )A.0个B.1个C.2个D.3个15.(易错题)如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( C )A.0个B.1个C.2个D.3个16.已知30.5≈0.793 7,35≈1.710 0,那么下列各式正确的是( B )A.3500≈17.100 B.3500≈7.937C.3500≈171.00 D.3500≈79.3717.写出3-9到23之间的所有整数:-2,-1,0,1,2,3,4.18.(2018·东莞)一个正数的平方根分别是x+1和x-5,则x=2.19.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是-4π.20.求下列各式中x的值:(1)x 2-5=49;解:x 2=499,x =±73.(2)(x -1)3=125. 解:x -1=5, x =6.21.已知某正数的两个平方根分别是a +3和2a -15,b 的立方根是-2,求3a +b 的算术平方根. 解:∵该正数的两个平方根分别是a +3和2a -15,b 的立方根是-2,∴a+3+2a -15=0,b =(-2)3=-8. ∴a=4,b =-8.∴3a +b =4=2,即3a +b 的算术平方根是2. 22.魔方又叫魔术方块,也称鲁比克方块,是匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授在1974年发明的.魔方与中国人发明的“华容道”、法国人发明的“独立钻石”一同被称为智力游戏界的三大不可思议.如图是一个4阶魔方,又称“魔方的复仇”,由四层完全相同的64个小立方体组成,体积为64 cm 3. (1)求组成这个魔方的小立方体的棱长;(2)图中阴影部分是一个正方形,则该正方形的面积为10cm 2,边长为10cm.解:组成这个魔方的小立方体的棱长为364÷64=1(cm).。

(必考题)初中七年级数学下册第六单元《实数》经典练习(含答案解析)

(必考题)初中七年级数学下册第六单元《实数》经典练习(含答案解析)

一、选择题1.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .4C 解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;②2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C .【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.2.27(7)0y z ++-=,则x y z -+的平方根为( )A .±2B .4C .2D .±4D 解析:D【分析】根据绝对值,平方,二次根式的非负性求出x ,y ,z ,算出代数式的值计算即可;【详解】∵27(7)0y z ++-=,∴207070x y z -=⎧⎪+=⎨⎪-=⎩,解得277x y z =⎧⎪=-⎨⎪=⎩,∴()27716x y z -+=--+=,∴4=±;故选:D.【点睛】本题主要考查了平方根的求解,结合绝对值、二次根式的非负性计算是解题的关键.3.下列说法中,正确的是()A.64的平方根是8 B4和-4C.()23-没有平方根D.4的平方根是2和-2D解析:D【分析】根据平方根的定义与性质,结合各选项进行判断即可.【详解】A、64的平方根是±8,故本选项错误;B4=,4的平方根是±2,故本选项错误;C、()239-=,9的平方根是±3,故本选项错误;D、4的平方根是±2,故本选项正确.故选:D.【点睛】本题考查了平方根的知识,如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.4)A.3 B.﹣3 C.±3 D.6A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】∵9,∴3,故选:A.【点睛】. 5.已知实数a的一个平方根是2-,则此实数的算术平方根是()A.2±B.2-C.2 D.4C解析:C【分析】根据平方根的概念从而得出a的值,再利用算术平方根的定义求解即可.【详解】∵-2是实数a的一个平方根,∴4a =,∴4的算术平方根是2,故选:C .【点睛】本题主要考查了平方根以及算术平方根,在解题时要注意一个正数有两个平方根,它们互为相反数.一个正数的算术平方根是它的正的平方根.6.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a b b;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③A 解析:A【分析】 ①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a a bb ★, b a a b ★, ∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b aa a ab b b ba b ====★★★★,∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b bb b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b >, ∴1a b≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★, 当a b <时,∴(12a b a b a b a b ab ab ++===+=≥≥★★, ∴12a b a b +<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.7.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确; a≠0,即a >0或a <0,也就是a 是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确; 数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,故选:D .【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提. 8.下列实数中,属于无理数的是( )A .3.14B .227CD .πD 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.设,A B 均为实数,且A B ==,A B 的大小关系是( ) A .A B >B .A B =C .A B <D .A B ≥ D 解析:D【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A=∴A是一个非负数,且m-3≥0,∴m≥3,∵B=∵3-m≤0,即B≤0,∴A≥B,故选:D.【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.10.已知下列结论:①;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是()A.① ③B.②③C.③④D.②④B解析:B【分析】根据实数与数轴、无理数与有理数的定义逐个判断即可得.【详解】①,此结论错误;②无理数是无限小数,此结论正确;③实数与数轴上的点一一对应,此结论正确;④有理数有无限个,无理数有无限个,此结论错误;综上,正确的结论是②③,故选:B.【点睛】本题考查了实数与数轴、无理数与有理数的定义,掌握理解实数的相关概念是解题关键.二、填空题11.已知(2m﹣1)2=9,(n+1)3=27.求出2m+n的算术平方根.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,2m-1=±9=±3,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n的算术平方根是6;故2m+n的算术平方根是0或6.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.12.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.-+的点,并比较它②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35们的大小.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a根据正方形面积公式结合平方根的运算求出a值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正-+<-解析:(12,22)①见解析;②见解析,350.5(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示: ②设拼成的大正方形的边长为b ,∴b 2=5, ∴b=±5, 在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.13.计算:(1)2323615---(2)122334+(1)-4;(2)1【分析】(1)根据乘方开方绝对值的意义化简再计算即可;(2)先根据绝对值的意义脱去绝对值再计算即可求解【详解】解:(1)=-4+6-1-5=-4;(2)=-1+2=1【点睛】本题解析:(1)-4;(2)1.(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】解:(1)225--=-4+6-1-5=-4;(2)1)1=++1=+1=-+=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键.14.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键 解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=,故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.15.实数2-,227,π-中属于无理数的是________.【分析】根据无理数的三种形式:①开方开不尽的数②无限不循环小数③含有π的数找出无理数的个数【详解】解:在这5个数中属于无理数的有这2个数故答案是:【点睛】本题考查了无理数的知识解答本题的关键是掌握无,π- 【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】3=-,在2-,227,π-5, π-,这2个数,π-. 【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.16.把下列各数填在相应的横线里:3,0,10%,﹣112,﹣|﹣12|,﹣(﹣5),2π,0.6,127,0.101001000… 整数集合:{_____________…};分数集合:{_____________…};无理数集合:{_____________…};非负有理数集合{_____________…}.30﹣|﹣12|﹣(﹣5)10﹣100101001000…3010﹣(﹣5)0【分析】按照有理数的分类填写【详解】解:整数集合:(30﹣|﹣12|﹣(﹣5)…);分数集合:(10﹣10);无理数集合解析:3,0,﹣|﹣12|,﹣(﹣5) 10%,﹣112,0.6⋅,127 2π,0.101001000… 3,0,10%,﹣(﹣5),0.6⋅,127 【分析】按照有理数的分类填写.【详解】解:整数集合:( 3,0,﹣|﹣12|,﹣(﹣5)…);分数集合:( 10%,﹣112,0.6⋅,127); 无理数集合:( 2π,0.101001000…); 非负有理数集合( 3,0,10%,﹣(﹣5),0.6⋅,127).故答案为:3,0,﹣|﹣12|,﹣(﹣5);10%,﹣112,0.6⋅,127;2π,0.101001000;3,0,10%,﹣(﹣5),0.6⋅,127. 【点睛】 本题考查了有理数的分类.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.17.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +数,求23c d -的平方根.(1)2;(2)±4【分析】(1)先求出m =2进而化简|m +1|+|m−1|即可;(2)根据相反数和非负数的意义列方程求出cd 的值进而求出2c−3d 的值再求出2c−3d 的平方根【详解】(1)由题意得 解析:(1)2;(2)±4【分析】(1)先求出m =22-,进而化简|m +1|+|m−1|,即可;(2)根据相反数和非负数的意义,列方程求出c 、d 的值,进而求出2c−3d 的值,再求出2c−3d 的平方根.【详解】(1)由题意得:m =22-,则m +1>0,m−1<0,∴|m +1|+|m−1|=m +1+1−m =2;(2)∵2c d +4d +∴2c d +4d +,∴|2c +d|=04d +0,解得:c =2,d =−4,∴2c−3d =16,∴2c−3d 的平方根为±4.【点睛】本题主要考查数轴、相反数的定义,求绝对值,掌握求绝对值的法则以及绝对值与算术平方根的非负性,是解题的关键.18.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+=(1)或;(2)【分析】(1)适当变形后利用平方根的定义即可解方程;(2)适当变形后利用立方根的定义即可解方程【详解】解:(1)两边乘以2得开平方得即或∴或;(2)移项得开立方得解得【点睛】本题考查解析:(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.19.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由3101000=,31001000000=,11000593191000000<<______位数;(2)由59319的个位数字是9______;(3)如果划去59319后面的319得到数59,而3327=,3464=上的数是______.(1)两(2)9(3)3【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9据此可判断;(3)<59<据此可判断【详解】解:(1)∵103=10001003=1 000 000解析:(1)两 (2)9 (3)3.【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9,据此可判断;(3)33<59<34,据此可判断.【详解】解:(1)∵103=1000,1003=1 000 000,而1000<59319<1000000,∴10100,因此结果为两位数;故答案是:两;(2)因为只有9的立方的个位数字才是9,因此结果的个位数字为9,故答案是:9;(3)∵33<59<343.故答案为:3.【点睛】考查实数的意义,立方根的意义以及立方的尾数特征等知识,理解题意是关键.20.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-,∴+a b 的立方根-1. 故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.三、解答题21.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.22.计算:(12)-+(2解析:(1)-2;(2)【分析】 (1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.23.计算:(1)132322⎛⎫⨯-⨯-⎪⎝⎭ (2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭解析:(1)32;(2). 【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.24.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732,=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .解析:(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵=2.154=4.642, ∴=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.25.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键.26.计算:(1)225--(2)1+解析:(1)-4;(2)1.【分析】(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】解:(1)225--=-4+6-1-5=-4;(2)1)1=++1=+1=-+=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键. 27.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -=,求d +c 的平方根.解析:(1)x =5,169或21x =-,1521;(2)±3【分析】(1)根据题意,这两个式子互为相反数,列方程求出x 的值,然后算出这个数; (2)根据绝对值和算术平方根的非负性求出c 和d 的值,再算出结果.【详解】(1)解:①23180x x ++-=,315x =,5x =,这个数是()2253169⨯+=,②2318x x +=-,21x =-,这个数是()221181521--=;(2)解:由题意得:2c -d =0,2360d -=,解得:d =±6,c =±3.∵当d =-6,c =-3时,d +c =-9(舍),∴d +c的平方根为.【点睛】本题考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的性质. 28.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。

人教版七年级下册数学单元练习题卷:第六章 实数

人教版七年级下册数学单元练习题卷:第六章  实数

第六章实数一、填空题1.已知a+2与2a﹣5都是m的平方根,则m的值是 92.1的平方根为_____±1___,立方根为_____1____,算术平方根为_____1____.3.在数轴上,-2对应的点为A,点B与点A的距离为,则点B表示的数为__7- _______.2--或72+4.矩形ABCD的面积是16,它的长与宽的比为4:1,则该矩形的宽为 25.已知一个有理数的平方根和立方根相同,则这个数是______0______.6.有一个数值转换器,原理如图所示:当输入的x为256时,输出的y是__2______.二、选择题7. 下列说法不正确的是( C )A. -是2的平方根B. 是2的平方根C. 2的平方根是D. 2的平方根是±8.下列说法正确的是( C )A.立方根是它本身的数只能是0和1B.立方根与平方根相等的数只能是0和1C.算术平方根是它本身的数只能是0和1D.平方根是它本身的数只能是0和19.下列对实数的说法其中错误的是( C )A.实数与数轴上的点一一对应B.两个无理数的和不一定是无理数C.负数没有平方根也没有立方根D.算术平方根等于它本身的数只有0或110.估算的值在( C )A.1与2之间B.2与3之间C.3与4之间D.5与6之间11. 运算结果是( D )A.B.C.8 D.412.估计的值在( C )A.1和2之间B.2和3之间C.3和4之间D.4和5之间13.一个正数的两个平方根分别是与,则a的值为(B)A. 1B.C. 2D.14. 若5x+19的立方根是4,则2x+7的平方根是( D )A. 25B. -5C. 5D. ±515.实数a在数轴上的位置如图所示,则+化简后为(A )A.7B.﹣7C.2a﹣15D.无法确定16.下列说法中:①每个正数都有两个立方根;②平方根是它本身的数有1,0;③立方根是它本身的数有±1,0;④如果一个数的平方根等于它的立方根,那么这个数是1或0;⑤没有平方根的数也没有立方根;⑥算术平方根是它本身的数有1,0.其中正确的有( A )A.2个 B.3个 C.4个 D.5个三、解答题17. 已知a=,b=|-2|,c=,求a2+b-4c的值.【答案】由题意知:a=,b=|-2|=2,c=,将其代入a2+b-4c,得:原式=()2+2-4×=3+2-2=3.18.计算:(1) .解:=-=4-4=0.(2)3(x-2)3=24【答案】x=419.【答案】 2.20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分,求3a-b+c的平方根.解:∵5a+2的立方根是3, 3a+b-1的算术平方根是4,∴5a+2=27, 3a+b-1=16---∴a=5,b=2--∵c是的整数部分∴c=3-∴3a-b+c=163a-b+c的平方根是±4;21.现有一个体积为125cm3的木块,将它锯成同样大小的8块小正方体,求每个小正方体木块的表面积.=cm,6×()2=37.5cm2.22.下列实数-7.5,15,4,3-27,-π,813中,有a个整数,b个无理数,求a-b的平方根和立方根.解:由题意得a-3,b=2.∴a-b=1.∴±a-b=±1=±1,3a-b=31=1.即a-b的平方根为±1,立方根为1.23.小明买了一箱苹果,装苹果的纸箱的尺寸为2×3×9(长度单位为分米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,要求两个纸箱都装满,且恰好把苹果分完. 问这两个正方体纸箱的棱长为多少分米?设这两个正方体纸箱的棱长为x分米,根据题意得,所以,所以.因此,这两个正方体纸箱的棱长为3分米.24.如图,实数、在数轴上的位置,化简.解:由图可知: ,,∴.∴原式===.。

人教版七年级数学下学期 第6章 实数 单元练习题

人教版七年级数学下学期 第6章 实数  单元练习题

第6章实数一.选择题(共10小题)1.下列各数中3.1415926,﹣,0.131131113……,,﹣无理数的个数有()A.1个B.2个C.3个D.4个2.下列说法中,正确的是()A.带根号的数都是无理数B.不带根号的数一定是有理数C.无限小数都是无理数D.无理数是无限不循环小数3.下列各式计算正确的是()A.B.C.D.4.已知a<<b,且a,b为两个连续的整数,则a+b等于()A.3B.5C.6D.75.下列对于的大小估算正确的是()A.B.C.D.6.有下列说法:(1)2的算术平方根是,(2)﹣a2没有平方根(3)的算术平方根是4;(4)每一个无理数都可以用数轴上的一个点来表示;(5)0.04的算术平方根是0.2;(6)﹣π是(﹣π)2的平方根.其中说法正确的有A.1个B.2个C.3个D.4个7.的平方根是()A.6B.±6C.D.8.如图,点A表示的实数是()A.﹣B.﹣C.1﹣D.1﹣9.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.b+c>0D.|a|>|b|10.下列说法:①=﹣10;②数轴上的点与实数成一一对应关系;③﹣3是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个二.填空题(共5小题)11.若a+7的算术平方根是3,2b+2的立方根是﹣2,则b a的平方根.12.的平方根是,的立方根是,如果的平方根是±3,则a =.13.已知x是的整数部分,y是的小数部分,则xy的值.14.写出一个满足<a<的整数a的值为.15.的算术平方根是,的立方根是.三.解答题(共5小题)16.﹣|3﹣π|+.17.若=,且与互为相反数,求x﹣y的值.18.解答下列问题:(1)以上解题过程中,从第几步开始出现了错误?(2)比较与的大小,并写出你的判断过程.19.如图,数轴上从左到右依次有A,B,C,D四个点,它们对应的实数分别为a,b,c,d,如果存在实数λ,满足:对线段AB和CD上的任意一点,其对应的数为x,实数对应的点N仍然在线段AB或CD上,则称(a,b,c,d,λ)为“完美数组”.例如:(1,2,3,6,6)就是一组“完美数组”,已知|AB|=1,|BC|=5,|CD|=4,求此时所有的“完美数组”,写出你的结论和推算过程.20.如果A=为a+3b的算术平方根,B=为1﹣a2的立方根,求(1)a b的值;(2)A﹣3B的平方根.参考答案一.选择题(共10小题)1.B.2.D.3.A.4.B.5.C.6.D.7.D.8.B.9.D.10.C.二.填空题(共5小题)11.±512.±2;﹣2;81.13.2﹣4.14.2(答案不唯一).15.,﹣.三.解答题(共5小题)16.解:原式=10﹣(π﹣3)﹣3=10﹣π+3﹣3=10﹣π.17.解:由=,得3x﹣2=0或3x﹣2=1,解得x=或x=1.由与互为相反数,得x﹣3+2﹣y=0.当x=时,y=﹣当x=1时,y=0.当x=,y=﹣时,x﹣y=﹣(﹣)=1;当x=1,y=0时,x﹣y=1﹣0=1.18.解:(1)以上解题过程中,从第二步开始出现了错误.(2)结论:<.理由如下:=,=,∵<,∴<.19.解:设A表示的数是x,则B表示x+1,C表示x+6,D表示x+10,由“完美数组”的定义,可知有如下情况:①x(x+10)=(x+1)(x+6);∴x=2,∴“完美数组”是(2,3,8,12,24);②x(x+6)=(x+1)(x+10);∴x=﹣2∴“完美数组”是(﹣2,﹣1,4,8,﹣8);③x(x+1)=(x+6)(x+10);∴x=﹣4,∴“完美数组”是(﹣4,﹣3,2,6,12);20.解:(1)∵A=为a+3b的算术平方根,B=为1﹣a2的立方根∴解得:∴a b=32=9.(2)∵∴A===3 B==﹣2∴A﹣3B=3﹣3×(﹣2)=9∴A﹣3B的平方根为±3.。

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

一、选择题1.下列各数中比( )A .2-B .1-C .12-D .0A 解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.2.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D . 【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.估算481的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<48<7,从而可对48−1进行估算.【详解】 解:∵36<48<49,∴6<48<7,∴5<48-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.4.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 13解析:B【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C 、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.5.85-的整数部分是( ) A .4 B .5 C .6 D .7B 解析:B【分析】直接利用估算无理数的大小的方法得出253<<,进而得出答案. 【详解】解:459<<,459∴<<,即253<<,838582∴-<-<-,5856∴<-<,85∴-的整数部分是5.故选:B .【点睛】本题主要考查了估算无理数的大小,正确得出5的取值范围是解题关键.6.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n A 解析:A【分析】根据题意可判断0在线段NQ 的中点处,再根据绝对值的意义即可进行判断.【详解】解:因为0n q +=,所以n 、q 互为相反数,0在线段NQ 的中点处,所以点P 距离原点的距离最远,即m ,n ,p ,q 四个实数中,绝对值最大的一个是p . 故选:A .【点睛】本题考查了实数与数轴以及线段的中点,正确理解题意、确定数轴上原点的位置是解题关键.7.下列实数中,属于无理数的是( )A .3.14B .227C 4D .πD解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.9.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷1)-12(2)-12【分析】(1)(2)两小题都属于实数的混合运算先计算乘方和开方再计算乘除最后再算加减即可得出结果【详解】解:(1)(2)【点睛】本题考查了实数的混合运算根据算式确定运算顺序并解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.14.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.15.计算:3011(2)(200422-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.16.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.17.已知a 的整数部分,b 的小数部分,求代数式(1b a -的平方根.【分析】根据可得即可得到的整数部分是3小数部分是即可求解【详解】解:∵∴∴的整数部分是3则的小数部分是则∴∴9的平方根为【点睛】本题考查实数的估算实数的运算平方根的定义掌握实数估算的方法是解题的关键 解析:3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<, ∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键. 18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.19.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-20.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)3cm 【分析】设球的半径为r 求出下降的水的体积即圆柱形小水桶中下降的水的体积最后根据球的体积公式列式求解即可【详解】解:设球的半径为r 小水桶的直径为水面下降了小水桶的半径为6cm 下降的水的体积是π×解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 三、解答题21.2-.解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.22.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.23.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.24.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

2021-2022学年人教版初中数学七年级下册 第六章实数综合练习试卷(含答案详细解析)

2021-2022学年人教版初中数学七年级下册 第六章实数综合练习试卷(含答案详细解析)

初中数学七年级下册 第六章实数综合练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在下列四个实数中,最大的数是( )A .0B .﹣2C .2D 2、下列各数是无理数的是( )A .-3B .23 C .2.121121112 D .4π 3、下列说法正确的是( )A .2π是分数 B .0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数C .﹣3x 2y +4x ﹣1是三次三项式,常数项是1D .单项式﹣232ab 的次数是2,系数为﹣92 4、4的平方根是( )A .2B .﹣2C .±2D .没有平方根5、下列各数:3.14,0,1π,-2,0.1010010001…(1之间的0逐次增加1个),其中无理数有( )A .1个B .2个C .3个D .4个6、下列各数中,最小的数是( )A .0BC .π-D .﹣37、下列各数中,无理数是( )A .227B .πCD 8、下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .任何数的立方根都只有一个D .如果一个数有立方根,那么这个数也一定有平方根9、下列说法中,正确的是( )A .无限小数都是无理数B .数轴上的点表示的数都是有理数C .任何数的绝对值都是正数D .和为0的两个数互为相反数1040b -=,那么a b -=( )A .1B .-1C .-3D .-5二、填空题(5小题,每小题4分,共计20分)1、一个正方形的面积为5,则它的边长为_____.2=____________;3、若一个正数的两个不同的平方根为2a +1和3a ﹣11,则a =___.4、已知x 、y 2(2)y -=0,则xy 的算术平方根为______.5、绝对值不大于4且不小于π的整数分别有______.三、解答题(5小题,每小题10分,共计50分)1、求下列各式中x 的值.(1)12(x -3)3=4(2)9(x +2)2=162、一个底为正方形的水池的容积是486m 3,池深1.5m ,求这个水池的底边长.3、已知24a +的立方根是2,31a b +-算术平方根是4,求4a b +的算术平方根.42=-,求x +17的算术平方根.5、把下列各数序号..填入相应的集合中:①﹣3.14,②﹣2π,③13-,④0.618,⑤227,⑥0,⑦﹣1,2+.负分数集合{_________……};正整数集合{___________……};无理数集合{___________……}.---------参考答案-----------一、单选题1、C【分析】先根据正数大于0,0大于负数,排除A ,B ,然后再用平方法比较2【详解】 解:正数0>,0>负数,∴排除A ,B ,224=,23=,43∴>,2∴>∴最大的数是2,故选:C .【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.2、D【分析】根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.【详解】A 、-3是整数,属于有理数.B 、23是分数,属于有理数.C 、2.121121112是有限小数,属于有理数.D 、4π是无限不循环小数,属于无理数. 故选:D .【点睛】本题主要是考察无理数的概念,初中数学中常见的无理数主要是:π,3π等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.3、D【分析】 根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.【详解】解:A 、2π是无限不循环小数,不是分数,故此选项不符合题意; B 、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;C 、﹣3x 2y +4x ﹣1是三次三项式,常数项是-1,故此选项不符合题意;D 、单项式﹣232ab 的次数是2,系数为﹣92,故此选项符合题意; 故选D .【点睛】本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.4、C【分析】根据平方根的定义(如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.【详解】解:4的平方根,即:2=±,故选:C .【点睛】题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.5、C【分析】根据无理数的定义求解即可【详解】解:在所列实数中,无理数有:1π,1之间的0逐次增加1个),共3个, 故选:C【点睛】本题考查了无理数的定义,注意常见的无理数有:开方开不尽的数,含π的数,有规律但不循环的数.6、C【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】 解:30π-<-< ∴所给的各数中,最小的数是π-.故选:C .【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7、B【详解】解:A、是有理数,故本选项不符合题意;B、是无理数,故本选项符合题意;C2是有理数,故本选项不符合题意;D2=是有理数,故本选项不符合题意;故选:B【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.8、C【分析】利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义.【详解】解:∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴A选项说法不正确;∵一个负数有一个负的立方根,∴B选项说法不正确;∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴C选项说法正确;∵一个负数有一个负的立方根,但负数没有平方根,∴D 选项说法不正确.综上,说法正确的是C 选项,故选:C .【点睛】本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.9、D【分析】根据实数的性质依次判断即可.【详解】解:A.∵无限不循环小数才是无理数.∴A 错误.B.∵数轴上的点也可以表示无理数.∴B 错误.C.∵0的绝对值是0,既不是正数也不是负数.∴C 错误.D.∵和为0的两个数互为相反数.∴D 正确.故选:D .【点睛】本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.10、D【分析】由非负数之和为0,可得10a +=且40b -=,解方程求得a ,b ,代入-a b 问题得解.【详解】解:40b -=,∴10b-=,a+=且40解得,14=-=,,a ba b∴-=--=-,145故选:D【点睛】本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.二、填空题1【解析】【分析】根据正方形面积根式求出边长,即可得出答案.【详解】【点睛】本题考查了算术平方根,关键是会求一个数的算术平方根.2、-3【解析】【分析】根据立方根、算术平方根可直接进行求解.【详解】解:原式=2673-+-=-;故答案为-3.【点睛】本题主要考查立方根、算术平方根,熟练掌握求一个数的立方根及算术平方根是解题的关键. 3、2【解析】【分析】根据一个正数的两个不同的平方根互为相反数列方程即可.【详解】解:∵一个正数的两个不同的平方根分别是2a +1和3a ﹣11,∴213110a a ++-=,解得2a =.故答案为: 2.【点睛】本题考查了平方根的意义和解一元一次方程,解题关键是明确一个正数的两个不同的平方根互为相反数,根据题意列出方程.4、4【解析】【分析】直接利用算术平方根以及偶次方的性质得出x ,y 的值,进而得出答案.【详解】2(2)0y -=,∴x+4=0,y-2=0,解得:x=-4,y=2,故xy=(-4)2=16,16的算术平方根是:4.故答案为:4.【点睛】本题主要考查了算术平方根以及偶次方的性质,正确得出x,y的值是解题关键.5、4和-4或-4和4【解析】【分析】根据绝对值的意义及实数的大小比较可直接进行求解.【详解】解:由绝对值不大于4且不小于π的整数分别有4和4-;故答案为4和4-.【点睛】本题主要考查绝对值的意义及实数的大小比较,熟练掌握绝对值的意义及实数的大小比较是解题的关键.三、解答题1、(1)x=5;(2)x=-23或x=103-.【解析】【分析】(1)把x-3可做一个整体求出其立方根,进而求出x的值;(2)把x+2可做一个整体求出其平方根,进而求出x的值.【详解】解:(1)12 (x −3)3=4,(x -3)3=8, x -3=2,∴x =5;(2)9(x +2)2=16,(x +2)2=169, x +2=43±,∴x =-23或x =103-. 【点睛】 本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2、这个水池的底边长为18m .【解析】【分析】根据“柱体体积=底面积×高”列式,解方程即可.【详解】解:设水池的底边长为x ,由题意得21.5486x =2324x =解得121818x x ==-,∵水池的底边长为正数,∴ x=18答:这个水池的底边长为18m.【点睛】本题考查了利用平方根解方程的应用,根据题目条件寻找等量关系,建模列式是解决本题的关键.3【解析】【分析】根据立方根、算术平方根解决此题.【详解】解:由题意得:2a+4=8,3a+b-1=16.∴a=2,b=11.∴4a+b=8+11=19.∴4a+b【点睛】本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键.4、3【解析】【分析】2-,求出x的值,然后代入x+17求解算术平方根即可.【详解】2-,∴5x+32=-8,解得:x=-8,∴x+17=-8+17=9,∵9的算术平方根为3,∴x+17的算术平方根为 3,故答案为:3.【点睛】此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.5、见解析.【解析】【分析】根据负分数,正整数,无理数的定义进行分类即可得到答案.【详解】解:①﹣3.14是负分数,②﹣2π,是无理数,③13-是负分数,④0.618是正分数,⑤227是正分数,⑥0是整数,⑦﹣1是负整数,⑧6%是正分数,⑨+32+是无理数.负分数集合{①③……};正整数集合{⑨……};无理数集合{②⑩……}.【点睛】本题主要考查了实数的分类,解题的关键在于能够熟练掌握负分数所有小于0的分数组成的数集,正整数所有大于0的整数组成的数集,无理数无限不循环的小数组成的数集.。

人教版七年级数学下册 第六章《 实数》综合练习(附答案)

人教版七年级数学下册 第六章《 实数》综合练习(附答案)

人教版七年级数学下册 第六章《实数》综合练习一、单选题1.9的平方根是( )A .±√3B .3C .±81D .±322 ,则a 的值为( )A .-4B .4C .-2 D3)A .±2B .±4C .4D .2 4.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 55.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或7 6.下列实数中,无理数是( )A .3.14B .2.12122CD .2277.实数a b c d ,,,在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d8.下列说法正确的是()A.无理数都是无限不循环小数B.无限小数都是无理数C.有理数都是有限小数D.带根号的数都是无理数9.面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间10.在实际生活中,八点五十五通常说成九点差五分,受此启发,我们设计了一种新的加减计数法,比如:7写成13,即13=10-3=7;191写成209,即209=200-9=191,按这个方法计算2019等于( )A.2020B.2001C.1991D.1981二、填空题11.一个正数的两个平方根分别是3a+2和a-4.则a的值是.12-125的立方根的和为______.13的整数部分是m,小数部分是n,则n2﹣2m﹣1的值为_____.14.====,…,则第8个等式是__________.三、解答题15.求出下列x的值.(1)16x2﹣49=0;(2)24(x﹣1)3+3=0.16.已知一个正数的平方根分别是32x +和49x -,求这个数.17.观察下列计算过程,猜想立方根.13=123=833=2743=6453=12563=21673=34383=51293=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为______,又由203<19000<303,猜想19683的立方根的十位数为_____,验证得19683的立方根是______.(2)请你根据(1)中小明的方法,求﹣373248的立方根.18.填空并解答相关问题:(1)观察下列数1,3,9,27,81…,发现从第二项开始,每一项除以前一项的结果是一个常数,这个常数是________;根据此规律,如果a n (n 为正整数)表示这列数的第n 项,那么a n =__________;你能求出它们的和吗?计算方法:如果要求1+3+32+33+…+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得3S=3+32+33+…+320+321①由①式左右两边分别减去①式左右两边,得3S -S=(3+32+33+…+320+321)-(1+3+32+33+…+320),即2S=321-1,两边同时除以2得()211312S =-. (2)你能用类比的思想求1+6+62+63+…+6100的值吗?写出求解过程.(3)你能用类比的思想求1+m+m 2+m 3+…+m n (其中mn≠0,m≠1)的值吗?写出求解过程. 19.阅读下面文字,然后回答问题.的小数部分我们不可能全部的整数部分是1 减去它的整数部分,差就是它的小数部分,因此﹣1表示.由此我们得到一个真命题:=x +y ,其中x 是整数,且0<y <1,那么x =1,y ﹣1.请解答下列问题:(1a +b ,其中a 是整数,且0<b <1,那么a = ,b = ;(2c +d ,其中c 是整数,且0<d <1,那么c = ,d = ;(3)已知m+n ,其中m 是整數,且0<n <1,求|m ﹣n |的值答案1.D 2.B 3.D 4.C 5.D 6.C 7.D 8.A 9. B 10.D11.-12.12.-3或-713.5-14=15.(1)x=±74;(2)x=12.16.2517.(1)7,2,27;(2)-72.18.(1) 3, a n =13n -;(2) ()1011651S =-;(3) ()1111-n m S m +=-.19.(1)a =2,b 2;(2)c =﹣3,d =3(3)6。

人教版七年级数学下册第六章 实数练习题

人教版七年级数学下册第六章 实数练习题

人教版七年级数学下册第六章实数练习题第六章实数一、单选题1.计算36的相反数是()A。

-6 B。

6 C。

-36 D。

0答案:A解析:36的相反数是-36,但是选项中没有-36,所以选择最接近的-6.2.9的平方根是()A。

-3 B。

3 C。

±3 D。

0答案:B解析:9的平方根是3.3.下列各式中正确的是()A。

16=±4 B。

38=2 C。

-9=-3 D。

±493=974答案:B解析:只有选项B是正确的等式。

4.若a^2=9,3b=-2,则a+b=()A。

-5 B。

-11 C。

-5或-11 D。

±5或±11答案:C解析:a=±3,b=-2/3,所以a+b=±3-2/3=±8/3,选项C是正确的。

5.在1,4,0.…,22π,39这6个数中,无理数有()A。

1个 B。

2个 C。

3个 D。

4个答案:D解析:1是有理数,4是有理数,0.…是无理数,22π是无理数,39是有理数,所以无理数有4个。

6.实数6的相反数是()A。

-6 B。

6 C。

-1/6 D。

0答案:A解析:6的相反数是-6.7.在如图所示的数轴上,AB=AC,A,B两点对应的实数分别是3和-1,则点C所对应的实数是()A。

1+3 B。

2+3 C。

2/3 D。

2-3答案:D解析:由AB=AC可知BC=-4,所以点C所对应的实数是-1+(-4)=-5.8.在实数-√3,-2,| -2 |中,最小的是()A。

-3/2 B。

-√3 C。

-2 D。

2答案:B解析:-√3<-2<| -2 |,所以最小的是-√3.9.设n为正整数,且n<4,1<n+1<5,则n的值为()A。

2 B。

3 C。

4 D。

无法确定答案:B解析:由1<n+1<5可知2<n<4,所以n的值为3.10.用“☆”定义一种新运算:对于任意有理数x和y,x☆y=a^2x+ay+1(a为常数),如:2☆3=a^2×2+a×3+1=2a^2+3a+1.若1☆2=3,则4☆8的值为()A。

精选人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)

精选人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)

人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于人教版七年级数学下册第六章 实数 能力检测卷一.选择题(共10小题) 1.16的平方根是( ) A .4B .-4C .16或-16D .4或-42.下列各等式中计算正确的是( )A ±4B C =-3 D = 323.若方程2(4)x -=19的两根为a 和b ,且a>b,则下列结论中正确的是( ) A .a 是19的算术平方根 B .b 是19的平方根 C .a-4是19的算术平方根D .b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平) A .0个B .1个C .2个D .3个5.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是( ) A .-2B .2C .3D .47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10B .10,11C .11,12D .12,138 ) A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是( ) A.33 B .-33 C. 3 D.132.下列实数中无理数是( )A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20B.x20=2C.x±20=20D.x3=±206.下列选项中正确的是()A.27的立方根是±3B.的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a 23 <b ,且a 、b 是两个连续的整数,则|a+b|= . 5.若的值在两个整数a 与a +1之间,则a= .6.如图,正方形ABCD 被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm 2和2cm 2,那么两个长方形的面积和为 cm 2. 7.请写出一个大于8而小于10的无理数: .8.数轴上有A 、B 、C 三个点,B 点表示的数是1,C 点表示的数是,且AB=BC ,则A 点表示的数是 .三、解答题(38分)1.(6分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.2.(6分)已知,求的算术平方根.3.(6分)计算: (1)9×(﹣32)+4+|﹣3|(2).4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{…};无理数集合:{…};正实数集合:{…};整数集合:{…}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:。

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)(1)

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)(1)

一、选择题1.给出下列各数①0.32,②227,③π,⑤0.2060060006(每两个6之间依次多个0), ) A .②④⑤B .①③⑥C .④⑤⑥D .③④⑤D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数, ②227是分数,是有理数, ③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D .【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键. 2.下列各数中,无理数有( )3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】π,2.32232223共3个.故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.3.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .8D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D .【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.4.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; )A .1B .2C .3D .4A 解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.下列实数中,是无理数的为( )A .3.14B .13CD 解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.,则571.34的平方根约为( )A .239.03B .±75.587C .23.903D .±23.903D 解析:D【分析】根据被开方数小数点向右移动两位,其算术平方根向右移动一位及平方根的定义求解即可.【详解】解:∵,∴,故选:D .【点睛】本题主要考查算术平方根与平方根,解题的关键是掌握被开方数小数点向右移动两位,其算术平方根向右移动一位和平方根的定义.7.下列实数中,属于无理数的是( )A .3.14B .227CD .πD 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A .4B .3C .2D .1D 解析:D【分析】根据无理数、平行公理、邻补角、算术平方根、实数与数轴、平行线的判定逐个判断即可得. 【详解】①无理数包括正无理数和负无理数,此命题是假命题;②经过直线外一点有且只有一条直线与已知直线平行,此命题是真命题;③和为180︒的两个角不一定互为邻补角,此命题是假命题;④497=的算术平方根是7,此命题是假命题;⑤实数和数轴上的点一一对应,此命题是假命题;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,此命题是假命题; 综上,真命题的个数是1个,故选:D .【点睛】本题考查了无理数、平行公理、邻补角、实数与数轴等知识点,熟练掌握各定义与公理是解题关键.9.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68C 解析:C【分析】根据新定义法则判断35-<,65≥,根据新定义内容分别代入计算即可.【详解】当5x =时,∵35-<,∴3- 5=()33527532--=--=-, ∵65≥,∴625625361026=-⨯=-=,则(3-)(6x -)x =322658--=-.故选:C .【点睛】本题考查新定义运算,掌握新定义运算技巧,理解题意为解题关键.10.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - B解析:B【分析】 观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n ﹣1)行的数据的个数为2+4+6+…+2(n ﹣1)=n (n ﹣1),所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2个数的被开方数是n (n ﹣1)+n ﹣2=n 2﹣2,所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣222n -.故选:B .【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.二、填空题11.(1)小明解方程2x 1x a 332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少? (2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-x-y 的值.(1)x =−13;(2)(2)x-y 的值为9或-1【分析】(1)将错就错把x =2代入计算求出a 的值即可确定出正确的解;(2)根据题意可以求得xy 的值从而可以求得x−y 的值【详解】(1)把x =2代入2解析:(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数. 12.求满足条件的x 值:(1)()23112x -=(2)235x -=(1);(2)【分析】(1)方程两边同除以3再运用直接开平方法求解即可;(2)方程移项后再运用直接开平方法求解即可【详解】解:(1)解得;(2)∴∴【点睛】本题考查了平方根的应用解决本题的关键是熟记解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.13.解方程:(1)2810x -=;(2)38(1)27x +=.(1);(2)【分析】(1)移项利用平方根的性质解方程;(2)方程两边同时除以8然后利用立方根的性质解方程【详解】(1)移项得:解得:;(2)方程两边同时除以8得:∴解得:【点睛】本题考查了平方根和解析:(1)9x =±;(2)12x =. 【分析】(1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键. 14.请你写出一个比3大且比4小的无理数,该无理数可以是:____.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.15.若|2|0a -=,则a b +=_________.5【分析】根据非负数的性质列式求出ab 的值然后相加即可【详解】解:根据题意得解得∴故答案为:5【点睛】本题考查了非负数的性质:有限个非负数的和为零那么每一个加数也必为零解析:5【分析】根据非负数的性质列式求出a 、b 的值,然后相加即可.【详解】解:根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点睛】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若|2|0x -=,则12xy -=_____.2【分析】根据非负数的性质进行解答即可【详解】解:故答案为:2【点睛】本题考查了非负数的性质掌握几个非负数的和为0这几个数都为0是解题的关键解析:2【分析】根据非负数的性质进行解答即可.【详解】解:|2|0x -=,20x ∴-=,0x y +=,2x ∴=,2y =-, ∴112(2)222xy -=-⨯⨯-=,故答案为:2.【点睛】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键. 17.我们知道,同底数幂的乘法法则为:•m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=⋅,请根据这种新运算填空:若()213h =,则(2)h =_____;若()()10h k k =≠,那么()(2020)h n h ⋅=______(用含n 和k 的代数式表示,其中n 位正整数)【分析】通过对所求式子变形然后根据同底数幂的乘法计算即可解答本题【详解】解:∵∴∵∴故答案是:【点睛】本题考查整式的混合运算化简求值新定义解答本题的关键是明确题意利用新运算求出所求的式子的值 解析:492012n k + 【分析】 通过对所求式子变形,()()()h m n h m h n +=⋅然后根据同底数幂的乘法计算即可解答本题.【详解】解:∵()213h = ∴224(2)(11)(1)(1)339h h h h =+=⨯=⨯= ∵()()10h k k =≠∴()(2020)h n h ⋅=20202020n n k k k +⨯=. 故答案是:49,2020n k + 【点睛】本题考查整式的混合运算化简求值、新定义,解答本题的关键是明确题意,利用新运算求出所求的式子的值.18.比较大小:-2.(填“>”“=”或“<”)>【分析】两个负数比较绝对值大的反而小由此得到答案【详解】∵∴故答案为:>【点睛】此题考查实数的大小比较:负实数都比0小正实数都比0大两个负实数比较大小绝对值大的反而小解析:>【分析】两个负数比较绝对值大的反而小,由此得到答案.【详解】 ∵2<,∴2>-,故答案为:>.【点睛】此题考查实数的大小比较:负实数都比0小,正实数都比0大,两个负实数比较大小,绝对值大的反而小.19.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.20.若4<5,则满足条件的整数 a 分别是_________________.18192021222324【分析】求出a 的范围是16<a <25求出16和25之间的整数即可【详解】解:∵4<<5a 为整数∴<<∴整数a 有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a 的范围是16<a <25,求出16和25之间的整数即可.【详解】解:∵4<a<5,a为整数,∴16<a<25,∴整数a有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.三、解答题21.计算下列各题-+16﹣3﹣2;(1)38(2)23+5﹣100.04(结果保留2位有效数字).2-;(2)2.6解析:(1)3【分析】(1)计算立方根、平方根,再合并即可;(2)根据实数的运算法则和顺序计算即可.【详解】-+16-3-2(1)38=-2+4-2-3=-3;-100.04(2)23+525=+-⨯23100.22≈⨯+÷-2 1.732 2.236222.6≈.【点睛】本题考查了平方根和立方根,熟练掌握相关的运算法则是解题的关键.22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小. 解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:30.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.23.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732,=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .解析:(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵=2.154=4.642, ∴=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.24.已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的平方根.解析:【分析】先根据算术平方根的定义求得2x的值,再根据算术平方根的定义求出y,根据立方根的定义求z,然后代入要求的式子进行计算,最后根据平方根的定义即可得出答案.【详解】解:∵2x+1的算术平方根是0,∴2x+1=0,∴2x=﹣1,∵=4,∴y=16,∵z是﹣27的立方根,∴z=﹣3,∴2x+y+z=﹣1+16﹣3=12,∴2x+y+z的平方根是=【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.25.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时,;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,.(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0];(3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.解析:(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值;(2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值.故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键.26.计算:3011(2)(200422-+-- 解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.27.计算.(1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭ (4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦解析:(1)354;(2)-1;(3)1-;(4)9. 【分析】 (1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案; (2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案;(4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案.【详解】解:(1)3218433⎛⎫-⨯-+- ⎪⎝⎭=33231(8)()()()44343-⨯-+-⨯+-⨯-=11624-+ =354; (2)178(4)4(5)-÷-+⨯-=17+2-20=-1;(3163⎫-⎪⎪⎭=115+()633-+-=5+0-6=-1;(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ =34(92)29-⨯-⨯- =3(42)2-⨯-- =3(6)2-⨯-=9. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.28.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.解析:(1)3 3-;(2)25;(3)()8x y --=.【分析】(1)由34可得答案;(2)由2<3知12<<13,可求出a ,b 的值,据此求解可得;(3)得出243<-<,即可得出x ,y ,从而得出结论. 【详解】解:(1)∵9<13<16∴34,∴3;故答案为:3.(2)∵4<7<9,∴2<3∴12<<13∴a=12,b=13∴a+b=12+13=25,故答案为:25;(3<<67<<所以64474-<<-即243<-<4的整数部分为2,即2x =,426y =-=()26x y x y --=-+=-+=8=【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.。

人教版七年级下学期数学《第6章 实数》 单元练习卷 包含答案

人教版七年级下学期数学《第6章 实数》 单元练习卷  包含答案

第6章实数一.选择题(共10小题)1.|1﹣|=()A.1﹣B.﹣1C.1+D.﹣1﹣2.已知+=0,则a2的值为()A.4B.1C.0D.﹣43.估计的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间4.对于﹣2,下列说法中正确的是()A.它是一个无理数B.它比0小C.它不能用数轴上的点表示出来D.它的相反数为+25.下列各组数中,互为相反数的一组是()A.与B.与C.与D.与6.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣57.若|x+2|+=0,则的值为()A.5B.﹣6C.6D.368.若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7B.﹣1,7C.1,﹣7D.﹣1,﹣7 9.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x10.实数a满足,则a的值不可能是()A.3B.C.2.8D.2二.填空题(共4小题)11.若x2=144,则x=,若y3=﹣64,则y=.12.已知m是的整数部分,n是的小数部分,则m2﹣n=.13.已知+=0,则x+2=.14.如图,数轴上表示1、的对应点分别为点A、点B,若点A是BC的中点,则点C表示的数为.三.解答题(共6小题)15.把下列各数填入表示它所在的数集的大括号:﹣2.4,π,2.008,﹣,﹣0.,0,﹣10,﹣1.1010010001….整数集合:{…};负分数集合:{…};正数集合:{…};无理数集合:{…}.16.在数轴上表示下列各数:,π,(﹣1)2017,的平方根,﹣|﹣3|,,并将其中的无理数用“<”连接.17.已知实数a,b,c满足:b=+4,c的平方根等于它本身.求的值.18.如图,是一个数值转换器,原理如图所示.(1)当输入的x值为16时,求输出的y值;(2)是否存在输入的x值后,始终输不出y值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由.(3)输入一个两位数x,恰好经过两次取算术平方根才能输出无理数,则x=.19.给出定义如下:若一对实数(a,b)满足a﹣b=ab+4,则称它们为一对“相关数”,如:,故是一对“相关数”.(1)数对(1,1),(﹣2,﹣6),(0,﹣4)中是“相关数”的是;(2)若数对(x,﹣3)是“相关数”,求x的值;(3)是否存在有理数数m,n,使数对(m,n)和(n,m)都是“相关数”,若存在,求出一对m,n的值,若不存在,说明理由.20.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?参考答案一.选择题(共10小题)1.B.2.A.3.B.4.A.5.C.6.B.7.C.8.D.9.B.10.A.二.填空题(共4小题)11.±12,﹣4.12.12﹣.13.5.14.2﹣.三.解答题(共6小题)15.解:整数集合:{0,﹣10,…};负分数集合:{﹣2.4,﹣,﹣0.,…};正数集合:{π,2.008,…};无理数集合{π,﹣1.1010010001…,…}.16.解:如图所示:将其中的无理数用“<”连接为<π.17.解:∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=.18.解:(1)=4,=2,则y=;(2)x=0或1时.始终输不出y值;(3)答案不唯一.x=[()2]2=25或x=[()2]2=25或x=[()2]2=49或x =[()2]2=64.故答案是:25或36或49或64.19.解:(1)∵1﹣1≠1×1+4,因此一对实数(1,1)不是“相关数”,∵﹣2﹣(﹣6)≠(﹣2)×(﹣6)+4,因此一对实数(﹣2,﹣6)不是“相关数”,∵0﹣(﹣4)=0×(﹣4)+4,因此一对实数(0,﹣4)是“相关数”,故答案为:(0,﹣4);(2)由“相关数”的意义得,x﹣(﹣3)=﹣3x+4解得,x=答:x=;(3)不存在.若(m,n)是“相关数”,则,m﹣n=mn+4,若(n,m)是“相关数”,则,n﹣m=nm+4,若(m,n)和(n,m)都是“相关数”,则有m=n,而m=n时,m﹣n=0≠mn+4,因此不存在.20.(1)解:由已知AB2=1,则AB=1,由勾股定理,AC=;或根据AC2=1,可得AC=,故答案为:(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4.;故答案为:<(3)不能;由已知设长方形长和宽为3xcm和2xcm∴长方形面积为:2x•3x=12∴解得x=∴长方形长边为3>4∴他不能裁出.。

新初中数学七年级下册第六章《实数》单元综合练习题(解析版)(1)

新初中数学七年级下册第六章《实数》单元综合练习题(解析版)(1)

人教版七年级下册第六章实数单元能力提高训练一、选择题1.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±12. 已知实数x,y满足-+|y+3|=0,则x+y的值为( A )A. -2B. 2C. 4D. -43.比较,,的大小,正确的是(A)A. B. C. D.4.如果是实数,则下列一定有意义的是( D )A.B.C.D.5.下列各数是无理数的是( C )A.0B.﹣1C.D.人教版数学七下第六章实数能力水平检测卷一.选择题(共10小题)1.下列选项中的数,小于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-12 3.若实数a,b是同一个数的两个不同的平方根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.用计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x 2=2,有x =±当x 3=3时,有x 想一想,从下列各式中,能得出x =±的是( )A .2x =±20B .20x =2C .±20x =20D .3x =±20 6.下列选项中正确的是( )A .27的立方根是±3B 的平方根是±4C .9的算术平方根是3D .立方根等于平方根的数是17.在四个实数、3、-1.4中,大小在-1和2之间的数是( )A .B .3CD .-1.481-的相反数是( )A .1-B 1-C .1-D 1+9a ,小数部分为b ,则a-b 的值为( )A .- 13B .6-C .8-D 6- 10.下列说法:①-1是1的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为( )A .1个B .2个C .3个D .4个二.填空题(共6小题)11.已知a 的平方根是±8,则它的立方根是 ;36的算术平方根是 .122(3)b ++=0= .13A 的算术平方根为B ,则A+B= .14.若45,<<则满足条件的整数a 有 个.15.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是(M、N、P、R中选).16.=5,付老师又用计算器求得:=55=555, =5555,个3,2016个4)= .三.解答题(共7小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.21.如果一个正数的两个平方根是a+1和2a-22,求出这个正数的立方根.22-的小数部分,此1事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,人教版七年级数学下册第六章实数单元测试题(含解析)一、选择题(共10小题,每小题3分,共30分)1.(-2)2的算术平方根是()A.-2 B.±2 C. 2 D.2.观察一组数据,寻找规律:0、、、、、…,那么第10个数据是()A.B.C.7 D.3.下列说法正确的是()A.0.25是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根4.如果一个正数的平方根为2a+1和3a-11,则a=()A . ±1B . 1C . 2D . 95.下列说法正确的是( )A . -1的倒数是1B . -1的相反数是-1C . 1的立方根是±1D . 1的算术平方根是1 6.的平方根为( )A . ±8B . ±4C . ±2D . 47.在下列实数:2、、、、-1.010 010 001…中,无理数有( ) A . 1个 B . 2个 C . 3个 D . 4个 8.介于下列哪两个整数之间( )A . 0与1B . 1与2C . 2与3D . 3与49.实数-1的相反数是( )A . -1-B .+1C . 1-D .-110.计算|2-|+|-3|的结果为( )A . 1B . -1C . 5-2D . 2-5 二、填空题(共8小题,每小题3分,共24分) 11.当m ≤________时,有意义. 12.当的值为最小值时,a =________.13.若a 2=9,则a 3=________.14.若x 2-49=0,则x =________.15.一个立方体的体积是9,则它的棱长是________.16.已知第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,则第二个纸盒的棱长是________ cm. 17.的整数部分是________.18.数轴上点A,点B分别表示实数,-2,则A、B两点间的距离为________.三、解答题(共8小题,共66分)19.(8分)计算:(1)|-|+|-1|-|3-|;(2)-++.20. (8分)求满足下列等式的x的值:(1)25x2=36;(2)(x-1)2=4.21. (6分)我们知道:是一个无理数,它是无限不循环小数,且1<<2,则我们把1叫做的整数部分,-1叫做的小数部分.如果的整数部分为a,小数部分为b,求代数式a+b的值.22. (6分)已知一个正数的平方根分别是3x+2和4x-9,求这个数.23. (8分)已知:|a-2|++(c-5)2=0,求:+-的值.24. (8分)已知M=是m+3的算术平方根,N=是n-2的立方根,试求M-N的值.25. (10分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.26. (12分)我们来看下面的两个例子:()2=9×4,(×)2=()2×()2=9×4,和×都是9×4的算术平方根,而9×4的算术平方根只有一个,所以=×.()2=5×7,(×)2=()2×(7)2=5×7,和×都是5×7的算术平方根,而5×7的算术平方根只有一个,所以__________.(填空)(1)猜想:一般地,当a≥0,b≥0时,与×之间的大小关系是怎样的?(2)运用以上结论,计算:的值.答案解析1.【答案】C【解析】(-2)2=4.4的算术平方根是2.2.【答案】B【解析】0=,=,=,=,=,=,…通过数据找规律可知,第n 个数为,那么第10个数据为:=. 3.【答案】B【解析】A.0.5是0.25的一个平方根,故A 错误;C .72=49,49的平方根是±7,故C 错误;D .负数没有平方根,故D 错误.4.【答案】C【解析】根据题意得:2a +1+3a -11=0,移项合并得:5a =10,解得:a =2.5.【答案】D【解析】A.-1的倒数是-1,故错误;B .-1的相反数是1,故错误;C .1的立方根是1,故错误;D .1的算术平方根是1,正确6.【答案】C 【解析】因为=4,又因为(±2)2=4,所以的平方根是±2. 7.【答案】C 【解析】2、、-1.010 010 001…是无理数. 8.【答案】C 【解析】因为4<5<9,所以2<<3. 9.【答案】C 【解析】实数-1的相反数是-(-1)=1-.10.【答案】C【解析】原式=2-+3-=5-2. 11.【答案】3【解析】要使根式有意义,则3-m ≥0,解得m ≤3.12.【答案】2 【解析】因为≥0,所以的最小值为0,3a -6=0,解得:a =2.13.【答案】±27 【解析】因为a 2=9,所以a =±3,所以a 3=±27. 14.【答案】±7 【解析】∵x 2-49=0,∴x 2=49,∴x =±7. 15.【答案】【解析】设立方体的棱长为a ,则a 3=9,所以a =. 16.【答案】7 【解析】根据题意得:=7,则第二个纸盒的棱长是7 cm. 17.【答案】4【解析】因为16<17<25,所以4<<5,所以的整数部分是4. 18.【答案】2 【解析】-(-2)=2.19.【答案】解:(1)原式=-+-1-3+=2-4;(2)原式=-(-2)+5+2=2+5+2=9.【解析】(1)根据绝对值的意义去绝对值得到原式=-+-1-3+,然后合并即可;(2)先进行开方运算得到原式=-(-2)+5+2,然后进行加法运算.20.【答案】解:(1)把系数化为1,得x 2=,开平方得,x =±56; (2)开平方得,x -1=±2,x =±2+1,即x =3或-1.【解析】(1)先把系数化为1,再利用平方根定义解答;(2)把x -1看作整体,再利用平方根定义解答.21.【答案】解:因为27<50<64,所以3<<4, 所以的整数部分a =3,小数部分b =-3. 所以a +b =3+-3=.【解析】先依据立方根的性质估算出的大小,然后可求得a,b的值,最后代入计算即可.22.【答案】解:一个正数的平方根分别是3x+2和4x-9,则3x+2+4x-9=0,解得:x=1,故3x+2=5,即该数为25.【解析】利用平方根的定义直接得出x的值,进而求出这个数.23.【答案】解:因为|a-2|++(c-5)2=0,所以a=2,b=-8,c=5.所以原式=+-=-2+4-5=-3.【解析】首先依据非负数的性质求得a、b、c的值,然后代入求解即可.24.【答案】解:因为M=是m+3的算术平方根,N=是n-2的立方根,所以可得:m-4=2,2m-4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n-2=1,所以可得M=3,N=1,把M=3,N=1代入M-N=3-1=2.【解析】根据算术平方根及立方根的定义,求出M、N的值,代入可得出M-N的值.25.【答案】解:(1)设魔方的棱长为x cm,可得:x3=216,解得:x=6.答:该魔方的棱长6 cm.(2)设该长方体纸盒的长为y cm,6y2=600,y2=100,y=10.答:该长方体纸盒的长为10 cm.【解析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.26.【答案】解:根据题。

【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)

【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)

人教版七年级数学下册第六章实数质量评估试卷 一、选择题(每小题3分,共30分)1.-3的绝对值是( )A.33 B.-33C. 3 D.1 32.在实数-227,9,π,38中,是无理数的是( )A.-227 B.9C.π D.3 83.下列四个数中,最大的一个数是( ) A.2 B. 3 C.0 D.-24.某正数的平方根为a5和4a-255,则这个数为( )A.1 B.2C.4 D.95.下面实数比较大小正确的是( )A.3>7 B.3> 2C.0<-2 D.22<36.实数a在数轴上的位置如图1所示,则下列说法不正确的是( )图1A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<07.如图2,在数轴上点A表示的数为3,点B表示的数为6.2,点A,B之间表示整数的点共有( )图2A.3个 B.4个C.5个 D.6个8.|5-6|=( )A.5+ 6 B .5- 6C .-5- 6D .6- 59.若x-1+(y+1)2=0,则x-y的值为( )A.-1 B.1C.2 D.310. 已知3≈1.732,30≈5.477,那么300 000≈( ) A.173.2 B.±173.2C.547.7 D.±547.7二、填空题(每小题4分,共20分)11.比较大小:3-2 > -23(填“>”“<”或“=”).12.计算:9-14+38-|-2|=.13.3-5的相反数为,4-17的绝对值为的绝对值为,绝对值为327的数为 .14.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1,例如8*9=+1=4,那么15*196= .15.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是个数据是.三、解答题(共70分)16.(6分)求下列各式的值.求下列各式的值.(1)252-242×32+42;(2)2014-130.36-15×900;(3)|a -π|+|2-a |(2<a <π).(精确到0.01)17.(8分)求下列各式中x 的值.的值.(1)x 2-5=4; (2)(x -2)3=-0.125.18.(8分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.的值.19.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm ,宽为2 dm ,且两块纸板的面积相等.,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为2 dm 2和3 dm 2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732人教版七年级下册 第六章 实数 单元同步测试一、选择题1、下列说法正确的是(、下列说法正确的是( ) A.A.负数没有立方根负数没有立方根负数没有立方根B.B.一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数C.C.如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根D.D.不为不为0的任何数的立方根,都与这个数本身的符号同号的任何数的立方根,都与这个数本身的符号同号 2、下列语句中正确的是(、下列语句中正确的是() A.-9的平方根是的平方根是-3 -3 -3 B.9的平方根是3 3 C.9的算术平方根是3± D.9的算术平方根是3 3、下列说法中正确的是(、下列说法中正确的是( )A 、若a 为实数,则0³aB 、若、若a 为实数,则a 的倒数为a1C 、若x,y 为实数,且x=y x=y,则,则y x = D、若a 为实数,则02³a 4、估算728-的值在的值在A. 7和8之间之间B. 6和7之间之间C. 3和4之间之间D. 2和3之间之间 5、下列各组数中,不能作为一个三角形的三边长的是(、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、10001000、、1000 1000B 、2、3、5C 、2225,4,3 D 、38,327,3646、下列说法中,正确的个数是(、下列说法中,正确的个数是( )(1)-)-6464的立方根是-的立方根是-44;(;(22)49的算术平方根是7±;(;(33)271的立方根为31;(;(44)41是161的平方根。

七年级数学(下)第六章《实数——有序数对》练习题含答案

七年级数学(下)第六章《实数——有序数对》练习题含答案

七年级数学(下)第六章《实数——有序数对》练习题1.根据下列表述,能确定具体位置是A.某电影院2排B.金寨南路C.北偏东45°D.东经168°,北纬15°【答案】D故选D.2.某班级第4组第5排位置可以用数对(4,5)表示,则数对(2,3)表示的位置是A.第3组第2排B.第3组第1排C.第2组第3排D.第2组第2排【答案】C【解析】某班级第4组第5排位置可以用数对(4,5)表示,则数对(2,3)表示的位置是第2组第3排,所以C选项是正确的. 故选C.3.为了维护我国的海洋权益,我海军在海战演习中,欲确定每艘战舰的位置,需要知道每艘战舰相对我方潜艇的A.距离B.方位角C.距离和方位角D.以上都不对【答案】C【解析】由于在一个平面内要表示清楚一个点的位置,要有两个数据,故选C.4.课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成A.(5,4)B.(4,4)C.(3,4)D.(4,3)【答案】B【解析】如图,小慧的位置可表示为(4,4).故选B.5.下列关于有序数对的说法正确的是A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,–2)与(–2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置【答案】C故选C.二、填空题:请将答案填在题中横线上.6.确定平面内某一点的位置一般需要____________个数据.【答案】2【解析】确定平面内某一点的位置一般需要两个数据——横坐标和纵坐标.故答案:2.7.如果将一张“13排10号”的电影票记为(13,10),那么“3排8号”的电影票应记为____________,(10,13)表示的电影票是____________.【答案】(3,8);10排13号故答案为:(3,8),10排13号.8.用有序数对(2,9)表示某住户住2单元9号房,请问(3,11)表示住户住____________单元____________号房.【答案】3;11【解析】用有序数对(2,9)表示某住户住2单元9号房,所以(3,11)表示住户住3单元11号房.故答案为:3;11.9.某校为每个学生编号,设定末尾用1表示男生,用2表示女生.如果1808132表示“2018年入学的8班13号同学,是位女生”,那么2018年入学的10班37号男生的编号是____________.【答案】1810371【解析】2018年入学的10班37号男生的编号是:1810371.故答案为:1810371.10.下列说法中:①座位是4排2号;②某城市在东经118°,北纬29°;③某校在昌荣大道229号;④甲地距乙地2km,其中能确定位置的有____________个.【答案】3【解析】①座位是4排2号;②某城市在东经118°,北纬29°;③某校在昌荣大道229号;可以准确的表示出位置,而④甲地距乙地2km却不能确定甲地在乙地什么方向上距乙2km,所以不能确定位置,所以能确定位置的有3个.故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.如下图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格【解析】如下图所示,可知小明与小刚相距3个格.12.如下图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?【解析】有6种走法分别为:①(2,4)→(3,4)→(4,4)→(4,3)→(4,2);②(2,4)→(3,4)→(3,3)→(4,3)→(4,2);③(2,4)→(3,4)→(3,3)→(3,2)→(4,2);④(2,4)→(2,3)→(3,3)→(4,3)→(4,2);⑤(2,4)→(2,3)→(3,3)→(3,2)→(4,2);⑥(2,4)→(2,3)→(2,2)→(3,2)→(4,2).13.在平面内用有序数对可表示物体的位置,你还能用其他类似的方法来表示物体的位置吗?请结合图形说明.3,45,因此平面内不同的点【解析】如图所示,画一条水平的射线OA,则点B的位置可以表示为()可以用这样的有序数对进行表示.14.某电视台用如下图所示的图象描绘了一周之内日平均温度的变化情况:(1)这一周哪一天的日平均温度最低?大约是多少度?哪一天的平均温度最高?大约是多少度?你能用有序数对分别表示它们吗?(2)14、15、16日的日平均温度有什么关系?(3)说一说这一周日平均温度是怎样变化的.(3)这一周日平均温度从28℃升至36℃,然后降至33℃,又升至35℃,持续3天,17日降至30℃.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 实数
一、单选题
1的平方根是( )
A .2
B
C .±2
D .
2.已知一个正方体的表面积为218dm ,则这个正方体的棱长为( )
A
.1dm B C D .3dm
3.下列说法正确的是( )
A .﹣81的平方根是±9
B .7
C .1
27的立方根是±1
3 D .(﹣1)2的立方根是﹣1
4.在3.14,23
7,π这几个数中,无理数有( )
A .1个
B .2个
C .3个
D .4个
5.下列语句正确是( )
A .无限小数是无理数
B .无理数是无限小数
C .实数分为正实数和负实数
D .两个无理数的和还是无理数
6.下列各组数中互为相反数的是( )
A .﹣3与1
3 B .﹣(﹣2)与﹣|﹣2| C .5D .﹣
2
7.如图,M 、N 、P 、Q 是数轴上的四个点,1的点是(

A .点M
B .点N
C .点P
D .点Q
8.比较2的大小,正确的是( )
A .2<<
B .2<<
C 2<<
D 2<<
9.若a 、b 分别是62a -b 的值是( )
A .3
B .4
C
D .
10.请你观察、思考下列计算过程:因为112=121=11:,因为1112=12321所以
=111…( )
A .111111
B .1111111
C .11111111
D .111111111
二、填空题
11.已知一个正数的平方根是3x ﹣2和5x+6,则这个数是 __________。

12.若24a =,327b =,且0ab <,则a b +=___.
13.比较大小:-4.(填“>”、“=”或“<”)
14.对于实数a ,b ,定义运算“※”如下:2a b a ab =-※,则43=※__________.
三、解答题
15.求x 值.
()2
x=
14121
()()3
x+=
22125
16.计算与解方程组:
(1
(2
17.阅读下面的文字,解答问题,
例如:即2<3,的整数部分为2,小数部分为﹣2).
请解答:(1的整数部分是,小数部分是.
(2)已知:5小数部分是m,小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值.
18.阅读下列材料:小明为了计算1+2+22+……+22018+22019的值,采用以下方法:
设S=1+2+22+……+22018+22019※
则2S=2+22+……+22019+22020※
※-※得,2S-S=S=22020-1
请仿照小明的方法解决以下问题:
(1)1+2+22+……+29=;
(2)3+32+……+310=;
(3)求1+a+a2+……+a n的和
答案1.D 2.B 3.B 4.B 5.B 6.B 7.D 8.C 9.C
10.D
11.4
49 12.1.
13.>
14.4
15.()1112x =或112
x =-;()23x = 16.(1)8;(2)32
4- 17.(1)4
4;(2)x=0或-2.
18.(1)S=210-1;(2)1133
2-;(3)111n a a +--。

相关文档
最新文档