2020高考物理卫星变轨与航天器对接问题(解析版)
专题02 变轨问题(解析版)
![专题02 变轨问题(解析版)](https://img.taocdn.com/s3/m/5abff5920029bd64783e2c98.png)
02.变轨问题—万有引力与航天绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供,r m r Tm ma r v m r GMm 222224ωπ====,轨道半径r 确定后(在轨),与之对应的卫星线速度r GM v =,周期GMr T 32π=,向心加速度=a 2r GM 等也都是唯一确定的。
如果卫星的质量是确定的,那么,与轨道半径r 对应的卫星的动能、重力势能、总机械能也是唯一确定的。
一旦卫星发生了变轨,即轨道半径r 发生了变化,上述所有物理量都将随之变化。
一类变轨是卫星因为受稀薄大气的影响速度变小,从而做向心运动,使卫星在更低的轨道运行;另一类变轨例如发射同步卫星,先将卫星发射到近地轨道I ,使其绕地球做匀速圆周运动,速率为1v ,变轨时在P 点点火加速,短时间内将速率由1v 增加到2v ,使卫星进入椭圆形转移轨道 II ;卫星运行到远地点Q 时,速率为3v ,此时进行第二次点火加速,短时间内将速率由3v 增加到4v ,使卫星进入同步轨道III ,绕地球做匀速圆周运动。
如图所示:1.如图所示,一颗人造卫星原来在椭圆轨道1绕地球E 运行,在P 变轨后进入轨道2做匀速圆周运动下列说法正确的是A.不论在轨道1还是在轨道2运行,卫星在P 点的速度都相同B.不论在轨道1还是在轨道2运行,卫星在P 点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量 【答案】B【解析】从1到2,需要加速逃逸,A 错;2Mm Gma R =可得21a R∝,半径相同,加速度相同,卫星在椭圆轨道1上运动时,运动半径变化,a 在变,C 错B 对;卫星在圆形轨道2上运动时,过程中的速度方向时刻改变,所以动量方向不同,D 错。
2.如图6所示,飞船从轨道1变轨至轨道2。
若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的A.动能大B.向心加速度大C.运行周期长D.角速度小【解析】根据r m r Tm ma r v m r GMm 222224ωπ====, 得,动能=k E r GMm 2,r 变大,所以动能变小,A 错误;加速度=a 2r GM ,r 变大,所以加速度变小,B 错误;周期GMr T 32π=,r 变大,所以周期变大,C 正确;角速度3rGM=ω,r 变大,所以角速度变小,D 正确。
2020高考物理卫星变轨与航天器对接问题(解析版)
![2020高考物理卫星变轨与航天器对接问题(解析版)](https://img.taocdn.com/s3/m/9652f4053169a4517723a339.png)
2020年高考物理备考微专题精准突破专题2.8 卫星变轨与航天器对接问题【专题诠释】人造地球卫星的发射过程要经过多次变轨,如图所示,我们从以下几个方面讨论.1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A点点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.物理量的定性分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为v A、v B.因在A点加速,则v A>v1,因在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同.同理,从轨道Ⅱ和轨道Ⅲ上经过B点时加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律a3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.【高考领航】【2019·江苏高考】1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动。
如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G。
则()A .v 1>v 2,v 1=GM r B .v 1>v 2,v 1> GM r C .v 1<v 2,v 1=GM r D .v 1<v 2,v 1> GM r【答案】 B 【解析】 卫星绕地球运动,由开普勒第二定律知,近地点的速度大于远地点的速度,即v 1>v 2。
高中物理卫星(航天器)的变轨及对接问题
![高中物理卫星(航天器)的变轨及对接问题](https://img.taocdn.com/s3/m/7b6fe3e2dd3383c4bb4cd25f.png)
(4)航天器和中心天体质量一定时:在同一轨道运行时航天器机械能不变,在
不同轨道上运行时航天器的机械能不同,轨道半径越大,机械能越大。
(1)卫星变轨原理
2
mv 4
Mm
G 2
L
L
卫星由高轨变低轨:
(卫星的回收)
v4
v3
2
mv
mv12
Mm
使卫星 v 2 减速到 v1 , 使 2
G 2
R
R
R
L
2
mv
C
图6
(3)卫星转移
例 3:(多选)如图为嫦娥三号登月轨迹示意图.图中 M 点为环地球
运行的近地点,N 点为环月球运行的近月点.a 为环月球运行的圆
轨道,b 为环月球运行的椭圆轨道,下列说法中正确的是(
)
A.嫦娥三号在环地球轨道上的运行速度大于 11.2 km/s
B.嫦娥三号在 M 点进入地月转移轨道时应点火加速
卫星(航天器)的变轨及对
接问题
卫星的变轨及变轨前、后各物理量的比较、对接问题
1.卫星发射及变轨过程概述
思考:卫星是如
何从低轨道进入
高轨道的?
(1)卫星变轨原理
V
m
F引 G
A
Mm
r2
v2
F向 m
r
在A点万有引力相同
F引
A点速度—内小外大(在A点看轨迹)
F引<F向
F引>F向
F引 F向
M
总结:
Mm
使卫星减速到 v 0 , 使 0 G 2
R
R
2
mv
Mm
使卫星减速到 v 3,使 3 G 2
L
L
【例1】
高中物理必修二科学思维系列(一)——卫星变轨及飞船对接问题
![高中物理必修二科学思维系列(一)——卫星变轨及飞船对接问题](https://img.taocdn.com/s3/m/65c5554a571252d380eb6294dd88d0d233d43c1c.png)
核心素养提升微课堂科学思维系列(一)——卫星变轨及飞船对接问题1.变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示.(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A点点火加速,速度变大,进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆轨道Ⅲ.2.卫星变轨问题分析方法(1)速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足GMm r2=m v2r即v=GMr.以此为依据可分析卫星在两个不同圆轨道上的速度大小.②卫星做椭圆运动经过近地点时,卫星做离心运动,万有引力小于所需向心力:GMmr2<m v2r.以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过近地点时的速度大小(即加速离心).③卫星做椭圆运动经过远地点时,卫星做近心运动,万有引力大于所需向心力:GMmr2>m v2r.以此为依据可分析卫星沿椭圆轨道和沿圆轨道通过远地点时的速度大小(即减速近心).④卫星做椭圆运动从近地点到远地点时,根据开普勒第二定律,其速率越来越小.以此为依据可分析卫星在椭圆轨道的近地点和远地点的速度大小.(2)加速度大小的分析方法:无论卫星做圆周运动还是椭圆运动,只受万有引力时,卫星的加速度a n=Fm=G M r2.3.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.【典例】“嫦娥三号”探测器由“长征三号乙”运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察,“嫦娥三号”的飞行轨道示意图如图所示.假设“嫦娥三号”在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则以下说法正确的是()A.若已知“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B.“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,应让发动机点火使其加速C.“嫦娥三号”在从远月点P向近月点Q运动的过程中,加速度变大D.“嫦娥三号”在环月段椭圆轨道上P点的速度大于Q点的速度【解析】根据“嫦娥三号”环月段圆轨道的半径、运动周期和引力常量可以求出月球的质量,但是由于不知道月球的半径,故无法求出月球的密度,A错误;“嫦娥三号”由环月段圆轨道变轨进入环月段椭圆轨道时,轨道半径减小,故应让发动机点火使其减速,B 错误;“嫦娥三号”在从远月点P 向近月点Q 运动的过程中所受万有引力逐渐增大,故加速度变大,C 正确;“嫦娥三号”在环月段椭圆轨道上运动时离月球越近速度越大,故P 点的速度小于Q 点的速度,D 错误.【答案】 C变式训练1 如图所示是“嫦娥三号”奔月过程中某阶段的运动示意图,“嫦娥三号”沿椭圆轨道Ⅰ运动到近月点P 处变轨进入圆轨道Ⅱ,“嫦娥三号”在圆轨道Ⅱ上做圆周运动的轨道半径为r ,周期为T ,已知引力常量为G ,下列说法正确的是( )A .由题中(含图中)信息可求得月球的质量B .由题中(含图中)信息可求得月球的第一宇宙速度C .“嫦娥三号”在P 处变轨时必须点火加速D .“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时的加速度大于沿圆轨道Ⅱ运动到P 处时的加速度解析:万有引力提供向心力,G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT 2,故A 正确;万有引力提供向心力,G Mm ′R 2=m ′v 2R ,得v =GM R ,由于不知道月球半径,所以不能求得月球的第一宇宙速度,故B 错误;椭圆轨道和圆轨道是不同的轨道,“嫦娥三号”在P 点不可能自主改变轨道,只有在减速后,才能进入圆轨道,故C 错误;“嫦娥三号”沿椭圆轨道Ⅰ运动到P 处时和沿圆轨道Ⅱ运动到P 处时,所受万有引力大小相等,所以加速度大小也相等,故D 错误.答案:A变式训练2(多选)如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆轨道上的Q点),到达远地点Q时再次变轨,进入同步卫星轨道.设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道的近地点P点的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在同步卫星轨道上的速率为v4,三个轨道上运动的周期分别为T1、T2、T3,则下列说法正确的是()A.在P点变轨时需要加速,Q点变轨时要减速B.在P点变轨时需要减速,Q点变轨时要加速C.T1<T2< T3D.v2>v1>v4>v3答案:CD变式训练3发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2 3相切于P点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法不正确的是()A.要将卫星由圆轨道1送入圆轨道3,需要在圆轨道1的Q点和椭圆轨道2的远地点P分别点火加速一次B.由于卫星由圆轨道1送入圆轨道3点火加速两次,则卫星在圆轨道3上正常运行速度大于卫星在圆轨道1上正常运行速度C.卫星在椭圆轨道2上的近地点Q的速度一定大于7.9 k m/s,而在远地点P的速度一定小于7.9 km/sD .卫星在椭圆轨道2上经过P 点时的加速度一定等于它在圆轨道3上经过P 点时的加速度解析:从轨道1变轨到轨道2需在Q 处点火加速,从轨道2变轨到轨道3需要在P 处点火加速,故A 说法正确;根据公式GMm r 2=m v 2r 解得v =GMr ,即轨道半径越大,速度越小,故卫星在轨道3上正常运行的速度小于在轨道1上正常运行的速度,B 说法错误;第一宇宙速度是近地圆轨道环绕速度,即7.9 km/s ,轨道2上卫星在Q 点做离心运动,则速度大于7.9 km/s ,在P 点需要点火加速,则速度小于在轨道3上的运行速度,而轨道3上的运行速度小于第一宇宙速度,C 说法正确;卫星在椭圆轨道2上经过P 点时和在圆轨道3上经过P 点时所受万有引力相同,故加速度相同,D 说法正确.故选B.答案:B变式训练4 (多选)如图所示a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度B .a 加速可能会追上bC .c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD .a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大解析:因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,v =GMr ,可知v b =v c <v a ,故A 错误;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来。
2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)
![2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)](https://img.taocdn.com/s3/m/e5485e92f18583d048645906.png)
重难点05 天体运动与人造航天器【知识梳理】考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即ma r mv r T m r m rMm G ====2222)2(πω(2)在中心天体表面或附近运动时,万有引力近似等于重力,即2R MmG mg =(g 表示天体表面的重力加速度).(2)利用此关系可求行星表面重力加速度、轨道处重力加速度: 在行星表面重力加速度:2R Mm Gmg =,所以2R MG g = 在离地面高为h 的轨道处重力加速度:2)(h R Mm G g m +=',得2)(h R MG g +=' 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于2R Mm G mg =,故天体质量GgR M 2=天体密度:GRgV M πρ43==(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即r T m rMm G 22)2(π=,得出中心天体质量2324GT r M π=;②若已知天体半径R ,则天体的平均密度3233RGT r V M πρ== ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度23GTV M πρ==.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 【重点归纳】 1.黄金代换公式(1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式. 2. 估算天体问题应注意三点(1)天体质量估算中常有隐含条件,如地球的自转周期为24 h ,公转周期为365天等. (2)注意黄金代换式GM =gR 2的应用. (3)注意密度公式23GTπρ=的理解和应用. 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律由万有引力提供向心力,ma r mv r T m r m rMm G ====2222)2(πω2.卫星的各物理量随轨道半径变化的规律r GM v =;3r GM =ω;GMr T 32π=;2r GM a = (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心. 【重点归纳】1.利用万有引力定律解决卫星运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式卫星运动的向心力来源于万有引力:ma r mv r T m r m rMm G ====2222)2(πω在中心天体表面或附近运动时,万有引力近似等于重力,即:2R MmGmg = (g 为星体表面处的重2.卫星的线速度、角速度、周期与轨道半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫====减小增大减小减小增大时当半径a T v r r GM a GM r T r GM r GM v ωπω2332 考点三 宇宙速度 卫星变轨问题的分析1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的两种求法:(1)r mv r Mm G 212=,所以r GMv =1 (2)rmv mg 21=,所以gR v =1.3.第二、第三宇宙速度也都是指发射速度.4.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增加时,r mv rMm G 22<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,r mv rMm G 22>,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.1.处理卫星变轨问题的思路和方法(1)要增大卫星的轨道半径,必须加速;(2)当轨道半径增大时,卫星的机械能随之增大.2.卫星变轨问题的判断:(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.(2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.3.特别提醒:“三个不同”(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度(3)两个半径——天体半径R和卫星轨道半径r的不同【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
2020年高考物理素养提升专题04 宇宙速度及卫星变轨问题(解析版)
![2020年高考物理素养提升专题04 宇宙速度及卫星变轨问题(解析版)](https://img.taocdn.com/s3/m/9f2e5655fad6195f302ba624.png)
素养提升微突破04 宇宙速度及卫星变轨问题——树立科技强国的远大志向人造卫星天体运动规律的研究、人造卫星的发射和应用,都培养学生的理解能力和推理能力;体现核心素养中的运动观念、相互作用观念、能量观念及模型构建要素等等,有利于培养学生的爱国主义价值观。
【2019·天津卷】2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。
已知月球的质量为M 、半径为R ,探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的A 234πr GMB .动能为2GMmRC 3GmrD .向心加速度为2GMR 【答案】A【解析】由万有引力提供向心力可得222224GMm v m r m r m ma r T r πω====,可得32r T GMπ=,故A正确;解得GM v r =,由于2122k GMm E mv r ==,故B 错误;解得3GMrω=,故C 错误;解得2GMa r=,故D 错误。
综上分析,答案为A 。
【素养解读】本题为人造卫星运动问题,考查考生应用万有引力定律和圆周运动知识进行分析推理能力。
物理核心素养中的模型构建、运动与相互作用观念等要素在本题中均有体现。
题目以嫦娥四号探测器的发射与运行为背景,厚植着深深的爱国情怀。
一、宇宙速度的理解与计算宇宙速度的理解和计算问题是高考常考的热点。
这类题目一般难度不大,但考生不易得分,原因是对宇宙速度的理解不透彻或因为计算失误而丢分。
【典例1】【2019·怀化模拟】使物体脱离星球的引力束缚,不再绕星球运行,从星球表面发射所需的最小速度称为第二宇宙速度,星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2= 2v 1。
已知某星球的半径为地球半径R 的4倍,质量为地球质量M 的2倍,地球表面重力加速度为g 。
高考物理计算题复习《卫星变轨问题》(解析版)
![高考物理计算题复习《卫星变轨问题》(解析版)](https://img.taocdn.com/s3/m/9c300d6e77232f60ddcca19c.png)
《卫星变轨问题》一、计算题1.轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道。
已知卫星在停泊轨道和工作轨道的运行半径分别为a和b,地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面重力加速度为。
求:地球与月球质量之比;卫星在停泊轨道上运行的线速度;卫星在工作轨道上运行的周期。
2.2班做“神舟六号”载人飞船于2005年10月12日上午9点整在酒泉航天发射场发射升空由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,A 点距地面的高度为,飞船飞行五圈后进行变轨,进入预定圆轨道,如图所示在预定圆轨道上飞行N圈所用时间为t,于10月17日凌晨在内蒙古草原成功返回已知地球表面重力加速度为g,地球半径为求:飞船在A点的加速度大小.远地点B距地面的高度.沿着椭圆轨道从A到B的时间.3.如图为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T,轨道半径为r,椭圆轨道的近地点B离地心的距离为,引力常量为G,飞船的质量为m,求:地球的质量及飞船在轨道Ⅰ上的线速度大小;若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能,式中G为引力常量求飞船在A点变轨时发动机对飞船做的功.4.如图所示,“嫦娥一号”卫星在飞向月球的过程中,经“地月转移轨道”到达近月点Q,为了被月球捕获成为月球的卫星,需要在Q点进行制动减速制动之后进入轨道Ⅲ,随后在Q点再经过两次制动,最终进入环绕月球的圆形轨道Ⅰ已知“嫦娥一号卫星”在轨道Ⅰ上运动时,卫星距离月球的高度为h,月球的质量月,月球的半径为月,万有引力恒量为忽略月球自转,求:“嫦娥一号”在Q点的加速度a.“嫦娥一号”在轨道Ⅰ上绕月球做圆周运动的线速度.若规定两质点相距无际远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能 —,式中G为引力常量.为使“嫦娥一号”卫星在Q 点进行第一次制动后能成为月球的卫星,同时在随后的运动过程其高度都不小于轨道Ⅰ的高度h,试计算卫星第一次制动后的速度大小应满足什么条件.5.如图是发射地球同步卫星的简化轨道示意图,先将卫星发射至距地面高度为的近地轨道Ⅰ上在卫星经过A点时点火实施变轨,进入远地点为B的椭圆轨道Ⅱ上,最后在B点再次点火,将卫星送入同步轨道Ⅲ已知地球表面的重力加速度为g,地球自转周期为T,地球的半径为R,求:卫星在近地轨道Ⅰ上的速度大小;点距地面的高度.6.为了探测X星球,载着登陆舱的探测飞船在该星球中心为圆心,半径为的圆轨道上运动,周期为,总质量为。
专题5.15 卫星(航天器)的变轨及对接问题(原卷版)
![专题5.15 卫星(航天器)的变轨及对接问题(原卷版)](https://img.taocdn.com/s3/m/986fc5b1de80d4d8d15a4ff7.png)
第五部分万有引力定律和航天专题5.15卫星(航天器)的变轨及对接问题一.选择题1.(2020山东聊城二模)2020年5月5日,为我国载人空间站工程研制的长征五号B运载火箭,搭载新一代载人飞船试验船和柔性充气式货物返回舱试验舱,在文昌航天发射场点火升空,载荷组合体被送入预定轨道,首飞任务取得圆满成功;未来两年内,我国还将发射核心舱、轨道舱等在轨组合中国空间站,发射载人飞船、货运飞船,向空间站运送航天员以及所需的物资。
关于火箭的发射以及空间站的组合、对接,下列说法正确的是A.火箭发射升空的过程中,发动机喷出的燃气推动空气,空气推动火箭上升B.货运飞船要和在轨的空间站对接,通常是将飞船发射到较低的轨道上,然后使飞船加速实现对接C.未来在空间站中工作的航天员因为不受地球引力,所以处于失重状态D.空间站一定在每天同一时间经过文昌发射场上空2.(2020年4月浙江台州质量评估)2017 年4月20 日19 时41 分,“天舟一号”货运飞船在海南文昌发射,然后与七个月前发射的“天宫二号”空间实验室进行了对接,对接后飞行轨道高度与“天宫二号”原轨道高度相同。
已知万有引力常量为G,地球半径为R,对接前“天宫二号”的轨道半径为r、运行周期为T。
由此可知A.地球的质量为222 4r GT πB.C.对接前“天宫二号”的运行速度为2R T πD.对接后“天舟一号”与“天宫二号”组合体的运行周期大于T3. (2019辽宁沈阳一模)“神舟十一号”飞船与“天宫二号”空间实验室自动交会对接前的示意图如图所示,圆形轨道I为“天宫二号”运行轨道,圆形轨道II为“神舟十一号”运行轨道。
此后“神舟十一号”要进行多次变轨,才能实现与“天宫二号”的交会对接,则:()A. “天宫二号”在轨道I的运行速率大于“神舟十一号”在轨道II上运行速率B. “神舟十一号”由轨道II变轨到轨道I需要减速C. “神舟十一号”为实现变轨需要向后喷出气体D. “神舟十一号”变轨后比变轨前机械能减少4.(2019湖北名校联盟三模)2018年12月9日2时28分高分五号卫星在太原卫星发射中心用长征四号丙运载火箭发射升空,卫星经过多次变轨后,在距地心为R的地球冋步轨道上凝望地球。
高考物理热点:卫星(航天器)的变轨及对接问题
![高考物理热点:卫星(航天器)的变轨及对接问题](https://img.taocdn.com/s3/m/a54ee2e8ad02de80d4d840b9.png)
(2)相关物理量的比较 ①两个不同轨道的“切点”处线速度v不相等, 图中vⅢ>vⅡB>vⅡA>vⅠ。 ②同一个椭圆轨道上近地点和远地点线速度 大小不相等,从远地点到近地点万有引力对卫星做正功,动能增大(引力势能 减小),图中vⅡA>vⅡB,EkⅡA>EkⅡB,EpⅡA<EpⅡB。 ③两个不同圆轨道上的线速度v不相等,轨道半径越大,v越小,图中vⅠ>vⅢ。
A.在着陆前的瞬间,速度大小约为8.9 m/s
B.悬停时受到的反冲作用力约为2×103 N
C.从离开近月圆轨道到着陆这段时间内,机械能守恒
D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上
运行的 线速度
转到解析 目录
【真题示例3】(2016·天津理综,3)我国即将发射“天宫二号”空间实 验室,之后发射“神舟十一号”飞船与“天宫二号”对接。假设“天宫 二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与 空间实验室的对接,下列措施可行的是( )
星球
地球 火星 木星 土星 天王星 海王星
轨道半径(AU) 1.0 1.5 5.2 9.5
19
A.各地外行星每年都会出现冲日现象
B.在2015年内一定会出现木星冲日
C.天王星相邻两次冲日的时间间隔为土星的一半
D.地外行星中,海王星相邻两次冲日的时间间隔最短
30
转到解析
目录
3.规律方法
人造地球卫星的发射过程要经过多次变轨,过程简图如图所示。
地面高为36 000 km,宇宙飞船和一地球同步卫星绕地球同向运动,每当
两者相距最近时,宇宙飞船就向同步卫星发射信号,然后再由同步卫星
将信号发送到地面接收站,某时刻两者相距最远,从此刻开始,在一昼
高考物理计算题复习《卫星变轨问题》(解析版)
![高考物理计算题复习《卫星变轨问题》(解析版)](https://img.taocdn.com/s3/m/9c300d6e77232f60ddcca19c.png)
《卫星变轨问题》一、计算题1.轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道。
已知卫星在停泊轨道和工作轨道的运行半径分别为a和b,地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面重力加速度为。
求:地球与月球质量之比;卫星在停泊轨道上运行的线速度;卫星在工作轨道上运行的周期。
2.2班做“神舟六号”载人飞船于2005年10月12日上午9点整在酒泉航天发射场发射升空由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,A 点距地面的高度为,飞船飞行五圈后进行变轨,进入预定圆轨道,如图所示在预定圆轨道上飞行N圈所用时间为t,于10月17日凌晨在内蒙古草原成功返回已知地球表面重力加速度为g,地球半径为求:飞船在A点的加速度大小.远地点B距地面的高度.沿着椭圆轨道从A到B的时间.3.如图为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T,轨道半径为r,椭圆轨道的近地点B离地心的距离为,引力常量为G,飞船的质量为m,求:地球的质量及飞船在轨道Ⅰ上的线速度大小;若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能,式中G为引力常量求飞船在A点变轨时发动机对飞船做的功.4.如图所示,“嫦娥一号”卫星在飞向月球的过程中,经“地月转移轨道”到达近月点Q,为了被月球捕获成为月球的卫星,需要在Q点进行制动减速制动之后进入轨道Ⅲ,随后在Q点再经过两次制动,最终进入环绕月球的圆形轨道Ⅰ已知“嫦娥一号卫星”在轨道Ⅰ上运动时,卫星距离月球的高度为h,月球的质量月,月球的半径为月,万有引力恒量为忽略月球自转,求:“嫦娥一号”在Q点的加速度a.“嫦娥一号”在轨道Ⅰ上绕月球做圆周运动的线速度.若规定两质点相距无际远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能 —,式中G为引力常量.为使“嫦娥一号”卫星在Q 点进行第一次制动后能成为月球的卫星,同时在随后的运动过程其高度都不小于轨道Ⅰ的高度h,试计算卫星第一次制动后的速度大小应满足什么条件.5.如图是发射地球同步卫星的简化轨道示意图,先将卫星发射至距地面高度为的近地轨道Ⅰ上在卫星经过A点时点火实施变轨,进入远地点为B的椭圆轨道Ⅱ上,最后在B点再次点火,将卫星送入同步轨道Ⅲ已知地球表面的重力加速度为g,地球自转周期为T,地球的半径为R,求:卫星在近地轨道Ⅰ上的速度大小;点距地面的高度.6.为了探测X星球,载着登陆舱的探测飞船在该星球中心为圆心,半径为的圆轨道上运动,周期为,总质量为。
卫星变轨问题、双星模型(解析版)
![卫星变轨问题、双星模型(解析版)](https://img.taocdn.com/s3/m/a38a027959fb770bf78a6529647d27284a733770.png)
万有引力与宇宙航行卫星变轨问题、双星模型素养目标:1.会处理人造卫星的变轨和对接问题。
2.掌握双星、多星系统,会解决相关问题。
3.会应用万有引力定律解决星球“瓦解”和黑洞问题。
1.神舟十六号载人飞船入轨后顺利完成人轨状态设置,采用自主快速交会对接模式成功对接于天和核心舱径向端口。
对接过程的示意图如图所示,神舟十六号飞船处于半径为1r 的圆轨道Ⅰ,运行周期为T 1,线速度为1v ,通过变轨操作后,沿椭圆轨道Ⅰ运动到B 处与天和核心舱对接,轨道Ⅰ上A 点的线速度为2v ,运行周期为T 2;天和核心舱处于半径为3r 的圆轨道Ⅰ,运行周期为T 3,线速度为3v ;则神舟十六号飞船( )A .213v v v >>B .T 1>T 2>T 3C .在轨道Ⅰ上B 点处的加速度大于轨道Ⅰ上B 点处的加速度D .该卫星在轨道Ⅰ运行时的机械能比在轨道Ⅰ运行时的机械能大 【答案】A【解析】A .飞船从轨道Ⅰ变轨到轨道Ⅰ需要加速,所以经过A 点时21v v >圆轨道时,根据22GMm v m r r= 所以13v v >综合得213v v v >>故A 正确;B .根据开普勒第三定律,轨道半长轴越大,周期越大,故B 错误;C .根据2GMmma r= 则同一点处的加速度应该相等,故C 错误;D .根据变轨原理可知,从低轨道到高轨道应点火加速,外力做正功,则卫星在轨道Ⅰ运行时的机械能比在轨道Ⅰ运行时的机械能小,故D 错误。
故选A 。
考点一 卫星的变轨和对接问题1.卫星发射模型(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr 12=m v 2r 1,如图所示。
(2)在A 点(近地点)点火加速,由于速度变大,所需向心力变大,G Mm r 12<m v A 2r 1,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在椭圆轨道B 点(远地点),G Mm r 22>m v B 2r 2,将做近心运动,再次点火加速,使G Mmr 22=m v B ′2r 2,进入圆轨道Ⅲ。
第25讲 卫星变轨、发射、回收、空间站对接及其能量问题(解析版)
![第25讲 卫星变轨、发射、回收、空间站对接及其能量问题(解析版)](https://img.taocdn.com/s3/m/a7e1b1237dd184254b35eefdc8d376eeafaa1775.png)
第25讲 卫星变轨、发射、回收、空间站对接及其能量问题1.(全国高考)我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。
如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比,( ) A .卫星动能增大,引力势能减小B .卫星动能增大,引力势能增大C .卫星动能减小,引力势能减小D .卫星动能减小,引力势能增大【解答】解:人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m 、轨道半径为r 、地球质量为M ,有 F =F 向 故 GMm r 2=mv 2r=m ω2r =m (2πT)2r =ma解得 v =√GMr① T =2πr v =2π√r 3GM ② a =GM r 2③ 根据题意两次变轨分别为:从“24小时轨道”变轨为“48小时轨道”和从“48小时轨道”变轨为“72小时轨道”,则结合②式可知,在每次变轨完成后与变轨前相比运行周期增大,运行轨道半径增大,运行线速度减小,所以卫星动能减小,引力势能增大,D 正确。
故选:D 。
一.必备知识1.卫星变轨的基本原理当卫星开启发动机,或者受空气阻力作用时,万有引力不再等于卫星所需向心力,卫星的轨道将发生变化。
如图所示。
(1)当卫星的速度增加时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,如果速度增加很缓慢,卫星每转一周均可看成做匀速圆周运动,经过一段时间,轨道半径变大,当卫星进入新的轨道运行时,由v = GMr 可知其运行速度比在原轨道时小。
(2)当卫星的速度减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,如果速度减小很缓慢,卫星每转一周均可看成做匀速圆周运动,经过一段时间,轨道半径变小,当卫星进入新的轨道运行时,由v =GMr 可知其运行速度比在原轨道时大。
高考物理计算题复习《卫星变轨问题》(解析版)
![高考物理计算题复习《卫星变轨问题》(解析版)](https://img.taocdn.com/s3/m/ac0f42b6a5e9856a561260c4.png)
《卫星变轨问题》一、计算题1.轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道。
已知卫星在停泊轨道和工作轨道的运行半径分别为a和b,地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面重力加速度为g。
求:6(1)地球与月球质量之比;(2)卫星在停泊轨道上运行的线速度;(3)卫星在工作轨道上运行的周期。
2.(1,2班做)“神舟六号”载人飞船于2005年10月12日上午9点整在酒泉航天发射场发射升空.由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,A 点距地面的高度为ℎ1,飞船飞行五圈后进行变轨,进入预定圆轨道,如图所示.在预定圆轨道上飞行N圈所用时间为t,于10月17日凌晨在内蒙古草原成功返回.已知地球表面重力加速度为g,地球半径为R.求:(1)飞船在A点的加速度大小.(2)远地点B距地面的高度.(3)沿着椭圆轨道从A到B的时间.3.如图为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T,轨道半径为r,椭圆轨道的近地点B离地心的距离为kr(k<1),引力常量为G,飞船的质量为m,求:(1)地球的质量及飞船在轨道Ⅰ上的线速度大小;(2)若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相,式中G为引力常量.求飞船在A点变轨时发动机距为r时的引力势能E p=−GMmr对飞船做的功.4.如图所示,“嫦娥一号”卫星在飞向月球的过程中,经“地月转移轨道”到达近月点Q,为了被月球捕获成为月球的卫星,需要在Q点进行制动(减速).制动之后进入轨道Ⅲ,随后在Q点再经过两次制动,最终进入环绕月球的圆形轨道Ⅰ.已知“嫦娥一号卫星”在轨道Ⅰ上运动时,卫星距离月球的高度为h,月球的质量M月,月球的半径为r月,万有引力恒量为G.忽略月球自转,求:(1)“嫦娥一号”在Q点的加速度a.(2)“嫦娥一号”在轨道Ⅰ上绕月球做圆周运动的线速度.(3)若规定两质点相距无际远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能E P=—GMm,式中G为引力常量.为使“嫦娥一号”卫星在Qr点进行第一次制动后能成为月球的卫星,同时在随后的运动过程其高度都不小于轨道Ⅰ的高度h,试计算卫星第一次制动后的速度大小应满足什么条件.5.如图是发射地球同步卫星的简化轨道示意图,先将卫星发射至距地面高度为ℎ1的近地轨道Ⅰ上.在卫星经过A点时点火实施变轨,进入远地点为B的椭圆轨道Ⅱ上,最后在B点再次点火,将卫星送入同步轨道Ⅲ.已知地球表面的重力加速度为g,地球自转周期为T,地球的半径为R,求:(1)卫星在近地轨道Ⅰ上的速度大小;(2)B点距地面的高度.6.为了探测X星球,载着登陆舱的探测飞船在该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1,总质量为m1。
2020年普通高等学校招生全国统一考试理综(物理部分)试题(全国卷3,含解析)
![2020年普通高等学校招生全国统一考试理综(物理部分)试题(全国卷3,含解析)](https://img.taocdn.com/s3/m/84d7b383b52acfc789ebc996.png)
2020年普通高等学校招生全国统一考试理综(物理部分)试题 全国卷3一、选择题:本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.2020年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行。
与天宫二号单独运行相比,组合体运行的A .周期变大B .速率变大C .动能变大D .向心加速度变大【答案】C【考点定位】万有引力定律的应用;动能【名师点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222Mm v G m m r r r ω=== 224πr m ma T=,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义。
知道周期、线速度的大小、向心加速度只与轨道半径有关,但动能还与卫星的质量有关。
15.如图,在方向垂直于纸面向里的匀强磁场中有一U 形金属导轨,导轨平面与磁场垂直。
金属杆PQ 置于导轨上并与导轨形成闭合回路PQRS ,一圆环形金属框T 位于回路围成的区域内,线框与导轨共面。
现让金属杆PQ 突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向【答案】D【解析】因为PQ突然向右运动,由右手定则可知,PQRS中有沿逆时针方向的感应电流,穿过T中的磁通量减小,由楞次定律可知,T中有沿顺时针方向的感应电流,故D正确,A、B、C错误。
【考点定位】电磁感应;右手定则;楞次定律【名师点睛】解题的关键是掌握右手定则判断感应电流的方向,还要理解轨道PQRS 产生了感应电流瞬间会,让一圆环形金属框中的磁通量的变化,又会产生感应电流。
2020年高考物理考点练习5.14 卫星(航天器)的变轨及对接问题(解析版)
![2020年高考物理考点练习5.14 卫星(航天器)的变轨及对接问题(解析版)](https://img.taocdn.com/s3/m/9f80c906804d2b160a4ec007.png)
2020年高考物理100考点最新模拟题千题精练(必修部分)第五部分万有引力定律和航天专题5.14卫星(航天器)的变轨及对接问题一.选择题1.(6分)(2019陕西榆林四模)我国是少数几个掌握飞船对接技术的国家之一,为了实现神舟飞船与天宫号空间站顺利对接,具体操作应为()A.飞船与空间站在同一轨道上且沿相反方向做圆周运动接触后对接B.空间站在前、飞船在后且两者沿同一方向在同一轨道做圆周运动,在合适的位置飞船加速追上空间站后对接C.空间站在高轨道,飞船在低轨道且两者同向飞行,在合适的位置飞船加速追上空间站后对接D.飞船在前、空间站在后且两者在同一轨道同向飞行,在合适的位置飞船减速然后与空间站对接【参考答案】C【名师解析】飞船在轨道上高速运动,如果在同轨道上沿相反方向运动,则最终会撞击而不是成功对接,故A错误;两者在同轨道上,飞船加速后做离心运动,则飞船的轨道抬升,故不能采取同轨道加速对接,故B错误;飞船在低轨道加速做离心运动,在合适的位置,飞船追上空间站实现对接,故C正确;两者在同一轨道飞行时,飞船突然减速做近心运动,飞船的轨道高度要降低,故不可能与同轨道的空间站实现对接,故D错误。
2. (2019辽宁沈阳一模)“神舟十一号”飞船与“天宫二号”空间实验室自动交会对接前的示意图如图所示,圆形轨道I为“天宫二号”运行轨道,圆形轨道II为“神舟十一号”运行轨道。
此后“神舟十一号”要进行多次变轨,才能实现与“天宫二号”的交会对接,则:()A. “天宫二号”在轨道I的运行速率大于“神舟十一号”在轨道II上运行速率B. “神舟十一号”由轨道II变轨到轨道I需要减速C. “神舟十一号”为实现变轨需要向后喷出气体D. “神舟十一号”变轨后比变轨前机械能减少【参考答案】C【名师解析】由题可知,万有引力提供向心力,即,则,由于“天宫二号”的轨道半径大,可知其速率小,则A错误;“神舟十一号” 由轨道II变轨到轨道I需要加速做离心运动,要向后喷出气体,速度变大,发动机做正功,使其机械能增加,故选项C正确,BD错误。
高考物理专题31卫星变轨与对接问题练习含解析
![高考物理专题31卫星变轨与对接问题练习含解析](https://img.taocdn.com/s3/m/7cf5a36f30b765ce0508763231126edb6f1a76ab.png)
专题31 卫星变轨与对接问题1.升高轨道需要点火加速(向后喷气),降低轨道需要点火减速(向前喷气).2.同一轨道后面的卫星追赶前面的卫星需要先减速后加速.1.(2020·河南开封市模拟)2018年12月12日16时45分“嫦娥四号”探测器经过约110小时的奔月飞行到达月球附近.假设“嫦娥四号”在月球上空某高度处做圆周运动,运行速度为v 1,为成功实施近月制动,使它进入更靠近月球的预定圆轨道,设其运行速度为v 2.对这一变轨过程及变轨前后的速度对比正确的是( )A .发动机向后喷气进入低轨道,v 1>v 2B .发动机向后喷气进入低轨道,v 1<v 2C .发动机向前喷气进入低轨道,v 1>v 2D .发动机向前喷气进入低轨道,v 1<v 2答案 D解析 为成功实施近月制动,使“嫦娥四号”进入更靠近月球的预定圆轨道,发动机应向前喷气减速,使“嫦娥四号”做近心运动,进入低轨道,在近月球的预定圆轨道运动时,半径变小,根据万有引力提供向心力,则有:GMm r 2=mv 2r,解得:v = GM r,其中r 为轨道半径,所以运行速度增大,即v 1<v 2,故D 正确,A 、B 、C 错误. 2.(2019·北京海淀区3月适应性练习)围绕地球运动的低轨退役卫星,会受到稀薄大气阻力的影响,虽然每一圈的运动情况都非常接近匀速圆周运动,但在较长时间运行后其轨道半径明显变小了.下面对卫星长时间运行后的一些参量变化的说法错误的是( )A .由于阻力做负功,可知卫星的速度减小了B .根据万有引力提供向心力,可知卫星的速度增加了C .由于阻力做负功,可知卫星的机械能减小了D .由于重力做正功,可知卫星的重力势能减小了答案 A解析 卫星在阻力的作用下,要在原来的轨道减速,万有引力将大于所需的向心力,卫星会做近心运动,轨道半径变小,卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m ,轨道半径为r ,地球质量为M ,由G Mm r 2=m v 2r ,得:v = GM r,A 错误,B 正确;由于阻力做负功,所以卫星的机械能减小了,故C 正确;重力做正功,重力势能减小,故D 正确;本题选择错误的,故选A.3.(多选)(2020·山西晋中市二统)“太空涂鸦”的技术就是使低轨运行的反侦察卫星通过变轨接近高轨侦察卫星(近似认为进入高轨道),准确计算轨道并向其发射“漆雾”弹,“漆雾”弹在临近侦察卫星时,压爆弹囊,让“漆雾”散开并喷向侦察卫星,喷散后强力吸附在侦察卫星的侦察镜头、太阳能板、电子侦察传感器等关键设备上,使之暂时失效.下列关于反侦察卫星的说法正确的是( )A .反侦察卫星进攻前需要向后方喷气才能进入侦察卫星轨道B .反侦察卫星进攻前的向心加速度小于攻击时的向心加速度C .反侦察卫星进攻前的机械能小于攻击时的机械能D .反侦察卫星进攻时的线速度大于第一宇宙速度答案 AC解析 反侦察卫星进行攻击时必须从低轨道向高轨道运动,显然应该向后喷气,故A 正确;根据向心加速度a =GM r 2可知轨道半径越大,向心加速度越小,故B 错误;从低轨道向高轨道运动时需点火加速,机械能增加,即反侦察卫星进攻前的机械能小于攻击时的机械能,故C 正确;在高、低轨道运行的线速度均小于第一宇宙速度,故D 错误.4.(多选)如图1,在发射一颗质量为m 的地球同步卫星时,先将其发射到贴近地球表面的圆轨道Ⅰ上(离地面高度忽略不计),再通过一椭圆轨道Ⅱ变轨后到达距地面高为h 的预定圆轨道Ⅲ上.已知卫星在圆形轨道Ⅰ上运行的加速度为g ,地球半径为R ,卫星在变轨过程中质量不变,则( ) 图1A .卫星在轨道Ⅲ上运行的加速度大小为(h R +h )2g B .卫星在轨道Ⅲ上运行的线速度大小为 gR 2R +hC .卫星在轨道Ⅲ上运行时经过P 点的速率大于在轨道Ⅱ上运行时经过P 点的速率D .卫星在轨道Ⅲ上做匀速圆周运动的动能大于在轨道Ⅰ上的动能答案 BC解析 设地球质量为M ,由万有引力提供向心力得,在轨道Ⅰ上有G MmR2=mg ,在轨道Ⅲ上有G Mm R +h 2=ma ,所以a =(RR +h )2g ,A 错误;又因a =v 2R +h ,所以v =gR 2R +h,B 正确;卫星由轨道Ⅱ变轨到轨道Ⅲ需要加速做离心运动,所以卫星在轨道Ⅲ上运行时经过P 点的速率大于在轨道Ⅱ上运行时经过P 点的速率,C 正确;尽管卫星从轨道Ⅰ变轨到轨道Ⅲ要在P 、Q 点各加速一次,但在圆形轨道上稳定运行时的速度v = GM r ,由动能表达式知卫星在轨道Ⅲ上的动能小于在轨道Ⅰ上的动能,D 错误.5.(2020·安徽淮北市一模)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3(如图2所示).则卫星分别在1、3轨道上正常运行时,以下说法正确的是( )图2A .卫星在轨道3上的速率大于在轨道1上的速率B .卫星在轨道3上的角速度大于在轨道1上的角速度C .卫星在轨道3上具有的机械能大于在轨道1上具有的机械能D .卫星在轨道3上经过P 点的加速度大于在轨道2上经过P 点的加速度答案 C解析 由G Mm r 2=m v 2r ,得v =GM r,轨道3的半径大于轨道1的半径,则卫星在轨道3上的速率小于在轨道1上的速率,A 项错误;由ω=vr =GM r 3知,r 越大,ω越小,B 项错误;由牛顿第二定律和万有引力定律得a =GM r 2,故卫星在轨道3上经过P 点的加速度等于在轨道2上经过P 点的加速度,D 项错误;卫星点火加速,从低轨道进入高轨道,机械能增加,C 项正确.6.(2020·山东济宁市二模)如图3所示,1、3轨道均是卫星绕地球做圆周运动的轨道示意图,1轨道的半径为R,2轨道是一颗卫星绕地球做椭圆运动的轨道示意图,3轨道与2轨道相切于B 点,O 点为地球球心,AB 为椭圆的长轴,三轨道和地心都在同一平面内.已知在1、2两轨道上运动的卫星的周期相等,引力常量为G ,地球质量为M ,三颗卫星的质量相等,则下列说法正确的是( )图3A.卫星在3轨道上的机械能小于在2轨道上的机械能B.若卫星在1轨道上的速率为v1,卫星在2轨道A点的速率为v A,则v1<v AC.若卫星在1、3轨道上的加速度大小分别为a1、a3,卫星在2轨道A点的加速度大小为a A,则a A<a1<a3D.若OA=0.4R,则卫星在2轨道B点的速率v B>5GM 8R答案 B解析2、3轨道在B点相切,卫星在3轨道相对于2轨道是做离心运动的,卫星在3轨道上的线速度大于在2轨道上B点的线速度,因卫星质量相同,所以卫星在3轨道上的机械能大于在2轨道上的机械能,A错误;以OA为半径作一个圆轨道4与2轨道相切于A点,设卫星在4轨道上的速率为v4,则v4<v A,又因v1<v4,所以v1<v A,B正确;加速度是万有引力产生的,只需要比较卫星到地心的高度即可,应是a A>a1>a3,C错误;2轨道的半长轴为R,OB=1.6R,3轨道上的线速度v3=5GM8R,又因v B<v3,所以v B<5GM8R,D错误.。
2020年高考物理最新考点模拟试题: 卫星(航天器)的变轨及对接问题(解析版)
![2020年高考物理最新考点模拟试题: 卫星(航天器)的变轨及对接问题(解析版)](https://img.taocdn.com/s3/m/ff1952b5b9f3f90f76c61b7c.png)
2020年高考物理最新考点模拟试题:卫星(航天器)的变轨及对接问题(解析版)一.选择题1.(6分)(2019陕西榆林四模)我国是少数几个掌握飞船对接技术的国家之一,为了实现神舟飞船与天宫号空间站顺利对接,具体操作应为()A.飞船与空间站在同一轨道上且沿相反方向做圆周运动接触后对接B.空间站在前、飞船在后且两者沿同一方向在同一轨道做圆周运动,在合适的位置飞船加速追上空间站后对接C.空间站在高轨道,飞船在低轨道且两者同向飞行,在合适的位置飞船加速追上空间站后对接D.飞船在前、空间站在后且两者在同一轨道同向飞行,在合适的位置飞船减速然后与空间站对接【参考答案】C【名师解析】飞船在轨道上高速运动,如果在同轨道上沿相反方向运动,则最终会撞击而不是成功对接,故A错误;两者在同轨道上,飞船加速后做离心运动,则飞船的轨道抬升,故不能采取同轨道加速对接,故B错误;飞船在低轨道加速做离心运动,在合适的位置,飞船追上空间站实现对接,故C正确;两者在同一轨道飞行时,飞船突然减速做近心运动,飞船的轨道高度要降低,故不可能与同轨道的空间站实现对接,故D错误。
2. (2019辽宁沈阳一模)“神舟十一号”飞船与“天宫二号”空间实验室自动交会对接前的示意图如图所示,圆形轨道I为“天宫二号”运行轨道,圆形轨道II为“神舟十一号”运行轨道。
此后“神舟十一号”要进行多次变轨,才能实现与“天宫二号”的交会对接,则:()A. “天宫二号”在轨道I的运行速率大于“神舟十一号”在轨道II上运行速率B. “神舟十一号”由轨道II变轨到轨道I需要减速C. “神舟十一号”为实现变轨需要向后喷出气体D. “神舟十一号”变轨后比变轨前机械能减少【参考答案】C【名师解析】由题可知,万有引力提供向心力,即,则,由于“天宫二号”的轨道半径大,可知其速率小,则A错误;“神舟十一号” 由轨道II变轨到轨道I需要加速做离心运动,要向后喷出气体,速度变大,发动机做正功,使其机械能增加,故选项C正确,BD错误。
4.5天体运动热点问题(解析版)
![4.5天体运动热点问题(解析版)](https://img.taocdn.com/s3/m/2913c42d30126edb6f1aff00bed5b9f3f90f726b.png)
4.5天体运动热点问题一、卫星的变轨和对接问题1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示.(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A 点和B点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B点的加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,从轨道Ⅰ到轨道Ⅱ,从轨道Ⅱ到轨道Ⅲ,都需要点火加速,则E1<E2<E3.二、双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.如图所示.(2)特点①各自所需的向心力由彼此间的万有引力提供,即Gm 1m 2L 2=m 1ω12r 1,Gm 1m 2L 2=m 2ω22r 2.②两颗星的周期、角速度相同,即T 1=T 2,ω1=ω2. ③两颗星的轨道半径与它们之间的距离关系为r 1+r 2=L . ④两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.⑤双星的运动周期T =2πL 3G (m 1+m 2).⑥双星的总质量m 1+m 2=4π2L 3T 2G . 2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同. (2)常见的三星模型①三颗星体位于同一直线上,两颗质量相等的环绕星围绕中央星在同一半径为R 的圆形轨道上运行(如图甲所示).②三颗质量均为m 的星体位于等边三角形的三个顶点上(如图乙所示).(3)常见的四星模型①四颗质量相等的星体位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②三颗质量相等的星体始终位于正三角形的三个顶点上,另一颗位于中心O ,外围三颗星绕O 做匀速圆周运动(如图丁所示).卫星的变轨问题卫星变轨的实质 两类变轨 离心运动近心运动示意图变轨起因 卫星速度突然增大卫星速度突然减小万有引力与向心 力的大小关系G Mm r 2<m v 2rG Mm r 2>m v 2r变轨结果转变为椭圆轨道运动或在较大半径圆轨道上运动 转变为椭圆轨道运动或在较小半径圆轨道上运动 新圆轨道上运动的速率比原轨道的小,周期比原轨道的大新圆轨道上运动的速率比原轨道的大,周期比原轨道的小动能减小、势能增大、机械能增大动能增大、势能减小、机械能减小例题1.(多选)载着登陆舱的探测器经过多次变轨后登陆火星的轨迹如图,其中轨道Ⅰ、Ⅲ为椭圆,轨道Ⅱ为圆,探测器经轨道Ⅰ、Ⅱ、Ⅲ后在Q 点登陆火星,O 点是轨道Ⅰ、Ⅱ、Ⅲ的交点,轨道上的O 、P 、Q 三点与火星中心在同一直线上,O 、Q 两点分别是椭圆轨道Ⅲ的远火星点和近火星点.已知火星的半径为R ,OQ =4R ,探测器在轨道Ⅱ上经过O 点的速度为v ,下列说法正确的有( )A .在相等时间内,轨道Ⅰ上探测器与火星中心的连线扫过的面积与轨道Ⅱ上探测器与火星中心的连线扫过的面积相等B .探测器在轨道Ⅰ运动时,经过O 点的速度小于vC .探测器在轨道Ⅱ运动时,经过O 点的加速度等于v 23RD .在轨道Ⅱ上第一次由O 点到P 点与在轨道Ⅲ上第一次由O 点到Q 点的时间之比是3 6∶4【答案】CD 【解析】根据开普勒第二定律,在同一轨道上探测器与火星中心的连线在相等时间内扫过相等的面积,在两个不同的轨道上,不具备上述关系,即在相等时间内,轨道Ⅰ上探测器与火星中心的连线扫过的面积与轨道Ⅱ上探测器与火星中心的连线扫过的面积不相等,故A 错误;探测器在轨道Ⅰ运动时,经过O 点减速变轨到轨道Ⅱ,则在轨道Ⅰ运动时经过O 点的速度大于v ,故B 错误;轨道Ⅱ是圆轨道,半径为3R ,经过O 点的速度为v ,根据圆周运动的规律可知,探测器经过O 点的加速度a =v 23R ,故C 正确;轨道Ⅲ的半长轴为2R ,根据开普勒第三定律可知(3R 2R )3=(T ⅡT Ⅲ)2,解得T ⅡT Ⅲ=364,则在轨道Ⅱ上第一次由O 点到P 点与在轨道Ⅲ上第一次由O 点到Q 点的时间之比是36∶4,故D 正确.如图所示,这是“嫦娥五号”探月过程的示意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考物理备考微专题精准突破专题2.8 卫星变轨与航天器对接问题【专题诠释】人造地球卫星的发射过程要经过多次变轨,如图所示,我们从以下几个方面讨论.1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A点点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.物理量的定性分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为v A、v B.因在A点加速,则v A>v1,因在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同.同理,从轨道Ⅱ和轨道Ⅲ上经过B点时加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律a3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.【高考领航】【2019·江苏高考】1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动。
如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G。
则()A .v 1>v 2,v 1=GM r B .v 1>v 2,v 1> GM r C .v 1<v 2,v 1=GM r D .v 1<v 2,v 1> GM r【答案】 B 【解析】 卫星绕地球运动,由开普勒第二定律知,近地点的速度大于远地点的速度,即v 1>v 2。
若卫星以近地点时距地心的距离为半径做圆周运动,则有GMm r 2=m v 2近r,得运行速度v 近= GM r ,由于卫星沿椭圆轨道运动,在近地点所需向心力大于万有引力,故m v 21r >m v 2近r ,则v 1>v 近,即v 1> GM r,B 正确。
【2017·高考全国卷Ⅲ】2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( )A .周期变大B .速率变大C .动能变大D .向心加速度变大【答案】C【解析】组合体比天宫二号质量大,轨道半径R 不变,根据GMm R 2=m v 2R ,可得v =GM R ,可知与天宫二号单独运行时相比,组合体运行的速率不变,B 项错误;又T =2πR v,则周期T 不变,A 项错误;质量变大、速率不变,动能变大,C 项正确;向心加速度a =GM R2,不变,D 项错误. 【技巧方法】1.从引力和向心力的关系分析变轨问题(1)卫星突然加速(通过发动机瞬间喷气实现,喷气时间不计),则万有引力不足以提供向心力,GMm r 2<m v ′2r ,卫星将做离心运动,变轨到更高的轨道.(2)当卫星突然减速时,卫星所需向心力减小,万有引力大于向心力,卫星变轨到较低的轨道.2.变轨问题考查的热点(1)运动参量的比较:两个轨道切点处,加速度由GMm r2=ma 分析,式中“r ”表示卫星到地心的距离,a 大小相等;由于变轨时发动机要点火工作,故线速度大小不等.(2)能量的比较:在离心运动过程中(发动机已关闭),卫星克服引力做功,其动能向引力势能转化,机械能保持不变.两个不同的轨道上(圆轨道或椭圆轨道),轨道越高卫星的机械能越大.【最新考向解码】【例1】(2019·河北衡水中学高三二调)探月工程中,“嫦娥三号”探测器的发射过程可以简化如下:卫星由地面发射后,进入地月转移轨道,经过P 点时变轨进入距离月球表面100公里的圆形轨道1,在轨道1上经过Q 点时变轨进入椭圆轨道2,轨道2与月球相切于M 点,月球车将在M 点着陆月球表面。
下列说法正确的是( )A .“嫦娥三号”在轨道1上的速度比月球的第一宇宙速度小B .“嫦娥三号”在地月转移轨道上经过P 点的速度比在轨道1上经过P 点时大C .“嫦娥三号”在轨道1上的运动周期比在轨道2上小D .“嫦娥三号”在轨道1上经过Q 点时的加速度小于在轨道2上经过Q 点时的加速度【答案】 AB【解析】 月球的第一宇宙速度是卫星在月球表面绕月球做匀速圆周运动时的速度,“嫦娥三号”在轨道1上做匀速圆周运动的半径大于月球半径,根据GMm r 2=m v 2r ,得线速度v = GM r,可知“嫦娥三号”在轨道1上的运动速度比月球的第一宇宙速度小,A 正确;“嫦娥三号”在地月转移轨道上经过P 点进入轨道1,需减速,所以在地月转移轨道上经过P 点的速度比在轨道1上经过P 点时大,B 正确;由于卫星在轨道2上运动时轨道的半长轴比在轨道1上运动时的轨道半径小,根据开普勒第三定律可知卫星在轨道1上的运动周期比在轨道2上大,C 错误;“嫦娥三号”经过Q 点时的加速度取决于在该点时所受的万有引力,由万有引力公式可知它在轨道1和轨道2上经过Q 点时所受万有引力相等,则加速度相等,D 错误。
【例2】.(2019·山东枣庄高三上学期期末)2018年5月21日,我国发射人类首颗月球中继卫星“鹊桥”,6月14日进入使命轨道——地月拉格朗日L 2轨道,为在月球背面着陆的“嫦娥四号”与地球站之间提供通信链路。
12月8日,我国成功发射“嫦娥四号”探测器,并于2019年1月3日成功着陆于月球背面,通过中继卫星“鹊桥”传回了月背影像图,如图1所示,揭开了古老月背的神秘面纱。
如图2所示,假设“鹊桥”中继卫星在拉格朗日点L 2时,与月、地两个大天体保持相对静止。
设地球的质量为月球的k 倍,地月间距为L ,拉格朗日点L 2与月球间距为d 。
地球、月球和“鹊桥”中继卫星均视为质点,忽略太阳对“鹊桥”中继星的引力,则下列选项正确的是( )A .“鹊桥”中继卫星在拉格朗日点L 2时处于平衡状态B .“鹊桥”中继卫星与月球绕地球运动的线速度之比为v 鹊∶v 月=(L +d )∶LC .k 、L 、d 的关系式为1k (L +d )2+1d 2=L +d L 3D .k 、L 、d 的关系式为1(L +d )2+1kd 2=L +d L 3 【答案】 BD【解析】 “鹊桥”中继卫星与月球相对静止,绕地球做匀速圆周运动的角速度与月球的相等,不是处于平衡状态,A 错误;根据v =ωr ,“鹊桥”中继卫星与月球绕地球运动的半径分别是(L +d )和L ,所以线速度之比为v 鹊∶v 月=(L +d )∶L ,B 正确;设地球的质量为M ,月球的质量为m 1,“鹊桥”中继卫星的质量为m 2,则对月球有GMm 1L 2=m 1ω2L ,对“鹊桥”中继卫星有GMm 2(L +d )2+Gm 1m 2d 2=m 2ω2(L +d ),M =km 1,联立得1(L +d )2+1kd 2=L +d L 3,C 错误,D 正确。
【例3】(2019·江西重点中学联考)小型登月器连接在航天站上,一起绕月球做匀速圆周运动,其轨道半径为月球半径的3倍,某时刻,航天站使登月器减速分离,登月器沿如图所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回,当第一次回到分离点时恰与航天站对接,登月器的快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g ,月球半径为R ,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为( )A .10π 5R g -6π 3R gB .6π 3R g -4π 2R gC .10π 5R g -2π R gD .6π 3R g -2π R g【答案】B.【解析】当登月器和航天站在半径为3R 的轨道上绕月球做匀速圆周运动时,应用牛顿第二定律有GMm r2=m 4π2r T 2,r =3R ,则有T =2π r 3GM =6π 3R 3GM .在月球表面的物体所受重力近似等于万有引力,可得GM =gR 2,所以T =6π3R g①,登月器在椭圆轨道上运行的周期用T 1表示,航天站在圆轨道上运行的周期用T 2表示,对登月器和航天站依据开普勒第三定律有T 2(3R )3=T 21(2R )3=T 22(3R )3②,为使登月器仍沿原椭圆轨道回到分离点与航天站实现对接,登月器可以在月球表面停留的时间t 应满足t =nT 2-T 1(其中n =1、2、3、…) ③,联立①②③式得t =6πn3R g -4π2R g (其中n =1、2、3、…),当n =1时,登月器可以在月球上停留的时间最短,即t min =6π3R g -4π 2R g. 【微专题精练】1.(2019·河北衡水检测)同步卫星的发射方法是变轨发射,即先把卫星发射到离地面高度为200~300 km 的圆形轨道上,这条轨道叫停泊轨道,如图所示,当卫星穿过赤道平面上的P 点时,末级火箭点火工作,使卫星进入一条大的椭圆轨道,其远地点恰好在地球赤道上空约36 000 km 处,这条轨道叫转移轨道;当卫星到达远地点Q 时,再开动卫星上的发动机,使之进入同步轨道,也叫静止轨道.关于同步卫星及其发射过程,下列说法正确的是( )A .在P 点火箭点火和Q 点开动发动机的目的都是使卫星加速,因此,卫星在静止轨道上运行的线速度大于在停泊轨道运行的线速度B .在P 点火箭点火和Q 点开动发动机的目的都是使卫星加速,因此,卫星在静止轨道上运行的机械能大于在停泊轨道运行的机械能C .卫星在转移轨道上运动的速度大小范围为7.9~11.2 km/sD .所有地球同步卫星的静止轨道都相同【答案】BD【解析】根据卫星变轨的原理知,在P 点火箭点火和Q 点开动发动机的目的都是使卫星加速.当卫星做圆周运动时,由G Mm r 2=m v 2r ,得v =GM r,可知,卫星在静止轨道上运行的线速度小于在停泊轨道运行的线速度,故A 错误;在P 点火箭点火和Q 点开动发动机的目的都是使卫星加速,由能量守恒知,卫星在静止轨道上运行的机械能大于在停泊轨道运行的机械能,故B 正确;卫星在转移轨道上的远地点需加速才能进入同步卫星轨道,而同步卫星轨道的速度小于7.9 km/h ,故C 错误;所有地球同步卫星的静止轨道都相同,并且都在赤道平面上,高度一定,故D正确.2.我国发射的“天宫二号”空间实验室与之后发射“神舟十一号”成功完成对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接【答案】C【解析】飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A错误;同理,空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室做近心运动,也不能实现对接,选项B错误;当飞船在比空间实验室半径小的轨道上加速时,飞船做离心运动,逐渐靠近空间实验室,可实现对接,选项C正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D错误.3.如图所示,1、3轨道均是卫星绕地球做圆周运动的轨道示意图,1轨道的半径为R,2轨道是一颗卫星绕地球做椭圆运动的轨道示意图,3轨道与2轨道相切于B点,O点为地球球心,AB为椭圆的长轴,三轨道和地心都在同一平面内.已知在1、2两轨道上运动的卫星的周期相等,引力常量为G,地球质量为M,三颗卫星的质量相等,则下列说法正确的是()A.卫星在3轨道上的机械能小于在2轨道上的机械能B.若卫星在1轨道上的速率为v1,卫星在2轨道A点的速率为v A,则v1<v AC.若卫星在1、3轨道上的加速度大小分别为a1、a3,卫星在2轨道A点的加速度大小为a A,则a A<a1<D.若OA=0.4R,则卫星在2轨道B点的速率v B>5GM 8R【答案】 B【解析】2、3轨道在B点相切,卫星在3轨道相对于2轨道是做离心运动的,卫星在3轨道上的线速度大于在2轨道上B点的线速度,因卫星质量相同,所以卫星在3轨道上的机械能大于在2轨道上的机械能,A错误;以OA为半径作一个圆轨道4与2轨道相切于A点,则v4<v A,又因v1<v4,所以v1<v A,B正确;加速度是万有引力产生的,只需要比较卫星到地心的高度即可,应是a A>a1>a3,C错误;由开普勒第三定律可知,2轨道的半长轴为R,OB=1.6R,3轨道上的线速度v3=5GM8R,又因v B<v3,所以v B<5GM8R,D错误.4.我国于2016年9月15日发射了“天宫二号”空间实验室,之后在10月17日,又发射了“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接【答案】C.【解析】为了实现飞船与空间实验室的对接,必须使飞船在较低的轨道上加速做离心运动,上升到空间实验室运动的轨道后逐渐靠近空间实验室,两者速度接近时实现对接,选项C正确.5.北斗导航系统又被称为“双星定位系统”,具有导航、定位等功能.如图所示,北斗导航系统中的两颗工作卫星均绕地心做匀速圆周运动,且轨道半径均为r,某时刻工作卫星1、2分别位于轨道上的A、B两个位置,若两卫星均沿顺时针方向运行,地球表面的重力加速度为g,地球半径为R,不计卫星间的相互作用力,下列判断错误的是()A .这两颗卫星的加速度大小相等,均为 R 2g r 2B .卫星1由A 位置运动到B 位置所需的时间是 πr 3Rr gC .卫星1由A 位置运动到B 位置的过程中万有引力不做功D .卫星1向后喷气就一定能够追上卫星2【答案】D.【解析】根据F 合=ma ,对卫星有G Mm r 2=ma ,可得a =GM r 2,取地面一物体由G Mm ′R 2=m ′g ,联立解得a =R 2g r2,故A 正确;根据G Mm r 2=m ⎝⎛⎭⎫2πT 2r ,得T = 4π2r 3GM ,又t =16T ,联立可解得t =πr 3R r g ,故B 正确;卫星1由位置A 运动到位置B 的过程中,由于万有引力方向始终与速度方向垂直,故万有引力不做功,C 正确;若卫星1向后喷气,则其速度会增大,卫星1将做离心运动,所以卫星1不可能追上卫星2,D 错误.6.(2019·湖北八校联考)如图所示为嫦娥三号登月轨迹示意图.图中M 点为环地球运行的近地点,N 点为环月球运行的近月点.a 为环月球运行的圆轨道,b 为环月球运行的椭圆轨道,下列说法中正确的是( )A .嫦娥三号在环地球轨道上的运行速度大于11.2 km/sB .嫦娥三号在M 点进入地月转移轨道时应点火加速C .设嫦娥三号在圆轨道a 上经过N 点时的加速度为a 1,在椭圆轨道b 上经过N 点时的加速度为a 2,则a 1>a 2D .嫦娥三号在圆轨道a 上的机械能小于在椭圆轨道b 上的机械能【答案】BD【解析】嫦娥三号在环地球轨道上运行速度v 满足7.9 km/s≤v <11.2 km/s ,则A 错误;嫦娥三号要脱离地球需在M 点点火加速让其进入地月转移轨道,则B 正确;由a =GM r2,知嫦娥三号在经过圆轨道a 上的N 点和经过在椭圆轨道b 上的N 点时的加速度相等,则C 错误;嫦娥三号要从b 轨道转移到a 轨道需要减速,机械能减小,则D 正确.7.(2019·江南十校联考)据外媒综合报道,英国著名物理学家史蒂芬·霍金在2018年3月14日去世,享年76 岁.这位伟大的物理学家,向人类揭示了宇宙和黑洞的奥秘.高中生对黑洞的了解为光速是在星球(黑洞)上的第二宇宙速度.对于普通星球,如地球,光速仍远远大于其宇宙速度.现对于发射地球同步卫星的过 程分析,卫星首先进入椭圆轨道Ⅰ,P 点是轨道Ⅰ上的近地点,然后在Q 点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则 ( )A .卫星在同步轨道Ⅱ上的运行速度大于第一宇宙速度7.9 km/sB .该卫星的发射速度必定大于第二宇宙速度11.2 km/sC .在轨道Ⅰ上,卫星在P 点的速度大于第一宇宙速度7.9 km/sD .在轨道Ⅰ上,卫星在Q 点的速度大于第一宇宙速度7.9 km/s【答案】C【解析】第一宇宙速度是近地轨道的线速度,根据G Mm r 2=m v 2r 可知v =GM r,故轨道半径越大,线速度越小,所以同步卫星的运行速度小于第一宇宙速度,A 错误;该卫星为地球的卫星,所以发射速度小于第二宇宙速度,B 错误;P 点为近地轨道上的一点,但要从近地轨道变轨到Ⅰ轨道,则需要在P 点加速,所以在轨道Ⅰ上卫星在P 点的速度大于第一宇宙速度,C 正确;在Q 点要从轨道Ⅰ变轨到轨道Ⅱ,则需要在Q 点加速,即轨道Ⅱ上经过Q 点的速度大于轨道Ⅰ上经过Q 点的速度,而轨道Ⅱ上的速度小于第一宇宙速度,故在轨道Ⅰ上经过Q 点时的速度小于第一宇宙速度,D 错误.8.(2019·湖北黄冈中学模拟)某卫星在半径为r 的轨道1上做圆周运动,动能为E k ,变轨到轨道2上后,动能 比在轨道1上减小了ΔE ,在轨道2上也做圆周运动,则轨道2的半径为( )A.E k E k -ΔEr B.E k ΔE r C.ΔE E k -ΔE r D.E k -ΔE ΔE r 【答案】A【解析】卫星在轨道1上时,G Mm r 2=m v 21r ,因此E k =12mv 21=GMm 2r ,同样,在轨道2上,E k -ΔE =GMm 2r 2,因此r 2=E k E k -ΔEr ,A 正确. 9.(2019·江西重点中学联考)如图所示为某飞船从轨道Ⅰ经两次变轨绕火星飞行的轨迹图,其中轨道Ⅱ为圆轨道,轨道Ⅲ为椭圆轨道,三个轨道相切于P 点,P 、Q 两点分别是椭圆轨道Ⅲ的远火星点和近火星点,S 是轨道 Ⅱ上的点,P 、Q 、S 三点与火星中心在同一直线上,且PQ =2QS ,下列说法正确的是( )A .飞船在P 点由轨道Ⅰ进入轨道Ⅱ可向运动方向喷气B .飞船在轨道Ⅱ上由P 点运动到S 点的时间是飞船在轨道Ⅲ上由P 点运动到Q 点的时间的2.25倍C .飞船在轨道Ⅱ上S 点的速度小于在轨道Ⅲ上P 点的速度D .飞船在轨道Ⅱ上S 点与在轨道Ⅲ上P 点的加速度大小不相等【答案】A【解析】飞船在P 点由轨道Ⅰ进入轨道Ⅱ,需减速,即向运动方向喷气,获得与速度方向相反的推力,从而达到减速的目的,A 正确;根据开普勒第三定律知,r 3T 2=k ,因为PQ =2QS ,可知圆的半径是椭圆半长轴的1.5倍,则轨道Ⅱ上运动的周期是轨道Ⅲ上运行周期的1.84倍,B 错误;飞船从轨道Ⅱ上的P 点进入轨道Ⅲ,需减速,使得万有引力大于向心力,做近心运动,可知飞船在轨道Ⅱ上S 点的速度大于在轨道Ⅲ上P 点的速度,C 错误;Ⅱ轨道为圆周轨道,故两点的引力大小相等,所以加速度大小相等,D 错误.10.如图所示,探月卫星的发射过程可简化如下:首先进入绕地球运行的“停泊轨道”,在该轨道的P 处通过变速再进入“地月转移轨道”,在快要到达月球时,对卫星再次变速,卫星被月球引力“俘获”后,成为环月卫星,最终在环绕月球的“工作轨道”绕月飞行(视为圆周运动),对月球进行探测.“工作轨道”周期为T 、距月球表面的高度为h ,月球半径为R ,引力常量为G ,忽略其他天体对探月卫星在“工作轨道”上环绕运动的影响.(1)要使探月卫星从“转移轨道”进入“工作轨道”,应增大速度还是减小速度?(2)求探月卫星在“工作轨道”上环绕的线速度大小;(3)求月球的第一宇宙速度.【答案】(1)减小 (2)2πR +h T (3)2πR +h T R +h R【解析】(1)要使探月卫星从“转移轨道”进入“工作轨道”,应减小速度使卫星做近心运动.(2)根据线速度与轨道半径和周期的关系可知探月卫星线速度的大小v =2πR +h T. (3)设月球的质量为M ,探月卫星的质量为m ,月球对探月卫星的万有引力提供其做匀速圆周运动的向心力,所以有G Mm R +h 2=m 4π2T 2(R +h ) 月球的第一宇宙速度v 1等于“近月卫星”的环绕速度,设“近月卫星”的质量为m ′,则有G Mm ′R 2=m ′v 12R 解得v 1=2πR +hTR +h R .。