单端反激开关电源的变压器

合集下载

单端反激式开关电源中变压器的设计

单端反激式开关电源中变压器的设计

单端反激式开关电源中变压器的设计变压器作为单端反激式开关电源中的关键部件,在一定时间内具有不变的变换特性,因此具有较强的可靠性。

变压器的设计方案的选择对单端反激式开关电源的工作稳定性和效率都有很大的影响,因此变压器的设计步骤和要求都需要非常精细地考虑。

一、变压器设计步骤1、选择基本参数:在变压器设计中,首先要根据单端反激式开关电源的功率、输入电压、输出电压、铁芯材料、匝数及其他参数等,确定变压器的基本参数。

2、磁材和匝组设计:根据变压器的基本参数,确定变压器的磁芯材料,以及计算求出的空心铁芯的尺寸,以此作为变压器的磁材和匝组设计的参考。

3、选择变压器结构形式:根据变压器的功率大小,以及其应用环境的实际情况,选择工作最稳定的变压器结构形式。

4、绕组设计:针对上述选择的变压器结构形式,根据变压器的基本参数,选择合适的绕组几何参数,并根据电流要求以及其他条件,采用不同的工艺技术完成绕组的设计。

5、振荡线圈设计:由于单端反激式开关电源较复杂,为了实现对电压幅值、相位和线性度的控制,可能要设计振荡线圈。

因此,在实际的设计中,需要根据电路的实际要求,进行振荡线圈的合理设计。

1、电气特性要求:变压器的电气特性包括变换率、耐压要求、绝缘耐压要求、额定功率、工频噪声。

变压器应能满足额定电压比、额定电流、绝缘耐压、额定功率等要求,而且应保持满足所需的线性度要求,并具有良好的耐辐射和抗干扰能力。

2、机械特性要求:机械特性包括尺寸、外形和结构特性。

变压器的结构特性要求包括安装大小、安装方式、绝缘要求、电正性要求等,并要求可以长时间稳定的运行,在正常工作情况下,满足高强度,无变形。

3、热效应要求:在变压器设计中还应考虑高效率、低损耗要求,其中尤其需要考虑到热效应。

热效应要求变压器的绝缘材料具有高的热稳定性;并且磁芯的结构设计要考虑到磁芯材料的热导性和热抗性;另外,还要考虑到电磁绕组材料的空气隙、绕组物理结构等造成的损耗,以确保变压器的热效应稳定可靠。

单端反激式开关电源中变压器的设计

单端反激式开关电源中变压器的设计

2 反 激 式 变 压 器 的 设计 步 骤
经 逐 渐 取 代 了 传 统 的线 性 电源 , 电 子 、 在 电气 设 备 和 家 电 领 域 等
方 面 得 到 了广 泛 的 使用 。 端 反 激 式 拓 扑结 构 的 变 压 器 , 多 路 单 在 输 出情 况 下 电 路 简单 , 本 较低 且具 有效 率 高 等优 点 , 越 来 越 成 被 多地 应 用 在 中 小 功率 的开 关 电源 中 。
1 反激 式 变 压 器 工作 原 理
设 计 的 变 压 器 要 求 在 交 流 输 入 电 压 为 1 5 2 5 的 开 关 6 V ̄ 6 V 电 源 中能 够 提 供 八 路 电 压输 出 。这 八 路输 出参 数 分 别 为 : 共 2路 地 输 出 ± 4 / .A; 路 独 立 地 1 V 02 1路 独 立 地 1 v 1 v 02 3 5 / .A, 5/ 05 2路 独 立 地  ̄ V 2 . A; 5 / A。设 计 变 压 器 工 作 在 C CM 模 式 下 , 具 体步骤如下 。 () 1 已知 参 数 的 确定 根 据 设 计 要 求 和 电 路 特 点确 定 以下 参 数 :输 入 直 流 电压 范 围 V ~ . , 作 频 率 f 6 k , 望 效 率 1 08 , 组 输 出 . V ~ 工 = 6 Hz 期 1 .5 多 = 电 压值 V , 出 功率 P = 0 , 关 管 导 通 压 降 Vs 0 。 因为 0输  ̄ 5W 开 d =1 V 变 压 器 要 求 有 八 路 输 出 ,所 以 选 择 窗 口长 宽 比 例 较 大 的 E 磁 I 芯 , 便 绕组 绕 制 。 据 功 率 要 求选 取 P 4 方 根 C 0材 质 的 E4 l 0磁 芯 , 磁 芯 窗 口面 积 A =18 。 4 mm0骨 架 窗 口面积 A = mm 它 最 大 , 1O 1 ,

单端反激开关电源变压器方案设计书

单端反激开关电源变压器方案设计书

单端反激开关电源变压器设计开关电源功率变压器的设计方法作者:编辑:admin 发布时间:2006-9-27 QQ群交流:查看群号|医药黄页|资料下载无忧新闻摘要:1开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。

不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使1开关电源功率变压器的特性功率变压器开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。

不过在种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。

图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。

这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。

图中:Rsi——信号源Ui的内阻Rp——一次绕组的电阻Rm——磁心损耗(对铁氧体磁心,可以忽略)T——理想变压器Rso——二次绕组的电阻RL——负载电阻C1、C2——一次和二次绕组的等效分布电容Lin、Lis——一次和二次绕组的漏感Lm1——一次绕组电感,也叫励磁电感n——理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL′是RL等效到一次侧的阻值,RL′=RL/n2,折合后的输出电压U′o=Uo/n。

单端反激式开关电源变压器的设计

单端反激式开关电源变压器的设计

· 59 ·研制开发单端反激式开关电源变压器的设计顾伟康(国网浙江省电力有限公司 湖州供电公司,浙江文章针对开关电源变压器设计中存在公式繁多,参数计算困难等问题,提出了一种简单实用的设计方法。

该方法统一了变压器工作在电流连续模式和断续模式下的计算公式,有效解决了原边电感值、线圈匝数、线径、磁芯大小等参数的设计,降低了设计难度,提高了设计效率,并给出了设计实例。

开关电源;反激式变压器;参数Design of Single-Ended Flyback Transformers in Switching Power SupplyGU WeikangHuzhou Power Supply Company of State Grid Zhejiang Electric Power Co.The paper puts forward a simple and practical design method for there are many issues such as various parameter calculation difficulty in switching power supply transformer. This method unified the formulas of current continuous mode and current discontinuous mode ,effectively solved the original side inductance value core size and so on ,reduced the design difficulty 图1 单端反激式变压器原理图2 单端反激式变压器的设计单端反激式变压器设计流程图如图2所示。

根据下面步骤设计合适的变压器。

2.1 确定系统要求V acmax ,V acmin ,U max ,U min ,V o ,P o ,η等参数值的确定。

单端反激式开关电源变压器设计

单端反激式开关电源变压器设计

单端反激式开关电源变压器设计首先是参数的确定。

设计单端反激式开关电源变压器时,需要确定其输入和输出电压、输出功率、工作频率等参数。

根据实际应用需求和性能要求,确定合理的参数是设计的第一步。

接下来是线圈绕制。

根据确定的参数,计算出合适的线圈匝数和绕线方法。

线圈绕制时,需要注意绕线的密度均匀性和固定性,以避免绕线过松或过紧,影响线圈的性能和寿命。

然后是磁芯选择和计算。

磁芯的选择与设计密切相关,它直接影响到电源变压器的效率、功率损耗和体积等。

根据输入输出电压和功率的关系,可以选择适当的磁芯材料和规格。

同时,需要根据工作频率和磁芯的特性计算线圈的匝数和绕制方法。

绝缘和耐压设计也是单端反激式开关电源变压器设计的重要环节。

电源变压器在工作时会有高电压和高频的信号通过,因此需要进行良好的绝缘和耐压设计。

合理的绝缘材料和绝缘结构可以保证电源变压器的安全可靠性。

在设计过程中,还需要考虑电源变压器的散热和冷却。

电源变压器在工作时会产生一定的热量,需要通过散热和冷却措施来保持合适的温度。

合适的散热风扇和散热片等可以有效地降低电源变压器的温度,提高其效率和寿命。

最后,还需要进行电磁兼容性设计。

电源变压器在工作时会产生一些电磁干扰信号,需要采取适当的电磁屏蔽和滤波措施,以防止其对周围电子设备和系统产生干扰。

综上所述,设计单端反激式开关电源变压器是一个比较复杂的工程,需要综合考虑各个方面的问题,并进行合理的计算和设计。

只有在合理选择参数、绕制线圈、选择磁芯、考虑绝缘和耐压、散热和冷却、以及电磁兼容性等问题时进行综合考虑和设计,才能设计出高效、稳定、可靠的单端反激式开关电源变压器。

单端反激式变压器输入输出关系数学推导(临界)

单端反激式变压器输入输出关系数学推导(临界)

单端反激式变压器输⼊输出关系数学推导(临界)1单端反激式变压器输⼊输出关系数学推导单端反激变压器⼜称flyback ,其基本的电路结构如下图所⽰:所谓的反激,是指当开关管VT1导通时,⾼频变压器T初级绕组的感应电压为上正下负,整流⼆极管VD1处于截⽌状态,在初级绕组中储存能量。

当开关管VT1截⽌时,变压器T初级绕组中存储的能量,通过次级绕组及VD1整流和电容C滤波后向负载输出。

单端反激式开关电源是⼀种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。

唯⼀的缺点是输出的纹波电压较⼤,外特性差,适⽤于相对固定的负载。

单端反激式开关电源使⽤的开关管VT1承受的最⼤反向电压是电路⼯作电压值的两倍,⼯作频率在20-200kHz 之间。

其输⼊输出之间的数量关系推导如下:变压器的初级侧和次级侧实质是两个耦合的电感。

对于电感,其产⽣的电动势与电流的关系为:u L =d ?L dt =Ld i L dt ,于是可以推导出电流与电压的关系为:i L = u L L dt ,假定开关管VT1导通时间为t on ,所以,就有在导通时期的瞬时电流满⾜关系: i L = u L L dt t 0=u L ξ L t,(0<ξ如此,那么在初级电感⽆限接近于t on 时刻时,电流达到峰值,电感充电结束,其电动势就是电源电压V in ,于是取ξ=t on ,那么励磁线圈的峰值电流i p =V in L t on 。

此时可以算出电感在VT1导通期间所存储的能量:e = u t i t dt t on 0= L di (t)dt i t dt t on 0= Li(t)i p 0di =12Li p 2, 带⼊前⾯推导的励磁线圈峰值电流i p =V in L t on 可以得到: e =12Lv in 2L 2t on 2=v in 2t on 22L,在这⾥设初级线圈primary的电感为L p,次级second的电感为L s,在VT1导通时初级线圈存储的能量在理想情况下会在VT1截⽌期间(t off)全部传递⾄次级线圈,根据能量守恒定理可以得到如下等式:e=v in2t on2p =v out2t off2s整理之后可以得到:(设控制VT1的PWM波形的占空⽐为D,初次级线圈匝数为N s 、N p)v out v in =L sL p×t ont off=N sN p×D1?D这个关系式即为稳定状态下输⼊输出之间的数量关系,根据这个式⼦我们可以对变压器进⾏⼀个初步的选择,对于进⼀步的选择则需要知道纹波要求等进⽽对变压器的漏感,ESR,电感等进⾏筛选。

单端反激式变换器变压器工作状态分析

单端反激式变换器变压器工作状态分析

单端反激式变换器变压器工作状态分析单极性开关电源变换器即激励是一个单向方波脉冲电压,单端正激式和单端反激式变换器既属此类。

开关变压器工作时磁心中磁通沿着交流磁滞回线的第一象限部分上下移动,变压器磁心受单方向励磁,磁感应强度从最大值Bm 到剩磁Br 之间变化,。

图1 单极性励磁单端反激式开关电源一般有两种工作方式:1) &ldquo;完全能量转换(电感电流不连续) 方式&rdquo;: 在储能周期ton中,变压器储存的所有能量在反激周期toff中都转换到输出端。

2) &ldquo;不完全能量转换(电感电流连续) 方式&rdquo;: 储存在变压器中的一部分能量在ton末保留到下一个ton周期的开始。

1 能量的转换过程T 导通期间,进行电能的储存,由等效电路可知 D 处于截止,此时可以把变压器看作一个电感,。

在此期间IL = IP ,原边电流IP 的变化由dip/ dt = Us/ Lp 决定, IP 线性增加,磁感应强度将从Br增加到工作峰值Bw 。

在图3 中当T 关断,初级电流必定为零,D 导通,感应电流将出现在副边,通过负载续流,进行能量释放。

工作于完全能量转换方式时,toff总是大于ton ,因此在反激期间,磁感应强度将从Bw 下降到Br ,副边电流将以一定速率衰减,此速率由副边电压和副边电感决定,即:dis/ dt = U&rsquo;S/ LS采用不完全能量传递方式,由于出现了直流分量,为避免磁心饱和需加气隙,见图4 。

气隙的加入,使磁化曲线向H 轴倾斜,磁滞回线与B 轴包围的面积增加,从而使变压器传递的能量增加。

在传递一定能量的要求下,可以把△B 的取值设计的小一些,以减少磁滞损耗,利于提高工作频率,进一步减小原副边中的纹电流。

2 磁心参数与气隙的作用气隙的加入可使磁滞回线向H 轴倾斜,其斜率随着气隙的大小而变化,但有无气隙并不影响饱和磁感应强度的大小。

单端反激开关电源中功率变压器的主要设计参数

单端反激开关电源中功率变压器的主要设计参数

单端反激开关电源中功率变压器的主要设计参数
单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。

下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。

 ①传输功率:将一个电源的能量瞬时地传输到负载。

 ②电压变换:通过改变初级与次级匝比,获得所需要的输出电压;可获得不同的多路输出电压;
 ③绝缘隔离:为了安全,要求离线供电或高压和低压不能共地,变压器方便地提供安全隔离。

 CCM模式:(连续模式)在连续模式下,初级开关电流是从一定幅度开始的,然后上升到峰值,再迅速回零;在连续模式下储存高频变压器的能量在每一个开关周期内并未全部释放掉,所以下一个开关周期具有一定的能量。

在采用连续模式可减少初级峰值电流IP和有效值电流IRMS,从而降低MOS 的功耗;但连续模式要求增大初级电感受量LP,导致高频变压器的体积增大。

MOS管的峰值电流相对较小,但存在副边二极管的反向恢复问题,需要给二极管加吸收电路。

 DCM模式:(不连续模式)在不连续模式下,初级开关电流是零开始上升到峰值,再回零。

在不连续模式下储存高频变压器的能量在每一个开关周期内全部释放掉,在不连续模式下的IP和IRMS值较大,但所需要的LP较小,高频变压器的体积可以相应减小。

适用于较小功率,副边二极管没有反向恢复的问题,但MOS管的峰值电流相对较大;
 连续模式和不连续模式的设定
 设在最大占空比时:初级电流Ip1。

单端反激式开关电源变压器

单端反激式开关电源变压器

单端反激式开关电源变压器变压器的使用在升压和降压电源中很常见,开关电源根据不同的输出要求采用不同的变压器拓扑电路,同样的电源也采用不同的变压器拓扑实现。

在所有拓扑中反激式变压器构成的升压式开关电源具有电路简单、元器件最少的优点,在小功率开关电源中经常采用。

而变压器的设计需要技术人员根据一些经验参数来进行变压器的设计和绕制。

会出现经验设计多于准确的参数设计,而且在高频条件下变压器的设计和制作不同于普通的工频变压器,更加需要实际经验和理论设计两者相互结合。

本文结合实际设计和制作变压器的经验,提出一种工作于断续电流模式(DCM)下的反激式变压器设计方案,并给出相关参数设计方法。

1 反激式变压器的基本工作原理图1(a)为反激式变压器的工作原理图,其中,开关管VT1的导通和截止使得原边绕组线圈产生交变电流信号。

当原边绕组导通期间,次级绕组输出电压为上负下正,整流二极管VD1和VD2截止,输出电容Co和Cf放电;当原边绕组截止时次级输出电压为上正下负,整流二极管VD1和VD2导通,输出电容Co和 Cf充电,与正激式电路充放电过程相反。

可以从输入输出电压、电流波形关系图1(b)中得出DCM模式下的工作过程。

其中PWM、UDS、 IDl,IF1、Io1、Uo2分别为开关管VT1栅极脉宽调制信号、漏源极电压、整流二极管VD1和VD2电流、负载输出端Co正极性端电压波形、反馈输出端Cf正极性端电压波形。

查看原图(大图)2 单端反激式变压器设计单端反激式变压器设计流程,首先根据逆变升压模块前后电路的需要,列出输入电压、输出电压参数、开关频率、额定输出功率等整个系统需要变压器完成的参数要求,包括Uin(min)、Dmax、F、Po(max)分别为输入直流电压最小值10 V、最大占空比、开关频率10kH-z、输出最大功率15W等参数,然后再按照下面步骤设计合适的开关变压器。

2.1 选定工作点最低的交流输入电压,对应于最大的输出功率,由原边电感电流在开关管导通和截止期间电流的峰值相等和电磁感应定理得到:式中,Uor为原边反激电压,单位为V;L为原边电感,单位为H。

(整理)反激式开关电源变压器设计原理.

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理(Flyback Transformer Design Theory)第一节. 概述.反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图.一、反激式转换器的优点有:1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求.2. 转换效率高,损失小.3. 变压器匝数比值较小.4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求.二、反激式转换器的缺点有:1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下.2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大.3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂.第二节. 工作原理在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下:当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2.由图可知,导通时间 ton的大小将决定Ip、Vce的幅值:Vce max = VIN / 1-DmaxVIN: 输入直流电压 ; Dmax : 最大工作周期Dmax = ton / T由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN.开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip亦可用下列方法表示:Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率公式导出如下:输出功率 : Po = LIp2η / 2T输入电压 : VIN = L di / dt设di = Ip,且 1 / dt = f / Dmax,则:VIN = LIpf / Dmax 或 Lp = VIN*Dmax / Ipf则Po又可表示为 :Po = ηVINf DmaxIp2 / 2f Ip = 1/2ηVINDmaxIp∴ Ip = 2Po / ηVINDmax上列公式中 :VIN : 最小直流输入电压 (V)Dmax : 最大导通占空比Lp : 变压器初级电感 (mH)Ip : 变压器原边峰值电流 (A)f : 转换频率 (KHZ)图2 反激式转换器波形图由上述理论可知,转换器的占空比与变压器的匝数比受限于开关晶体管耐压与最大集电极电流,而此两项是导致开关晶体成本上升的关键因素,因此设计时需综合考量做取舍.反激式变换器一般工作于两种工作方式 :1. 电感电流不连续模式DCM (Discontinuous Inductor Current Mode)或称 " 完全能量转换 ": ton时储存在变压器中的所有能量在反激周期 (toff)中都转移到输出端.2. 电感电流连续模式CCM ( Continuous Inductor Current Mode) 或称 " 不完全能量转换 " : 储存在变压器中的一部分能量在toff末保留到下一个ton周期的开始.DCM和CCM在小信号传递函数方面是极不相同的,其波形如图3.实际上,当变换器输入电压VIN 在一个较大范围内发生变化,或是负载电流IL在较大范围内变化时,必然跨越着两种工作方式.因此反激式转换器要求在DCM / CCM都能稳定工作.但在设计上是比较困难的.通常我们可以以DCM / CCM 临界状态作设计基准.,并配以电流模式控制PWM.此法可有效解决DCM时之各种问题,但在 CCM时无消除电路固有的不稳定问题.可用调节控制环增益编离低频段和降低瞬态响应速度来解决CCM时因传递函数 " 右半平面零点 "引起的不稳定.DCM和CCM在小信号传递函数方面是极不相同的,其波形如图3.图3 DCM / CCM原副边电流波形图实际上,当变换器输入电压VIN在一个较大范围内发生变化,或是负载电流 IL在较大范围内变化时,必然跨越着两种工作方式.因此反激式转换器要求在DCM / CCM都能稳定工作.但在设计上是比较困难的.通常我们可以以DCM / CCM临界状态作设计基准.,并配以电流模式控制PWM.此法可有效解决DCM时之各种问题,但在CCM时无消除电路固有的不稳定问题.可用调节控制环增益编离低频段和降低瞬态响应速度来解决CCM时因传递函数 " 右半平面零点 "引起的不稳定.在稳定状态下,磁通增量ΔΦ在ton时的变化必须等于在"toff"时的变化,否则会造成磁芯饱和.因此,ΔΦ = VIN ton / Np = Vs*toff / Ns即变压器原边绕组每匝的伏特/秒值必须等于副边绕组每匝伏特/秒值.比较图3中DCM与CCM之电流波形可以知道:DCM状态下在Tr ton期间,整个能量转移波形中具有较高的原边峰值电流,这是因为初级电感值Lp相对较低之故,使Ip急剧升高所造成的负面效应是增加了绕组损耗(winding lose)和输入滤波电容器的涟波电流,从而要求开关晶体管必须具有高电流承载能力,方能安全工作.在CCM状态中,原边峰值电流较低,但开关晶体在ton状态时有较高的集电极电流值.因此导致开关晶体高功率的消耗.同时为达成CCM,就需要有较高的变压器原边电感值Lp,在变压器磁芯中所储存的残余能量则要求变压器的体积较DCM时要大,而其它系数是相等的.综上所述,DCM与CCM的变压器在设计时是基本相同的,只是在原边峰值电流的定义有些区别 ( CCM时 Ip = Imax - Imin ).第三节 FLYBACK TANSFORMER DESIGN一、FLYBACK变压器设计之考量因素:1. 储能能力.当变压器工作于CCM方式时,由于出现了直流分量,需加AIR GAP,使磁化曲线向 H 轴倾斜,从而使变压器能承受较大的电流,传递更多的能量.Ve: 磁芯和气隙的有效体积.or P = 1/2Lp (Imax2 - Imin2)式中Imax, Imin ——为导通周期末,始端相应的电流值.由于反激式变压器磁芯只工作在第一象限磁滞回线,磁芯在交、直流作用下的B.H效果与AIR GAP大小有密切关联,如图4.在交流电流下气隙对ΔBac无改变效果,但对ΔHac将大大增加,这是有利的一面,可有效地减小CORE的有效磁导率和减少原边绕组的电感.在直流电流下气隙的加入可使CORE承受更加大的直流电流去产生HDC,而BDC却维持不变,因此在大的直流偏置下可有效地防止磁芯饱和,这对能量的储存与传递都是有利的. 当反激变压器工作于CCM时,有相当大的直流成份,这时就必须有气隙.外加的伏秒值,匝数和磁芯面积决定了B轴上ΔBac值; 直流的平均电流值,匝数和磁路长度决定了H轴上HDC值的位置. ΔBac对应了ΔHac 值的范围.可以看出,气隙大ΔHac就大. 如此,就必须有足够的磁芯气隙来防止饱和状态并平稳直流成分.图 4 有无气隙时返驰变压器磁芯第一象限磁滞回路2. 传输功率 .由于CORE材料特性,变压器形状(表面积对体积的比率),表面的热幅射,允许温升,工作环境等的不特定性,设计时不可把传输功率与变压器大小简单的作联系,应视特定要求作决策.因此用面积乘积法求得之AP值通常只作一种参考. 有经验之设计者通常可结合特定要求直接确定CORE之材质,形状,规格等.3. 原,副边绕组每匝伏数应保持相同.设计时往往会遇到副边匝数需由计算所得分数匝取整,而导致副边每匝伏数低于原边每匝伏数. 如此引起副边的每匝伏秒值小于原边,为使其达到平衡就必须减小 ton时间,用较长的时间来传输电能到输出端. 即要求导通占空比D小于0.5. 使电路工作于DCM模式.但在此需注意: 若 Lp太大,电流上升斜率小,ton时间又短(<50%),很可能在"导通"结束时,电流上升值不大,出现电路没有能力去传递所需功率的现象. 这一现象是因系统自我功率限制之故.可通过增加AIR GAP和减小电感Lp,使自我限制作用不会产生来解决此问题.4. 电感值Lp .电感Lp在变压器设计初期不作重点考量. 因为Lp只影响开关电源的工作方式. 故此一参数由电路工作方式要求作调整. Lp的最大值与变压器损耗最小值是一致的. 如果设计所得Lp大,又要求以CCM方式工作,则刚巧合适. 而若需以DCM方式工作时,则只能用增大AIR GAP,降低Lp来达到要求,这样,一切均不会使变压器偏离设计.在实际设计中通过调整气隙大小来选定能量的传递方式(DCM / CCM) . 若工作于DCM方式,传递同样的能量峰值电流是很高的. 工作中开关Tr,输出二极体D以及电容C产生最大的损耗,变压器自身产生最大的铜损(I2R). 若工作于CCM方式,电感较大时,电流上升斜率低虽然这种状况下损耗最小,但这大的磁化直流成分和高的磁滞将使大多数铁磁物质产生磁饱和. 所以设计时应使用一个折衷的方法,使峰值电流大小适中,峰值与直流有效值的比值比较适中. 只要调整一个合适的气隙,就可得到这一传递方式,实现噪音小,效率合理之佳况.5. 磁饱和瞬时效应.在瞬变负载状况下,即当输入电压为VINmax而负载电流为Iomin时,若Io突然增加,则控制电路会立即加宽脉冲以提供补充功率. 此时,会出现VINmax和Dmax并存,即使只是一个非常短的时间,变压器也会出现饱和,引起电路失控. 为克服此一瞬态不良效应,可应用下述方法:变压器按高输入电压(VINmax),宽脉冲(Dmax)进行设计. 即设定低的ΔB工作模式,高的原边绕组匝数,但此方法之缺点是使变压器的效率降低.例 : 60watts ADAPTER POWER MAIN X'FMRINPUT : 90 ~ 264 Vac 47 ~ 63 HZ ;OUTPUT : DC 19V 0 ~ 3.16A ; Vcc = 12VDC 0.1Aη≧ 0.83 ; f s =70KHZ ; Duty cylce over 50%△t ≦40o (表面) @ 60W ; X'FMR限高 21mm.CASE Surface Temperature ≦ 78℃ .Note : Constant Voltage & Current Design (CR6848,CR6850) Step1. 选择CORE材质,确定△B本例为ADAPTER DESIGN,由于该类型机散热效果差,故选择CORE 材质应考量高Bs,低损耗及高μi材质,结合成本考量,在此选用Ferrite Core, 以TDK 之 PC40 or PC44为优选, 对比TDK DATA BOOK, 可知 PC44材质单位密度相关参数如下: μi = 2400 ± 25% Pvc = 300KW /m2 @100KHZ ,100℃Bs = 390mT Br = 60mT @ 100℃Tc = 215℃为防止X'FMR出现瞬态饱和效应, 此例以低△B设计.选△B = 60%Bm, 即△B = 0.6 * (390 - 60) = 198mT ≒0.2 TStep2 确定Core Size和 Type.1> 求core AP以确定 sizeAP= AW*Ae=(Pt*104)/(2ΔB*fs*J*Ku)= [(60/0.83+60)*104]/(2*0.2*70*103*400*0.2) = 0.59cm4式中 Pt = Po /η +Po 传递功率;J : 电流密度 A / cm2 (300~500) ; Ku: 绕组系数 0.2 ~ 0.5 .2> 形状及规格确定.形状由外部尺寸,可配合BOBBIN, EMI要求等决定,规格可参考AP值及形状要求而决定, 结合上述原则, 查阅TDK之DATA BOOK,可知RM10, LP32/13, EPC30均可满足上述要求,但RM10和EPC30可用绕线容积均小于LP32/13,在此选用LP32/13 PC44,其参数如下:Ae = 70.3 mm2 Aw = 125.3mm2 AL = 2630±25% le = 64.0mm AP = 0.88 cm4 Ve = 4498mm3 Pt = 164W ( forward )Step3 估算临界电流 IOB ( DCM / CCM BOUNDARY )本例以IL达80% Iomax时为临界点设计变压器.即 : IOB = 80%*Io(max) = 0.8*3.16 = 2.528 AStep4 求匝数比 nn = [VIN(min) / (Vo + Vf)] * [Dmax / (1-Dmax)] VIN(min) = 90*√2 - 20 = 107V= [107 / (19 + 0.6)] *[0.5 / (1- 0.5)]= 5.5 ≒ 6匝比 n 可取 5 或 6,在此取 6 以降低铁损,但铜损将有所增加.CHECK Dmax:Dmax = n (Vo +Vf) / [VINmin + n (Vo + Vf)]= 6*(19 + 0.6) /[107 + 6*(19 + 0.6)] = 0.52Step5 求CCM / DCM临ΔISB = 2IOB / (1-Dmax) = 2*2.528 / (1-0.52) = 10.533Step6 计算次级电感 Ls 及原边电感 LpLs = (Vo + Vf)(1-Dmax) * Ts / ΔISB = (19+0.6) * (1-0.52) * (1/70000) / 10=12.76uHLp = n2 Ls = 62 * 12.76 = 459.4 uH ≒ 460此电感值为临界电感,若需电路工作于CCM,则可增大此值,若需工作于DCM则可适当调小此值.Step7 求CCM时副边峰值电流ΔispIo(max) = (2ΔIs + ΔISB) * (1- Dmax) / 2 ΔIs = Io(max) / (1-Dmax) - (ΔISB / 2 )ΔIsp = ΔISB +ΔIs = Io(max) / (1-Dmax) + (ΔISB/2) = 3.16 / (1-0.52) + 10.533 / 2=11.85AStep8 求CCM时原边峰值电流ΔIppΔIpp = ΔIsp / n = 11.85 / 6 = 1.975 AStep9 确定Np、Ns1> NpNp = Lp * ΔIpp / (ΔB* Ae) = 460*1.975 / (0.2*70.3) = 64.6 Ts因计算结果为分数匝,考虑兼顾原、副边绕组匝数取整,使变压器一、二次绕组有相同的安匝值,故调整 Np =60Ts OR Np = 66Ts考量在设定匝数比n时,已有铜损增加,为尽量平衡Pfe与Pcu,在此先选Np = 60 Ts.2> NsNs = Np / n = 60 / 6 = 10 Ts3> Nvcc求每匝伏特数Va Va = (Vo + Vf) / Ns = (19+0.6) / 10 = 1.96 V/Ts∴ Nvcc = (Vcc + Vf) / Va =(12+1)/1.96=6.6 Step10 计算AIR GAPlg = Np2*μo*Ae / Lp = 602*4*3.14*10-7*70.3 / 0.46 = 0.69 mmStep11 计算线径dw1> dwpAwp = Iprms / J Iprms = Po / η/ VIN(min) = 60/0.83/107 = 0.676AAwp = 0.676 / 4 J取4A / mm2 or 5A / mm2= 0.1 (取Φ0.35mm*2)2> dwsAws = Io / J = 3.16 / 4 (Φ1.0 mm)量可绕性及趋肤效应,采用多线并绕,单线不应大于Φ0.4, Φ0.4之Aw= 0.126mm2, 則 0.79 (即Ns采用Φ0.4 * 6)3> dwvcc Awvcc = Iv / J = 0.1 /4上述绕组线径均以4A / mm2之计算,以降低铜损,若结构设计时线包过胖,可适当调整J之取值.4> 估算铜窗占有率.0.4Aw ≧Np*rp*π(1/2dwp)2 +Ns*rs*π(1/2dws)2 + Nvcc*rv*π(1/2dwv)20.4Aw≧60*2*3.14*(0.35/2)2+10*6*3.14+(0.4/2)2+7*3.14*(0.18/2)2≧ 11.54 + 7.54 + 0.178 = 19.260.4 * 125.3 = 50.1250.12 > 19.26 OKStep12 估算损耗、温升1.2.求出各绕组之线长.3.4.求出各绕组之RDC和Rac @100℃5.求各绕组之损耗功率6.加总各绕组之功率损耗(求出Total值)如 : Np = 60Ts , LP32/13BOBBIN绕线平均匝长 4.33cm则 INP = 60*4.33 = 259.8 cm Ns =10Ts则 INS = 10*4.33 = 43.3 cmNvcc = 7Ts則 INvc = 7 * 4.33 = 30.31cm查线阻表可知 : Φ0.35mm WIRE RDC =0.00268Ω/cm @ 100℃Φ0.40mm WIRE RDC = 0.00203Ω/cm @ 100℃Φ0.18mm WIRE RDC = 0.0106Ω/cm @ 100℃R@100℃ = 1.4*R@20℃求副边各电流值. 已知Io = 3.16A.副边平均峰值电流 : Ispa = Io / (1-Dmax ) = 3.16 / (1- 0.52) = 6.583A 副边直流有效电流: Isrms = √〔(1-Dmax)*I2spa〕= √(1- 0.52)*6.5832 = 4.56A副边交流有效电流: Isac = √(I2srms - Io2) = √(4.562-3.162) = 3.29A 求原边各电流值 :∵ Np*Ip = Ns*Is原边平均峰值电流 : Ippa = Ispa / n = 6.58 / 6 = 1.097A原边直流有效电流 : Iprms = Dmax * Ippa = 1.097 * 0.52 = 0.57A原边交流有效电流: Ipac = √D*I2ppa = 1.097*√0.52 = 0.79A求各绕组交、直流电阻.原边 : RPDC = ( lNp * 0.00268 ) / 2 = 0.348ΩRpac = 1.6RPDC = 0.557Ω副边 : RSDC = ( lNS*0.00203 ) /6 = 0.0146ΩRsac = 1.6RSDC = 0.0243ΩVcc绕组 : RDC =30.31*0.0106 = 0.321Ω计算各绕组交直流损耗:副边直流损 : PSDC = Io2RSDC = 3.162 * 0.0146 = 0.146W交流损 : Psac = I2sac*Rsac = 3.292*0.0234 = 0.253WTotal : Ps = 0.146 + 0.253 = 0.399 W原边直流损 : PPDC = Irms2RPDC = 0.572 * 0.348 = 0.113W交流損 : Ppac = I2pac*Rpac = 0.792*0.557 = 0.348W忽略Vcc绕组损耗(因其电流甚小) Total Pp = 0.461W总的线圈损耗 : Pcu = Pc + Pp = 0.399 + 0.461 = 0.86 W2> 计算铁损 PFe查TDK DATA BOOK可知PC44材之△B = 0.2T 时,Pv = 0.025W / cm2LP32 / 13之Ve = 4.498cm3PFe = Pv * Ve = 0.025 * 4.498 = 0.112W1.2.Ptotal = Pcu + PFe = 0.6 + 0.112 = 0.972 W3.4.估算温升△t依经验公式△t = 23.5PΣ/√Ap = 23.5 * 0.972 / √0.88 = 24.3 ℃估算之温升△t小于SPEC,设计OK.Step13 结构设计查LP32 / 13 BOBBIN之绕线幅宽为 21.8mm.考量安规距离之沿面距离不小于6.4mm.为减小LK提高效率,采用三明治结构,其结构如下 :X'FMR结构 :Np#13.2 / 3.22 -- AΦ0.35 * 2301LSHI#23.2 / 3.2SHI- 42mils * 1213LNs#33.2 / 3.28.9 - 6.7Φ0.4 * 6103LSHI#43.2 / 3.2SHI- 42mils * 1211LNp#53.2 / 3.2A -- 1Φ0.35 * 2301LNvcc#63.2 / 3.23 -- 4Φ0.1872L#7连结两A 点2L。

单端反激式DC-DC开关电源变压器的设计全过程

单端反激式DC-DC开关电源变压器的设计全过程

单端反激式DC/DC 开关电源变压器的设计全过程,xuguoping 分享与世纪电源网的网友 变压器的参数计算:(1) 变压器的设计要求:输出电压:10V ~3KV ,8mA (变压器输出之后三倍压)输入电压:24 1V±工作频率:50KHZ最大占空比:45%变换效率:80%(2) 基本参数计算:输入最小电压:min IN V =-IN V V =24-1-0.5=22.5V输出功率:OUT OUT OUT P U I =30000.00824()W =×=输入功率:OUT IN P P η=2430()0.8W == (3) 选择磁芯:由于输出功率为24W ,需要留有一定的余量,选择磁芯的型号为:EI-28。

其具体参数如下:材料:PC40;尺寸:28.0*16.75*10.6(mm);P A :0.6005();:86 4cm e A 2mm W A :69.83; :4300;2mm L A 2/nH N S B :500mT () 390mT (10) 25o C 0o C 使用时为防止出现磁饱和,实取磁通密度m B = 250 mT(4) 粗略估计匝数比以及最大占空比(通过实际计算)min (1)OUT MAX IN MAX V D N V D −= 30000.5522.50.45×=× 162.9=(求出结果后然后取整为Nm )因为匝数比可以根据设计理念修正为M N =165,从而可以产生新的MAX Dmin OUT MAX M IN OUT V D N V V =+ 300022.51653000=×+44.7%=(5) 计算初级平均电流,峰值电流和电流的有效值由于输出功率为24W ,用电流连续模式(CCM )比较适合。

这里取为0.6RP K .min min IN OUT P AVG IN IN P P I V V η== 240.822.5=×1.333A =.1[1]2P AVG P RP MAX I I K D =− 1.333(10.50.6)0.447=−××4.26A=.P RMS P I I ==2.054A =.P RMS I -电流有效值,P I -峰值电流,.P AVG I -平均电流,(RP K R RP PI K I =)电流比例因数,MAX D -最大占空比; 利用Krp 的值可以定量描述开关电源的工作模式,若Krp=1.0,即峰值电流和脉动电流相等,开关电源工作在断续模式;若Krp<1.0,峰值电流大于脉动电流,开关电源工作在连续模式。

单端反激开关电源工作原理

单端反激开关电源工作原理

单端反激开关电源工作原理
单端反激开关电源工作原理如下:
1. 输入变压器:交流电源首先经过输入变压器,将输入的交流电源转换为所需要的较高或较低的交流电压。

2. 整流电路:经过输入变压器的交流电被整流电路转换为脉冲状的直流电。

3. 滤波电路:经过整流后得到的直流电,经过滤波电路使电压变得更加平滑稳定。

4. 开关电路:滤波后得到的直流电经过开关电路,由开关芯片控制开关管的导通和截止,产生一系列短暂的高频脉冲。

5. 变压器:开关电路产生的高频脉冲信号经过变压器,通过变压器的变比关系将电压转换为所需要的输出电压。

6. 输出滤波:经过变压器转换后得到输出电压,再经过输出滤波电路,进一步平滑和稳定输出电压。

7. 输出电路:最后将输出电压提供给负载进行使用,保证输出电流的稳定性和质量。

以上就是单端反激开关电源的工作原理,通过交流输入变压器、整流电路、滤波电路、开关电路、变压器、输出滤波、输出电路等组成,完成从输入交流电源到输出直流电压的转换。

单端反激式开关电源高频变压器设计

单端反激式开关电源高频变压器设计

单端反激式开关电源高频变压器设计
设计单端反激式开关电源高频变压器需要考虑以下几个方面:
1.功率需求:根据要供电设备的功率需求确定变压器的功率等级。


率等级的选择可以根据所需的输出电压和电流来确定。

2.材料选择:变压器的高频特性对材料的选择提出了更高的要求。


般来说,变压器的磁芯可以选择铁氧体材料,而线圈通常采用绝缘导线或
绝缘线圈。

3.匝数计算:根据所需的变比和功率计算变压器的匝数。

变压器的变
比决定了输入电压与输出电压之间的关系。

4.磁芯设计:根据功率需求和工作频率选择合适的磁芯。

对于高性能
的单端反激式开关电源变压器,常用的磁芯材料是高磁导率的铁氧体。


芯的选择应该考虑到磁芯的饱和磁通密度和磁滞损耗。

5.线圈设计:线圈的设计需要考虑到功率损耗和电流密度。

线圈的匝
数和截面积应该经过适当的计算,以确保所需的功率传输和高频特性。

6.耦合系数:在单端反激式开关电源高频变压器设计中,耦合系数是
一个非常重要的参数。

耦合系数的选择影响变压器传递功率的能力和工作
效率。

7.绝缘层设计:绝缘层是为了保护线圈和磁芯,防止绝缘电流的泄漏。

绝缘层的设计需要考虑到工作频率、工作温度和绝缘强度。

8.浪涌保护:在设计变压器时,还需要考虑到浪涌保护的问题。

使用
合适的浪涌抑制器可以有效地保护变压器免受浪涌电流的破坏。

以上是单端反激式开关电源高频变压器设计的一些关键方面。

在实际设计中,还需要进行详细的计算和仿真,以确保设计符合要求并能够实现高效率和高性能的电源变压器。

第三节单端反激式开关电源的参数分析与计算公式

第三节单端反激式开关电源的参数分析与计算公式

本文由【】搜集整理。

免费提供海量教学资料、行业资料、范文模板、应用文书、考试学习和社会经济等word文档第二节TOPSwitch组成单端反激式开关电源的设计流程图TOPSwitch是内含高压功率MOSFET开关管的单片复合IC器件,它包含所有的模拟和数字控制电路,能完成隔离变压、调整稳压、自动保护等开关电源需要的全部功能。

由于IC 外部元器件很少,因此它能大为简化电源的设计。

又因它的开关频率高达100KHz,从而能V时明显缩小电源变压器的尺寸,并且允许使用更小的储能元件。

当电网电压为85-265ACV时,输出功率则达100W。

其输出功率功率可达50W,当电网电压为195-265AC设计一台单端反激式离线开关电源,涉及到电气工程的许多方面:模拟电路和数字电路的结构,双极管和MOS功率管器件的特征,磁性材料的考虑,热温升的散发,过流和过压的安全防护,控制回路的稳定性能等。

这就提出了一个巨大的挑战:它的设计涉及到需要综合协调的许多可变因素。

正是由于TOPSwitch的高度集成化,才使得这项设计任务被大大地简化。

因为它有效的缩减了设计变数项目,并且建立了IC内部回路的稳定性,所以发展成为一种简单的逐步设计方法,使之容易遵循参照,并指引读者从TOPSwitch的设计流程图中,快速的得到较满意的结果。

一台开关电源的设计,本质上是一件把许多变数调节到最佳值的反复过程。

它的设计方法大体上可有下述三部分:一是完整的设计流程图,而是简明扼要的设计步骤,三是深化的数据信息处理。

在构思阶段的流程图,是做成一个框图来提供全局的概貌,并指出完整的设计步骤。

该逐步设计程序是设计方法的一种简化模式,在执行程序阶段,他自始至终指导读者如何按给定的电源系统指标要求和规范,运用经验规则,查阅表格和简化的图示项目,来完成所需的TOPSwitch反激式电源的设计在优化最佳数据和信息的过程中,可利用关键的基本工作数据作为设计指南,例如一些方程式和导向图标等。

单端反激式开关电源变压器设计

单端反激式开关电源变压器设计

单端反激式开关电源变压器设计输入Vacmin Vacmax 电源功率(W) Pout 预设效率(%) η 工作频率(KHz) f MOS耐压(V) Vmosmax 连续模式输入断续模式输入输入电压(V) 磁芯预选:磁芯型号磁芯截面(mm2) Ae 磁感应强度(T) Bw 输出电压(V) 输出电流(A) 辅助电压(V) 辅助电流(A) Vout Iout Va Ia 86.00 265.00 45.00 87.00 70.00 600.00 0.50 1.00 0.50 EE13 EE13 17.20 0.20计算结果Vdcmin Vdcmax 反射电压(V) Vf 周期μ s T 最大导通时间( μs) t 最大占空比Dmax 输入功率(W) Pin 初级电流Ip 最大电感量(mH) Lp 初级次级匝数比n 磁芯气隙(cm) lg 输入电压(V) 初级匝数(Turn) 初级线径(mm) 次级匝数(Turn) 次级线径(mm) 辅助匝数(Turn) 辅助线径(mm) Np Dp Ns Ds Na Da次级参数:26.00 1.40 18.00 0.10使用说明: A,首先输入表格左侧已知参数,则相应数据会在右侧对应栏中得出B,变压器磁芯必须预选,Ae,Bw查磁芯规格书。

EE磁芯可以参考下表C,连续模式输入0.5,断续模式输入1 D,使用的时候请按照顺序输入,否则会打乱运算步骤。

附:EE磁芯参数表单端反激式开关电源变压器设计依据MOS管耐压的变压器设计初级参数输入Vacmin输入电压(V)Vacmax电源功率(W)Pout预设效率(%)η工作频率(KHz)fMOS耐压(V)Vmosmax连续模式输入断续模式输入磁芯预选:磁芯型号磁芯截面(mm2)Ae磁感应强度(T)Bw输出电压(V)输出电流(A)辅助电压(V)辅助电流(A)VoutIoutVaIa86.00265.0045.0087.0070.00600.000.501.000.50*****317 .200.20计算结果Vdcmin输入电压(V)Vdcmax反射电压(V)Vf周期μsT最大导通时间( μs)t最大占空比Dmax输入功率(W)Pin初级电流Ip最大电感量(mH)Lp初级次级匝数比n磁芯气隙(cm)lg初级匝数(Turn)初级线径(mm)次级匝数(Turn)次级线径(mm)辅助匝数(Turn)辅助线径(mm)NpDpNsDsNaDa次级参数:26.001.4018.000.10 使用说明:A,首先输入表格左侧已知参数,则相应数据会在右侧对应栏中得出B,变压器磁芯必须预选,Ae,Bw查磁芯规格书。

反激变压器的详细公式的计算教学文案

反激变压器的详细公式的计算教学文案

反激变压器的详细公式的计算单端反激开关电源变压器设计单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。

下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。

1、已知的参数这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。

2、计算在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。

反激电压由下式确定:V f=V Mos-V inDCMax-150V反激电压和输出电压的关系由原、副边的匝比确定。

所以确定了反激电压之后,就可以确定原、副边的匝比了。

N p/N s=V f/V out另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式:V inDCMin•••D Max=V f•(1-D Max)设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。

若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。

由能量守恒,我们有下式:1/2•(I p1+I p2)•D Max•V inDCMin=P out/η一般连续模式设计,我们令I p2=3I p1这样就可以求出变换器的原边电流,由此可以得到原边电感量:L p= D Max•V inDCMin/f s•ΔI p对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。

可由A w A e法求出所要铁芯:A w A e=(L p•I p22•104/B w•K0•K j)1.14在上式中,A w为磁芯窗口面积,单位为cm2A e为磁芯截面积,单位为cm2L p为原边电感量,单位为HI p2为原边峰值电流,单位为AB w为磁芯工作磁感应强度,单位为TK0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4K j为电流密度系数,一般取395A/cm2根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减小漏感。

单端反激开关电源的变压器

单端反激开关电源的变压器

单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。

下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。

1、已知的参数这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。

2、计算在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。

反激电压由下式确定:V f=V Mos-V inDCMax-150V反激电压和输出电压的关系由原、副边的匝比确定。

所以确定了反激电压之后,就可以确定原、副边的匝比了。

N p/N s=V f/V out另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式:V inDCMin•••D Max=V f•(1-D Max)设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。

若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。

由能量守恒,我们有下式:1/2•(I p1+I p2)•D Max•V inDCMin=P out/η一般连续模式设计,我们令I p2=3I p1这样就可以求出变换器的原边电流,由此可以得到原边电感量:L p= D Max•V inDCMin/f s•ΔI p对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。

可由A w A e法求出所要铁芯:A w A e=(L p•I p22•104/B w•K0•K j)1.14在上式中, A w为磁芯窗口面积,单位为cm2A e为磁芯截面积,单位为cm2L p为原边电感量,单位为HI p2为原边峰值电流,单位为AB w为磁芯工作磁感应强度,单位为TK0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4K j为电流密度系数,一般取395A/cm2根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减小漏感。

单端反激式开关电源变压器的计算及相关波形分析

单端反激式开关电源变压器的计算及相关波形分析
Np=【Vin(min)*Ton】/【Ae* Bm 】= 【Vin(min)*Dmax】/【Ae * Bm *F】
Ton :Ton=D*T(T为高频变压器的实际工 作周 期,D为实际工作时的占空比。) Bm :工作磁通密度(工作磁通密度Bm应该在设计 指标要求之内,Bm<Bs-Br,以避免磁芯出现饱和。 为了防止磁芯的瞬间出现饱和,预留一定裕量, 如取Bm=ΔBmax*0.6=0.198T 取0.2T) F:高频变压器的实际工作频率 其中:T=1/F
单端反激式开关电源变压器的计算及 相关波形分析
天微电子培训讲义
技术部 张天雷 2012.12.4
变压器在开关电源中的作用
变压器的构成以及作用:
1)电气隔离 2)储能 3)变压 4)变流
变压器的分类
功率变压器根据拓扑结构分为三大类: (1)反激式变压器; (2)正激式变压器; (3)推挽式变压器(全桥/半桥变换器中的 变压器) 下页表格中各符号的含义: ‘+’=适合; ‘0’=一般;‘-’=不适合。
什么是开关电源的DCM与CCM?
开关电源的CCM和DCM状态是指: 高频开关变压器次级线圈中感应到的磁化电流, 即输出电流。 磁化电流的非连续状状DCM:Toff>次级电感与 输出电压之比再除以次级峰值电流。 磁化电流的连续状状CCM:Toff≤次级电感与输 出电压之比再除以次级峰值电流。
DCM与CCM模式的选取
磁芯结构 E cores
Planar E Cores
变换器电路类型 反激式 正激式 推挽式
+ 0 0 + 0 + + + + + 0 + + + + 0 0 + + + 0 0 0 0 +
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。

下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。

1、已知的参数这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V°ut、每路输出的功率P out、效率n开关频率f s(或周期T)、线路主开关管的耐压 V mos。

2、计算在反激变换器中,副边反射电压即反激电压V f 与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量 (此处假设为 150V) 。

反激电压由下式确定:V f=V Mos-V inDCMax-150V反激电压和输出电压的关系由原、副边的匝比确定。

所以确定了反激电压之后,就可以确定原、副边的匝比了。

N p/N s=V f/V out另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式:V inDCMin ???D Max=V f?(1-D Max)设在最大占空比时,当开关管开通时,原边电流为I pi,当开关管关断时,原边电流上升到I p2。

若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。

由能量守恒,我们有下式:1/2?(l p1 + l p2)?D Max?V inDCMin =P out/ n一般连续模式设计,我们令I p2=3I p1这样就可以求出变换器的原边电流,由此可以得到原边电感量:L p= D Max?V inDCMin /f s? A p对于连续模式,A p=|p2-|p1=2l p1 ;对于断续模式,A p=l p2。

可由 A w A e 法求出所要铁芯:A w A e=(L p?I p22?104/B w?K0?K j)1.14在上式中, A w 为磁芯窗口面积,单位为 cm2A e 为磁芯截面积,单位为cm2L p为原边电感量,单位为 HI p2 为原边峰值电流,单位为 AB w 为磁芯工作磁感应强度,单位为TK0 为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4K j为电流密度系数,一般取395A/cm 2根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减小漏感。

有了磁芯就可以求出原边的匝数。

根据下式:N p=L p?I p2?104/B w?A e再根据原、副边的匝比关系可以求出副边的匝数。

有时求的匝数不是整数,这时应该调整某些参数,使原、副边的匝数合适。

为了避免磁芯饱和,我们应该在磁回路中加入一个适当的气隙,计算如下:l g=0.4 n ?N?A e?10-8/L p在上式中,l g为气隙长度,单位为 cmN p 为原边匝数,A e为磁芯的截面积,单位为 cm2L p 为原边电感量,单位为 H至此,单端反激开关电源变压器的主要参数设计完成。

我们应该在设计完成后核算窗口面积是否够大、变压器的损耗和温升是否可以接受。

同时,在变压器的制作中还有一些工艺问题单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。

下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。

1 、已知的参数这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V°ut、每路输出的功率P out、效率n开关频率f s(或周期T)、线路主开关管的耐压V mos。

2、计算在反激变换器中,副边反射电压即反激电压V f 与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。

反激电压由下式确定:V f=V Mos-V inDCMax -1 50V反激电压和输出电压的关系由原、副边的匝比确定。

所以确定了反激电压之后,就可以确定原、副边的匝比了。

N p/N s=V f/V out另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式:V inDCMin ???D Max=V f? ( 1 -D Max )设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。

若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。

由能量守恒,我们有下式:1/2?(l p1 + | p2)?D Max?V inDCMin =P out/ n一般连续模式设计,我们令I p2=3I p1这样就可以求出变换器的原边电流,由此可以得到原边电感量:L p= D Max?V inDCMin /f s? A p对于连续模式,△P=|p2-|pi=2l p1 ;对于断续模式,△P=l p2。

可由 A w A e 法求出所要铁芯:2 4 1.14A w A e=(L p?|p22?104/B w?K0?K j)1.14在上式中,A w为磁芯窗口面积,单位为 cm2A e 为磁芯截面积,单位为 cm2L p 为原边电感量,单位为H|p2 为原边峰值电流,单位为 AB w 为磁芯工作磁感应强度,单位为TK0 为窗口有效使用系数,根据安规的要求和输出路数决定,一般为 0.2~0.4K j为电流密度系数,一般取 395A/cm 2 根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减小漏感。

有了磁芯就可以求出原边的匝数。

根据下式:4N p=L p?|p2?104/B w?A e再根据原、副边的匝比关系可以求出副边的匝数。

有时求的匝数不是整数,这时应该调整某些参数,使原、副边的匝数合适。

为了避免磁芯饱和,我们应该在磁回路中加入一个适当的气隙,计算如下:l g=0.4 n ?N?A e?lO8/L p在上式中,l g为气隙长度,单位为 cmN p 为原边匝数,A e为磁芯的截面积,单位为cm2L p 为原边电感量,单位为 H至此,单端反激开关电源变压器的主要参数设计完成。

我们应该在设计完成后核算窗口面积是否够大、变压器的损耗和温升是否可以接受。

同时,在变压器的制作中还有一些工艺问题需要注意。

/icview-17097-1-1.html[恩智浦半导体(NXP Semiconductors)技术论坛]主题:单端自激式(RCC)反激开关电源调试技巧单端自激式(RCC)反激开关电源虽然效率低、调试麻烦,但是,它电路简单,更可贵的是具有“自我保护能力”---当输出过重或短路时,可自动进入间歇振荡保护模式并且啸叫“提醒用户,而保护自己不被破坏。

因此,单端自激式(RCC)开关电源一直也受到重视并广泛使用。

关于单端自激式(RCC)反激开关电源的原理非常简单,就不赘述;但是该电路调试比较困难,这里以下图为例,简要说明其调试步骤及项目 .调试用设备:i 调压器2、 示波器3、 万用表4、 其他(功率电阻,电位器,电容,电阻等等)调式步骤及项目:1 PCB 及焊接情况检查检测输入输出有无短路,元件极性是否正确,有无触碰等;2、振荡调试 输出接一半负载,将输入电压慢慢调高,将示波器探头靠近变压器,看是否振荡。

通常几十 伏(因负载而异) 就可听到振荡的吱吱声; 若已到满电压仍然无振荡, 说明振荡电路有问题。

重点查:r#OVCC-IJVAr|Gt)A=K2vcc l>PCS_0 V<C-|^A<:-Vc<-JTtA、起振电阻: R8B、震荡管: Q2C、正反馈回路: C8,D6,R6D、振荡变压器:极性是否正确3、稳压调试将输入电压慢慢调高,监视输出电压变化,输出电压 VCC+15V A 逐渐增大,当到 15V 时,应不随输入电压再继续增大;若继续增大,就要检查稳压电路:A、次级稳压部分: R1,R2,U1,R4;B、光耦: PS1C、初级稳压部分: D1,C3; R5,Q1;4、重载启动调试在输出接 1.2 倍的最大负载,输入电压调至允许最低值,上电,观察波形和输出电压;若启动迅速,波形、电压正常说明该项正常;若进入间歇振荡,或输出电压偏低就要检查或调节以下元件:A、起振电阻: R8B、正反馈: R6,C8C、过流检测电阻: R12D、过压保护: DW15、恒流驱动调试在输出接 1.2 倍的最大负载,输入电压调至允许最高值,减小驱动,刚好使输出电压降低,在适当加大一点即可;调节:A、驱动: R6,C8B、恒流驱动: DW2,R106、过流保护调试在输出接 1.2 倍的最大负载,输入电压调至允许最低值,将驱动加大一些,继续加重负载,观察 R12 两端电压波形,调节 R12 使输出电压降低。

回复原驱动。

7、过压保护调试输出接一半额定负载,将输入电压慢慢调高,监视输出电压变化,输出电压VCC+15V A 逐渐增大,当到 15V 时,再增加十几伏。

短接光耦两输入端,看 VCC+15V A 端电压值,调节 DW1 ,使输出电压不超过 18V —20V( 根据要求掌握 )。

再将输入电压调至允许最高值,重复上述过程;8、稳定性调试输出接一半额定负载,将输入电压调至允许最高值,将输出负载逐渐减小直至间歇振荡,调节:A、反馈补偿: C1,C2,R3B、动态恒流驱动: C6,R7重复调节,使负载最小;9、吸收回路调试输入电压调至允许最低值,去掉 R9,C4 ,观察开关管关断时刻的振荡波形,读出其谐振频率,调节 R,C 使谐振频率为无缓冲时的三分之一即可。

注意:有些调试项目之间会相互影响,需要重复调试一直到最佳。

若一直调不到最佳,就需要注意变压器的设计及制造工艺和 PCB 的布线情况。

通过以上调试,单端自激式 (RCC) 反激开关电源就可正常工作。

相关文档
最新文档