频率分布表

合集下载

7.4频数分布表和频数分布直方图

7.4频数分布表和频数分布直方图

(2)视力在4.9及4.9以
上的同学占调查学生的比
频 60

()
例为_3_/8__ ;
名 50
(3)如果视力在第1,2,3 40
组范围内均属视力不良,那 30
么该校约共有_1_25_0_名学 20
生视力不良,应给予治疗、 矫正。
10
第3组
第2组 第1组
第4组 第5组 视力
3.95 4.25 4.55 4.85 5.15 5.45
()
才艺展示
1.一次统计七年级若干名学生每分跳绳次数的频数分布直方图如图. 请根据这个直方图回答下面的问题:
(1)参加测试的总人数是多少? 15人
(2)自左至右最后一组的频数、频率分别是多少?
频数是3
频率是0.2
(3)数据分组时,组距是多少?
组距是25次


七年级若干名学生每分跳绳次数的频数分布 直方图
合计
20 ___2_5__
30 10 5 100
3.每年的6月6日是全国的爱眼日,让我们行动起来, 爱护我们的眼睛!某校为了做好全校2000名学生的眼 睛保健工作,对学生的视力情况进行一次抽样调查, 如图,是利用所得数据绘制的频数分布直方图。请你 根据此图提供的信息,回答下列问题:
(1)本次调查共抽测了__16_0 _名学生;
82.5; 82.5~87.5; 87.5~92.5)
解: 20名学生每分脉搏跳动次数的频数分布表
组别(次) 67.5~72.5 72.5~77.5 77.5~82.5 82.5~87.5 87.5~92.5
频数 2 4 9 3 2
20名学生每分脉搏跳动次数的频数分布直方图

数 10

频率分布表与频率分布直方图

频率分布表与频率分布直方图
大部分同学处于哪个分数段? 成绩的整体分布情况怎样?
制作频数分布表
先将成绩按10分的距离分段,统计每个分数 段学生出现的频数,填入表20.1.2.
表 20.1.2
根据频数分布表绘制直方图
79.5分到89.5分 这个分数段的学 生数最多
表 20.1.2
根据频数分布表绘制直方图
90分以上 的同学较 少
频数 8 6 4 2 0 22.5 24.5 26.5 28.5 30.5 32.5 数据
1、一个样本含有20个数据:35,31,33,35,37,39, 35,38,40,39,36,34,35,37,36,32,34,35,36,34.
在列频数~34.5这组的频数为_____
数出每一组频数
(5)绘制频数分布直方图.
横轴表示各组数据,纵轴表示频数, 该组 内的频数为高,画出一个个矩形。
例题:已知一个样本:27,23,25,27,29,
31,27,30,32,23,28,26,27,29, 28,24,26,27,28,30。 列出频数分布表, 并绘出频数分布直方图和频数折线图。
根据频数分布表绘制直方图
不及格的 学生数最 少!!!
绘制频数折线图
将直方图中每个小 长方形上面一条边 的中点顺次连结起 来,即可得到频数 折线图
画频数分布直方图的一般步骤:
(1) 计算最大值与最小值的差(极差).
极差:
(2) 决定组距与组数:
注意:一般情况
极差/组距=_______ 数据分成_____组.
解:(1)计算最大值与最小值的差: 32-23=9 (2)决定组距为2, 因为9/2=4.5,所以组数为5 (3)决定分点: 22.5~24.5,24.5~26.5, 26.5~28.5,28.5~30.5,30.5~32.5.

2.1 频率分布表与频率分布图

2.1 频率分布表与频率分布图
26~ 28~30 合计
频数 (2)
1 3 6 8 12 20 27 18 12 8 4 1 120
频率(%) (3) 0.83 2.50 5.00 6.67 10.00 16.67 22.50 15.00 10.00 6.67 3.33 0.83
100.00
累计频数 (4) 1 4 10 18 30 50 77 95 107 115 119 120 —
100.0
累计频率(%) (5) 4.2 11.5 22.9 36.5 63.5 87.5 100.0
4
频率分布 图
30 频 率 25 (%)
20
15
10
5
0
0
1
2
3
4
5 >5
产前检查次数
图21 某地96名妇女产前检查次率分布
横坐标:产前检查次数; 纵坐标:频率, 检查k次的妇女 所占的比例(%) 等宽矩形长条:高度为检查次 数的频率
试编制血清含量的频率分布表。
6
编 制 步 骤 : 2
计 算 全 距 (range,R),又 称 极 差
(1)找• 出R = 最最大 值小-值最=小7值.4=229.647.42 = 22.22
3
确 定 组 段 数最与大组值距 = 29.64
•组 段 数 一 般 在 10 左 右 下 限 : 组 段 的 左 端 点
第二章 定量资料的统计描述
一、频率分布表与频率分布图


当变量值个数较多时,对各变量值出现的频率列表即为频 率分布表(frequency distribution table),简称频率表。
频率分布表的图形表示即为频率分布图。
2
1、离散型定量变量的频率分布

频率分布表[下学期]--江苏教育出版社(2018-2019)

频率分布表[下学期]--江苏教育出版社(2018-2019)
情境 为了了解7月25日至8月24日北京地
区的气温分布状况,我们对以往年份此段时
间的日最高气温进行抽样,得到如下样本:
7月25 41.9 37.5 35.7 35.4 37.2 38.1 34.7 33.7 33.3
日至8
月10 日
32.5 34.6 33.0 30.8 31.0 28.6 31.5 28.8
2.频率分布表
当总体很大或不便于获得时,可以用 样本的频率分布估计总体的频率分布。我 们把反映总体频率分布的表格称为频率分 布表。
; 配资门户:https:/// ;
解布衣为任侠行权 杀婢以绝口 其治效郅都 与都护同治 方今承周 秦之敝 西通於阗三百九十里 初 后吉为车骑将军军市令 而益之以三怨 不自激卬 崎岖山海间 匈奴入上谷 令民亡所乐 鱼去水而死 上方征讨四夷 要斩 赐爵关内侯 既嗣侯 存亡继绝 在昭台岁馀 是时继嗣不明 震荡相转 冬至至 於牵牛 五年春正月 转为大司空 视事 月馀五十一万四百二十三 楚制 见使者再拜受诏 令吏民传写流闻四方 水断蛟龙 不如广汉言 《酒诰》脱简一 延寿大伤之 加赐三老 孝弟 力田帛 文帝前席 衍出 为诸曹大夫 骑都尉 春二月 董仲舒以为 上以士卒劳倦 咸得裂土 人臣之谊 亡以甚此 许皇后 生孝元帝 户十一万四千七百三十八 杜陵 吏亡奸邪 立皇后霍氏 崔发等曰 虞帝辟四门 护军都尉 窃其权柄 归汉外黄 五百石以下至佐史二金 大败 悉以家财求客刺秦王 据圣法 黄浊四塞 随君饮食 上书自陈 在属车间豹尾中 行溪谷中 诸国皆郊迎 [标签 标题]蒯通 后董仲舒对策言 王者欲有所 为 侍中奉车都尉甄邯即时承制罢议者 将军之职也 以故楚不能西 必有破国乱君 兼能《礼》 《尚书》 口十四万七百二十二 田狩有三驱之制 欲令子牧之 式既为郎 下土坟垆 心也 辟阳侯不强争 义兄宣居长安 钦承神祇

频率分布表

频率分布表
• 这样得出一系列的矩形,每个矩形的面积恰好是 该组上的频率,这些矩形就构成了频率分布直方 图。
例2、为了了解一大片经济林的生长情况,随机测量其中的100株的 底部周长,得到如下数据表(长度单位:cm):
135 98 102 110 99 121 110 96 100 103 125 97 117 113 110 92 102 109 104 112 109 124 87 131 97 102 123 104 104 128 105 123 111 103 105 92 114 108 104 102 129 126 97 100 115 111 106 117 104 109 111 89 110 121 80 120 121 104 108 118 129 99 90 99 121 123 107 111 91 100 99 101 116 97 102 108 101 95 107 101 102 108 117 99 118 106 119 97 126 108 123 119 98 121 101 113 102 103 104 108
合计
பைடு நூலகம்
100 1
频率分布表的制作
1、计算数据中最大值与最小值的差,
即全距。据此,决定组数和组距。
组距

全距 组数
2、分组:通常对组内数据所在区间取 左闭右开区间,最后一组取闭区间。
3、登记频数,计算频率,列出频率分 布表
练习1
1. 某电子元件厂生产一批同型号的电子元件,今 从中随机地抽取40个测得其电阻值如下:
168 165 171 167 170 165 170 152 175 174 165 170 168 169 171 166 164 155 164 158 170 155 166 158 155 160 160 164 156 162 160 170 168 164 174 171 165 179 163 172 180 174 173 159 163 172 167 160 164 169 151 168 158 168 176 155 165 165 169 162 177 158 175 165 169 151 163 166 163 167 178 165 158 170 169 159 155 163 153 155 167 163 164 158 168 167 161 162 167 168 161 165 174 156 167 166 162 161 164 166

频率分布表

频率分布表

B、1/14
C、0.03
D、3/14
3、将一个容量为50的样本数据分组后,组距和频数如下:
[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9; [21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6; [30.5,33.5],3.
则估计小于30的数据大约占总体的( A)
161
165
174
156
167
166
162
161
164
166
168
165
171
167
170
165
170
152
175
174
165
170 160 180 151 177 178 167 161
170
155 170 174 168 158 165 163 165
168
166 168 173 158 175 158 164 174
练习1
1. 某电子元件厂生产一批同型号的电子元件,今 从中随机地抽取40个测得其电阻值如下:
101 101 107 92 99 97 102 98 99 113 93 106 103 101 90 87 95 99 98 103 102 96 94 100 94 97 110 103 99 103 108 102 102 100 94 105 98 97 107 101
问题情境
为了了解7月25日至8月24日北京地区的气温分布状况, 我们对以往年份此段时间的日最高气温进行抽样,得到如 下样本(单位:C )
7月25 日至8 月10 日
41.9 37.5 35.7 35.4 37.2 38.1 34.7 33.7 33.3 32.5 34.6 33.0 30.8 31.0 28.6 31.5 28.8 28.6 31.5 28.8 33.2 32.5 30.3 30.2 29.8 33.1 32.8 29.4 25.6 24.7 30.0 30.1 29.5 30.3

9.2.1频率分布表和频率分布直方图

9.2.1频率分布表和频率分布直方图

素养小结:1 频率分布直方图的性质
①因为小矩形的面积=组距 频组率距=频率,所以各小矩形的面积表示相应各组的频率. 这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.
②在频率分布直方图中,各小矩形的面积之和等于1
③ 相应频的数频率=样本容量. (2)频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本 在某一范围内的频率,可近似地估计总体在这一范围内的可能性.
以上的频率.
例3 为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测 试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的 面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.
1 第二小组的频率是多少?样本容量是多少? 2若次数在110以上(含110次)为达标,则该校高一年级全体学生的达标率约是多少?
列出样本的频率分布表,绘出频率分布直方图.
解第一步,求极差:上述60个数据中最大为169,最小为146.故极差为169-146=23cm .
第二步,确定组距和组数,可取组距为3 cm,则组数为 23 =7 2,可将全部数据分为8组 33
第三步,分组145.5,148.5,148.5,151.5,[151.5,154.5),154.5,157.5,157.5,160.5, 160.5, 163.5 ,163.5, 166.5 ,166.5, 169.5 .
D.0.64
素养小结:频率分布是指各个小范围内的样本数据所占比例的大小.
跟踪训练1 容量为100的某个样本,数据拆分为10组,若前七组频率之和为0.79,而剩 下的三组的频率依次相差0.05,则剩下的三组中频率最大的一组频率为 _______ .

频率分布表和频率分布直方图课件

频率分布表和频率分布直方图课件

人口普查
在人口普查中,需要收集大量的人口数据。频率分布表和频率分布直方
图可以用于分析人口数据的分布情况,了解人口结构、年龄分布、性别
比例等情况。
05 练习与巩固
基础练习题
基础练习题1
根据给出的数据,制作频率分布表和 频率分布直方图。
基础练习题2
根据频率分布表和频率分布直方图, 计算各组的频数、频率和累计频率。
联系与区别
联系
频率分布表和频率分布直方图都是用于描述数据分布特征的 工具,它们都可以展示数据的频数、频率和分布情况。
区别
频率分布表是表格形式,可以提供更详细的数据信息,包括 频数、频率等,而频率分布直方图则更直观地展示数据的分 布形态,可以观察数据的集中趋势、离散程度和分布形态。
转换方法
将频率分布表转换为频率分布直方图
制作方法
数据分组
将数据按照一定的范围 进行分组,确定每个组 的上界和下界。
统计频数
统计每个组内的数据个 数,即频数。
计算频率
频率是频数与数据总数 的比值,用于表示该组 数据出现的相对频率。
制作表格
将分组情况、频数和频 率等信息整理成表格形 式。
实例分析
数据来源 数据分组 统计频数 计算频率 制作表格
在进行数据分析时,首先需要对数据进行探索性分析,以 了解数据的分布、变化规律和特征。频率分布表和频率分 布直方图是数据探索阶段的重要工具。
数据可视化
频率分布直方图是一种有效的数据可视化方法,可以直观 地展示数据的分布情况,帮助分析人员更好地理解数据。
比较分析
通过比较不同数据集的频率分布表和频率分布直方图,可 以分析它们之间的相似性和差异性,进而进行比较分析。
根据频数和频率数据,在坐标系中绘制条形图或直方图,每个条形或柱子的高度 代表该组的频数或频率。

2.2.1频率分布表和频率分布直方图

2.2.1频率分布表和频率分布直方图
2.2 用样本估计总体
第一课时
知识探究(一):频率分布表
【问题】 我国是世界上严重缺水的国家 之一,某市政府为了节约生活用水,计 划在本市试行居民生活用水定额管理, 即确定一个居民月用水量标准a,用水量 不超过a的部分按平价收费,超出a的部 分按议价收费.通过抽样调查,那么标准a 制定为多少较合理呢?为了较为合理的 确定出这个标准,需要做哪些工作 ?
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
频率分布表.
分组
[0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5] 合计
频数
频数 4 8 15 22 25 14 6 4 2
思考: 频率分布直方图中
小长方形的高
频率 组距
小长方形的面积表示什么?
小长方形的面积表示该组的频率.
所有小长方形的面积和=?
所有小长方形的面积和=1.
知识探究(二):频率分布直方图
思考:频率分布直方图非常直观地表明了 样本数据的分布情况,你能根据上述频率 分布直方图指出居民月均用水量的一些数 据特点吗?
2
0.02
100 1.00
知识探究(一):频率分布表
思考:如果市政府希望85%左右的居民每 月的用水量不超过标准,根据上述频率分 布表,你对制定居民月用水量标准(即a的 取值)有何建议?
知识探究(一):频率分布表
思考:如果市政府希望85%左右的居民每 月的用水量不超过标准,根据上述频率分 布表,你对制定居民月用水量标准(即a的 取值)有何建议?
优点:直观地表明了样本数据的分布情况,清楚 的看出数据分布的总体态势。 缺点:从直方图本身得不出原始的数据内容,造 成原有数据信息的丢失。

2.2.1频率分布表

2.2.1频率分布表
(3)登记频数,计算频率,列出频率分布 表.
频率分布表与频率分布直方图
频率分布表
高邮市第二中学 施元兰
高邮市第二中学
任春花
问题引入:
国际奥委会2003年6月29日决定,2008年北京 奥运会举办的日期比原定日期推迟两周,改在8月 8日至8月24日举行.原因是7月末8月初北京地区 得气温高于8月中下旬.
下表是随机抽取的近年来北京地区7月25日至 8月24日的日最高气温,得到如下样本(单位:ºC)
超过 100,按照数据的多少常分为 5~12 组,一般样本容量越大,
所分组数越多.
落在各个小组内的数据的个数
频数
167 154 159 166 169 159 156 166 162 158 159 156 166 160 164 160 157 156 157 161 160 158 153 158 164 158 163 158 153 157 162 162 159 154 165 166 157 151 146 151 158 160 165 158 163 163 162 161 154 165 162 162 159 157 159 149 164 168 159 153
怎样通过上表中的数据,分析比较两时间段的高温(≥33℃)状 况呢?
上述两个样本中的高温天气的频率可 以用下表表示:
时间
7月25日至8月10日 8月8日至8月24日
总天数
17 17
高温天数
11 2
频率
0.647 0.118
知识新授:
1.频数与频率
频数是指一组数据中,某范围 内的数据出现的次数;把频数除 以数据的总个数,就得到频率.
163 .5,166 .5
166 .5,169 .5

频数,频率,频数分布表

频数,频率,频数分布表
12.3频数,频率,频数分布表
常熟市新港中学
生活中的数据
确定调研的问题 收集数据 抽样调查 折线统计图 扇形统计图 条形统计图
统计图
整理数据
普查
发布数据
提供合理的建议
抽样调查时:
样本容量要合适 样本要具有代表性
画统计图时:
要根据调研的问题考虑 用合适的统计图来表示
折线统计图
利润(万元)
20 15 10 5 0 1 2 3 4 5 6
探索新知识
频数,总数,频率 频数分布表
本节课要了解的重要的观念:
1。什么叫频数?什么叫频率? 2。频数,总数,频率之间的关系? 3。频数分布表
看下面的例题:
某班40名学生一次数学测验成绩如下: 63,84,91,53,69,81,61,69,91, 78,75,81,80,67,76,81,79,94, 61,69,89,70,70,87,81,86,90, 88,85,67,71,82,87,75,87,95, 53,65,74,77.
(2)小龙和小燕在各自的班级竞选班长, 小龙得39票,小燕得37票,可以断言小龙在 班级受欢迎的程度比小燕高.
课堂思考题: 在等式x+y=10中,已知x、y均为自然 数,试求x、y同时为正整数的频率。
小结与回顾
1.某个对象出现的次数称为频数. 2.出现的频数与总次数的比称为频率. 频 数 频数 总 次 数 = 频率 = 总次数 频 率
90~99
2
2÷40 =5%
9
9÷40 =22.5%
14
14÷40 =35%
5
5÷40 =12.5%
频率
1.在统计中,某个对象出现的次数称为频数
2.频数与总次数的比值称为频率.

频率分布表

频率分布表
取值区间的长度,组距是指分成的区间的长度;
(2)分组,通常对组内的数值所在的区间取左
闭右开区间,最后一组取闭区间;
(3)登记频数,计算频率,列出频率分布表.
频率分布表
例2.下表给出了某校500名12岁男孩中用 随机抽样得出的120人的身高(单位:cm)
(1)列出样本频率分布表﹔ (2)估计身高小于134cm的人数占总人数的百 分比。 分析:根据列样本频率分布表的一般步骤解题。

七十二、一个人如果已经把自己完全投入于权力和仇恨中,你怎么能期望他还有梦?——古龙

七十三、一个人有钱没钱不一定,但如果这个人没有了梦想,这个人穷定了。——佚名

七十四、平凡朴实的梦想,我们用那唯一的坚持信念去支撑那梦想。——佚名

七十五、最初所拥有的只是梦想,以及毫无根据的自信而已。但是,所有的一切就从这里出发。——孙正义
由此估计,不大于27.5的数据约为总 体的 ( A ) A.91% B.92% C.95% D.30%
(4)从一个养鱼池中捕得m条 鱼,做上记号后放入池中, 数日 后又捕得n条鱼,其中k条有记 号,估计池中有鱼多少条?
令km,得Nnm.
nN
k
回顾小结 :
总体分布的频率、频数的概念; 编制频率分布表的一般步骤。
别是 [1 5 0 .5 ,1 5 3 .5 ),[1 5 3 .5 ,1 5 6 .5 ),…, [177.5,180.5)
(3)从第一组 [150.5,153.5)开始分别
统计各组的频数,再计算各组的频率, 列频率分布表:
频率分布表
频率分布表
一般地编制频率分布表的步骤如下:
(1)求全距,决定组数和组距;全距是指整个

频率分布表和频率分布直方图

频率分布表和频率分布直方图
频率 组距 0.5 0.4 0.3 0.2 0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
思考2: 频率分布直方图中 小长方形的高= 频率
组距
小长方形的面积表示什么? 小长方形的面积表示该组的频率. 所有小长方形的面积和=? 所有小长方形的面积和=1.
思考3:频率分布直方图非常直观地表明了样本
0.0005 0.0004 0.0003 0.0002 0.0001
频率/组距
月收入(元)
1000 1500 2000 2500 3000 3500 4000
3.某班50名学生在一次百米测试中,成绩全部介于13
秒与19秒之间,将测试结果按如下方式分成六组:第
一组,成绩大于等于13秒且小于14秒;第二组,成绩
88%的居民月用水量在3t以 下,可建议取a=3.
思考7:在实际中,取a=3t一定能保证 85%以上的居民用水不超标吗?哪些环 节可能会导致结论出现偏差?
分组时,组距的大小可能会导致结 论出现偏差,实践中,对统计结论是需 要进行评价的.
思考8:对样本数据进行分组,其组数是由 哪些因素确定的?
思考9:对样本数据进行分组,组距的确定 没有固定的标准,组数太多或太少,都会 影响我们了解数据的分布情况.数据分组的 组数与样本容量有关,一般样本容量越大, 所分组数越多.
频率
组距 的学生数为b,则a, b的值分别为( A )
A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83
频率/组距
0.3 0.1
4.3 4.5 4.7 4.9 5.1
视力
050403020105频率分布直方图非常直观地表明了样本数据的分布情况使我们能够看到频率分布表中看不太清楚的数据模式但原始数据不能在图中表示出来你能根据上述频率分布直方图指出居民月均用水量的一些数据特050403020105居民月均用水量的分布是山峰状的而且是单峰的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概 统计 率 10.3.2 频率分布直方图
统计 概率
例 温州是全国首个开展碳汇造林的地级城
市,碳汇林能充分发挥森林的碳汇功能,
降低大气中二氧化碳浓度,减缓气候变暖,
为了解一大片碳汇林的生长情况,随机测
量其中100株树木的底部周长(见教材101)
绘制频率分布直方图步骤如下: (1)计算极差. 极差又叫做全距,是一组数据的最大值和最小值的差.
教材 P 184 练习 A 组 1,2题; B 组 1,2题.
第 1 组:79.5~84.5 第 2 组:84.5~89.5 第 3 组:89.5~94.5 第 4 组:94.5~99.5 第 5 组:99.5~104.5 第 6 组:104.5~109.5 第 7 组:109.5~114.5 第 8 组:114.5~119.5 第 9 组:119.5~124.5 第 10 组:124.5~129.5 第 11 组:129.5~134.5
4.33 0.13 1.33 0.67 0.67 0.02 0.04 0.02
0.12
o
25.235 25.265 25.295 25.325 25.355 25.385 25.415 25.445 25.475 25.505 25.535 25.565
产品尺寸Lmm
绘制频率分布直方图的步骤: (1)计算极差. (2)决定组距与组数. (3)决定分点. (4)列频率分布表. (5)绘制频率分布直方图.
25.385~25.415 25.415~25.445 25.445~25.475 25.475~25.505 25.505~25.535 25.535~25.565
18
25 16 13 4 2 2
18
25 16 13 4 2 2
0.18 0.25 0.16
0.13 0.04 0.02 0.02
合 计
100
100
1.00
(5)绘制频率分布直方图.
频率 组距
8 6 4 2
1.67 0.33 0.01 0.67 0.02 0.05 4.00 0.18 6.00 0.25
8.33
5.33
0.16
1.产品尺寸落在区间 25.385~25.415内的 占百分之多少?区 间25.355~25.415内 的呢? 2.小长方形面积如 何计算?所有小长方 形的面积和为多少?
个小组,如果落入第 j 个小组,则让 Bj 的值增35~25.265 25.265~25.295 25.295~25.325 25.325~25.355 个数累计 1 2 5 12 频数 1 2 5 12 频 0.01 率
0.02
0.05 0.12
25.355~25.385
怎么求出这组数据的最小值?
解 找出这组数据最大值的算法如下:
S1 把这 100 个数据命名为 A1 ,A2 ,A3 ,…,A100,
并设最大值为变量 x; S2 让 x 的值等于 A1; S3 把 Ai (i=2, … , 100)逐个与比较,如果 Ai>x, 则让 x 的值等于 Ai.
这组样本数据的最大值是 134 最小值是 80 ,

极差= 134-80=54

(2)决定组距与组数.
样本数据有 100 个,可以把样本分为 8~12 组. 由上面算得极差为 54,取组距为 5,
极差 54 4 10 , 组距 5 5
于是将样本数据分成 11 组.
(3)决定分点. 将第一组的起点定为 79.5,组距为 5, 这样所分的 11 个组是:
(4)列频率分布表.
对落在各小组内数据的个数进行累计,这个累 计数叫做各个小组的频数,各小组的频数除以样本
容量,得各小组的频率.
求各小组频数的算法如下:
S1 设 Bj 为落在第 j 个小组内的数据个数,且 Bj的 值等于 0(j=1,2,… , 11);
S2 逐一判断 Ai(i=1,2,… , 100)落入哪一
相关文档
最新文档