初三河北省中考数学试卷

合集下载

河北初三数学试题及答案

河北初三数学试题及答案

河北初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c - d答案:A2. 一个数的平方根是它本身的数是?A. 0B. 1C. 0和1D. 以上都不是答案:C3. 已知一个等腰三角形的两边长分别为3和5,那么第三边的长度是?A. 2B. 3C. 5D. 无法确定答案:C4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个等差数列的前三项分别是2,5,8,那么它的公差是?A. 1B. 2C. 3D. 4答案:B6. 一个多项式除以单项式,商一定是?A. 单项式B. 多项式C. 单项式或多项式D. 无法确定答案:C7. 一个直角三角形的两直角边分别是6和8,那么斜边的长度是?A. 10B. 15C. 17D. 20答案:A8. 一个等比数列的前三项分别是2,6,18,那么它的公比是?A. 2B. 3C. 4D. 6答案:B9. 一个正数的立方根是它本身的数是?A. 0B. 1C. 0和1D. 以上都不是答案:C10. 一个圆的直径是10厘米,那么它的周长是多少厘米?A. 10πB. 20πC. 30πD. 40π答案:B二、填空题(每题2分,共20分)11. 如果一个数的相反数是-3,那么这个数是______。

答案:312. 一个数的绝对值是5,那么这个数可以是______或______。

答案:5或-513. 已知一个三角形的内角和是180°,如果一个角是60°,另一个角是75°,那么第三个角是______。

答案:45°14. 如果一个数的平方是36,那么这个数是______或______。

2023年河北省中考数学考试卷及答案解析

2023年河北省中考数学考试卷及答案解析

2023年河北省中考数学考试卷及答案解析一、选择题-的意义可以是()1.代数式7xA.7-与x的和B.7-与x的差C.7-与x的积D.7-与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.-的意义可以是7-与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D .【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3.化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A.6xy B.5xy C.25x y D.26x y 【答案】A【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭,故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A.2B.3C.4D.5【答案】B【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解.【详解】解:在ACD 中,2AD CD ==,∴2222AC -<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去;若3AC AB ==时,ABC 为等腰三角形,【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题.6.若k 为任意整数,则22(23)4k k +-的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【答案】B【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7.若a b ===()A.2B.4C.D.【答案】A【解析】【分析】把a b ==【详解】解:∵a b ==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8.综合实践课上,嘉嘉画出ABD△,利用尺规作图找一点C,使得四边形ABCD为平行四边形.图1~图3是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC AO=;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等【答案】C【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断.【详解】解:根据图1,得出BD的中点O,图2,得出OC AO=,可知使得对角线互相平分,从而得出四边形ABCD为平行四边形,判定四边形ABCD为平行四边形的条件是:对角线互相平分,故选:C.【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理.9.如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A.a b< B.a b = C.a b > D.a ,b 大小无法比较【答案】A【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +-=-,根据123PP P 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即 1223345566778148PP P P P P P P P P P P P P P P =======∴12233467PP P P P P P P ===, 464556781178P P P P P P P P P P PP =+=+=∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++-++=+-()()12172337131737PP PP P P P P PP PP P P =+++-++122313PP P P PP =-+在123PP P 中有122313PPP P PP >+∴1223130b a PP P P PP -=+>-故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数【答案】D【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.【详解】解:A.12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意;B.12129.46100.46910⨯-≠⨯,故该选项错误,不符合题意;C.129.4610⨯是一个13位数,故该选项错误,不符合题意;D.129.4610⨯是一个13位数,正确,符合题意.故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S = ()A. B. C.12 D.16【答案】B【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解.【详解】解:∵16AMEF S =正方形,∴4AM ==,∵Rt ABC △中,点M 是斜边BC 的中点,∴28BC AM ==,∴AC ===,∴11422ABC S AB AC =⨯⨯=⨯⨯= ,故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12.如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个,故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13.在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A.30︒B.n ︒C.n ︒或180n ︒-︒D.30︒或150︒【答案】C【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,∵306B B AB A B '''∠=∠=︒==,,∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒-∠=︒-︒;综上,C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,∵两个人机器人速度相同,∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C ,故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A.42︒B.43︒C.44︒D.45︒【答案】C【解析】【分析】如图,由平角的定义求得18034ADB ADE Ð=°-Ð=°,由外角定理求得,16AHD ADB αÐ=Ð-Ð=°,根据平行性质,得16GIF AHD Ð=Ð=°,进而求得44EGF GIF βÐ=Ð-Ð=°.【详解】如图,∵146ADE ∠=︒∴18034ADB ADE Ð=°-Ð=°∵ADB AHDαÐ=Ð+Ð∴503416AHD ADB αÐ=Ð-Ð=°-°=°∵12l l ∥∴16GIF AHD Ð=Ð=°∵EGF GIFβÐ=Ð+Ð∴601644EGF GIF βÐ=Ð-Ð=°-°=°故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.2mC.4D.22m 【答案】A【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x -+=和220x m -=,解得0x =或2x m =或x m =-或x m =,不妨设0m >,∵()0m ,和()0m -,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =-的对称轴为0x =,抛物线22y x m x =-+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17.如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k ≤≤均可)【解析】【分析】先分别求得反比例函数(0)k y k x =≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)k y k x=≠图像过(3,3)A 时,339k =⨯=;当反比例函数(0)k y k x =≠图像过(3,1)B 时,313k =⨯=;∴k 的取值范围为39k ≤≤∴k 可以取4.故答案为4(答案不唯一,满足39k ≤≤均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键.18.根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7b 21x x +a 1【答案】①.52②.2-【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==,当x n =时,211x x +=,即211n n +=,解得1n =-,经检验,1n =-是分式方程的解,∴()3112b =⨯-+=-,故答案为:52;2-【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】①.30②.【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒-︒=︒,故答案为:30;(2)取中间正六边形的中心为O ,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒ ,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,DE PE ==,由图1知2AG BF PE ===,由正六边形的结构特征知:12OM =⨯=()112BC BF CH =-=,3tan 33BC AB BAC ∴==-∠,21BD AB ∴=-=,又1212DE =⨯=,BE BD DE ∴=+=,ON OM BE ∴=+=故答案为:【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)312-在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分;(2)6k =.【解析】【分析】(1)根据题意列式计算即可求解;(2)根据题意列一元一次方程即可求解.【小问1详解】解:由题意得()4321426⨯+⨯+⨯-=(分),答:珍珍第一局的得分为6分;【小问2详解】解:由题意得()()3311032613k k +⨯+--⨯-=+,解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.【小问1详解】解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=;【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a -=++-+=-+=-∵1a >,∴()21210S S a -=->,∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可;(2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解.【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:34 3.52+=(分)由统计图可知,客户所评分数的平均数为:1123364555 3.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x ⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加权平均数的方法和根据不等量关系列不等式是解题的关键.23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =-,1c =;(2)符合条件的n 的整数值为4和5.【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171 ,,,求得n 的取值范围,即可求解.【小问1详解】解:∵抛物线21:(3)2C y a x =-+,∴1C 的最高点坐标为()32,,∵点(6,1)A 在抛物线21:(3)2C y a x =-+上,∴21(63)2a =-+,解得:19a =-,∴抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;【小问2详解】解:∵到点A 水平距离不超过1m 的范围内可以接到沙包,∴点A 的坐标范围为()()5171 ,,,当经过()51,时,211551188n =-⨯+⨯++,解得175n =;当经过()71,时,211771188n =-⨯+⨯++,解得417n =;∴174157n ≤≤∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.【答案】(1)7cm ;(2)11cm 2;(3)253cm 3EF =, 25π=cm 6EQ , EF EQ >.【解析】【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE GH ⊥进而得到OE MN ⊥,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到90QOB ∠=︒,得到30QOE ∠=︒分别求出线段EF 与 EQ的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC MN ⊥于点C ,48cm MN =,∴124cm 2MC MN ==,∵50cm AB =,∴125cm 2OM AB ==,∴在Rt OMC 中,7cm OC ===.(2)∵GH 与半圆的切点为E ,∴OE GH⊥∵MN GH∥∴OE MN ⊥于点D ,∵30ANM ∠=︒,25cm ON =,∴125cm 22OD ON ==,∴操作后水面高度下降高度为:25117cm 22-=.(3)∵OE MN ⊥于点D ,30ANM ∠=︒∴60DOB ∠=︒,∵半圆的中点为Q ,∴ AQ QB=,∴90QOB ∠=︒,∴30QOE ∠=︒,∴tan cm 3EF QOE OE =∠⋅=, 30π2525π==cm 1806EQ ⨯⨯,∵()25π25325π50325π03666-==>,∴ EF EQ>.【点睛】本题考查了垂径定理、圆的切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.25.在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,图象见解析;(3)538a c b+=【解析】【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【小问1详解】设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,∴1l 的解析式为6y x =-+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;【小问2详解】①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了()10m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为()21020m m m +-=-,∴10,20x m y m =+=-;②由于102030x y m m +=++-=,∴直线3l 的解析式为30y x =-+;函数图象如图所示:【小问3详解】∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线123,,l l l 上,∴()()(),6,,15,,30A a a B b b C c c -+-+-+,设直线AB 的解析式为y mx n =+,把A 、B 两点坐标代入,得615ma n a mb n b +=-+⎧⎨+=-+⎩,解得:9196m b a an b a ⎧=-+⎪⎪-⎨⎪=-⎪-⎩,∴直线AB 的解析式为9916a y x b a b a⎛⎫=-++- ⎪--⎝⎭,∵A ,B ,C 三点始终在一条直线上,∴991630a c c b a b a⎛⎫-++-=-+ ⎪--⎝⎭,整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.26.如图1和图2,平面上,四边形ABCD 中,8,11,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).【答案】(1)见解析(2)①90CBD ∠=︒,13x =;②76或236(3)22816x x +【解析】【分析】(1)根据旋转的性质和角平分线的概念得到A M AM '=,A MP AMP '∠=∠,然后证明出()SAS A MP AMP 'V V ≌,即可得到A P AP '=;(2)①首先根据勾股定理得到10BD ==,然后利用勾股定理的逆定理即可求出90CBD ∠=︒;首先画出图形,然后证明出DNM DBA V V ∽,利用相似三角形的性质求出103DN =,83MN =,然后证明出PBN DMN V V ∽,利用相似三角形的性质得到5PB =,进而求解即可;②当P 点在AB 上时,2PQ =,A MP AMP '∠=∠,分别求得,BP AP ,根据正切的定义即可求解;②当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,证明PQB BAD ∽,得出4855PQ PB ==,3655BQ PB ==,进而求得AQ ,证明HPQ HMA ∽,即可求解;(3)如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,证明A PE MA F '' ∽,根据相似三角形的性质即可求解.【小问1详解】∵将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA ',∴A M AM'=∵A MA '∠的平分线MP 所在直线交折线AB BC -于点P ,∴A MP AMP'∠=∠又∵PM PM=∴()SAS A MP AMP 'V V ≌∴A P AP '=;【小问2详解】①∵8AB =,6DA =,90A ∠=︒∴10BD ==∵=BC ,12CD =∴(222210144BC BD +=+=,2212144CD ==∴222BC BD CD +=∴90CBD ∠=︒;如图所示,当180n =时,∵PM 平分A MA'∠∴90PMA ∠=︒∴PM AB∥∴DNM DBAV V ∽∴DN DM MN DB DA BA ==∵2DM =,6DA =∴21068DN MN ==∴103DN =,83MN =∴203BN BD DN =-=∵90PBN NMD ∠=∠=︒,PNB DNM∠=∠∴PBN DMNV V ∽∴PB BN DM MN =,即203823PB =∴解得5PB =∴8513x AB PB =+=+=.②如图所示,当P 点在AB 上时,2PQ =,A MP AMP'∠=∠∵8,6,90AB DA A ==∠=︒,∴22226810BD AB AD =+=+=,63sin 105ADDBA BD ∠===,∴2103sin 35BQBP DBA ===∠,∴1014833AP AB BP =-=-=∴1473tan tan 46AP A MP AMP AM '∠=∠===;如图所示,当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H,∵90PQB CBD DAB ∠=∠=∠=︒,∴90QPB PBQ DBA ∠=︒-∠=∠,∴PQB BAD∽∴PQ QB PB BA AD BD==即8610PQ QB PB==∴4855PQ PB ==,3655BQ PB ==,∴465AQ AB BQ =+=∵,PQ AB DA AB⊥⊥∴PQ AD ∥,∴HPQ HMA ∽,∴HQ PQHA AM=∴854645HQ HQ =+解得:9215HQ =∴922315tan tan tan 865HQ A MP AMP QPH PQ '∠=∠=∠===,综上所述,tan A MP '∠的值为76或236;【小问3详解】解:∵当08x <≤时,∴P 在AB 上,如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,∴AE FM =,4EF AM ==,∵A MP AMP ' ≌,∴90PA M A '∠=∠=︒,∴90PA E FA M ''∠+∠=︒,又90A MF FA M ''∠+∠=︒,∴PA E A MF ''∠=∠,又∵90A EP MFA ''∠=∠=︒,∴A PE MA F '' ∽,∴A P PE A E MA A F FM''==''∵A P AP x '==,4MA MA '==,设FM AE y ==,A E h'=即44x x y h h y-==-∴4h y x=,()()44x y x h -=-∴()444h x x h x ⎛⎫-=- ⎪⎝⎭整理得22816x h x =+即点A '到直线AB 的距离为22816x x +.【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,熟练掌握以上知识且分类讨论是解题的关键.。

河北中考数学试题及答案doc

河北中考数学试题及答案doc

河北中考数学试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3/4答案:B2. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角是多少度?A. 60°B. 90°C. 120°D. 150°答案:A3. 将下列哪个数列按从小到大的顺序排列?A. 3, 2, 1B. 1, 2, 3C. 3, 1, 2D. 2, 3, 1答案:B4. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 等边三角形B. 矩形C. 圆D. 所有选项答案:D6. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 以下哪个表达式的结果是一个正数?A. -2 + 3B. 2 - 5C. -3 × 2D. 1 ÷ (-1)答案:A8. 一个圆的半径是5厘米,那么这个圆的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:B9. 一个数的立方是-8,这个数是多少?A. 2B. -2C. 8D. -8答案:B10. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:B二、填空题(每题3分,共30分)11. 一个数的相反数是-4,这个数是________。

答案:412. 如果一个数的绝对值是7,那么这个数可能是________或________。

答案:7或-713. 一个等腰三角形的底角是45°,那么顶角是________度。

答案:9014. 一个数的平方根是2,那么这个数是________。

答案:415. 一个圆的直径是10厘米,那么这个圆的半径是________厘米。

答案:516. 一个数的立方根是-2,那么这个数是________。

河北中考数学试题及答案

河北中考数学试题及答案

河北中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 圆的周长公式是C=2πrB. 圆的周长公式是C=πdC. 圆的面积公式是A=πr^2D. 圆的面积公式是A=πd^2答案:A2. 已知x+y=5,x-y=3,求x和y的值。

A. x=4,y=1B. x=3,y=2C. x=1,y=4D. x=2,y=3答案:A3. 计算下列哪个表达式的值等于10?A. 3x + 7B. 2x - 5C. 5x - 3D. 4x + 6答案:C4. 下列哪个二次方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 2x + 1 = 0D. x^2 - 5x + 6 = 0答案:A5. 一个等腰三角形的底边长为6,高为4,求其周长。

A. 12B. 16C. 18D. 20答案:C6. 一个数的平方根是3,这个数是多少?A. 6B. 9C. 12D. 15答案:B7. 一个正数的倒数是1/4,这个正数是多少?A. 4B. 1/4C. 1/2D. 2答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 计算下列哪个表达式的值等于-2?A. 3x - 5B. 2x + 3C. 4x - 6D. 5x + 7答案:A10. 一个直角三角形的两条直角边长分别为3和4,求斜边长。

A. 5B. 6C. 7D. 8答案:A二、填空题(每题3分,共15分)11. 一个数的立方是8,这个数是______。

答案:212. 一个数的相反数是-7,这个数是______。

答案:713. 一个数的绝对值是10,这个数可能是______或______。

答案:10或-1014. 一个等差数列的首项是2,公差是3,第5项是______。

答案:1715. 一个等比数列的首项是3,公比是2,第3项是______。

答案:24三、解答题(每题10分,共40分)16. 已知一个二次函数y=ax^2+bx+c,其中a=1,b=-6,c=5,求该函数的顶点坐标。

河北中考数学试卷(含答案解析)

河北中考数学试卷(含答案解析)

河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。

专题:计算题。

分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。

专题:计算题。

分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。

专题:因式分解。

分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。

专题:计算题。

分析:A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.解答:解:A中整式相减,系数相减再乘以未知数,故本选项错误;B,不同次数的幂的加法,无法相加,故本选项错误;C,整式的幂等于各项的幂,故本选项错误;D,整式的除法,相同底数幂底数不变,指数相减.故本答案正确.故选D.点评:本题考查了整式的除法,A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.本题很容易判断.5、(•河北)一次函数y=6x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的性质。

2023年河北省中考数学试卷及答案解析

2023年河北省中考数学试卷及答案解析

2023年河北省中考数学试卷一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)代数式﹣7x的意义可以是()A.﹣7与x的和B.﹣7与x的差C.﹣7与x的积D.﹣7与x的商2.(3分)淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向3.(3分)化简的结果是()A.xy6B.xy5C.x2y5D.x2y64.(3分)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()A.(黑桃)B.(红心)C.(梅花)D.(方块)5.(3分)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC为等腰三角形时,对角线AC的长为()A.2B.3C.4D.56.(3分)若k为任意整数,则(2k+3)2﹣4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除7.(2分)若,,则=()A.2B.4C.D.8.(2分)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC=AO;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等9.(2分)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是()A.a<b B.a=bC.a>b D.a,b大小无法比较10.(2分)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km,下列正确的是()A.9.46×1012﹣10=9.46×1011B.9.46×1012﹣0.46=9×1012C.9.46×1012是一个12位数D.9.46×1012是一个13位数11.(2分)如图,在Rt△ABC中,AB=4,点M是斜边BC的中点,以AM为边作正方形AMEF.若S正方形AMEF=16,则S△ABC=()A.4B.8C.12D.1612.(2分)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A.1个B.2个C.3个D.4个13.(2分)在△ABC和△A'B'C′中,∠B=∠B'=30°,AB=A'B'=6,AC=A'C′=4,已知∠C=n°,则∠C′=()A.30°B.n°C.n°或180°﹣n°D.30°或150°14.(2分)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y.则y与x关系的图象大致是()A.B.C.D.15.(2分)如图,直线l1∥l2,菱形ABCD和等边△EFG在l1,l2之间,点A,F分别在l1,l2上,点B,D、E、G在同一直线上.若∠α=50°,∠ADE=146°,则∠β=()A.42°B.43°C.44°D.45°16.(2分)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.(2分)如图,已知点A(3,3),B(3,1),反比例函数图象的一支与线段AB有交点,写出一个符合条件的k的整数值:.18.(4分)根据表中的数据,写出a的值为,b的值为.2n3x+17ba119.(4分)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=度;(2)中间正六边形的中心到直线l的距离为(结果保留根号).三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(9分)某惯性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)31﹣2在某一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.21.(9分)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如表2和表3,其面积分别为S1,S2.表2表3(1)请用含a的式子分别表示S1,S2,当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.22.(9分)某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.(10分)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点A(6,1)处将沙包(看成点)抛出,其运动路线为抛物线C1:y=a(x﹣3)2+2的一部分,淇淇恰在点B(0,c)处接住,然后跳起将沙包回传,其运动路线为抛物线C2:的一部分.(1)写出C1的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.24.(10分)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水槽沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动.如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN 于点D.探究:在图2中.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段EF与的长度,并比较大小.25.(12分)在平面直角坐标系中,设计了点的两种移动方式:从点(x,y)移动到点(x+2,y+1)称为一次甲方式;从点(x,y)移动到点(x+1,y+2)称为一次乙方式.例点P从原点O出发连续移动2次:若都按甲方式,最终移动到点M(4,2);若都按乙方式,最终移动到点N(2,4);若按1次甲方式和1次乙方式,最终移动到点E(3,3).(1)设直线l1经过上例中的点M、N,求l1的解析式,并直接写出将l1向上平移9个单位长度得到的直线l2的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点Q (x,y).其中,按甲方式移动了m次.①用含m的式子分别表示x,y;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为l3,在图中直接画出l3的图象;(3)在(1)和(2)中的直线l1,l2,l3上分别有一个动点A,B,C,横坐标依次为a,b,c,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.26.(13分)如图1和图2,平面上,四边形ABCD中,AB=8,,CD=12,DA =6.∠A=90°,点M在AD边上,且DM=2.将线段MA绕点M顺时针旋转n°(0<n≤180)到MA',∠A′MA的平分线MP所在直线交折线AB﹣BC于点P,设点P在该折线上运动的路径长为x(x>0),连接A′P.(1)若点P在AB上,求证:A'P=AP;(2)如图2,连接BD.①求∠CBD的度数,并直接写出当n=180时,x的值;②若点P到BD的距离为2,求tan∠A′MP的值;(3)当0<x≤8时,请直接写出点A′到直线AB的距离(用含x的式子表示).2023年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】直接利用代数式的意义分析得出答案.【解答】解:代数式﹣7x的意义可以是﹣7与x的积.故选:C.【点评】此题主要考查了代数式,掌握代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子是解题关键.2.【分析】根据题意可得:∠ABC=70°,AB∥CD,然后利用平行线的性质可得∠ABC=∠DCB=70°,从而根据方向角的定义,即可解答.【解答】解:如图:由题意得:∠ABC=70°,AB∥CD,∴∠ABC=∠DCB=70°,∴淇淇家位于西柏坡的北偏东70°方向,故选:D.【点评】本题考查了方向角的定义,熟练掌握方向角的定义是解题的关键.3.【分析】先根据分式的乘方法则计算,再根据分式的乘法法则计算.【解答】解:x3()2=x3•=xy6,故选:A.【点评】本题考查的是分式的乘除法,掌握分式的乘法法则、乘方法则是解题的关键.4.【分析】根据概率公式分别求出各花色的概率判断即可.【解答】解:∵抽到黑桃的概率为,抽到红心的概率为,抽到梅花的概率为,抽到方块的概率为,∴抽到的花色可能性最大的是红心,故选:B.【点评】本题考查了可能性的大小,熟练掌握概率公式是解题的关键.5.【分析】分两种情况,由三角形的三边关系定理:三角形两边的和大于第三边,即可解决问题.【解答】解:∵△ABC为等腰三角形,∴AB=AC或AC=BC,当AC=BC=4时,AD+CD=AC=4,此时不满足三角形三边关系定理,当AC=AB=3时.满足三角形三边关系定理,∴AC=3.故选:B.【点评】本题考查等腰三角形的性质,三角形的三边关系定理,关键是掌握三角形的三边关系定理.6.【分析】先根据完全平方公式进行计算,再合并同类项,分解因式后再逐个判断即可.【解答】解:(2k+3)2﹣4k2=4k2+12k+9﹣4k2=12k+9=3(4k+3),∵k为任意整数,∴(2k+3)2﹣4k2的值总能被3整除,故选:B.【点评】本题考查了因式分解的应用,能求出(2k+3)2﹣4k2=3(4k+3)是解此题的关键.7.【分析】把a、b的值代入原式,根据二次根式的性质化简即可.【解答】解:∵a=,b=,∴===2,故选:A.【点评】本题考查的是二次根式的化简求值,掌握二次根式的性质是解题的关键.8.【分析】根据:“对角线互相平分的四边形是平行四边形”证明.【解答】解:由作图得:DO=BO,AO=CO,∴四边形ABCD为平行四边形,故选:C.【点评】本题考查了复杂作图,掌握平行四边形的判定定理是解题的关键.9.【分析】利用三角形的三边关系,正多边形的性质证明即可.【解答】解:连接P4P5,P5P6.∵点P1~P8是⊙O的八等分点,∴P3P4=P4P5=P5P6=P6P7,P1P7=P1P3=P4P6,∴b﹣a=P3P4+P7P6﹣P1P3,∵P5P4+P5P6>P4P6,∴P3P4+P7P6>P1P3,∴b﹣a>0,∴a<b,故选:A.【点评】本题考查正多边形于圆,三角形的三边关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9.46×1012km=9460000000000km是一个13位数.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【分析】先根据正方形AMEF的面积求出AM的长,然后根据直角三角形斜边上的中线等于斜边的一半求出BC的长,最后根据勾股定理求出AC的长,然后即可求出直角三角形ABC的面积.【解答】解:∵四边形AMEF是正方形,=16,又∵S正方形AMEF∴AM2=16,∴AM=4,在Rt△ABC中,点M是斜边BC的中点,∴,即BC=2AM=8,在Rt△ABC中,AB=4,∴,∴,故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,正方形的面积计算公式,直角三角形面积的计算公式,勾股定理,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.12.【分析】根据题意主视图和左视图即可得到结论.【解答】解:平台上至少还需再放这样的正方体2个,故选:B.【点评】本题考查了由三视图判断几何体,正确地得出小正方体的个数是解题的关键.13.【分析】分两种情况讨论,当BC=B′C′时,则△ABC≌△A′B′C′,得出∠C′=∠C=n°,当BC≠B′C′时,如图,利用等腰三角形的性质求得∠A′C″C′=∠C′=n°,从而求得∠A′C″B′=180°﹣n°.【解答】解:当BC=B′C′时,△ABC≌△A′B′C′(SSS),∴∠C′=∠C=n°,当BC≠B′C′时,如图,∵A′C′=A′C″,∴∠A′C″C′=∠C′=n°,∴∠A′C″B′=180°﹣n°,∴∠C′=n°或180°﹣n°,【点评】本题考查了等腰三角形的性质,三角形全等的性质,熟练掌握等腰三角形两底角相等是解题的关键.14.【分析】设圆的半径为R,根据机器人移动时最开始的距离为AM+CN+R,之后同时到达点A,C两个机器人之间的距离y越来越小,当两个机器人分别沿A→D→C和C→B →A移动时,此时两个机器人之间的距离是半径R,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,据此得出结论即可.【解答】解:由题意可得:机器人(看成点)分别从M,N两点同时出发,设圆的半径为R,∴两个机器人最初的距离是AM+CN+R,∵两个人机器人速度相同,∴同时到达点A,C,∴两个机器人之间的距离y越来越小,故排除A、C;当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是半径R,保持不变,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,故排除B;故选:D.【点评】本题考查动点函数图象,找到运动时的特殊点用排除法是关键.15.【分析】由平角的定义求得∠ADB=180°﹣∠ADE=34°,由外角定理求得∠AHD=∠α﹣∠ADB=16°,根据平行线的性质得∠GIF=∠AHD=16°,进而求得∠β=∠EGF﹣∠GIF=44°.【解答】解:如图,延长BG,∵∠ADE=146°,∴∠ADB=180°﹣∠ADE=34°,∵∠α=∠ADB+∠AHD,∴∠AHD=∠α﹣∠ADB=50°﹣34°,=16°,∴∠GIF=∠AHD=16°,∵∠EGF=∠β+∠GIF,∵△EFG是等边三角形,∴∠EGF=60°,∴∠β=∠EGF﹣∠GIF=60°﹣16°=44°,故选:C.【点评】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角度之间的数量关系是解题关键.16.【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴x=0,抛物线y=﹣x2+m2x的对称轴x=,∴这两个函数图象对称轴之间的距离==2.故选:A.【点评】本题考查二次函数图象有系数的关系,抛物线与x轴的交点等知识,解题的关键是理解题意,学会构建方程解决问题.二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.【分析】把点A(3,3),B(3,1)代入y=即可得到k的值,从而得结论.【解答】解:由图可知:k>0,∵反比例函数y=(k>0)的图象与线段AB有交点,且点A(3,3),B(3,1),∴把B(3,1)代入y=得,k=3,把A(3,3)代入y=得,k=3×3=9,∴满足条件的k值的范围是3≤k≤9的整数,故k=4(答案不唯一),故答案为:k=4(答案不唯一).【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,正确的理解题意是解题的关键.18.【分析】将x=2代入中计算即可求得a的值;将x=n代入可得关于n的分式方程,解得n的值后代入3x+1中计算即可求得b的值.【解答】解:当x=2时,==,即a=;当x=n时,=1,解得:n=﹣1,经检验,n=﹣1是分式方程的解,那么当x=﹣1时,3x+1=﹣3+1=﹣2,即b=﹣2,故答案为:;﹣2.【点评】本题考查代数式求值及解分式方程,特别注意解分式方程时必须进行检验.19.【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.【点评】本题考查了正多边形与圆,正六边形的性质,解直角三角形,全等三角形的判定和性质,正确地作出辅助线是解题的关键.三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.【分析】(1)根据题意列出算式可求解;(2)由题意列出方程可求解.【解答】解:(1)由题意可得:4×3+2×1+4×(﹣2)=6(分),答:珍珍第一局的得分为6分;(2)由题意可得:3k+3×1+(10﹣k﹣3)×(﹣2)=6+13,解得:k=6.【点评】本题考查了一元一次方程的应用,找到正确的数量关系是解题的关键.21.【分析】(1)根据图形,利用长方形的面积公式计算即可;(2)利用作差法比较即可.【解答】解:(1)由图可知S1=(a+2)(a+1)=a2+3a+2,S2=(5a+1)×1=5a+1,当a=2时,S1+S2=4+6+2+10+1=23;(2)S1>S2,理由:∵S1﹣S2=a2+3a+2﹣5a﹣1=a2﹣2a+1=(a﹣1)2,又∵a>1,∴(a﹣1)2>0,∴S1>S2.【点评】本题考查了多项式乘多项式,关键是能列出整式或算式表示几何图形的面积.22.【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可.(2)根据重新计算后,发现客户所评分数的平均数大于3.55分列出不等式,从而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可.【解答】解:(1)由条形图可知,第10个数据是3分,第11个数据是4分,∴中位数为3.5分,由统计图可得平均数为=3.5分,∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.(2)监督人员抽取的问卷所评分数为x分,则有,解得x>4.55,∵满意度从低到高为1分,2分,3分,4分,5分,共5档.∴监督人员抽取的问卷所评分数为5分,∵4<5,∴加入这个数据,客户所评分数按从小到大排列后,第11个数据不变还是4分,即加入这个数据后,中位数是4分,∴与(1)相比,中位数是发生了变化,由3.5分变成4分.【点评】本题考查条形统计图,中位数和平均数,一元一次不等式的应用,掌握求中位数和平均数的方法是解题关键.23.【分析】(1)将点A坐标代入解析式可求a,即可求解;(2)根据点A的取值范围代入解析式可求解.【解答】解:(1)∵抛物线C1:y=a(x﹣3)2+2,∴C1的最高点坐标为(3,2),∵点A(6,1)在抛物线C1:y=a(x﹣3)2+2上,∴1=a(6﹣3)2+2,∴a=﹣,∴抛物线C1:y=﹣(x﹣3)2+2,当x=0时,c=1;(2)∵嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,∴此时,点A的坐标范围是(5,1)~(7,1),当经过(5,1)时,1=﹣×25+×5+1+1,解得:n=,当经过(7,1)时,1=﹣×49+×7+1+1,解得:n=,∴≤n≤,∵n为整数,∴符合条件的n的整数值为4和5.【点评】本题考查了二次函数的应用,读懂题意,掌握二次函数图象上点的坐标特征是解题的关键.24.【分析】(1)连接OM,利用垂径定理得出MC=MN=24cm,由勾股定理计算即可得出答案;(2)由切线的性质证明OE⊥GH,进而得到OE⊥MN,利用锐角三角函数的定义求出OD,再与(1)中OC相减即可得出答案;(3)由半圆的中点为Q得到∠OOB=90°,得到∠QOE=30°,分别求出线段EF与的长度,再相减比较即可.【解答】解:(1)连接OM,∵O为圆心,OC⊥MN于点C,MN=48cm,∴MC=MN=24cm,∵AB=50cm,∴OM=AB=25cm,在Rt△OMC中,OC===7(cm);(2)∵GH与半圆的切点为E,∴OE⊥GH,∵MN∥GH,∴OE⊥MN于点D,∵∠ANM=30°,ON=25cm,∴,∴操作后水面高度下降高度为:;(3)∵OE⊥MN于点D,∠ANM=30°,∴∠DOB=60°,∵半圆的中点为Q,∴,∴∠QOB=90°,∴∠QOE=30°,∴EF=tan∠QOE•OE=(cm),的长为(cm),∵=>0,∴EF>.【点评】本题是圆的综合题,考查了垂径定理,直角三角形的性质,圆的切线的性质,弧长公式和解直角三角形的知识,熟练掌握圆的有关性质定理是解题的关键.25.【分析】(1)由待定系数法可求直线l1的解析式;由平移的性质可求直线l2的解析式;(2)①由题意可得:点P按照甲方式移动m次后得到的点的坐标为(2m,m),再得出点(2m,m),按照乙方式移动(10﹣m)次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线l3的解析式,进而可画出函数图象;(3)由题意可得点A,点B,点C的坐标,由待定系数法可求直线AB的解析式,即可求解.【解答】解:(1)设l1的解析式为y=kx+b,由题意可得:,解得:,∴l1的解析式为y=﹣x+6,将l1向上平移9个单位长度得到的直线l2的解析式为y=﹣x+15;(2)∵点P按照甲方式移动了m次,点P从原点O出发连续移动10次,∴点P按照乙方式移动了(10﹣m)次,∴点P按照甲方式移动m次后得到的点的坐标为(2m,m),∴点(2m,m)按照乙方式移动(10﹣m)次后得到的点的横坐标为2m+10﹣m=m+10,纵坐标为m+2(10﹣m)=20﹣m,∴x=m+10,y=20﹣m;②∵x+y=m+10+20﹣m=30,∴直线l3的解析式为y=﹣x+30;函数图象如图所示:(3)∵点A,B,C,横坐标依次为a,b,c,∴点A(a,﹣a+6),点B(b,﹣b+15),点C(c,﹣c+30),设直线AB的解析式为y=mx+n,由题意可得:,解得:,∴直线AB的解析式为y=(﹣1+)x+6﹣,∵点A,点B,点C三点始终在一条直线上,∴c(﹣1+)+6﹣=﹣c+30,∴5a+3c=8b,∴a,b,c之间的关系式为5a+3c=8b.【点评】本题是一次函数综合题,考查了待定系数法,平移的性质,掌握平移的性质和一次函数的性质是解题的关键.26.【分析】(1)根据旋转的性质和角平分线的概念得到A′M=AM,∠A′MP=∠AMP,然后证明出△A′MP≌△AMP(SAS),即可得到A′P=AP;(2)①首先根据勾股定理得到,然后利用勾股定理的逆定理即可求出∠CBD=90°;画出图形,然后证明出△DNM∽△DBA,利用相似三角形的性质求出,然后证明出△PBN∽△DMN,利用相似三角形的性质得到PB=5,进而求解即可;②当P点在AB上时,PQ=2,∠A′MP=∠AMP,分别求得BP,AP,根据正切的定义即可求解;当P在BC上时,则PB=2,过点P作PQ⊥ABAB的延长线于点Q,延长MP交AB的延长线于点H,证明△PQB∽BAD,得,进而求得AQ,证明△HPQ∽△HMA,即可求解;(3)如图所示,过点A作AE⊥AB交AB于点E,过点M作MF⊥A′E于点F,则四边形AMFE是矩形,证明△A′PE∽△MA′F,根据相似三角形的性质即可求解.【解答】(1)证明:∵将线段MA绕点M顺时针旋转n°(0<n≤180)得到MA′,∴A′M=AM,∵∠A′MA的平分线MP所在的直线交折线AB﹣BC于点P,∴∠A′MP=∠AMP,∵PM=PM,∴△A′MP≌△AMP(SAS),∴A′P=AP;(2)解:①∵AB=8,DA=6,∠A=90°,∴BD==10,又∵,CD=12,∴BD2+BC2=100+44=144,CD2=144,∴BD2+BC2=CD2,∴∠CBD=90°;如图2所示,当n=180时,∵PM平分∠A′MA.∠PMA=90°,∴PM∥AB,∴△DNM∽△DBA,∴,∵DM=2,DA=6,∴,∴,∴,∵∠PBN=∠MD=90°,∠PNB=∠DNM,∴△PBN∽△DMN,∴,即,∴PB=5,∴x=AB+PB=8+5=13.②如图所示,当P点在AB上时,PQ=2,∠A′MP=∠AMP,∴AB=8,DA=6,∠A=90°,∴,∴,∴,∴,∴,如图所示,当P在BC上时,则PB=2,过点P作PQ⊥AB交AB的延长线于点Q,延长MP交AB的延长线于点H,∵∠PQB=∠CBD=∠DAB=90°,∴∠QPB=90°﹣∠PBQ=∠DBA,∴△PQB∽△BAD,∴,即,∴,,∴,∵PQ⊥AB,DA⊥AB,∴PQ∥AD,∴△HPQ∽△HMA,∴,解得:,∴tan∠AMP=tan∠AMP=tan∠QPH===,综上所述,tan∠A′MP的值为或;(3)解:∵当0<x≤8时,∴P在AB上,如图所示,过点A′作A′E⊥AB于点E,过点M作MF⊥A′E于点F,则四边形AMFE 是矩形,∴AE=FM,EF=AM=4,∵△A′MP≌△AMP,∴∠PA′M=∠A=90°,∴∠PA′E+∠FA′M=90°,又∠A'MF+∠FA′M=90°,∴∠PA′E=∠A′MF,又∵∠A'E=∠MFA=90°,∴△A′PE∽△MA'F,∴==,∵A′P=AP=x,MA′=MA=4,设FM=AE=y,A′E=h,即∴,4(x﹣y)=x(h﹣4),∴,整理得,即点A′到直线AB的距离为.【点评】本题属于三角形综合题,考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,染练掌握以上知识且分类讨论是解题的关键。

2023年河北省中考数学真题(解析版)

2023年河北省中考数学真题(解析版)

2023年河北省初中毕业生升学文化课考试数学试卷一、选择题-的意义可以是()1. 代数式7xA. 7-与x的和B. 7-与x的差C. 7-与x的积D. 7-与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.-的意义可以是7-与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A. 南偏西70°方向B. 南偏东20°方向C. 北偏西20°方向D. 北偏东70°方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70°的方向,∴淇淇家位于西柏坡的北偏东70°方向.故选D.【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3. 化简233y x x æöç÷èø的结果是( )A. 6xy B. 5xy C. 25x y D. 26x y 【答案】A【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =æè×ö=ç÷ø,故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A.B. C. D.【答案】B【解析】【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5. 四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC V 为等腰三角形时,对角线AC 的长为( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解.【详解】解:在ACD V 中,2AD CD ==,∴2222AC -<<+,即04AC <<,当4AC BC ==时,ABC V 为等腰三角形,但不合题意,舍去;若3AC AB ==时,ABC V 为等腰三角形,故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题.6. 若k 为任意整数,则22(23)4k k +-的值总能( )A. 被2整除B. 被3整除C. 被5整除D. 被7整除【答案】B【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7.若a b===()A. 2B. 4C.D.【答案】A【解析】【分析】把a b==【详解】解:∵a b==,2===,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8. 综合实践课上,嘉嘉画出ABD△,利用尺规作图找一点C,使得四边形ABCD为平行四边形.图1~图3是其作图过程.(1)作BD 的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC AO=;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A. 两组对边分别平行B. 两组对边分别相等C. 对角线互相平分D. 一组对边平行且相等【答案】C【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断.【详解】解:根据图1,得出BD的中点O,图2,得出OC AO=,可知使得对角线互相平分,从而得出四边形ABCD为平行四边形,判定四边形ABCD 为平行四边形的条件是:对角线互相平分,故选:C .【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理.9. 如图,点18~P P 是O e 的八等分点.若137PP P V ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A. a b< B. a b = C. a b > D. a ,b 大小无法比较【答案】A【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PPP V 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +-=-,根据123PP P V 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O e 的八等分点,即 1223345566778148PP P P P P P P P P P P P P P P =======∴12233467PP P P P P P P ===, 464556781178P P P P P P P P P P PP =+=+=∴4617P P PP =又∵137PP P V 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++-++=+-()()12172337131737PP PP P P P P PP PP P P =+++-++122313PP P P PP =-+在123PP P V 中有122313PP P P PP >+∴1223130b a PP P P PP -=+>-故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10. 光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ´.下列正确的是( )A. 12119.4610109.4610´-=´ B. 12129.46100.46910´-=´C. 129.4610´是一个12位数D. 129.4610´是一个13位数【答案】D【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.【详解】解:A. 12119.4610109.4610´¸=´,故该选项错误,不符合题意;B. 12129.46100.46910´-¹´,故该选项错误,不符合题意;C. 129.4610´是一个13位数,故该选项错误,不符合题意;D. 129.4610´是一个13位数,正确,符合题意.故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11. 如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S =V ( )A. B. C. 12 D. 16【答案】B【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解.【详解】解:∵16AMEF S =正方形,∴4AM ==,∵Rt ABC △中,点M 是斜边BC 的中点,∴28BC AM ==,∴AC ===,∴11422ABC S AB AC =´´=´´=V ,故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12. 如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个,故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13. 在ABC V 和A B C ¢¢¢V 中,3064B B AB A B AC A C ¢¢¢¢¢Ð=Ð=°====,,.已知C n Ð=°,则C ¢Ð=( )A. 30°B. n °C. n °或180n °-°D. 30°或150°【答案】C【解析】【分析】过A 作AD BC ^于点D ,过A ¢作A D B C ¢¢¢¢^于点D ¢,求得3AD A D ¢¢==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ^于点D ,过A ¢作A D B C ¢¢¢¢^于点D ¢,∵306B B AB A B ¢¢¢Ð=Ð=°==,,∴3AD A D ¢¢==,当B C 、在点D 的两侧,B C ¢¢、在点D ¢的两侧时,如图,∵3AD A D ¢¢==,4AC A C ¢¢==,∴()Rt Rt HL ACD A C D ¢¢¢≌△△,∴C C n ¢Ð=Ð=°;当B C 、在点D 的两侧,B C ¢¢、在点D ¢的同侧时,如图,∵3AD A D ¢¢==,4AC A C ¢¢==,∴()Rt Rt HL ACD A C D ¢¢¢≌△△,∴'''A C D C n Ð=Ð=°,即'''180'''180A C B A C D n Ð=°-Ð=°-°;综上,C ¢Ð的值为n °或180n °-°.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14. 如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同速度匀速移动,其路线分别为M A D C N ®®®®和N C B A M ®®®®.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A. B.C. D.【答案】D【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C ®®和C B A ®®移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N ®和A M ®移动时,此时两个机器人之间的距离越的来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,∵两个人机器人速度相同,∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C ®®和C B A ®®移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N ®和A M ®移动时,此时两个机器人之间的距离越来越大,故排除C ,故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15. 如图,直线12l l ∥,菱形ABCD 和等边EFG V 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50αÐ=°,146ADE Ð=°,则b Ð=( )A. 42°B. 43°C. 44°D. 45°【答案】C【解析】【分析】如图,由平角的定义求得18034ADB ADE Ð=°-Ð=°,由外角定理求得,16AHD ADB αÐ=Ð-Ð=°,根据平行性质,得16GIF AHD Ð=Ð=°,进而求得44EGF GIF b Ð=Ð-Ð=°.【详解】如图,∵146ADE Ð=°∴18034ADB ADE Ð=°-Ð=°∵ADB AHDαÐ=Ð+Ð∴503416AHD ADB αÐ=Ð-Ð=°-°=°∵12l l ∥∴16GIF AHD Ð=Ð=°∵EGF GIFb Ð=Ð+Ð∴601644EGF GIF b Ð=Ð-Ð=°-°=°故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16. 已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( )A. 2B. 2mC. 4D. 22m 【答案】A【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x -+=和220x m -=,解得0x =或2x m =或x m =-或x m =,不妨设0m >,∵()0m ,和()0m -,关于原点对称,又这四个交点中每相邻两点间距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,的∴2m =或0m =(舍去),∵抛物线22y x m =-的对称轴为0x =,抛物线22y x m x =-+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17. 如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=¹图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k ££均可)【解析】【分析】先分别求得反比例函数(0)k y k x =¹图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)k y k x =¹图像过(3,3)A 时,339k =´=;当反比例函数(0)k y k x=¹图像过(3,1)B 时,313k =´=;∴k 的取值范围为39k ££∴k 可以取4.故答案为4(答案不唯一,满足39k ££均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键.18. 根据下表中的数据,写出a 的值为_______.b 的值为_______.x 结果代数式2n31x +7b 21x x +a 1【答案】①. 52②. 2-【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ´+==,当x n =时,211x x +=,即211n n +=,解得1n =-,经检验,1n =-是分式方程的解,∴()3112b =´-+=-,故答案为:52;2-【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19. 将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)αÐ=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】①. 30 ②. 【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC Ð=°,906030A αÐ=Ð=°-°=°,故答案为:30;(2)取中间正六边形的中心为O ,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ^,\四边形ABFG 为矩形,AB GF \=,,90BAC FGH ABC GFH Ð=ÐÐ=Ð=°Q ,()Rt Rt SAS ABC GFH Q V V ≌,BC FH \=,在Rt PDE △中,1,DE PE ==,由图1知2AG BF PE ===,由正六边形的结构特征知:12OM =´=()112BC BF CH =-=-Q,3tan BC AB BAC \===-Ð,21BD AB \=-=-,又1212DE =´=Q ,BE BD DE \=+=,ON OM BE \=+=故答案为:【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20. 某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)312-在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分;(2)6k =.【解析】【分析】(1)根据题意列式计算即可求解;(2)根据题意列一元一次方程即可求解.【小问1详解】解:由题意得()4321426´+´+´-=(分),答:珍珍第一局的得分为6分;【小问2详解】解:由题意得()()3311032613k k +´+--´-=+,解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.【小问1详解】解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+´+=;【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a -=++-+=-+=-∵1a >,∴()21210S S a -=->,∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22. 某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可;(2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解.【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:34 3.52+=(分)由统计图可知,客户所评分数的平均数为:1123364555 3.520´+´+´+´+´=(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x ´+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加权平均数的方法和根据不等量关系列不等式是解题的关键.23. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =-,1c =; (2)符合条件的n 的整数值为4和5.【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171:,,,求得n 的取值范围,即可求解.【小问1详解】解:∵抛物线21:(3)2C y a x =-+,∴1C 的最高点坐标为()32,,∵点(6,1)A 在抛物线21:(3)2C y a x =-+上,∴21(63)2a =-+,解得:19a =-,∴抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;【小问2详解】解:∵到点A 水平距离不超过1m 的范围内可以接到沙包,∴点A 的坐标范围为()()5171:,,,当经过()51,时,211551188n =-´+´++,解得175n =;当经过()71,时,211771188n =-´+´++,解得417n =;∴174157n ££∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24. 装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ^于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM Ð=°时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.【答案】(1)7cm ;(2)11cm 2;(3)EF =, 25π=cm 6EQ , EF EQ >.【解析】【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE GH ^进而得到OE MN ^,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到90QOB Ð=°,得到30QOE Ð=°分别求出线段EF 与 EQ的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC MN ^于点C ,48cm MN =,∴124cm 2MC MN ==,∵50cm AB =,∴125cm 2OM AB ==,∴在Rt OMC V 中,7cm OC ===.(2)∵GH 与半圆的切点为E ,∴OE GH^∵MN GH∥∴OE MN ^于点D ,∵30ANM Ð=°,25cm ON =,∴125cm 22OD ON ==,∴操作后水面高度下降高度为:25117cm 22-=.(3)∵OE MN ^于点D ,30ANM Ð=°∴60DOB Ð=°,∵半圆的中点为Q ,∴ AQ QB=,∴90QOB Ð=°,∴30QOE Ð=°,∴tan EF QOE OE =Ð×=, 30π2525π==cm 1806EQ ´´,25π6-==>,∴EF EQ>.【点睛】本题考查了垂径定理、圆切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.25. 在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y移动到点(2,1)x y++称为一次甲方式:从点(,)x y移动到点(1,2)x y++称为一次乙方式.例、点P从原点O出发连续移动2次;若都按甲方式,最终移动到点(4,2)M;若都按乙方式,最终移动到点(2,4)N;若按1次甲方式和1次乙方式,最终移动到点(3,3)E.(1)设直线1l经过上例中的点,M N,求1l的解析式;并直接写出将1l向上平移9个单位长度得到的直线2l的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y.其中,按甲方式移动了m次.①用含m的式子分别表示,x y;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为3l,在图中直接画出3l的图象;(3)在(1)和(2)中的直线123,,l l l上分别有一个动点,,A B C,横坐标依次为,,a b c,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.【答案】(1)1l的解析式为6y x=-+;2l的解析式为15y x=-+;(2)①10,20x m y m=+=-;②3l的解析式为30y x=-+,图象见解析;的(3)538a c b+=【解析】【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【小问1详解】设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=ìí+=î,解得:16k b =-ìí=î,∴1l 的解析式为6y x =-+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;【小问2详解】①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了()10m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为()21020m m m +-=-,∴10,20x m y m =+=-;②由于102030x y m m +=++-=,∴直线3l 的解析式为30y x =-+;函数图象如图所示:【小问3详解】∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线123,,l l l 上,∴()()(),6,,15,,30A a a B b b C c c -+-+-+,设直线AB 的解析式为y mx n =+,把A 、B 两点坐标代入,得615ma n a mb n b +=-+ìí+=-+î,解得:9196m b a a n b a ì=-+ïï-íï=-ï-î,∴直线AB 的解析式为9916a y x b a b aæö=-++-ç÷--èø,∵A ,B ,C 三点始终在一条直线上,∴991630a c c b a b aæö-++-=-+ç÷--èø,整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.26. 如图1和图2,平面上,四边形ABCD中,8,12,6,90AB BC CD DA A ====Ð=°,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n °<£到,MA A MA ¢¢Ð的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P ¢.(1)若点P 在AB 上,求证:A P AP ¢=;(2)如图2.连接BD .①求CBD Ð的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP ¢Ð的值;(3)当08x <£时,请直接写出点A ¢到直线AB 距离.(用含x 的式子表示).【答案】(1)见解析 (2)①90CBD Ð=°,13x =;②76或236(3)22816x x +【解析】【分析】(1)根据旋转的性质和角平分线的概念得到A M AM ¢=,A MP AMP ¢Ð=Ð,然后证明出()SAS A MP AMP ¢V V ≌,即可得到A P AP ¢=;(2)①首先根据勾股定理得到10BD ==,然后利用勾股定理的逆定理即可求出90CBD Ð=°;首先画出图形,然后证明出DNM DBA V V ∽,利用相似三角形的性质求出103DN =,83MN =,然后证明出PBN DMN V V ∽,利用相似三角形的性质得到5PB =,进而求解即可;②当P 点在AB 上时,2PQ =,A MP AMP ¢Ð=Ð,分别求得,BP AP ,根据正切的定义即可求解;②当P 在BC 上时,则2PB =,过点P 作PQ AB ^交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,证明PQB BAD V V ∽,得出4855PQ PB ==,3655BQ PB ==,进而求得AQ ,证明HPQ HMA V V ∽,即可求解;(3)如图所示,过点A ¢作A E AB ¢^交AB 于点E ,过点M 作MF A E ¢^于点F ,则四边形AMFE 是矩形,证明A PE MA F ¢¢V V ∽,根据相似三角形的性质即可求解.小问1详解】∵将线段MA 绕点M 顺时针旋转()0180n n °<£到MA ¢,∴A M AM¢=的【∵A MA ¢Ð的平分线MP 所在直线交折线AB BC -于点P ,∴A MP AMP¢Ð=Ð又∵PM PM=∴()SAS A MP AMP ¢V V ≌∴A P AP ¢=;【小问2详解】①∵8AB =,6DA =,90A Ð=°∴10BD ==∵=BC 12CD =∴(222210144BC BD +=+=,2212144CD ==∴222BC BD CD +=∴90CBD Ð=°;如图所示,当180n =时,∵PM 平分A MA¢Ð∴90PMA Ð=°∴PM AB∥∴DNM DBAV V ∽∴DN DM MN DB DA BA==∵2DM =,6DA =∴21068DN MN ==∴103DN =,83MN =∴203BN BD DN =-=∵90PBN NMD Ð=Ð=°,PNB DNMÐ=Ð∴PBN DMNV V ∽∴PB BN DM MN=,即203823PB =∴解得5PB =∴8513x AB PB =+=+=.②如图所示,当P 点在AB 上时,2PQ =,A MP AMP¢Ð=Ð∵8,6,90AB DA A ==Ð=°,∴10BD ===,63sin 105AD DBA BD Ð===,∴2103sin 35BQ BP DBA ===Ð,∴1014833AP AB BP =-=-=∴1473tan tan 46AP A MP AMP AM ¢Ð=Ð===;如图所示,当P 在BC 上时,则2PB =,过点P 作PQ AB ^交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,∵90PQB CBD DAB Ð=Ð=Ð=°,∴90QPB PBQ DBA Ð=°-Ð=Ð,∴PQB BADV V∽∴PQ QB PB BA AD BD==即8610PQ QB PB ==∴4855PQ PB ==,3655BQ PB ==,∴465AQ AB BQ =+=∵,PQ AB DA AB^^∴PQ AD ∥,∴HPQ HMA V V ∽,∴HQ PQ HA AM=∴854645HQ HQ =+解得:9215HQ =∴922315tan tan tan 865HQ A MP AMP QPH PQ ¢Ð=Ð=Ð===,综上所述,tan A MP ¢Ð的值为76或236;【小问3详解】解:∵当08x <£时,∴P 在AB 上,如图所示,过点A ¢作A E AB ¢^交AB 于点E ,过点M 作MF A E ¢^于点F ,则四边形AMFE 是矩形,∴AE FM =,4EF AM ==,∵A MP AMP ¢V V ≌,∴90PA M A ¢Ð=Ð=°,∴90PA E FA M ¢¢Ð+Ð=°,又90A MF FA M ¢¢Ð+Ð=°,∴PA E A MF ¢¢Ð=Ð,又∵90A EP MFA ¢¢Ð=Ð=°,∴A PE MA F ¢¢V V ∽,∴A P PE A E MA A F FM¢¢==¢¢∵A P AP x ¢==,4MA MA ¢==,设FM AE y ==,A E h¢=即44x x y h h y-==-∴4h y x=,()()44x y x h -=-∴()444h x x h x æö-=-ç÷èø整理得22816x h x =+即点A ¢到直线AB 的距离为22816x x +.【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,熟练掌握以上知识且分类讨论是解题的关键.。

2023年河北省中考数学试卷(含解析)印刷版

2023年河北省中考数学试卷(含解析)印刷版

2023年河北省中考数学试卷一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)代数式﹣7x的意义可以是()A.﹣7与x的和B.﹣7与x的差C.﹣7与x的积D.﹣7与x的商2.(3分)淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向3.(3分)化简的结果是()A.xy6B.xy5C.x2y5D.x2y64.(3分)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()A.(黑桃)B.(红心)C.(梅花)D.(方块)5.(3分)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC为等腰三角形时,对角线AC的长为()A.2B.3C.4D.56.(3分)若k为任意整数,则(2k+3)2﹣4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除7.(2分)若,,则=()A.2B.4C.D.8.(2分)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC=AO;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等9.(2分)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是()A.a<b B.a=bC.a>b D.a,b大小无法比较10.(2分)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km,下列正确的是()A.9.46×1012﹣10=9.46×1011B.9.46×1012﹣0.46=9×1012C.9.46×1012是一个12位数D.9.46×1012是一个13位数11.(2分)如图,在Rt△ABC中,AB=4,点M是斜边BC的中点,以AM为边作正方形AMEF.若S正=16,则S△ABC=()方形AMEFA.4B.8C.12D.1612.(2分)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A.1个B.2个C.3个D.4个13.(2分)在△ABC和△A'B'C′中,∠B=∠B'=30°,AB=A'B'=6,AC=A'C′=4,已知∠C=n°,则∠C′=()A.30°B.n°C.n°或180°﹣n°D.30°或150°14.(2分)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y.则y与x关系的图象大致是()A.B.C.D.15.(2分)如图,直线l1∥l2,菱形ABCD和等边△EFG在l1,l2之间,点A,F分别在l1,l2上,点B,D、E、G在同一直线上.若∠α=50°,∠ADE=146°,则∠β=()A.42°B.43°C.44°D.45°16.(2分)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.(2分)如图,已知点A(3,3),B(3,1),反比例函数图象的一支与线段AB有交点,写出一个符合条件的k的整数值:.18.(4分)根据表中的数据,写出a的值为,b的值为.2n3x+17ba119.(4分)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=度;(2)中间正六边形的中心到直线l的距离为(结果保留根号).三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(9分)某惯性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)31﹣2在某一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.21.(9分)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如表2和表3,其面积分别为S1,S2.表2表3(1)请用含a的式子分别表示S1,S2,当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.22.(9分)某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.(10分)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点A(6,1)处将沙包(看成点)抛出,其运动路线为抛物线C1:y=a(x﹣3)2+2的一部分,淇淇恰在点B(0,c)处接住,然后跳起将沙包回传,其运动路线为抛物线C2:的一部分.(1)写出C1的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.24.(10分)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水槽沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动.如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN于点D.探究:在图2中.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段EF与的长度,并比较大小.25.(12分)在平面直角坐标系中,设计了点的两种移动方式:从点(x,y)移动到点(x+2,y+1)称为一次甲方式;从点(x,y)移动到点(x+1,y+2)称为一次乙方式.例点P从原点O出发连续移动2次:若都按甲方式,最终移动到点M(4,2);若都按乙方式,最终移动到点N(2,4);若按1次甲方式和1次乙方式,最终移动到点E(3,3).(1)设直线l1经过上例中的点M、N,求l1的解析式,并直接写出将l1向上平移9个单位长度得到的直线l2的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点Q(x,y).其中,按甲方式移动了m次.①用含m的式子分别表示x,y;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为l3,在图中直接画出l3的图象;(3)在(1)和(2)中的直线l1,l2,l3上分别有一个动点A,B,C,横坐标依次为a,b,c,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.26.(13分)如图1和图2,平面上,四边形ABCD中,AB=8,,CD=12,DA=6.∠A=90°,点M在AD边上,且DM=2.将线段MA绕点M顺时针旋转n°(0<n≤180)到MA',∠A′MA的平分线MP所在直线交折线AB﹣BC于点P,设点P在该折线上运动的路径长为x(x>0),连接A′P.(1)若点P在AB上,求证:A'P=AP;(2)如图2,连接BD.①求∠CBD的度数,并直接写出当n=180时,x的值;②若点P到BD的距离为2,求tan∠A′MP的值;(3)当0<x≤8时,请直接写出点A′到直线AB的距离(用含x的式子表示).2023年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)代数式﹣7x的意义可以是()A.﹣7与x的和B.﹣7与x的差C.﹣7与x的积D.﹣7与x的商【分析】直接利用代数式的意义分析得出答案.【解答】解:代数式﹣7x的意义可以是﹣7与x的积.故选:C.2.(3分)淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向【分析】根据题意可得:∠ABC=70°,AB∥CD,然后利用平行线的性质可得∠ABC=∠DCB=70°,从而根据方向角的定义,即可解答.【解答】解:如图:由题意得:∠ABC=70°,AB∥CD,∴∠ABC=∠DCB=70°,∴淇淇家位于西柏坡的北偏东70°方向,故选:D.3.(3分)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【分析】先根据分式的乘方法则计算,再根据分式的乘法法则计算.【解答】解:x3()2=x3•=xy6,故选:A.4.(3分)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()A.(黑桃)B.(红心)C.(梅花)D.(方块)【分析】根据概率公式分别求出各花色的概率判断即可.【解答】解:∵抽到黑桃的概率为,抽到红心的概率为,抽到梅花的概率为,抽到方块的概率为,∴抽到的花色可能性最大的是红心,故选:B.5.(3分)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC为等腰三角形时,对角线AC的长为()A.2B.3C.4D.5【分析】分两种情况,由三角形的三边关系定理:三角形两边的和大于第三边,即可解决问题.【解答】解:∵△ABC为等腰三角形,∴AB=AC或AC=BC,当AC=BC=4时,AD+CD=AC=4,此时不满足三角形三边关系定理,当AC=AB=3时.满足三角形三边关系定理,∴AC=3.故选:B.6.(3分)若k为任意整数,则(2k+3)2﹣4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【分析】先根据完全平方公式进行计算,再合并同类项,分解因式后再逐个判断即可.【解答】解:(2k+3)2﹣4k2=4k2+12k+9﹣4k2=12k+9=3(4k+3),∵k为任意整数,∴(2k+3)2﹣4k2的值总能被3整除,故选:B.7.(2分)若,,则=()A.2B.4C.D.【分析】把a、b的值代入原式,根据二次根式的性质化简即可.【解答】解:∵a=,b=,∴===2,故选:A.8.(2分)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC=AO;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等【分析】根据:“对角线互相平分的四边形是平行四边形”证明.【解答】解:由作图得:DO=BO,AO=CO,∴四边形ABCD为平行四边形,故选:C.9.(2分)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是()A.a<b B.a=bC.a>b D.a,b大小无法比较【分析】利用三角形的三边关系,正多边形的性质证明即可.【解答】解:连接P4P5,P5P6.∵点P1~P8是⊙O的八等分点,∴P3P4=P4P5=P5P6=P6P7,P1P7=P1P3=P4P6,∴b﹣a=P3P4+P7P6﹣P1P3,∵P5P4+P5P6>P4P6,∴P3P4+P7P6>P1P3,∴b﹣a>0,∴a<b,故选:A.10.(2分)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km,下列正确的是()A.9.46×1012﹣10=9.46×1011B.9.46×1012﹣0.46=9×1012C.9.46×1012是一个12位数D.9.46×1012是一个13位数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:9.46×1012km=9460000000000km是一个13位数.故选:D.11.(2分)如图,在Rt△ABC中,AB=4,点M是斜边BC的中点,以AM为边作正方形AMEF.若S正=16,则S△ABC=()方形AMEFA.4B.8C.12D.16【分析】先根据正方形AMEF的面积求出AM的长,然后根据直角三角形斜边上的中线等于斜边的一半求出BC的长,最后根据勾股定理求出AC的长,然后即可求出直角三角形ABC的面积.【解答】解:∵四边形AMEF是正方形,=16,又∵S正方形AMEF∴AM2=16,∴AM=4,在Rt△ABC中,点M是斜边BC的中点,∴,即BC=2AM=8,在Rt△ABC中,AB=4,∴,∴,故选:B.12.(2分)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A.1个B.2个C.3个D.4个【分析】根据题意主视图和左视图即可得到结论.【解答】解:平台上至少还需再放这样的正方体2个,故选:B.13.(2分)在△ABC和△A'B'C′中,∠B=∠B'=30°,AB=A'B'=6,AC=A'C′=4,已知∠C=n°,则∠C′=()A.30°B.n°C.n°或180°﹣n°D.30°或150°【分析】分两种情况讨论,当BC=B′C′时,则△ABC≌△A′B′C′,得出∠C′=∠C=n°,当BC≠B′C′时,如图,利用等腰三角形的性质求得∠A′C″C′=∠C′=n°,从而求得∠A′C″B′=180°﹣n°.【解答】解:当BC=B′C′时,△ABC≌△A′B′C′(SSS),∴∠C′=∠C=n°,当BC≠B′C′时,如图,∵A′C′=A′C″,∴∠A′C″C′=∠C′=n°,∴∠A′C″B′=180°﹣n°,∴∠C′=n°或180°﹣n°,故选:C.14.(2分)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y.则y与x关系的图象大致是()A.B.C.D.【分析】设圆的半径为R,根据机器人移动时最开始的距离为AM+CN+2R,之后同时到达点A,C两个机器人之间的距离y越来越小,当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是半径R,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,据此得出结论即可.【解答】解:由题意可得:机器人(看成点)分别从M,N两点同时出发,设圆的半径为R,∴两个机器人最初的距离是AM+CN+2R,∵两个人机器人速度相同,∴同时到达点A,C,∴两个机器人之间的距离y越来越小,故排除A、C;当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是半径R,保持不变,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,故排除B;故选:D.15.(2分)如图,直线l1∥l2,菱形ABCD和等边△EFG在l1,l2之间,点A,F分别在l1,l2上,点B,D、E、G在同一直线上.若∠α=50°,∠ADE=146°,则∠β=()A.42°B.43°C.44°D.45°【分析】由平角的定义求得∠ADB=180°﹣∠ADE=34°,由外角定理求得∠AHD=∠α﹣∠ADB=16°,根据平行线的性质得∠GIF=∠AHD=16°,进而求得∠β=∠EGF﹣∠GIF=44°.【解答】解:如图,延长BG,∵∠ADE=146°,∴∠ADB=180°﹣∠ADE=34°,∵∠α=∠ADB+∠AHD,∴∠AHD=∠α﹣∠ADB=50°﹣34°,=16°,∵l1∥l2,∴∠GIF=∠AHD=16°,∵∠EGF=∠β+∠GIF,∵△EFG是等边三角形,∴∠EGF=60°,∴∠β=∠EGF﹣∠GIF=60°﹣16°=44°,故选:C.16.(2分)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴x=0,抛物线y=﹣x2+m2x的对称轴x=,∴这两个函数图象对称轴之间的距离==2.故选:A.二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.(2分)如图,已知点A(3,3),B(3,1),反比例函数图象的一支与线段AB有交点,写出一个符合条件的k的整数值:k=4(答案不唯一).【分析】把点A(3,3),B(3,1)代入y=即可得到k的值,从而得结论.【解答】解:由图可知:k>0,∵反比例函数y=(k>0)的图象与线段AB有交点,且点A(3,3),B(3,1),∴把B(3,1)代入y=得,k=3,把A(3,3)代入y=得,k=3×3=9,∴满足条件的k值的范围是3≤k≤9的整数,故k=4(答案不唯一),故答案为:k=4(答案不唯一).18.(4分)根据表中的数据,写出a的值为,b的值为﹣2.2n3x+17ba1【分析】将x=2代入中计算即可求得a的值;将x=n代入可得关于n的分式方程,解得n 的值后代入3x+1中计算即可求得b的值.【解答】解:当x=2时,==,即a=;当x=n时,=1,解得:n=﹣1,经检验,n=﹣1是分式方程的解,那么当x=﹣1时,3x+1=﹣3+1=﹣2,即b=﹣2,故答案为:;﹣2.19.(4分)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(9分)某惯性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)31﹣2在某一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【分析】(1)根据题意列出算式可求解;(2)由题意列出方程可求解.【解答】解:(1)由题意可得:4×3+2×1+4×(﹣2)=6(分),答:珍珍第一局的得分为6分;(2)由题意可得:3k+3×1+(10﹣k﹣3)×(﹣2)=6+13,解得:k=6.21.(9分)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如表2和表3,其面积分别为S1,S2.表2表3(1)请用含a的式子分别表示S1,S2,当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.【分析】(1)根据图形,利用长方形的面积公式计算即可;(2)利用作差法比较即可.【解答】解:(1)由图可知S1=(a+2)(a+1)=a2+3a+2,S2=(5a+1)×1=5a+1,当a=2时,S1+S2=4+6+2+10+1=23;(2)S1>S2,理由:∵S1﹣S2=a2+3a+2﹣5a﹣1=a2﹣2a+1=(a﹣1)2,又∵a>1,∴(a﹣1)2>0,∴S1>S2.22.(9分)某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可.(2)根据重新计算后,发现客户所评分数的平均数大于3.55分列出不等式,从而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可.【解答】解:(1)由条形图可知,第10个数据是3分,第11个数据是4分,∴中位数为3.5分,由统计图可得平均数为=3.5分,∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.(2)监督人员抽取的问卷所评分数为x分,则有,解得x>4.55,∵满意度从低到高为1分,2分,3分,4分,5分,共5档.∴监督人员抽取的问卷所评分数为5分,∵4<5,∴加入这个数据,客户所评分数按从小到大排列后,第11个数据不变还是4分,即加入这个数据后,中位数是4分,∴与(1)相比,中位数是发生了变化,由3.5分变成4分.23.(10分)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点A(6,1)处将沙包(看成点)抛出,其运动路线为抛物线C1:y=a(x﹣3)2+2的一部分,淇淇恰在点B(0,c)处接住,然后跳起将沙包回传,其运动路线为抛物线C2:的一部分.(1)写出C1的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.【分析】(1)将点A坐标代入解析式可求a,即可求解;(2)根据点A的取值范围代入解析式可求解.【解答】解:(1)∵抛物线C1:y=a(x﹣3)2+2,∴C1的最高点坐标为(3,2),∵点A(6,1)在抛物线C1:y=a(x﹣3)2+2上,∴1=a(6﹣3)2+2,∴a=﹣,∴抛物线C1:y=﹣(x﹣3)2+2,当x=0时,c=1;(2)∵嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,∴此时,点A的坐标范围是(5,1)~(7,1),当经过(5,1)时,1=﹣×25+×5+1+1,解得:n=,当经过(7,1)时,1=﹣×49+×7+1+1,解得:n=,∴≤n≤,∵n为整数,∴符合条件的n的整数值为4和5.24.(10分)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水槽沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动.如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN于点D.探究:在图2中.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段EF与的长度,并比较大小.【分析】(1)连接OM,利用垂径定理得出MC=MN=24cm,由勾股定理计算即可得出答案;(2)由切线的性质证明OE⊥GH,进而得到OE⊥MN,利用锐角三角函数的定义求出OD,再与(1)中OC相减即可得出答案;(3)由半圆的中点为Q得到∠OOB=90°,得到∠QOE=30°,分别求出线段EF与的长度,再相减比较即可.【解答】解:(1)连接OM,∵O为圆心,OC⊥MN于点C,MN=48cm,∴MC=MN=24cm,∵AB=50cm,∴OM=AB=25cm,在Rt△OMC中,OC===7(cm);(2)∵GH与半圆的切点为E,∴OE⊥GH,∵MN∥GH,∴OE⊥MN于点D,∵∠ANM=30°,ON=25cm,∴,∴操作后水面高度下降高度为:;(3)∵OE⊥MN于点D,∠ANM=30°,∴∠DOB=60°,∵半圆的中点为Q,∴,∴∠QOB=90°,∴∠QOE=30°,∴EF=tan∠QOE•OE=(cm),的长为(cm),∵=>0,∴EF>.25.(12分)在平面直角坐标系中,设计了点的两种移动方式:从点(x,y)移动到点(x+2,y+1)称为一次甲方式;从点(x,y)移动到点(x+1,y+2)称为一次乙方式.例点P从原点O出发连续移动2次:若都按甲方式,最终移动到点M(4,2);若都按乙方式,最终移动到点N(2,4);若按1次甲方式和1次乙方式,最终移动到点E(3,3).(1)设直线l1经过上例中的点M、N,求l1的解析式,并直接写出将l1向上平移9个单位长度得到的直线l2的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点Q(x,y).其中,按甲方式移动了m次.①用含m的式子分别表示x,y;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为l3,在图中直接画出l3的图象;(3)在(1)和(2)中的直线l1,l2,l3上分别有一个动点A,B,C,横坐标依次为a,b,c,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.【分析】(1)由待定系数法可求直线l1的解析式;由平移的性质可求直线l2的解析式;(2)①由题意可得:点P按照甲方式移动m次后得到的点的坐标为(2m,m),再得出点(2m,m),按照乙方式移动(10﹣m)次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线l3的解析式,进而可画出函数图象;(3)由题意可得点A,点B,点C的坐标,由待定系数法可求直线AB的解析式,即可求解.【解答】解:(1)设l1的解析式为y=kx+b,由题意可得:,解得:,∴l1的解析式为y=﹣x+6,将l1向上平移9个单位长度得到的直线l2的解析式为y=﹣x+15;(2)∵点P按照甲方式移动了m次,点P从原点O出发连续移动10次,∴点P按照乙方式移动了(10﹣m)次,∴点P按照甲方式移动m次后得到的点的坐标为(2m,m),∴点(2m,m)按照乙方式移动(10﹣m)次后得到的点的横坐标为2m+10﹣m=m+10,纵坐标为m+2(10﹣m)=20﹣m,∴x=m+10,y=20﹣m;②∵x+y=m+10+20﹣m=30,∴直线l3的解析式为y=﹣x+30;函数图象如图所示:(3)∵点A,B,C,横坐标依次为a,b,c,∴点A(a,﹣a+6),点B(b,﹣b+15),点C(c,﹣c+30),当a≠b≠c,﹣a+6≠﹣b+15≠﹣c+30时,设直线AB的解析式为y=mx+n,由题意可得:,解得:,∴直线AB的解析式为y=(﹣1+)x+6﹣,∵点A,点B,点C三点始终在一条直线上,∴c(﹣1+)+6﹣=﹣c+30,∴5a+3c=8b,当a=b=c时,则点A,点B,点C共线,当﹣a+6=﹣b+15=﹣c+30时,2a+b+c=33,∴a,b,c之间的关系式为5a+3c=8b或a=b=c或2a+b+c=33.26.(13分)如图1和图2,平面上,四边形ABCD中,AB=8,,CD=12,DA=6.∠A=90°,点M在AD边上,且DM=2.将线段MA绕点M顺时针旋转n°(0<n≤180)到MA',∠A′MA的平分线MP所在直线交折线AB﹣BC于点P,设点P在该折线上运动的路径长为x(x>0),连接A′P.(1)若点P在AB上,求证:A'P=AP;(2)如图2,连接BD.①求∠CBD的度数,并直接写出当n=180时,x的值;②若点P到BD的距离为2,求tan∠A′MP的值;(3)当0<x≤8时,请直接写出点A′到直线AB的距离(用含x的式子表示).【分析】(1)根据旋转的性质和角平分线的概念得到A′M=AM,∠A′MP=∠AMP,然后证明出△A′MP≌△AMP(SAS),即可得到A′P=AP;(2)①首先根据勾股定理得到,然后利用勾股定理的逆定理即可求出∠CBD=90°;画出图形,然后证明出△DNM∽△DBA,利用相似三角形的性质求出,然后证明出△PBN∽△DMN,利用相似三角形的性质得到PB=5,进而求解即可;②当P点在AB上时,PQ=2,∠A′MP=∠AMP,分别求得BP,AP,根据正切的定义即可求解;当P在BC上时,则PB=2,过点P作PQ⊥ABAB的延长线于点Q,延长MP交AB的延长线于点H,证明△PQB∽BAD,得,进而求得AQ,证明△HPQ∽△HMA,即可求解;(3)如图所示,过点A作AE⊥AB交AB于点E,过点M作MF⊥A′E于点F,则四边形AMFE是矩形,证明△A′PE∽△MA′F,根据相似三角形的性质即可求解.【解答】(1)证明:∵将线段MA绕点M顺时针旋转n°(0<n≤180)得到MA′,∴A′M=AM,∵∠A′MA的平分线MP所在的直线交折线AB﹣BC于点P,∴∠A′MP=∠AMP,∵PM=PM,∴△A′MP≌△AMP(SAS),∴A′P=AP;(2)解:①∵AB=8,DA=6,∠A=90°,∴BD==10,又∵,CD=12,∴BD2+BC2=100+44=144,CD2=144,∴BD2+BC2=CD2,∴∠CBD=90°;如图2所示,当n=180时,∵PM平分∠A′MA.∠PMA=90°,∴PM∥AB,∴△DNM∽△DBA,∴,∵DM=2,DA=6,∴,∴,∴,∵∠PBN=∠MD=90°,∠PNB=∠DNM,∴△PBN∽△DMN,∴,即,∴PB=5,∴x=AB+PB=8+5=13.②如图所示,当P点在AB上时,PQ=2,∠A′MP=∠AMP,∴AB=8,DA=6,∠A=90°,∴,∴,∴BP===,∴,∴,如图所示,当P在BC上时,则PB=2,过点P作PQ⊥AB交AB的延长线于点Q,延长MP交AB的延长线于点H,∵∠PQB=∠CBD=∠DAB=90°,∴∠QPB=90°﹣∠PBQ=∠DBA,∴△PQB∽△BAD,∴,即,∴,,∴,∵PQ⊥AB,DA⊥AB,∴PQ∥AD,∴△HPQ∽△HMA,∴,解得:,∴tan∠AMP=tan∠AMP=tan∠QPH===,。

中考数学试题及答案河北

中考数学试题及答案河北

中考数学试题及答案河北一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14B. √2C. 0.33333...D. 5/7答案:B2. 如果一个三角形的两边长分别为3和4,第三边的长x满足的条件是?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 4 < x < 7答案:C3. 一个数的相反数是-5,这个数是?A. 5B. -5C. 0D. 1答案:A4. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3 - 2答案:B5. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:C6. 计算下列表达式的值:(2x - 3)(x + 4) - (x - 1)^2A. 5x + 5B. 5x - 5C. 7x + 5D. 7x - 5答案:D7. 下列哪个图形是轴对称图形?A. 平行四边形B. 等腰梯形C. 任意三角形D. 不规则四边形答案:B8. 一个数的平方根是2,这个数是?A. 4B. -4C. 2D. -2答案:A9. 一个等差数列的首项是3,公差是2,第5项是多少?A. 13B. 11C. 9D. 7答案:A10. 计算下列概率:一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/2B. 2/3C. 1/3D. 3/5答案:D二、填空题(每题3分,共15分)11. 一个正数的立方根是2,这个数是______。

答案:812. 一个等腰三角形的底角是40°,顶角是______。

答案:100°13. 一个二次函数的顶点是(1, -4),且开口向上,它的对称轴是______。

答案:x = 114. 计算下列表达式的值:(3x + 2)(3x - 2) - (x - 3)^2 = ______。

2024河北中考数学试卷真题及答案及解析

2024河北中考数学试卷真题及答案及解析

2024河北中考数学试卷真题及答案及解析试卷简介2024年河北中考数学试卷是为了评估河北省初中学生在数学领域的学习成果而设计的。

本次试卷分为选择题和解答题两部分,共计120分。

下面将为大家介绍试卷的具体内容以及答案解析。

选择题(满分80分)第一部分选择题共计40分,每题2分。

1.设集合A={a, b, c, d},集合B={a, c, e},则集合A∩B的元素个数是多少?– A. 1– B. 2– C. 3– D. 0答案:B解析:集合A∩B表示A与B的交集,即A和B共有的元素。

根据题目中给出的集合A和集合B,它们的交集为{a, c},所以集合A∩B的元素个数是2。

2.已知正方形ABCD的边长为8cm,点E是边BC上的一个动点,则AE的最大长度为多少?– A. 8cm– B. 12cm– C. 16cm– D. 20cm答案:C解析:由正方形的性质可知,对角线相等且垂直平分。

因此,AE的最大长度就是正方形的对角线长度,即8cm * √2 ≈ 11.31cm,取大于等于最大值的整数,得16cm。

3.下列哪个数是无理数?– A. √2– B. -1/3– C. 0.5– D. 2/5答案:A解析:无理数是不能表示为两个整数的比的数。

根据选项中的数值特征,只有√2不能表示为两个整数的比,因此选A。

4.若一组数的平均数为20,其中最大数为40,最小数为10,问这组数最多有几个?答案:3解析:设这组数中共有n个数,则它们的和为20n。

由最大数为40,最小数为10可得:40 + 10 + x + … + x = 20n,化简得:(50 + x + … + x )/n = 20。

由此可知,当这组数中数的个数为3时,满足平均数为20的条件。

…解答题(满分40分)第二部分解答题共计40分,每题10分。

5.小明在小卖部买了3瓶可乐和2包薯片,共花费15元。

已知一瓶可乐的价格是x元,一包薯片的价格是y元,用方程组表示这个情况。

河北中考数学考试试卷真题

河北中考数学考试试卷真题

河北中考数学考试试卷真题考生注意:本试卷共22题,满分120分,考试时间为120分钟。

请在答题卡上作答,不得在试卷上作任何标记。

一、选择题(本大题共8小题,每小题3分,共24分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -12. 如果a > b,那么a - b的值是:A. 正数B. 零C. 负数D. 无法确定3. 圆的周长公式是:A. C = πrB. C = 2πrC. C = 4πrD. C = 2r4. 一个三角形的内角和是:A. 90度B. 180度C. 270度D. 360度5. 一个数的平方根是2,那么这个数是:A. 2B. 4C. -4D. 86. 以下哪个是二次方程?A. x + 3 = 0B. x^2 - 5x + 6 = 0C. x^3 - 2x^2 + x = 0D. x^2 + x + 17. 一个数的绝对值是其本身,这个数是:A. 正数B. 负数C. 零D. 正数或零8. 如果一个角是直角的一半,那么这个角是:A. 30度B. 45度C. 60度D. 90度二、填空题(本大题共6小题,每小题3分,共18分)9. 一个数的相反数是-5,这个数是_________。

10. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是_________。

11. 一个数的立方根是3,那么这个数是_________。

12. 如果一个数的平方是25,那么这个数是_________。

13. 一个数的绝对值是5,那么这个数可以是_________。

14. 一个圆的直径是14厘米,那么这个圆的面积是_________平方厘米。

三、计算题(本大题共4小题,每小题6分,共24分)15. 计算下列表达式的值:(3x^2 - 2x + 1) - (2x^2 + 3x - 4)。

16. 解下列方程:3x + 5 = 2x - 7。

17. 计算下列多项式的乘积:(x^2 - 4)(x + 2)。

2023年河北省中考数学试卷及答案

2023年河北省中考数学试卷及答案

2023年河北省中考数学试卷一、选择题1.代数式7x -的意义可以是()A.7-与x 的和 B.7-与x 的差C.7-与x 的积D.7-与x 的商2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向3.化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A.6xyB.5xy C.25x y D.26x y 4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A.2B.3C.4D.56.若k 为任意整数,则22(23)4k k +-的值总能()A.被2整除B.被3整除C.被5整除D.被7整除7.若27a b ==,2214a b=()A.2 B.4 C.7 D.28.综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程.(1)作BD 的垂直平分线交BD 于点O ;(2)连接AO ,在AO 的延长线上截取OC AO =;(3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C .对角线互相平分 D.一组对边平行且相等9.如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A.a b <B.a b =C.a b >D.a ,b 大小无法比较10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数11.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S =()A.3B.3C.12D.1612.如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个13.在ABC 和A B C '''中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A.30︒B.n ︒C.n ︒或180n ︒-︒D.30︒或150︒14.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A. B.C. D.15.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A.42︒B.43︒C.44︒D.45︒16.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.2mC.4D.22m 二、填空题17.如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.18.根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7b 21x x +a 119.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)312-在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ 的长度,并比较大小.25.在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.26.如图1和图2,平面上,四边形ABCD 中,8,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).2023年河北省中考数学试卷一、选择题-的意义可以是()1.代数式7xA.7-与x的和B.7-与x的差C.7-与x的积D.7-与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.-的意义可以是7-与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D.【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3.化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A.6xy B.5xy C.25x y D.26x y 【答案】A【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭,故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【解析】【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A.2B.3C.4D.5【答案】B【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解.【详解】解:在ACD 中,2AD CD ==,∴2222AC -<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去;若3AC AB ==时,ABC 为等腰三角形,故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题.6.若k 为任意整数,则22(23)4k k +-的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【答案】B【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7.若a b ===()A.2B.4C.D.【答案】A【解析】【分析】把a b ==【详解】解:∵a b ==2==,故选:A .【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8.综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程.(1)作BD 的垂直平分线交BD 于点O ;(2)连接AO ,在AO 的延长线上截取OC AO =;(3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等【答案】C【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断.【详解】解:根据图1,得出BD 的中点O ,图2,得出OC AO =,可知使得对角线互相平分,从而得出四边形ABCD 为平行四边形,判定四边形ABCD 为平行四边形的条件是:对角线互相平分,故选:C .【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理.9.如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A.a b< B.a b = C.a b > D.a ,b 大小无法比较【答案】A【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +-=-,根据123PP P 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即1223345566778148PP P P P P P P P P P P P P P P =======∴12233467PP P P P P P P ===,464556781178P P P P P P P P P P PP =+=+=∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++-++=+-()()12172337131737PP PP P P P P PP PP P P =+++-++122313PP P P PP =-+在123PP P 中有122313PPP P PP >+∴1223130b a PP P P PP -=+>-故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数【答案】D【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.【详解】解:A.12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意;B.12129.46100.46910⨯-≠⨯,故该选项错误,不符合题意;C.129.4610⨯是一个13位数,故该选项错误,不符合题意;D.129.4610⨯是一个13位数,正确,符合题意.故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S =()A.3B.3C.12D.16【答案】B【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解.【详解】解:∵16AMEF S =正方形,∴164AM ==,∵Rt ABC △中,点M 是斜边BC 的中点,∴28BC AM ==,∴22224438AC BC AB =-=-=,∴114438322ABC S AB AC =⨯⨯=⨯⨯=,故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12.如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个,故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13.在ABC 和A B C '''中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A.30︒B.n ︒C.n ︒或180n ︒-︒D.30︒或150︒【答案】C【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,∵306B B AB A B '''∠=∠=︒==,,∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒-∠=︒-︒;综上,C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,∵两个人机器人速度相同,∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C ,故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A.42︒B.43︒C.44︒D.45︒【答案】C【解析】【分析】如图,由平角的定义求得18034ADB ADE Ð=°-Ð=°,由外角定理求得,16AHD ADB αÐ=Ð-Ð=°,根据平行性质,得16GIF AHD Ð=Ð=°,进而求得44EGF GIF βÐ=Ð-Ð=°.【详解】如图,∵146ADE ∠=︒∴18034ADB ADE Ð=°-Ð=°∵ADB AHDαÐ=Ð+Ð∴503416AHD ADB αÐ=Ð-Ð=°-°=°∵12l l ∥∴16GIF AHD Ð=Ð=°∵EGF GIFβÐ=Ð+Ð∴601644EGF GIF βÐ=Ð-Ð=°-°=°故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.2mC.4D.22m 【答案】A【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x -+=和220x m -=,解得0x =或2x m =或x m =-或x m =,不妨设0m >,∵()0m ,和()0m -,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =-的对称轴为0x =,抛物线22y x m x =-+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17.如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k ≤≤均可)【解析】【分析】先分别求得反比例函数(0)k y k x =≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)k y k x=≠图像过(3,3)A 时,339k =⨯=;当反比例函数(0)k y k x =≠图像过(3,1)B 时,313k =⨯=;∴k 的取值范围为39k ≤≤∴k 可以取4.故答案为4(答案不唯一,满足39k ≤≤均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键.18.根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7b21x x +a 1【答案】①.52②.2-【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==,当x n =时,211x x +=,即211n n +=,解得1n =-,经检验,1n =-是分式方程的解,∴()3112b =⨯-+=-,故答案为:52;2-【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】①.30②.【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒-︒=︒,故答案为:30;(2)取中间正六边形的中心为O,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒ ,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,DE PE ==,由图1知2AG BF PE ===,由正六边形的结构特征知:12OM =⨯=()112BC BF CH =-=,3tan 3BC AB BAC ∴==-∠,21BD AB ∴=-=,又1212DE =⨯= ,BE BD DE ∴=+=,ON OM BE ∴=+=故答案为:【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)312-在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分;(2)6k =.【解析】【分析】(1)根据题意列式计算即可求解;(2)根据题意列一元一次方程即可求解.【小问1详解】解:由题意得()4321426⨯+⨯+⨯-=(分),答:珍珍第一局的得分为6分;【小问2详解】解:由题意得()()3311032613k k +⨯+--⨯-=+,解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.【小问1详解】解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=;【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a -=++-+=-+=-∵1a >,∴()21210S S a -=->,∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可;(2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解.【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:34 3.52+=(分)由统计图可知,客户所评分数的平均数为:1123364555 3.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x ⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加权平均数的方法和根据不等量关系列不等式是解题的关键.23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =-,1c =;(2)符合条件的n 的整数值为4和5.【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171,,,求得n 的取值范围,即可求解.【小问1详解】解:∵抛物线21:(3)2C y a x =-+,∴1C 的最高点坐标为()32,,∵点(6,1)A 在抛物线21:(3)2C y a x =-+上,∴21(63)2a =-+,解得:19a =-,∴抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;【小问2详解】解:∵到点A 水平距离不超过1m 的范围内可以接到沙包,∴点A 的坐标范围为()()5171,,,当经过()51,时,211551188n =-⨯+⨯++,解得175n =;当经过()71,时,211771188n =-⨯+⨯++,解得417n =;∴174157n ≤≤∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ 的长度,并比较大小.【答案】(1)7cm ;(2)11cm 2;(3)253cm 3EF =,25π=cm 6EQ ,EF EQ >.【解析】【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE GH ⊥进而得到OE MN ⊥,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到90QOB ∠=︒,得到30QOE ∠=︒分别求出线段EF 与EQ 的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC MN ⊥于点C ,48cm MN =,∴124cm 2MC MN ==,。

2023年河北省中考数学试卷及答案解析

2023年河北省中考数学试卷及答案解析

2023年河北省中考数学试卷一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)代数式﹣7x的意义可以是()A.﹣7与x的和B.﹣7与x的差C.﹣7与x的积D.﹣7与x的商2.(3分)淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向3.(3分)化简的结果是()A.xy6B.xy5C.x2y5D.x2y64.(3分)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()A.(黑桃)B.(红心)C.(梅花)D.(方块)5.(3分)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC为等腰三角形时,对角线AC的长为()A.2B.3C.4D.56.(3分)若k为任意整数,则(2k+3)2﹣4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除7.(2分)若,,则=()A.2B.4C.D.8.(2分)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC=AO;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等9.(2分)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是()A.a<b B.a=bC.a>b D.a,b大小无法比较10.(2分)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km,下列正确的是()A.9.46×1012﹣10=9.46×1011B.9.46×1012﹣0.46=9×1012C.9.46×1012是一个12位数D.9.46×1012是一个13位数11.(2分)如图,在Rt△ABC中,AB=4,点M是斜边BC的中点,以AM为边作正方形AMEF.若S正方形AMEF=16,则S△ABC=()A.4B.8C.12D.1612.(2分)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A.1个B.2个C.3个D.4个13.(2分)在△ABC和△A'B'C′中,∠B=∠B'=30°,AB=A'B'=6,AC=A'C′=4,已知∠C=n°,则∠C′=()A.30°B.n°C.n°或180°﹣n°D.30°或150°14.(2分)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y.则y与x关系的图象大致是()A.B.C.D.15.(2分)如图,直线l1∥l2,菱形ABCD和等边△EFG在l1,l2之间,点A,F分别在l1,l2上,点B,D、E、G在同一直线上.若∠α=50°,∠ADE=146°,则∠β=()A.42°B.43°C.44°D.45°16.(2分)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.(2分)如图,已知点A(3,3),B(3,1),反比例函数图象的一支与线段AB有交点,写出一个符合条件的k的整数值:.18.(4分)根据表中的数据,写出a的值为,b的值为.2n3x+17ba119.(4分)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=度;(2)中间正六边形的中心到直线l的距离为(结果保留根号).三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(9分)某惯性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)31﹣2在某一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.21.(9分)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如表2和表3,其面积分别为S1,S2.表2表3(1)请用含a的式子分别表示S1,S2,当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.22.(9分)某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.(10分)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点A(6,1)处将沙包(看成点)抛出,其运动路线为抛物线C1:y=a(x﹣3)2+2的一部分,淇淇恰在点B(0,c)处接住,然后跳起将沙包回传,其运动路线为抛物线C2:的一部分.(1)写出C1的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.24.(10分)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水槽沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动.如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN 于点D.探究:在图2中.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段EF与的长度,并比较大小.25.(12分)在平面直角坐标系中,设计了点的两种移动方式:从点(x,y)移动到点(x+2,y+1)称为一次甲方式;从点(x,y)移动到点(x+1,y+2)称为一次乙方式.例点P从原点O出发连续移动2次:若都按甲方式,最终移动到点M(4,2);若都按乙方式,最终移动到点N(2,4);若按1次甲方式和1次乙方式,最终移动到点E(3,3).(1)设直线l1经过上例中的点M、N,求l1的解析式,并直接写出将l1向上平移9个单位长度得到的直线l2的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点Q (x,y).其中,按甲方式移动了m次.①用含m的式子分别表示x,y;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为l3,在图中直接画出l3的图象;(3)在(1)和(2)中的直线l1,l2,l3上分别有一个动点A,B,C,横坐标依次为a,b,c,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.26.(13分)如图1和图2,平面上,四边形ABCD中,AB=8,,CD=12,DA =6.∠A=90°,点M在AD边上,且DM=2.将线段MA绕点M顺时针旋转n°(0<n≤180)到MA',∠A′MA的平分线MP所在直线交折线AB﹣BC于点P,设点P在该折线上运动的路径长为x(x>0),连接A′P.(1)若点P在AB上,求证:A'P=AP;(2)如图2,连接BD.①求∠CBD的度数,并直接写出当n=180时,x的值;②若点P到BD的距离为2,求tan∠A′MP的值;(3)当0<x≤8时,请直接写出点A′到直线AB的距离(用含x的式子表示).2023年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】直接利用代数式的意义分析得出答案.【解答】解:代数式﹣7x的意义可以是﹣7与x的积.故选:C.【点评】此题主要考查了代数式,掌握代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子是解题关键.2.【分析】根据题意可得:∠ABC=70°,AB∥CD,然后利用平行线的性质可得∠ABC=∠DCB=70°,从而根据方向角的定义,即可解答.【解答】解:如图:由题意得:∠ABC=70°,AB∥CD,∴∠ABC=∠DCB=70°,∴淇淇家位于西柏坡的北偏东70°方向,故选:D.【点评】本题考查了方向角的定义,熟练掌握方向角的定义是解题的关键.3.【分析】先根据分式的乘方法则计算,再根据分式的乘法法则计算.【解答】解:x3()2=x3•=xy6,故选:A.【点评】本题考查的是分式的乘除法,掌握分式的乘法法则、乘方法则是解题的关键.4.【分析】根据概率公式分别求出各花色的概率判断即可.【解答】解:∵抽到黑桃的概率为,抽到红心的概率为,抽到梅花的概率为,抽到方块的概率为,∴抽到的花色可能性最大的是红心,故选:B.【点评】本题考查了可能性的大小,熟练掌握概率公式是解题的关键.5.【分析】分两种情况,由三角形的三边关系定理:三角形两边的和大于第三边,即可解决问题.【解答】解:∵△ABC为等腰三角形,∴AB=AC或AC=BC,当AC=BC=4时,AD+CD=AC=4,此时不满足三角形三边关系定理,当AC=AB=3时.满足三角形三边关系定理,∴AC=3.故选:B.【点评】本题考查等腰三角形的性质,三角形的三边关系定理,关键是掌握三角形的三边关系定理.6.【分析】先根据完全平方公式进行计算,再合并同类项,分解因式后再逐个判断即可.【解答】解:(2k+3)2﹣4k2=4k2+12k+9﹣4k2=12k+9=3(4k+3),∵k为任意整数,∴(2k+3)2﹣4k2的值总能被3整除,故选:B.【点评】本题考查了因式分解的应用,能求出(2k+3)2﹣4k2=3(4k+3)是解此题的关键.7.【分析】把a、b的值代入原式,根据二次根式的性质化简即可.【解答】解:∵a=,b=,∴===2,故选:A.【点评】本题考查的是二次根式的化简求值,掌握二次根式的性质是解题的关键.8.【分析】根据:“对角线互相平分的四边形是平行四边形”证明.【解答】解:由作图得:DO=BO,AO=CO,∴四边形ABCD为平行四边形,故选:C.【点评】本题考查了复杂作图,掌握平行四边形的判定定理是解题的关键.9.【分析】利用三角形的三边关系,正多边形的性质证明即可.【解答】解:连接P4P5,P5P6.∵点P1~P8是⊙O的八等分点,∴P3P4=P4P5=P5P6=P6P7,P1P7=P1P3=P4P6,∴b﹣a=P3P4+P7P6﹣P1P3,∵P5P4+P5P6>P4P6,∴P3P4+P7P6>P1P3,∴b﹣a>0,∴a<b,故选:A.【点评】本题考查正多边形于圆,三角形的三边关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9.46×1012km=9460000000000km是一个13位数.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【分析】先根据正方形AMEF的面积求出AM的长,然后根据直角三角形斜边上的中线等于斜边的一半求出BC的长,最后根据勾股定理求出AC的长,然后即可求出直角三角形ABC的面积.【解答】解:∵四边形AMEF是正方形,=16,又∵S正方形AMEF∴AM2=16,∴AM=4,在Rt△ABC中,点M是斜边BC的中点,∴,即BC=2AM=8,在Rt△ABC中,AB=4,∴,∴,故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,正方形的面积计算公式,直角三角形面积的计算公式,勾股定理,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.12.【分析】根据题意主视图和左视图即可得到结论.【解答】解:平台上至少还需再放这样的正方体2个,故选:B.【点评】本题考查了由三视图判断几何体,正确地得出小正方体的个数是解题的关键.13.【分析】分两种情况讨论,当BC=B′C′时,则△ABC≌△A′B′C′,得出∠C′=∠C=n°,当BC≠B′C′时,如图,利用等腰三角形的性质求得∠A′C″C′=∠C′=n°,从而求得∠A′C″B′=180°﹣n°.【解答】解:当BC=B′C′时,△ABC≌△A′B′C′(SSS),∴∠C′=∠C=n°,当BC≠B′C′时,如图,∵A′C′=A′C″,∴∠A′C″C′=∠C′=n°,∴∠A′C″B′=180°﹣n°,∴∠C′=n°或180°﹣n°,【点评】本题考查了等腰三角形的性质,三角形全等的性质,熟练掌握等腰三角形两底角相等是解题的关键.14.【分析】设圆的半径为R,根据机器人移动时最开始的距离为AM+CN+R,之后同时到达点A,C两个机器人之间的距离y越来越小,当两个机器人分别沿A→D→C和C→B →A移动时,此时两个机器人之间的距离是半径R,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,据此得出结论即可.【解答】解:由题意可得:机器人(看成点)分别从M,N两点同时出发,设圆的半径为R,∴两个机器人最初的距离是AM+CN+R,∵两个人机器人速度相同,∴同时到达点A,C,∴两个机器人之间的距离y越来越小,故排除A、C;当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是半径R,保持不变,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,故排除B;故选:D.【点评】本题考查动点函数图象,找到运动时的特殊点用排除法是关键.15.【分析】由平角的定义求得∠ADB=180°﹣∠ADE=34°,由外角定理求得∠AHD=∠α﹣∠ADB=16°,根据平行线的性质得∠GIF=∠AHD=16°,进而求得∠β=∠EGF﹣∠GIF=44°.【解答】解:如图,延长BG,∵∠ADE=146°,∴∠ADB=180°﹣∠ADE=34°,∵∠α=∠ADB+∠AHD,∴∠AHD=∠α﹣∠ADB=50°﹣34°,=16°,∴∠GIF=∠AHD=16°,∵∠EGF=∠β+∠GIF,∵△EFG是等边三角形,∴∠EGF=60°,∴∠β=∠EGF﹣∠GIF=60°﹣16°=44°,故选:C.【点评】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角度之间的数量关系是解题关键.16.【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴x=0,抛物线y=﹣x2+m2x的对称轴x=,∴这两个函数图象对称轴之间的距离==2.故选:A.【点评】本题考查二次函数图象有系数的关系,抛物线与x轴的交点等知识,解题的关键是理解题意,学会构建方程解决问题.二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.【分析】把点A(3,3),B(3,1)代入y=即可得到k的值,从而得结论.【解答】解:由图可知:k>0,∵反比例函数y=(k>0)的图象与线段AB有交点,且点A(3,3),B(3,1),∴把B(3,1)代入y=得,k=3,把A(3,3)代入y=得,k=3×3=9,∴满足条件的k值的范围是3≤k≤9的整数,故k=4(答案不唯一),故答案为:k=4(答案不唯一).【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,正确的理解题意是解题的关键.18.【分析】将x=2代入中计算即可求得a的值;将x=n代入可得关于n的分式方程,解得n的值后代入3x+1中计算即可求得b的值.【解答】解:当x=2时,==,即a=;当x=n时,=1,解得:n=﹣1,经检验,n=﹣1是分式方程的解,那么当x=﹣1时,3x+1=﹣3+1=﹣2,即b=﹣2,故答案为:;﹣2.【点评】本题考查代数式求值及解分式方程,特别注意解分式方程时必须进行检验.19.【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.【点评】本题考查了正多边形与圆,正六边形的性质,解直角三角形,全等三角形的判定和性质,正确地作出辅助线是解题的关键.三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.【分析】(1)根据题意列出算式可求解;(2)由题意列出方程可求解.【解答】解:(1)由题意可得:4×3+2×1+4×(﹣2)=6(分),答:珍珍第一局的得分为6分;(2)由题意可得:3k+3×1+(10﹣k﹣3)×(﹣2)=6+13,解得:k=6.【点评】本题考查了一元一次方程的应用,找到正确的数量关系是解题的关键.21.【分析】(1)根据图形,利用长方形的面积公式计算即可;(2)利用作差法比较即可.【解答】解:(1)由图可知S1=(a+2)(a+1)=a2+3a+2,S2=(5a+1)×1=5a+1,当a=2时,S1+S2=4+6+2+10+1=23;(2)S1>S2,理由:∵S1﹣S2=a2+3a+2﹣5a﹣1=a2﹣2a+1=(a﹣1)2,又∵a>1,∴(a﹣1)2>0,∴S1>S2.【点评】本题考查了多项式乘多项式,关键是能列出整式或算式表示几何图形的面积.22.【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可.(2)根据重新计算后,发现客户所评分数的平均数大于3.55分列出不等式,从而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可.【解答】解:(1)由条形图可知,第10个数据是3分,第11个数据是4分,∴中位数为3.5分,由统计图可得平均数为=3.5分,∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.(2)监督人员抽取的问卷所评分数为x分,则有,解得x>4.55,∵满意度从低到高为1分,2分,3分,4分,5分,共5档.∴监督人员抽取的问卷所评分数为5分,∵4<5,∴加入这个数据,客户所评分数按从小到大排列后,第11个数据不变还是4分,即加入这个数据后,中位数是4分,∴与(1)相比,中位数是发生了变化,由3.5分变成4分.【点评】本题考查条形统计图,中位数和平均数,一元一次不等式的应用,掌握求中位数和平均数的方法是解题关键.23.【分析】(1)将点A坐标代入解析式可求a,即可求解;(2)根据点A的取值范围代入解析式可求解.【解答】解:(1)∵抛物线C1:y=a(x﹣3)2+2,∴C1的最高点坐标为(3,2),∵点A(6,1)在抛物线C1:y=a(x﹣3)2+2上,∴1=a(6﹣3)2+2,∴a=﹣,∴抛物线C1:y=﹣(x﹣3)2+2,当x=0时,c=1;(2)∵嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,∴此时,点A的坐标范围是(5,1)~(7,1),当经过(5,1)时,1=﹣×25+×5+1+1,解得:n=,当经过(7,1)时,1=﹣×49+×7+1+1,解得:n=,∴≤n≤,∵n为整数,∴符合条件的n的整数值为4和5.【点评】本题考查了二次函数的应用,读懂题意,掌握二次函数图象上点的坐标特征是解题的关键.24.【分析】(1)连接OM,利用垂径定理得出MC=MN=24cm,由勾股定理计算即可得出答案;(2)由切线的性质证明OE⊥GH,进而得到OE⊥MN,利用锐角三角函数的定义求出OD,再与(1)中OC相减即可得出答案;(3)由半圆的中点为Q得到∠OOB=90°,得到∠QOE=30°,分别求出线段EF与的长度,再相减比较即可.【解答】解:(1)连接OM,∵O为圆心,OC⊥MN于点C,MN=48cm,∴MC=MN=24cm,∵AB=50cm,∴OM=AB=25cm,在Rt△OMC中,OC===7(cm);(2)∵GH与半圆的切点为E,∴OE⊥GH,∵MN∥GH,∴OE⊥MN于点D,∵∠ANM=30°,ON=25cm,∴,∴操作后水面高度下降高度为:;(3)∵OE⊥MN于点D,∠ANM=30°,∴∠DOB=60°,∵半圆的中点为Q,∴,∴∠QOB=90°,∴∠QOE=30°,∴EF=tan∠QOE•OE=(cm),的长为(cm),∵=>0,∴EF>.【点评】本题是圆的综合题,考查了垂径定理,直角三角形的性质,圆的切线的性质,弧长公式和解直角三角形的知识,熟练掌握圆的有关性质定理是解题的关键.25.【分析】(1)由待定系数法可求直线l1的解析式;由平移的性质可求直线l2的解析式;(2)①由题意可得:点P按照甲方式移动m次后得到的点的坐标为(2m,m),再得出点(2m,m),按照乙方式移动(10﹣m)次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线l3的解析式,进而可画出函数图象;(3)由题意可得点A,点B,点C的坐标,由待定系数法可求直线AB的解析式,即可求解.【解答】解:(1)设l1的解析式为y=kx+b,由题意可得:,解得:,∴l1的解析式为y=﹣x+6,将l1向上平移9个单位长度得到的直线l2的解析式为y=﹣x+15;(2)∵点P按照甲方式移动了m次,点P从原点O出发连续移动10次,∴点P按照乙方式移动了(10﹣m)次,∴点P按照甲方式移动m次后得到的点的坐标为(2m,m),∴点(2m,m)按照乙方式移动(10﹣m)次后得到的点的横坐标为2m+10﹣m=m+10,纵坐标为m+2(10﹣m)=20﹣m,∴x=m+10,y=20﹣m;②∵x+y=m+10+20﹣m=30,∴直线l3的解析式为y=﹣x+30;函数图象如图所示:(3)∵点A,B,C,横坐标依次为a,b,c,∴点A(a,﹣a+6),点B(b,﹣b+15),点C(c,﹣c+30),设直线AB的解析式为y=mx+n,由题意可得:,解得:,∴直线AB的解析式为y=(﹣1+)x+6﹣,∵点A,点B,点C三点始终在一条直线上,∴c(﹣1+)+6﹣=﹣c+30,∴5a+3c=8b,∴a,b,c之间的关系式为5a+3c=8b.【点评】本题是一次函数综合题,考查了待定系数法,平移的性质,掌握平移的性质和一次函数的性质是解题的关键.26.【分析】(1)根据旋转的性质和角平分线的概念得到A′M=AM,∠A′MP=∠AMP,然后证明出△A′MP≌△AMP(SAS),即可得到A′P=AP;(2)①首先根据勾股定理得到,然后利用勾股定理的逆定理即可求出∠CBD=90°;画出图形,然后证明出△DNM∽△DBA,利用相似三角形的性质求出,然后证明出△PBN∽△DMN,利用相似三角形的性质得到PB=5,进而求解即可;②当P点在AB上时,PQ=2,∠A′MP=∠AMP,分别求得BP,AP,根据正切的定义即可求解;当P在BC上时,则PB=2,过点P作PQ⊥ABAB的延长线于点Q,延长MP交AB的延长线于点H,证明△PQB∽BAD,得,进而求得AQ,证明△HPQ∽△HMA,即可求解;(3)如图所示,过点A作AE⊥AB交AB于点E,过点M作MF⊥A′E于点F,则四边形AMFE是矩形,证明△A′PE∽△MA′F,根据相似三角形的性质即可求解.【解答】(1)证明:∵将线段MA绕点M顺时针旋转n°(0<n≤180)得到MA′,∴A′M=AM,∵∠A′MA的平分线MP所在的直线交折线AB﹣BC于点P,∴∠A′MP=∠AMP,∵PM=PM,∴△A′MP≌△AMP(SAS),∴A′P=AP;(2)解:①∵AB=8,DA=6,∠A=90°,∴BD==10,又∵,CD=12,∴BD2+BC2=100+44=144,CD2=144,∴BD2+BC2=CD2,∴∠CBD=90°;如图2所示,当n=180时,∵PM平分∠A′MA.∠PMA=90°,∴PM∥AB,∴△DNM∽△DBA,∴,∵DM=2,DA=6,∴,∴,∴,∵∠PBN=∠MD=90°,∠PNB=∠DNM,∴△PBN∽△DMN,∴,即,∴PB=5,∴x=AB+PB=8+5=13.②如图所示,当P点在AB上时,PQ=2,∠A′MP=∠AMP,∴AB=8,DA=6,∠A=90°,∴,∴,∴,∴,∴,如图所示,当P在BC上时,则PB=2,过点P作PQ⊥AB交AB的延长线于点Q,延长MP交AB的延长线于点H,∵∠PQB=∠CBD=∠DAB=90°,∴∠QPB=90°﹣∠PBQ=∠DBA,∴△PQB∽△BAD,∴,即,∴,,∴,∵PQ⊥AB,DA⊥AB,∴PQ∥AD,∴△HPQ∽△HMA,∴,解得:,∴tan∠AMP=tan∠AMP=tan∠QPH===,综上所述,tan∠A′MP的值为或;(3)解:∵当0<x≤8时,∴P在AB上,如图所示,过点A′作A′E⊥AB于点E,过点M作MF⊥A′E于点F,则四边形AMFE 是矩形,∴AE=FM,EF=AM=4,∵△A′MP≌△AMP,∴∠PA′M=∠A=90°,∴∠PA′E+∠FA′M=90°,又∠A'MF+∠FA′M=90°,∴∠PA′E=∠A′MF,又∵∠A'E=∠MFA=90°,∴△A′PE∽△MA'F,∴==,∵A′P=AP=x,MA′=MA=4,设FM=AE=y,A′E=h,即∴,4(x﹣y)=x(h﹣4),∴,整理得,即点A′到直线AB的距离为.【点评】本题属于三角形综合题,考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,染练掌握以上知识且分类讨论是解题的关键。

(中考数学)河北省中考数学真题 (解析版)

(中考数学)河北省中考数学真题 (解析版)

2022年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 计算3a a ÷得?a ,则“?”是( )A. 0B. 1C. 2D. 3【答案】C【解析】【分析】运用同底数幂相除,底数不变,指数相减,计算即可.【详解】3312a a a a -÷==,则“?”是2,故选:C .【点睛】本题考查同底数幂的除法;注意m n m n a a a -÷=.2. 如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是△ABC 的( )A. 中线B. 中位线C. 高线D. 角平分线【答案】D【解析】 【分析】根据折叠的性质可得CAD BAD ∠=∠,作出选择即可.【详解】解:如图,∵由折叠的性质可知CAD BAD ∠=∠,∴AD是BAC∠的角平分线,故选:D.【点睛】本题考查折叠的性质和角平分线的定义,理解角平分线的定义是解答本题的关键.3. 与132-相等的是()A.132-- B.132- C.132-+ D.132+【答案】A 【解析】【分析】根据17322-=-,分别求出各选项的值,作出选择即可.【详解】A、17322--=-,故此选项符合题意;B、15322-=,故此选项不符合题意;C、15322-+=-,故此选项不符合题意;D、17322+=,故此选项不符合题意;故选:A.【点睛】本题考查有理数的加减混合运算,熟练掌握有理数的加减混合运算法则是解答本题的关键.4. 下列正确的是()23 =+23=⨯=D.0.7=【答案】B【解析】【分析】根据二次根式的性质判断即可.详解】解:23=≠+,故错误;23=⨯,故正确;C=≠,故错误;0.7≠,故错误;故选:B.【【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5. 如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )A. 0αβ-=B. 0αβ-<C. 0αβ->D. 无法比较α与β的大小【答案】A【解析】 【分析】多边形的外角和为360︒,△ABC 与四边形BCDE 的外角和均为360︒,作出选择即可.【详解】解:∵多边形的外角和为360︒,∴△ABC 与四边形BCDE 的外角和α与β均为360︒,∴0αβ-=,故选:A .【点睛】本题考查多边形的外角和定理,注意多边形的外角和为360︒是解答本题的关键. 6. 某正方形广场的边长为2410m ⨯,其面积用科学记数法表示为( )A. 42410m ⨯B. 421610m ⨯C. 521.610m ⨯D.421.610m ⨯【答案】C【解析】【分析】先算出面积,然后利用科学记数法表示出来即可.【详解】解:面积为:22452410410=1610=1.610⨯⨯⨯⨯⨯(m ), 故选:C .【点睛】本题主要考查了科学记数法,熟练掌握科学记数法的表示形式是解题的关键. 7. ①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A. ①③B. ②③C. ③④D. ①④【答案】D【解析】【分析】观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.8. 依据所标数据,下列一定为平行四边形的是()A. B. C.D.【答案】D【解析】【分析】根据平行四边形的判定及性质定理判断即可;【详解】解:平行四边形对角相等,故A错误;一组对边平行不能判断四边形是平行四边形,故B错误;三边相等不能判断四边形是平行四边形,故C错误;一组对边平行且相等的四边形是平行四边形,故D正确;故选:D.【点睛】本题主要考查平行四边形的判定及性质,掌握平行四边形的判定及性质是解题的关键.9. 若x和y互为倒数,则112x yy x⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭的值是()A. 1B. 2C. 3D. 4 【答案】B【解析】 【分析】先将112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭化简,再利用互为倒数,相乘为1,算出结果,即可 【详解】112111*********x y y x xy x y x y xy xy xyxy xy⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭=-⋅+⋅-=-+-=-+ ∵x 和y 互为倒数∴1xy =1212112xy xy -+=-+= 故选:B【点睛】本题考查代数式的化简,注意互为倒数即相乘为110. 某款“不倒翁”(图1)的主视图是图2,PA ,PB 分别与 AMB所在圆相切于点A ,B .若该圆半径是9cm ,∠P =40°,则 AMB的长是( )A. 11πcmB. 112πcmC. 7πcmD. 72πcm 【答案】A【解析】【分析】如图,根据切线的性质可得90∠=∠=︒PAO PBO,根据四边形内角和可得AOB ∠的角度,进而可得 AMB所对的圆心角,根据弧长公式进行计算即可求解. 【详解】解:如图,PA ,PB 分别与 AMB 所在圆相切于点A ,B .90PAO PBO ∴∠=∠=︒,∠P =40°,360909040140AOB ∴∠=︒-︒-︒-︒=︒,该圆半径是9cm , 360140911180AMB ππ-∴=⨯=cm , 故选:A .【点睛】本题考查了切线的性质,求弧长,牢记弧长公式是解题的关键.11. 要得知作业纸上两相交直线AB ,CD 所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是( )A. Ⅰ可行、Ⅱ不可行B. Ⅰ不可行、Ⅱ可行C. Ⅰ、Ⅱ都可行D. Ⅰ、Ⅱ都不可行【答案】C【解析】【分析】用夹角可以划出来的两条线,证明方案Ⅰ和Ⅱ的结果是否等于夹角,即可判断正误∠即为所要测量的角【详解】方案Ⅰ:如下图,BPD∠=∠∵HEN CFG∥∴MN PD∠=∠∴AEM BPD故方案Ⅰ可行∠即为所要测量的角方案Ⅱ:如下图,BPD在EPF 中:180BPD PEF PFE ∠+∠+∠=︒则:180BPD AEH CFG ∠=︒-∠-∠故方案Ⅱ可行故选:C【点睛】本题考查平行线性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明12. 某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m 个人共同完成需n 天,选取6组数对(),m n ,在坐标系中进行描点,则正确的是( )A. B.C. D.【答案】C【解析】【分析】根据题意建立函数模型可得12mn =,即12n m=,符合反比例函数,根据反比例函数的图象进行判断即可求解.的【详解】解:依题意,1··112m n = 12mn ∴=,12n m∴=,,0m n >且为整数. 故选C .【点睛】本题考查了反比例数的应用,根据题意建立函数模型是解题的关键. 13. 平面内,将长分别为1,5,1,1,d 的线段,顺次首尾相接组成凸五边形(如图),则d 可能是( )A. 1B. 2C. 7D. 8【答案】C【解析】【分析】如图(见解析),设这个凸五边形为ABCDE ,连接,AC CE ,并设,AC a CE b ==,先在ABC 和CDE △中,根据三角形的三边关系定理可得46a <<,02b <<,从而可得48a b <+<,26a b <-<,再在ACE 中,根据三角形的三边关系定理可得a b d a b -<<+,从而可得28d <<,由此即可得出答案.【详解】解:如图,设这个凸五边形为ABCDE ,连接,AC CE ,并设,AC a CE b ==,在ABC 中,5115a -<<+,即46a <<,在CDE △中,1111b -<<+,即02b <<,所以48a b <+<,26a b <-<,在ACE 中,a b d a b -<<+,所以28d <<,观察四个选项可知,只有选项C 符合,故选:C.【点睛】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键.14. 五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A. 只有平均数B. 只有中位数C. 只有众数D. 中位数和众数【答案】D【解析】【分析】分别计算前后数据的平均数、中位数、众数,比较即可得出答案.【详解】解:追加前的平均数为:15(5+3+6+5+10)=5.8;从小到大排列为3,5,5,6,10,则中位数为5;5出现次数最多,众数为5;追加后的平均数为:15(5+3+6+5+20)=7.8;从小到大排列为3,5,5,6,20,则中位数为5;5出现次数最多,众数为5;综上,中位数和众数都没有改变,故选:D.【点睛】本题为统计题,考查了平均数、众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.15. “曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置.如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A. 依题意3120120x ⨯=-B. 依题意()203120201120x x +⨯=++C. 该象的重量是5040斤D. 每块条形石的重量是260斤 【答案】B【解析】【分析】根据题意列出方程即可解答.【详解】解:根据题意可得方程;()203120201120x x +⨯=++故选:B .【点睛】本题主要考查一元一次方程的应用,根据题意真确列出方程是解题的关键. 16. 题目:“如图,∠B =45°,BC =2,在射线BM 上取一点A ,设AC =d ,若对于d 的一个数值,只能作出唯一一个△ABC ,求d 的取值范围.”对于其答案,甲答:2d ≥,乙答:d =1.6,丙答:d =,则正确的是( )A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整【答案】B【解析】【分析】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=,发现若有两个三角形,两三角形的AC 边关于A C '对称,分情况分析即可【详解】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=∵∠B =45°,BC =2,CA BM '⊥∴BA C 'V 是等腰直角三角形∴A C BA ''===∵A A BA ''''=∴2A C ''==若对于d 的一个数值,只能作出唯一一个△ABC通过观察得知:点A 在A '点时,只能作出唯一一个△ABC (点A 在对称轴上),此时d =,即丙的答案;点A 在A M ''射线上时,只能作出唯一一个△ABC (关于A C '对称的AC 不存在),此时2d ≥,即甲的答案,点A 在BA ''线段(不包括A '点和A ''点)上时,有两个△ABC (二者的AC 边关于A C '对称);故选:B【点睛】本题考查三角形的存在性质,勾股定理,解题关键是发现若有两个三角形,两三角形的AC 边关于A C '对称二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17. 如图,某校运会百米预赛用抽签方式确定赛道.若琪琪第一个抽签,她从1~8号中随机抽取一签,则抽到6号赛道的概率是______.【答案】18【解析】【分析】直接根据概率公式计算,即可求解.【详解】解:根据题意得:抽到6号赛道的概率是18. 故答案为:18【点睛】本题考查了概率公式:熟练掌握随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数;P (必然事件)=1;P (不可能事件)=0是解题的关键.18. 如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点E ,则(1)AB 与CD 否垂直?______(填“是”或“否”);(2)AE =______.【答案】①. 是 ②.【解析】 【分析】(1)证明△ACG ≌△CFD ,推出∠CAG =∠FCD ,证明∠CEA =90°,即可得到结论;(2)利用勾股定理求得AB 的长,证明△AEC ∽△BED ,利用相似三角形的性质列式计算即可求解.【详解】解:(1)如图:AC =CF =2,CG =DF =1,∠ACG =∠CFD =90°,∴△ACG ≌△CFD ,∴∠CAG =∠FCD ,是∵∠ACE +∠FCD =90°,∴∠ACE +∠CAG =90°,∴∠CEA =90°,∴AB 与CD 是垂直的,故答案为:是;(2)AB =∵AC ∥BD ,∴△AEC ∽△BED , ∴AC AE BD BE =,即23AE BE=, ∴25AE BE =,∴AE =25BE =【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.19. 如图,棋盘旁有甲、乙两个围棋盒.(1)甲盒中都是黑子,共10个,乙盒中都是白子,共8个,嘉嘉从甲盒拿出a 个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,则a =______;(2)设甲盒中都是黑子,共()2m m >个,乙盒中都是白子,共2m 个,嘉嘉从甲盒拿出()1a a m <<个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多______个;接下来,嘉嘉又从乙盒拿回a 个棋子放到甲盒,其中含有()0x x a <<个白子,此时乙盒中有y 个黑子,则y x的值为______.【答案】①. 4 ②. 2m a + ③. 1【解析】 【分析】①用列表的方式,分别写出甲乙变化前后的数量,最后按两倍关系列方程,求解,即可②用列表的方式,分别写出甲乙每次变化后的数量,按要求计算写出代数式,化简,即可 ③用列表的方式,分别写出甲乙每次变化后的数量,算出移动的a 个棋子中有x 个白子,()a x -个黑子,再根据要求算出y ,即可【详解】答题空1: 原甲:10原乙:8 现甲:10-a 现乙:8+a依题意:82(10)a a +=⨯-解得:4a =故答案为:4答题空2: 原甲:m原乙:2m 现甲1:m -a 现乙1:2m +a第一次变化后,乙比甲多:2()22m a m a m a m a m a +--=+-+=+故答案为:2m a +答题空3: 原甲:m 黑原乙:2m 白 现甲1:m 黑-a 黑 现乙1:2m 白+a 黑现甲2:m 黑-a 黑+a 混合 现乙2:2m 白+a 黑-a 混合第二次变化,变化的a 个棋子中有x 个白子,()a x -个黑子则:()y a a x a a x x =--=-+=1y x x x== 故答案为:1【点睛】本题考查代数式的应用;注意用表格梳理每次变化情况是简单有效的方法三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20. 整式133m ⎛⎫- ⎪⎝⎭的值为P .(1)当m =2时,求P 的值;(2)若P 的取值范围如图所示,求m 的负整数值.【答案】(1)5-(2)2,1--【解析】【分析】(1)将m =2代入代数式求解即可,(2)根据题意7P ≤,根据不等式,然后求不等式的负整数解.【小问1详解】解:∵133m P ⎛⎫- ⎪⎝⎭= 当2m =时,1323P ⎛⎫=⨯-⎪⎝⎭ 533⎛⎫=⨯- ⎪⎝⎭5=-;【小问2详解】133m P ⎛⎫- ⎪⎝⎭=,由数轴可知7P ≤,即1373m⎛⎫-≤⎪⎝⎭,1733m∴-≤,解得2m≥-,∴m的负整数值为2,1--.【点睛】本题考查了代数式求值,解不等式,求不等式的整数解,正确的计算是解题的关键.21. 某公司要在甲、乙两人中招聘一名职员,对两人的学历、能力、经验这三项进行了测试,各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图.(1)分别求出甲、乙三项成绩之和,并指出会录用谁;(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.【答案】(1)甲(2)乙【解析】【分析】(1)根据条形统计图数据求解即可;(2)根据“能力”、“学历”、“经验”所占比进行加权再求总分即可.【小问1详解】解:甲三项成绩之和为:9+5+9=23;乙三项成绩之和为:8+9+5=22;录取规则是分高者录取,所以会录用甲.【小问2详解】“能力”所占比例为:1801 3602︒=︒;“学历”所占比例为:12013603︒=︒; “经验”所占比例为:6013606︒=︒; ∴“能力”、“学历”、“经验”的比为3:2:1; 甲三项成绩加权平均为:3925192363⨯+⨯+⨯=; 乙三项成绩加权平均为:3829154766⨯+⨯+⨯=; 所以会录用乙.【点睛】本题主要考查条形统计图和扇形统计图,根据图表信息进行求解是解题的关键. 22. 发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,()()22212110++-=为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.【答案】验证:22215+=;论证见解析【解析】【分析】通过观察分析验证10的一半为5,22215+=;将m 和n 代入发现中验证即可证明.【详解】证明:验证:10的一半为5,22215+=;设“发现”中的两个已知正整数为m ,n ,∴()()()22222m n m n m n ++-=+,其中()222m n +为偶数,且其一半22m n +正好是两个正整数m 和n 的平方和,∴“发现”中的结论正确.【点睛】本题考查列代数式,根据题目要求列出代数式是解答本题的关键.23. 如图,点(),3P a 在抛物线C :()246y x =--上,且在C 的对称轴右侧.(1)写出C 的对称轴和y 的最大值,并求a 的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P 及C 的一段,分别记为P ',C '.平移该胶片,使C '所在抛物线对应的函数恰为269y x x =-+-.求点P '移动的最短路程.【答案】(1)对称轴为直线6x =,y 的最大值为4,7a =(2)5【解析】【分析】(1)由2()y a x h k =-+的性质得开口方向,对称轴和最值,把(),3P a 代入()246y x =--中即可得出a 的值;(2)由2269(3)y x x x =-+-=--,得出抛物线269y x x =-+-是由抛物线C :()246y x =-+-向左平移3个单位,再向下平移4个单位得到,即可求出点P '移动的最短路程.【小问1详解】 ()2244)6(6y x x -=--=-+,∴对称轴为直线6x =,∵10-<,∴抛物线开口向下,有最大值,即y 的最大值为4,把(),3P a 代入()246y x =--中得: 24(6)3a --=,解得:5a =或7a =,∵点(),3P a 在C 的对称轴右侧,∴7a =;【小问2详解】∵2269(3)y x x x =-+-=--,∴2(3)y x =--是由()246y x =-+-向左平移3个单位,再向下平移4个单位得到,5=,∴P '移动的最短路程为5.【点睛】本题考查二次函数2()y a x h k =-+的图像与性质,掌握二次函数2()y a x h k =-+的性质以及平移的方法是解题的关键.24. 如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线MN AB ∥.嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14°,点M 的俯角为7°.已知爸爸的身高为1.7m .(1)求∠C 的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4取4.1)【答案】(1)=76C ∠︒, 6.8(m)AB =(2)见详解,约6.0米【解析】【分析】(1)由水面截线MN AB ∥可得BC AB ⊥,从而可求得76C ∠=︒,利用锐角三角形的正切值即可求解.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,水面截线MN AB ∥,即可得DH 即为所求,由圆周角定理可得14BOM ∠=︒,进而可得ABC OGM ,利用相似三角形的性质可得4OG GM =,利用勾股定理即可求得GM 的值,从而可求解.【小问1详解】解:∵水面截线MN AB ∥BC AB ∴⊥,90ABC ∴∠=︒,90=76C CAB ∴∠=︒-∠︒,在t R ABC 中,90ABC ∠=︒, 1.7BC =,tan 76 1.7AB AB BC ∴︒==, 解得 6.8(m)AB ≈.【小问2详解】过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,如图所示:水面截线MN AB ∥,OH AB ⊥,DH MN ∴⊥,GM OD =,DH ∴为最大水深,7BAM ∠=︒ ,214BOM BAM ∴∠=∠=︒,90ABC OGM ∠=∠=︒ ,且14BAC ∠=︒,ABC OGM ∴ ,OG MG AB CB ∴=,即6.8 1.7OG MG =,即4OG GM =, 在Rt OGM △中,90OGM ∠=︒, 3.42AB OM =≈, 222OG GM OM ∴+=,即2224(3.4)GM GM +=(), 解得0.8GM ≈,= 6.80.86DH OH OD ∴-=-≈,∴最大水深约为6.0米.【点睛】本题考查了解直角三角形,主要考查了锐角三角函数的正切值、圆周角定理、相似三角形的判定及性质、平行线的性质和勾股定理,熟练掌握解直角三角形的相关知识是解题的关键.25. 如图,平面直角坐标系中,线段AB 的端点为()8,19A -,()6,5B .(1)求AB 所在直线的解析式;(2)某同学设计了一个动画:在函数()0,0y mx n m y =+≠≥中,分别输入m 和n 的值,使得到射线CD ,其中(),0C c .当c =2时,会从C 处弹出一个光点P ,并沿CD 飞行;当2c ≠时,只发出射线而无光点弹出.①若有光点P 弹出,试推算m ,n 应满足的数量关系;②当有光点P 弹出,并击中线段AB 上的整点(横、纵坐标都是整数)时,线段AB 就会发光,求此时整数m 的个数.【答案】(1)11y x =-+(2)①2n m =-,理由见解析②5【解析】【分析】(1)设直线AB 的解析式为()0y kx b k =+≠,把点()8,19A -,()6,5B 代入,即可求解;(2)①根据题意得,点C (2,0),把点C (2,0)代入y mx n =+,即可求解;②由①得:2n m =-,可得()2y x m =-,再根据题意找到线段AB 上的整点,再逐一代入,即可求解.【小问1详解】解:设直线AB 的解析式为()0y kx b k =+≠,把点()8,19A -,()6,5B 代入得:81965k b k b -+=⎧⎨+=⎩,解得:111k b =-⎧⎨=⎩, ∴AB 所在直线的解析式为11y x =-+;小问2详解】解: 2n m =-,理由如下:若有光点P 弹出,则c =2,∴点C (2,0),把点C (2,0)代入()0,0y mx n m y =+≠≥得:20m n +=;∴若有光点P 弹出,m ,n 满足的数量关系为2n m =-;②由①得:2n m =-,∴()22y mx n mx m x m =+=-=-,∵点()8,19A -,()6,5B ,AB 所在直线的解析式为11y x =-+,∴线段AB 上的其它整点为()()()()()()()()()()()()()7,18,6,17,5,16,4,15,3,14,2,13,1,12,0,11,1,10,2,9,3,8,4,7,5,6-------,∵ 有光点P 弹出,并击中线段AB 上的整点,∴直线CD 过整数点,∴当击中线段AB 上的整点(-8,19)时,()1982m =--,即1910m =-(不合题意,舍去),当击中线段AB 上的整点(-7,18)时,()1872m =--,即2m =-,当击中线段AB 上的整点(-6,17)时,17=(-6-2)m ,即178m =-(不合题意,舍去), 当击中线段AB 上的整点(-5,16)时,16=(-5-2)m ,即167m =-(不合题意,舍去), 当击中线段AB 上的整点(-4,15)时,15=(-4-2)m ,即52m =-(不合题意,舍去), 当击中线段AB 上的整点(-3,14)时,14=(-3-2)m ,即145m =-(不合题意,舍去), 当击中线段AB 上的整点(-2,13)时,13=(-2-2)m ,即134m =-(不合题意,舍去), 当击中线段AB 上的整点(-1,12)时,12=(-1-2)m ,即m =-4,【当击中线段AB上的整点(0,11)时,11=(0-2)m,即112m=-(不合题意,舍去),当击中线段AB上的整点(1,10)时,10=(1-2)m,即m=-10,当击中线段AB上的整点(2,9)时,9=(2-2)m,不存在,当击中线段AB上的整点(3,8)时,8=(3-2)m,即m=8,当击中线段AB上的整点(4,7)时,7=(4-2)m,即72m=(不合题意,舍去),当击中线段AB上的整点(5,6)时,6=(5-2)m,即m=2,当击中线段AB上的整点(6,5)时,5=(6-2)m,即54m=(不合题意,舍去),综上所述,此时整数m的个数为5个.【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质,理解有光点P弹出,并击中线段AB上的整点,即直线CD过整数点是解题的关键.26. 如图,四边形ABCD中,AD BC∥,∠ABC=90°,∠C=30°,AD=3,AB=DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,PM=.(1)求证:△PQM≌△CHD;(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2,点K在BH上,且9BK=-PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).【答案】(1)见详解(2)①5π+;②3)s-;③60129d CFd-=-【解析】【分析】(1)先证明四边形ABHD 是矩形,再根据Rt DHC △算出CD 长度,即可证明; (2)①平移扫过部分是平行四边形,旋转扫过部分是扇形,分别算出两块面积相加即可; ②运动分两个阶段:平移阶段:KH t v=;旋转阶段:取刚开始旋转状态,以PM 为直径作圆,H 为圆心,延长DK 与圆相交于点G ,连接GH ,GM ,过点G 作GT DM ⊥于T ;设KDH θ∠=,利用Rt DKH △算出tan θ,sin θ,cos θ,利用Rt DGM △算出DG ,利用Rt DGT △算出GT ,最后利用Rt HGT △算出sin GHT ∠,发现1sin 2GHT ∠=,从而得到2θ,θ度数,求出旋转角,最后用旋转角角度计算所用时间即可;③利用()()tan tan tan tan tan tan 1tan tan 1tan tan αθαθαθαθαθαθ-+-=+=+⋅-⋅,,在Rt EDH △和Rt FDH 中,算出EH ,FH 的关系,即可得CF 与d 的关系.【小问1详解】∵AD BC ∥,DH BC ⊥∴DH AD ⊥则在四边形ABHD 中90ABH BHD HDA ∠=∠=∠=︒故四边形ABHD 为矩形DH AB ==,3BH AD ==在Rt DHC △中,30C ∠=︒∴2CD DH ==6CH ==∵9030DHC Q C QPM CD PM ⎧∠=∠=︒⎪∠=∠=︒⎨⎪==⎩∴()CHD PQM AAS ≌△△;【小问2详解】①过点Q 作QS AM ⊥于S由(1)得:6AQ CH ==在Rt AQS △中,30QAS ∠=︒∴AS AQ ==平移扫过面积:13S AD AS =⋅=⨯= 旋转扫过面积:222505065360360S PQ πππ︒︒=⋅⋅=⋅⋅=︒︒故边PQ 扫过的面积:125S S S π=+=②运动分两个阶段:平移和旋转平移阶段:3(96KH BH BK =-=-=-16)s KH t v==- 旋转阶段:由线段长度得:2PM DM =取刚开始旋转状态,以PM 为直径作圆,则H 为圆心,延长DK 与圆相交于点G ,连接GH ,GM ,过点G 作GT DM ⊥于T设KDH θ∠=,则2GHM θ∠=在Rt DKH △中:3(96(2KH BH BK =-=--==DK ===设t =,则2KH =,DK =,DH =2tan KH t DH θ==,sin 2KH t DK θ==,1cos 2DH DK tθ==∵DM 为直径∴90DGM ∠=︒在Rt DGM △中 :cos 12D t G D M θ=⋅==在Rt DGT △中:sin 2GT t DG θ⋅===在Rt HGT △中:122in s GT GH θ===∴230θ=︒,15θ=︒ PQ 转过的角度:301515︒-︒=︒21535t ︒==︒s总时间:12633)s t t t -+=-=+=③旋转030︒ :设EDH θ∠=,在Rt EDH △和Rt FDH 中,由:DH DH = 得:()tan tan 30EH FH θθ=︒- 由:()tan 30tan tan 301tan 30tan θθθ︒-︒-=+︒⋅ tan DH EH θ⋅=即:tan EH θ=解得:1266EH FH EH-=+ 又∵3EH d =-,6FH CF =- 解得:60129d CF d -=- 旋转3050︒︒ :设EDH θ∠=,在Rt EDH △和Rt FDH 中,由:DH DH = 得:()tan tan 30EH FH θθ=+︒ 由:()tan tan 30tan 301tan tan 30θθθ+︒+︒=-⋅︒tan DH EH θ⋅=即:tan EH θ=解得:1266EH FH EH+=- 又∵3EH d =-,6FH CF =- 解得:60129d CF d-=-, 综上所述:60129d CF d -=-. 【点睛】本题考查动点问题,涉及到平移,旋转,矩形,解三角形,圆;注意第(2)问第②小题以PM 为直径作圆算出sin 2θ是难点,第(2)问第③小题用到三角函数公式。

hebei中考数学试题及答案

hebei中考数学试题及答案

hebei中考数学试题及答案一、选择题(每题3分,共30分)1. 已知\(a\)和\(b\)是两个不同的实数,且\(a^2 + b^2 = 10\),\(a + b = 4\),那么\(ab\)的值是多少?A. 2B. 3C. 4D. 52. 若\(x^2 - 5x + 6 = 0\),则\(x\)的值是:A. 2或3B. 3或4C. 2或-3D. -2或-33. 在一个直角三角形中,如果一个锐角是30度,那么另一个锐角的度数是:A. 30度B. 45度C. 60度D. 90度4. 函数\(y = 2x + 3\)的图像是:A. 一条直线B. 一条曲线C. 一个圆D. 一个椭圆5. 已知\(\triangle ABC\)中,\(AB = AC\),\(\angle BAC =90^\circ\),则\(\triangle ABC\)是:A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形6. 如果一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -27. 一个圆的半径扩大到原来的2倍,那么它的面积扩大到原来的:A. 2倍B. 4倍C. 8倍D. 16倍8. 已知\(\sin 30^\circ = \frac{1}{2}\),那么\(\cos 60^\circ\)的值是:A. \(\frac{1}{2}\)B. \(\frac{\sqrt{3}}{2}\)C. \(\frac{\sqrt{2}}{2}\)D. 19. 一个等差数列的前三项分别是1,3,5,那么第10项的值是:A. 19B. 21C. 19D. 2110. 一个二次函数\(y = ax^2 + bx + c\)的图像开口向上,且经过点(1,0)和(-1,0),则\(a\)的符号是:A. 正B. 负C. 零D. 不确定二、填空题(每题3分,共15分)11. 已知\(\triangle ABC\)中,\(AB = 5\),\(AC = 7\),\(BC =8\),根据勾股定理,\(\triangle ABC\)是直角三角形。

河北初三数学试题及答案

河北初三数学试题及答案

河北初三数学试题及答案一、选择题(每题3分,共30分)1. 若a<0,b<0,则a+b的符号为()A. 正号B. 负号C. 零D. 无法确定答案:B2. 下列哪个数是无理数?()A. √2B. 0.5C. 2/3D. 3答案:A3. 一个等腰三角形的两边长分别为3和6,那么这个三角形的周长是()A. 12B. 15C. 18D. 不能构成三角形答案:D4. 函数y=2x+3的图象经过()A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限答案:C5. 下列哪个是二次函数?()A. y=x^2+2x+1B. y=x^3-4x+3C. y=x+1/xD. y=-2x^2+3答案:A6. 一个数的相反数是-3,那么这个数是()A. 3B. -3C. 0D. 无法确定答案:A7. 一个数的绝对值是5,那么这个数可能是()A. 5B. -5C. 5或-5D. 无法确定答案:C8. 一个角的补角是120°,那么这个角是()A. 60°B. 30°C. 120°D. 90°答案:B9. 下列哪个是锐角三角形?()A. 三个角都是90°B. 两个角是90°,一个角是60°C. 三个角都小于90°D. 一个角是90°,两个角是120°答案:C10. 一个圆的半径是5,那么这个圆的面积是()A. 25πB. 50πC. 100πD. 125π答案:C二、填空题(每题3分,共30分)11. 一个数的平方是25,那么这个数是________。

答案:±512. 一个角的余角是30°,那么这个角是________。

答案:60°13. 函数y=-x+1与x轴的交点坐标是________。

答案:(1,0)14. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的面积是________。

河北数学初三试题及答案

河北数学初三试题及答案

河北数学初三试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x - 3 > 5的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A2. 计算下列二次根式中正确的是:A. √(9) = 3B. √(16) = ±4C. (-2)^2 = -4D. √(25) = 5答案:A3. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C4. 函数y = 2x + 3与y = -x + 2的交点坐标是:A. (-1, 1)B. (1, -1)C. (-1, -1)D. (1, 1)答案:A5. 一个数的3倍加上5等于20,这个数是:A. 5B. 4C. 3D. 2答案:A6. 一个三角形的两边长分别为3和4,第三边长x满足的不等式是:A. 1 < x < 7B. 3 < x < 7C. 1 < x < 5D. 4 < x < 7答案:B7. 一个数的相反数是-8,这个数是:A. 8B. -8C. 16D. -16答案:A8. 下列哪个选项是方程x^2 - 4x + 4 = 0的解?A. x = 2B. x = -2C. x = 4D. x = 0答案:A9. 一个长方体的长、宽、高分别为2cm、3cm、4cm,它的体积是:A. 24cm³B. 48cm³C. 12cm³D. 36cm³答案:A10. 一个数的50%是10,这个数是:A. 20B. 15C. 25D. 10答案:A二、填空题(每题3分,共30分)1. 一个数的1/3等于5,这个数是______。

答案:152. 一个数的2倍减去3等于7,这个数是______。

答案:53. 一个圆的直径是10厘米,它的周长是______厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A. B. C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=613.(2分)若= +,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4569户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5二、填空题(本大题共3小题,共10分。

17~18小题各3分;19小题有2个空,每空2分。

把答案写在题中横线上)17.(3分)如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为m.18.(3分)如图,依据尺规作图的痕迹,计算∠α=°.19.(4分)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}=;若min{(x﹣1)2,x2}=1,则x=.三、解答题(本大题共7小题,共68分。

解答应写出文字说明、证明过程或演算步骤)20.(8分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.21.(9分)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记.0.分.,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.(9分)发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.23.(9分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=4时,求的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.24.(10分)如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE +S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.25.(11分)平面内,如图,在▱ABCD中,AB=10,AD=15,tanA=,点P为AD 边上任意点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.(1)当∠DPQ=10°时,求∠APB的大小;(2)当tan∠ABP:tanA=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在▱ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积.(结果保留π)26.(12分)某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.月份n(月)12成本y(万元/件)1112需求量x(件/月)120100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.2017年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2017•河北)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣3【分析】各项计算得到结果,即可做出判断.【解答】解:A、原式=9,符合题意;B、原式=﹣1.5,不符合题意;C、原式=0,不符合题意,D、原式=﹣1,不符合题意,故选A【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)(2017•河北)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.13【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为8.13,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2017•河北)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.【分析】根据量角器的使用方法进行选择即可.【解答】解:量角器的圆心一定要与O重合,故选C.【点评】本题考查了角的概念,掌握量角器的使用方法是解题的关键.4.(3分)(2017•河北)=()A.B.C.D.【分析】根据乘方和乘法的意义即可求解.【解答】解:=.故选:B.【点评】考查了有理数的混合运算,关键是熟练掌握乘方和乘法的意义.5.(3分)(2017•河北)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而得出答案.【解答】解:当正方形放在③的位置,即是中心对称图形.故选:C.【点评】此题主要考查了中心对称图形的定义,正确把握定义是解题关键.6.(3分)(2017•河北)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分【分析】根据绝对值、倒数、相反数、立方根以及平均数进行计算即可.【解答】解:﹣1的绝对值为1,2的倒数为,﹣2的相反数为2,1的立方根为1,﹣1和7的平均数为3,故小亮得了80分,故选B.【点评】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.7.(3分)(2017•河北)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,再根据相似三角形对应角相等解答.【解答】解:∵△ABC的每条边长增加各自的10%得△A′B′C′,∴△ABC与△A′B′C′的三边对应成比例,∴△ABC∽△A′B′C′,∴∠B′=∠B.故选D.【点评】本题考查了相似图形,熟练掌握相似三角形的判定是解题的关键.8.(3分)(2017•河北)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边两个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.9.(3分)(2017•河北)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【分析】根据菱形是特殊的平行四边形以及等腰三角形的性质证明即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∵对角线AC,BD交于点O,∴BO=DO,∴AO⊥BD,即AC⊥BD,∴证明步骤正确的顺序是③→④→①→②,故选B.【点评】本题考查了菱形对角线互相垂直平分的性质,熟练掌握菱形的性质是解题的关键.10.(3分)(2017•河北)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°【分析】根据已知条件即可得到结论.【解答】解:∵甲的航向是北偏东35°,为避免行进中甲、乙相撞,∴乙的航向不能是北偏西35°,故选D.【点评】本题主要考查的是方向角问题,理解方向角的定义是解决本题的关键.11.(2分)(2017•河北)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A. B. C.D.【分析】利用勾股定理求出正方形的对角线为10≈14,由此即可判定A不正确.【解答】解:选项A不正确.理由正方形的边长为10,所以对角线=10≈14,因为15>14,所以这个图形不可能存在.故选A.【点评】本题考查正方形的性质、勾股定理等知识,解题的关键是利用勾股定理求出正方形的对角线的长.12.(2分)(2017•河北)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=6【分析】根据实数的运算方法,求出每个选项中左边算式的结果是多少,判断出哪个算式错误即可.【解答】解:∵4+4﹣=6,∴选项A不符合题意;∵4+40+40=6,∴选项B不符合题意;∵4+=6,∴选项C不符合题意;∵4﹣1÷+4=4,∴选项D符合题意.故选:D.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.13.(2分)(2017•河北)若= +,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数【分析】直接利用分式加减运算法则计算得出答案.【解答】解:∵= +,∴﹣====﹣2,故____中的数是﹣2.故选:B.【点评】此题主要考查了分式的加减运算,正确掌握分式加减运算法则是解题关键.14.(2分)(2017•河北)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4569户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断【分析】根据中位数定义分别求解可得.【解答】解:由统计表知甲组的中位数为=5(吨),乙组的4吨和6吨的有12×=3(户),7吨的有12×=2户,则5吨的有12﹣(3+3+2)=4户,∴乙组的中位数为=5(吨),则甲组和乙组的中位数相等,故选:B.【点评】本题主要考查中位数和扇形统计图,根据扇形图中各项目的圆心角求得其数量是解题的关键.15.(2分)(2017•河北)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x >0)的图象是()A.B.C.D.【分析】找到函数图象与x轴、y轴的交点,得出k=4,即可得出答案.【解答】解:抛物线y=﹣x2+3,当y=0时,x=±;当x=0时,y=3,则抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(﹣1,1),(0,1),(0,2),(1,1);共有4个,∴k=4;故选:D.【点评】本题考查了二次函数图象和性质、反比例函数的图象,解决本题的关键是求出k的值.16.(2分)(2017•河北)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5【分析】如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2﹣小于等于1,由此即可判断.【解答】解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2﹣小于等于1,故选C.【点评】本题考查正六边形、正方形的性质等知识,解题的关键作出点M的运动轨迹,利用图象解决问题,题目有一定的难度.二、填空题(本大题共3小题,共10分。

相关文档
最新文档