线线角、线面角、二面角知识点及练习
专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)
专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。
2022-2023学年上海高二数学上学期同步知识点讲练重难点01线线角、线面角、二面角问题带讲解
重难点01线线角、线面角、二面角问题(重难点突破解题技巧与方法)1.求异面直线所成的角的三步曲2.求直线和平面所成角的关键作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值。
3.找二面角的平面角的常用方法 (1)由定义做出二面角的平面角 (2)用三垂线定理找二面角的平面角 (3)找公垂面(4)划归为分别垂直于二面角的两个面的两条直线所成的角求异面直线所成的角一、填空题1.(2021·上海·复旦附中高二期中)已知四棱柱1111ABCD A B C D -中,异面直线11A C 与DB 所成角为3π,且11111,AC D B O ACDB O ==,1OA OB ==,则AB 的长为_________.【答案】1或3【分析】根据题意得出AOB ∠为异面直线11A C 与DB 所成角或所成角的补角,从而在AOB 中,应用余弦定理即可求出答案.【详解】因为11//AC AC ,所以AOB ∠为异面直线11A C 与DB 所成角或所成角的补角,即3AOB π∠=或23π, 当3AOB π∠=时,因为1OA OB ==,所以AOB 为等边三角形,所以1AB =;能力拓展技巧方法当23AOB π∠=时,因为1OA OB ==, 在AOB 中,由余弦定理,得22222cos33AB OA OB OA OB π,所以3AB =.故答案为:1或3.2.(2021·上海·格致中学高二期中)设E 是正方体1111ABCD A B C D -的棱1CC 的中点,在棱1AA 上任取一点P ,在线段1A E 上任取一点Q ,则异面直线PQ 与BD 所成角的大小为______.【答案】2π【分析】连接BD ,利用线面垂直的判定定理证得BD ⊥平面1A ECA ,再利用线面垂直的性质定理可知BD PQ ⊥,即可得解.【详解】连接BD ,由底面ABCD 为正方形,可知BD AC ⊥,由正方体的性质,可知1AA ⊥平面ABCD ,又BD ⊂平面ABCD ,则1AA ⊥BD 又1AA AC A =,则BD ⊥平面1A ECA ,由已知可知PQ ⊂平面1A ECA ,则BD PQ ⊥所以异面直线PQ 与BD 所成角的大小为2π 故答案为:2π3.(2021·上海中学高二期中)正方体1111ABCD A B C D -中,异面直线1AB 与BD所成角大小为______ 【答案】3π【分析】连接1AD 、11B D ,,证明11//B D BD ,可得11AB D ∠即为异面直线1AB 与BD 所成角,在11AB D 求11AB D ∠即可求解.【详解】如图,连接1AD 、11B D , 因为11//BB DD ,11BB DD =, 所以四边形11BB D D 是平行四边形, 所以11//B D BD ,所以11AB D ∠即为异面直线1AB 与BD 所成角, 设正方体1111ABCD A B C D -的棱长为a , 在11AB D 中,11112AD AB B D a ===, 所以11AB D 是等边三角形, 所以113AB D π∠=,即异面直线1AB 与BD 所成角为3π, 故答案为:3π二、解答题4.(2022·上海浦东新·高二期末)如图,在正方体1111ABCD A B C D -中.(1)求异面直线1A B 和1CC 所成的角的余弦值;(2)求证:直线1//A B 平面11DCC D . 【答案】(1)22(2)证明见解析 【分析】(1)根据已知11//CC BB ,可将异面直线1A B 和1CC 所成的角转化为直线1A B 和1BB 所成的角,再根据题目的边长关系,即可完成求解;(2)可通过连接1D C ,证明四边形11A BCD 为平行四边形,从而得到11//A B D C ,再利用线面平行的判定定理即可完成证明.(1)因为11//CC BB ,所以11A BB ∠就是异面直线1A B 和1CC 所成的角.又因为1111ABCD A B C D -为正方体,所以异面直线1A B 和1CC 所成的角为45o ,所以异面直线1A B 和1CC 所成的角的余弦值为22. (2)连接1D C ,因为11//A D BC 且11A D BC =,所以四边形11A BCD 为平行四边形,所以11//A B D C ;1A B ⊄平面11DCC D ,1D C ⊂平面11DCC D ;所以直线1//A B 平面11DCC D .即得证.线面角一、单选题1.(2022·上海市控江中学高二期末)如图,已知正方体1111ABCD A B C D -,点P 是棱1CC 的中点,设直线AB 为a ,直线11A D 为b .对于下列两个命题:①过点P 有且只有一条直线l 与a 、b 都相交;②过点P 有且只有两条直线l 与a 、b 都成75︒角.以下判断正确的是( )A .①为真命题,②为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①为假命题,②为假命题【答案】A【分析】①由正方形的性质,可以延伸正方形,再利用两条平行线确定一个平面即可;②一组邻边与对角面的夹角相等,在平面内绕P 转动,可以得到二条直线与a 、b 的夹角都等于75. 【详解】如下图所示,在侧面正方形11A B BA 和11A D DA 再延伸一个正方形11B E EB 和11D F FD ,则平面1E C 和1C F 在同一个平面内,所以过点P ,有且只有一条直线l ,即1EF 与a 、b 相交,故①为真命题;取1A A 中点N ,连PN ,由于a 、b 为异面直线,a 、b 的夹角等于11A B 与b 的夹角.由于11A C ⊂ 平面11A C ,NP ⊄平面11A C ,11NP AC ,所以NP 平面11A C ,所以NP 与11A B 与b 的夹角都为45 .又因为1C C ⊥平面11A C ,所以1C C 与11A B 与b 的夹角都为90,而457590<<,所以过点P ,在平面1A C 内存在一条直线,使得与11A B与b 的夹角都为75,同理可得,过点P ,在平面1A C 内存在一条直线,使得与a 与AD 的夹角都为75;故②为真命题. 故选:A二、填空题2.(2021·上海市行知中学高二阶段练习)6,且对角线与底面所成角的余弦值为33,则该正四棱柱的全面积等于_________. 【答案】10【分析】结合已知条件分别求出正四棱柱的底面边长和高即可求解. 【详解】由题意,正四棱柱1111ABCD A B C D -如下图:不妨设正四棱柱1111ABCD A B C D -底面边长为a ,1||AA h =,由已知条件可得,2222221||2(6)6BD a a h a h =++=+==,又因为1DD ⊥底面ABCD ,所以对角线1BD 与底面ABCD 所成角为1DBD ∠,因为对角线与底面所成角的余弦值为33,||2BD a =, 所以11||23cos ||36BD a DBD BD ∠===,解得1a =,从而2h =, 故该正四棱柱的表面积12411210S =⨯⨯+⨯⨯=. 故答案为:10. 三、解答题3.(2021·上海市大同中学高二阶段练习)如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=︒,PA 垂直于底面ABCD ,22PA AD AB BC ====,M 、N 分别为PC 、PB 的中点.(1)求证:PB DM ⊥;(2)求BD 与平面ADMN 所成的角. 【答案】(1)证明见解析;(2)6π.【分析】(1)由题设易得BC AB ⊥,由已知及线面垂直的性质有BC ⊥面PAB ,根据线面垂直的判定可证BC PB ⊥、PA AB ⊥,再由线面垂直的判定及平行的推论可得PB ⊥面ADMN ,最后由线面垂直的性质证结论.(2)若BD 与平面ADMN 所成角为θ,由线面垂直易知sin BNBDθ=,即可求线面角的大小. 【详解】(1)由90BAD ∠=︒即AD AB ⊥,又//AD BC ,有BC AB ⊥, ∵PA ⊥面ABCD ,BC ⊂面ABCD ,∴PA BC ⊥,而PA AB A =,则有BC ⊥面PAB , 又PB ⊂面PAB ,则BC PB ⊥, 由AB面ABCD ,有PA AB ⊥,且PA AB =,N 为PB 的中点,则AN PB ⊥,又M 为PC 的中点,有//BC MN ,即MN PB ⊥,而AN MN N =,又//AD BC ,则//AD MN ,即,,,A N D M 共面,∴PB ⊥面ADMN ,而DM ⊂面ADMN ,故PB DM ⊥.(2)由(1)知:PB ⊥面ADMN ,若BD 与平面ADMN 所成角为[0,]2πθ∈,且1BC =,∴2,22BN BD == ,则1sin 2BN BD θ==,故6πθ=.二面角一、单选题1.(2020·上海·曹杨二中高二期末)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则 A .,βγαγ<< B .,βαβγ<< C .,βαγα<< D .,αβγβ<<【答案】B【解析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B. 方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得 333222cos sin sin α=α=β=γ=B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法. 二、填空题2.(2021·上海·西外高二期中)在正方体1111ABCD A B C D -中,二面角1A BC A --的大小是___________. 【答案】4π 【分析】根据二面角的定义判断二面角1A BC A --的大小. 【详解】画出图象如下图所示, 由于1,BC A B BC AB ⊥⊥,所以1A BA ∠是二面角1A BC A --的平面角, 根据正方体的性质可知14A BA π∠=.故答案为:4π三、解答题3.(2022·上海·复旦附中高二期中)如图所示,某农户拟在院子的墙角处搭建一个谷仓,墙角可以看作如图所示的图形,其中OA 、OB 、1OO 两两垂直(OA 、OB 、1OO 均大于2米).该农户找了一块长、宽分别为2米和1米的矩形木板.将木板的一边紧贴地面,另外一组对边紧贴墙面,围出一个三棱柱(无盖)形的谷仓.(1)若木板较长的一边紧贴地面,3问:此时木板与两个墙面所成的锐二面角大小分别为多少?(2)应怎样摆放木板,才能使得围成的谷仓容积最大?并求出该最大值. 【答案】(1)6π和3π (2)体积最大值为1立方米,此时木板长边贴地,与两个墙面所成锐二面角均为45° 【分析】(1)利用设二面角为θ或三棱柱底面的一条直角边长为x 两种方法进行求解即可; (2)用(1)中的θ或x 表示谷仓容积,再利用三角函数和基本不等式,进行求最值即可得解. (1)法一:设其中一个锐二面角的大小为θ,则三棱柱底面的两条直角边长分别为2cos θ、2sin θ,高为1,体积132cos 2sin 1sin 22V Sh θθθ==⋅⋅⋅==6πθ=或3π,所以此时木板与两个墙面所成的锐二面角大小分别为6π和3π.法二:设三棱柱底面的一条直角边长为()02x x <<,则另一条直角边长为24-x ,高为1,体积2134122V Sh x x ==⋅⋅-⋅=,解得x =1或3,所以此时木板与两个墙面所成的锐二面角大小分别为6π和3π. (2)法一:同(1)中法一所设,若长边紧贴底面,体积12cos 2sin 1sin 212V Sh θθθ==⋅⋅⋅=≤,等号当且仅当4πθ=时成立;若短边紧贴底面,体积111cos sin 2sin 2222V Sh θθθ==⋅⋅⋅=≤,等号当且仅当4πθ=时成立;显然112>,所以体积最大值为1立方米,此时木板长边贴地, 与两个墙面所成锐二面角均为45°. 法二:同(1)中法二所设,若长边紧贴底面,体积2221441124x x V Sh x x +-==⋅⋅-⋅≤=, 等号当且仅当2x =时成立;若短边紧贴底面,体积22211112222x x V Sh x x +-==⋅⋅-⋅≤=,等号当且仅当22x =时成立; 显然112>,所以体积最大值为1立方米, 此时木板长边贴地,与两个墙面所成锐二面角均为45°(也可描述底面两条直角边长).4.(2021·上海·格致中学高二期中)在四棱锥P ABCD -中,底面为梯形,AB CD ∕∕,PAD △为正三角形,且2PA AB ==,90BAP CDP ∠=∠=︒,四棱锥P ABCD -的体积为23.(1)求证:AB ⊥平面PAD ;(2)求PC 与平面ABCD 所成角的正弦值;(3)设平面PAB ⋂平面PCD l =,求证:l AB ∕∕,并求二面角B l C --的大小.【答案】(1)证明见解析;(2)1510;(3)3π 【分析】(1)根据线面垂直的判定定理,结合题意,即可得证.(2)根据面面垂直的判定、性质定理,结合正三角形的性质,可证PQ ⊥平面ABCD ,则PCQ ∠即为PC 与平面ABCD 所成角,据四棱锥的体积,可求得CD 长,在Rt PCQ 中,求得各个边长,即可得答案. (3)根据线面平行的判定和性质定理,可证AB l ∕∕,结合题意,可得PA l ⊥,同理PD l ⊥,则APD ∠即为二面角B l C --所成的平面角,根据三角形性质,即可得答案.(1)证明:因为90CDP ∠=︒,所以CD DP ⊥,因为AB CD ∕∕,所以AB DP ⊥,又因为90BAP ∠=︒,即AB AP ⊥,且,AP DP ⊂平面PAD ,所以AB ⊥平面PAD ;(2)因为AB ⊥平面PAD ,AB平面ABCD ,所以平面PAD ⊥平面ABCD ,取AD 中点Q ,连接PQ ,CQ , 因为PAD △为正三角形,Q 为AD 中点,所以PQ AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD=AD , 所以PQ ⊥平面ABCD ,所以PCQ ∠即为PC 与平面ABCD 所成角,在Rt PDQ 中,223PQ PD DQ -设CD 长为x ,则四棱锥P ABCD -的体积()1112+2323332ABCD V S PQ x =⨯=⨯⨯⨯= 求得CD 长4x =,在Rt CDQ △中,2217CQ CD DQ +=在Rt PCQ 中,2225PC CQ PQ =+所以315sin 1025PQ PCQ PC ∠===, 所以PC 与平面ABCD 所成角的正弦值为1510 (3)证明:因为AB CD ∕∕,CD ⊂平面PCD ,AB ⊄平面PCD ,所以AB ∕∕平面PCD ,又AB 平面PAB ,且平PAB ⋂平面PCD l =,所以AB l ∕∕.因为PA AB ⊥,AB l ∕∕,所以PA l ⊥,同理PD l ⊥,所以APD ∠即为二面角B l C --所成的平面角,因为PAD △为正三角形,所以3APD π∠=,即二面角B l C --的大小为3π. 一、填空题1.(2021·上海奉贤区致远高级中学高二期中)若正方体1111ABCD A B C D -的棱长为1,则异面直线AB 与11D B 之间的距离为___________.【答案】1【分析】作出正方体图像,观察即可得到答案﹒【详解】如图:巩固练习∵1BB 与AB 、11B D 均垂直,∴1BB 即为两异面直线的距离,故答案为:1二、解答题2.(2021·上海中学高二阶段练习)如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD ∥平面P AC ;(2)求异面直线1BD 与AP 所成角的大小.【答案】(1)证明见解析;(2)30°. 【分析】(1)AC 和BD 交于点O ,由1PO BD ∥即能证明直线1BD ∥平面PAC .(2)由1PO BD ∥,得APO ∠即为异面直线1BD 与AP 所成的角.由此能求出异面直线1BD 与AP 所成角的大小.(1)设AC 和BD 交于点O ,则O 为BD 的中点,连结PO ,又∵P 是1DD 的中点,∴1PO BD ∥,又∵PO ⊂平面PAC ,1BD ⊂平面PAC ,∴直线1BD ∥平面PAC ; (2)由(1)知,1PO BD ∥,∴APO ∠即为异面直线1BD 与AP 所成的角, ∵2PA PC ==122AO AC =PO AO ⊥,∴212sin 22AO APO AP ∠===.又(0APO ∠∈︒,90]︒,∴30APO ∠=︒ 故异面直线1BD 与AP 所成角的大小为30.3.(2021·上海市进才中学高二期中)已知正四棱锥P ABCD -中,1AB =,2PA =;(1)求侧棱与底面所成角的正弦值;(2)求正四棱锥P ABCD -的体积【答案】(1)144(2)146【分析】(1)由于正四棱锥P ABCD -,故顶点在底面的投影在底面的中心O ,连结,PO AO 分析可得PAO ∠即为侧棱与底面所成角,利用题干长度关系求解即可(2)由于PO ⊥平面ABCD ,故13P ABCD ABCD V PO S -=⨯⨯,计算即可 (1)由于正四棱锥P ABCD -,故顶点在底面的投影在底面的中心O ,连结,PO AO故PO ⊥平面ABCD ,PAO ∠即为侧棱与底面所成角由1AB =,2PA =,故2222AO AB ==又PO ⊥平面ABCD ,AO ⊂平面ABCD ,故PO AO ⊥22114422PO PA AO ∴=-=-= 故14sin 4PO PAO PA ∠== 即侧棱与底面所成角的正弦值为144 (2)由(1)PO ⊥平面ABCD ,且142PO = 故11141413326P ABCD ABCD V PO S -=⨯⨯=⨯⨯= 即正四棱锥P ABCD -的体积为1464.(2021·上海中学高二期中)如图,在矩形ABCD 中,M 、N 分别是线段AB 、CD 的中点,2AD =,4AB =,将ADM △沿DM 翻折,在翻折过程中A 点记为P 点.(1)从ADM △翻折至NDM 的过程中,求点P 运动的轨迹长度;(2)翻折过程中,二面角P −BC −D 的平面角为θ,求tan θ的最大值.【答案】2π(2)12【分析】(1)取DM 的中点E ,则从ADM △翻折至NDM 的过程中,点P 运动的轨迹是以点E 为圆心,AE 为半径的半圆,由此可求得点P 运动的轨迹长度.(2)由(1)得,连接AN ,并延长交BC 延长线于F ,过P 作PO EF ⊥,再过点O 作OG BC ⊥,则PGO ∠就是二面角P −BC −D 的平面角θ,设(),0PEO ααπ∠=≤≤,sin 2PO PE αα==,322,3cos OF OG αα==-,可得2sin tan PO PGO OG α∠==2sin k α=,运用辅助角公式和正弦函数的性质可求得最大值.(1)解:取DM 的中点E ,则从ADM △翻折至NDM 的过程中,点P 运动的轨迹是以点E 为圆心,AE 为半径的半圆,因为2AD =,4AB =,所以2AE =,所以点P 运动的轨迹长度为2π.(2)解:由(1)得,连接AN ,并延长交BC 延长线于F ,AN DM ⊥,折起后,有DM ⊥面PEN ,过P 作PO EF ⊥,则PO ⊥面DMBC ,再过点O 作OG BC ⊥,则PGO ∠就是二面角P −BC −D 的平面角θ, 设(),0PEO ααπ∠=≤≤, sin 2sin PO PE αα==,4222cos 322cos ,3cos OF AF AE OE OG ααα=--=--=-=-,2sin tan 3cos PO PGO OG αα∠==-, 令2sin 2sin cos 33cos k k k αααα=⇒+=-,所以22sin()3k k αβ++=,所以23112k k -≤≤+,解得1122k -≤≤. 所以tan θ的最大值为12.。
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
线线角、线面角、面面角(解析版)
一、选择题(共8小题,每小题5.0分,共40分)1.有下列结论:①两个相交平面组成的图形叫作二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是()A.①③B.②④C.③④D.①②2.设P是直线l外一定点,过点P且与l成30°角的异面直线()A.有无数条B.有两条C.至多有两条D.有一条3.如图,在三棱锥D—ABC中,AC=BD,且AC⊥BD,E,F分别是棱DC,AB的中点,则EF和AC 所成的角等于()A.30°B.45°C.60°D.90°4.两平行平面之间的距离等于12,一直线与它们相交且夹在两平面间的线段长等于24,则该直线与这两个平行平面所成的角等于()A.90°B.60°C.45°D.30°5.如图所示,在△ABC中,AD⊥BC,△ABD的面积是△ACD的面积的2倍,沿AD将△ABC翻折,使翻折后BC⊥平面ACD,此时二面角B-AD-C的大小为()A.30°B.45°C.60°D.90°6.在二面角α-l-β中,A∈α,AB⊥平面β于B,BC⊥平面α于C,若AB=6,BC=3,则二面角α-l -β的平面角的大小为()A.30°B.60°C.30°或150°D.60°或120°分卷II二、填空题(共6小题,每小题5.0分,共30分)7.在正方体ABCD-A1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是________.8.直线l与平面α所成的角为30°,l∩α=A,m⊂α,A∉m,则m与l所成角的取值范围是________.9.如图所示,在长方体ABCD-A1B1C1D1中,BC=2,AA1=1,E,F分别在AD和BC上,且EF∥AB,若二面角C1-EF-C等于45°,则BF=________.三、解答题(共3小题,每小题12.0分,共36分)10.如图,正方形ABCD所在平面与正方形ACEF所在平面垂直.(1)求证:BD⊥平面ACEF;(2)求直线DE与平面ACEF所成角的正弦值.11.如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC.(2)是否存在点E,使得二面角A—DE—P为直二面角?并说明理由.12.a,b为异面直线,且a,b所成角为40°,直线c与a,b均异面,且所成角均为θ,若这样的c 共有四条,则θ的范围为________.13.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E为PB的中点.(1)证明:CE⊥AB;(2)若二面角P-CD-A为60°,求直线CE与平面PAB所成角的正切值;(3)若AB=kPA,求平面PCD与平面PAB所成的锐二面角的余弦值.答案解析1.【答案】B【解析】由二面角的定义:从一条直线出发的两个半平面所组成的图形叫作二面角,所以①错误,易知②正确;③中所作的射线不一定垂直于二面角的棱,故③错误;由定义知④正确.故选B.2.【答案】A【解析】如图所示,过点P作直线l′∥l,以l′为轴,与l′成30°角的圆锥面的所有母线都与l成30°角.3.【答案】B【解析】如图所示,取BC的中点G,连接FG,EG.∵E,F分别是为CD,AB的中点,∴FG∥AC,EG∥BD,且FG=12AC,EG=12BD.又∵AC=BD,∴FG=EG,∴∠EFG为EF与AC所成的角或其补角.∵AC⊥BD,∴FG⊥EG,∴∠FGE=90°,∴△EFG为等腰直角三角形,∴∠EFG=45°,即EF与AC所成的角为45°.4.【答案】D【解析】设该直线与这两个平行平面所成角为α,∵两平行平面之间的距离等于12,一直线与它们相交且夹在两平面间的线段长等于24,∴sinα=1224=12.∴α=30°故选D.5.【答案】C【解析】由已知BD=2CD,翻折后,在Rt△BCD中,∠BDC=60°,而AD⊥BD,CD⊥AD,故∠BDC是二面角B-AD-C的平面角,其大小为60°.6.【答案】C【解析】由已知BD=2CD,翻折后,在Rt△BCD中,∠BDC=60°,而AD⊥BD,CD⊥AD,故∠BDC是二面角B-AD-C的平面角,其大小为60°.6.【答案】D【解析】如图,∵AB⊥β,∴AB⊥l,∵BC⊥α,∴BC⊥l,∴l⊥平面ABC,设平面ABC∩l=D,则∠ADB为二面角α-l-β的平面角或补角.∵AB=6,BC=3,∴∠BAC=30°,∴∠ADB=60°,∴二面角大小为60°或120°.7.【答案】45°30°90°【解析】(1)由线面角定义知∠A1BA为A1B与平面ABCD所成的角,∠A1BA=45°.(2)连接A1D、AD1、BC1,A1D∩AD1=O,则易证A1D⊥平面ABC1D1,所以A1B在平面ABC1D1内的射影为OB,∴A1B与平面ABC1D1所成的角为∠A1BO,∵A1O=12A1B,∴∠A1BO=30°.(3)∵A1B⊥AB1,A1B⊥B1C1,∴A1B⊥平面AB1C1D,即A1B与平面AB1C1D所成的角为90°.8.【答案】[30°,90°]【解析】直线l与平面α所成的30°的角为m与l所成角的最小值,当m在α内适当旋转就可以得到l⊥m,即m与l所成角的最大值为90°.9.【答案】1【解析】∵AB⊥平面BC1,C1F⊂平面BC1,CF⊂平面BC1,∴AB⊥C1F,AB⊥CF,又EF∥AB,∴C1F⊥EF,CF⊥EF,∴∠C1FC是二面角C1-EF-C的平面角,∴∠C1FC=45°,∴△FCC1是等腰直角三角形,∴CF=CC1=AA1=1.又BC=2,∴BF=BC-CF=2-1=1.10.【答案】(1)证明∵ACEF为正方形,∴AF⊥AC,又∵平面ABCD⊥平面ACEF,且平面ABCD∩平面ACEF=AC,∴AF⊥平面ABCD,即AF⊥BD,又AC⊥BD,AC∩AF=A,∴BD⊥平面ACEF.(2)解设AC∩BD=O,连接OE,则由(1)知,∠OED为直线DE与平面ACEF所成的角.设正方形ABCD的边长为2,则OC=OD=2,CE=AC=22,DE=DC2+CE2=23,=∴sin∠OED=ODDE∴直线DE与平面ACEF【解析】11.【答案】(1)∵PA⊥底面ABC,∴PA⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩PA=A,∴BC⊥平面PAC.(2)∵DE∥BC,又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC.又∵AE⊂平面PAC,PE⊂平面PAC,∴DE⊥AE,DE⊥PE.∴∠AEP为二面角A-DE-P的平面角.∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°.∴在棱PC上存在一点E,使得AE⊥PC.这时∠AEP=90°,故存在点E ,使得二面角A -DE -P 为直二面角.12.【答案】70°,90°【解析】设平面α上两条直线m ,n 分别满足m ∥a ,n ∥b ,则m ,n 相交,且夹角为40°,若直线c 与a ,b 均异面,且所成角均为θ,则直线c 与m ,n 所成角均为θ,当0°≤θ<20°时,不存在这样的直线c ,当θ=20°时,这样的c 只有一条,当20°<θ<70°时,这样的c 有两条,当θ=70°时,这样的c 有三条,当70°<θ<90°时,这样的c 有四条,当θ=90°时,这样的c 只有一条,故答案为70°,90°.13.【答案】(1)证明取AB 的中点F ,连接EF 、FC ,则EF ∥PA ,CF ∥AD ,∵PA ⊥平面ABCD ,∴EF ⊥平面ABCD ,∵AB ⊂平面ABCD ,∴EF ⊥AB ,∵AB ⊥AD ,∴AB ⊥CF ,∵EF ⊂平面EFC ,CF ⊂平面EFC ,∴AB ⊥平面EFC ,∵CE ⊂平面EFC ,∴CE ⊥AB .(2)解∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD ,∵AD ⊥CD ,∴CD ⊥平面PAD ,∴CD ⊥PD ,∴∠PDA 为二面角P -CD -A 的平面角,∴∠PDA =60°,∴PA =3AD ,∵AB =AD =2CD ,∴PA =3AB =3AD ,由(1)知,∠CEF 为CE 与平面PAB 所成的角,∵tan ∠CEF =CF EF =AD EF =∴直线CE与平面PAB(3)解过P作PG∥CD,由PA⊥平面ABCD,得PA⊥AB,PA⊥PG,由BA⊥平面PAD,得CD⊥平面PAD,∴CD⊥PD,PG⊥PD,∴∠APD为所求锐二面角的平面角,∴cos∠APD=PA=PD。
空间三大角(向量法)
空间三大角一、线线角1.(2021年全国高考乙卷数学(文)试题)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π62.(2018年全国普通高等学校招生统一考试理数(全国卷II ))在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B .56C .55D .223.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))如图,四边形ABCD 为菱形,ⅠABC =120°,E ,F 是平面ABCD 同一侧的两点,BE Ⅰ平面ABCD ,DF Ⅰ平面ABCD ,BE =2DF ,AE ⅠEC . (1)证明:平面AEC Ⅰ平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.二、线面角1.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.2. (2018年全国普通高等学校招生统一考试理数(全国卷II ))如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30,求PC 与平面PAM 所成角的正弦值.3.(2016年全国普通高等学校招生统一考试理科数学(新课标3卷))如图,四棱锥P−ABCD 中,PAⅠ底面ABCD ,ADⅠBC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点. (Ⅰ)证明MNⅠ平面PAB;(Ⅰ)求直线AN 与平面PMN 所成角的正弦值.三、二面角1(2021年全国高考乙卷数学(理)试题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.2.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.3.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,ⅠBAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MNⅠ平面C1DE;(2)求二面角A-MA1-N的正弦值.4.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEⅠEC1.(1)证明:BEⅠ平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.5. (2018年全国卷Ⅰ理数高考试题)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.6.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB Ⅰ平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.7.(2017年全国普通高等学校招生统一考试理科数学(新课标3))(2017新课标全国Ⅰ理科)如图,四面体ABCD 中,ⅠABC 是正三角形,ⅠACD 是直角三角形,ⅠABD =ⅠCBD ,AB =BD .(1)证明:平面ACD Ⅰ平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.8.(2016年全国普通高等学校招生统一考试)试题)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABEF 为正方形,2AF FD =,90AFD ∠=︒,且二面角D AF E --与二面角C BE F --都是60︒.(1)证明:平面ABEF ⊥平面EFDC ;(2)求二面角E BC A --的余弦值.9.(2016年全国普通高等学校招生统一考试数学)如图,菱形ABCD 的对角线AC 与BD 交于点,5,6O AB AC ==,点,E F 分别在,AD CD 上,5,4AE CF EF ==交BD 于点H ,将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(1)证明:D H '⊥平面ABCD ;(2)求二面角B D A C '--的正弦值.答 案一、线线角1【答案】D如图,连接11,,BC PC PB ,因为1AD Ⅰ1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角, 因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1PBB ,所以1PC PB ⊥,设正方体棱长为2,则1111122,22BC PC D B === 1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 2.【答案】C 【详解】:以D 为坐标原点,DA,DC,DD 1为x,y,z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,13),3)D A B D ,所以11(1,0,3),(1,13)AD DB =-=, 因为11111115cos ,25AD DB AD DB AD DB ⋅-===⨯,所以异面直线1AD 与1DB 5 3.【解析】:(Ⅰ)连接BD ,设BD∩AC=G ,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB=1易证EGⅠAC ,通过计算可证EGⅠFG ,根据线面垂直判定定理可知EGⅠ平面AFC ,由面面垂直判定定理知平面AFCⅠ平面AEC ;(Ⅰ)以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G -xyz ,利用向量法可求出异面直线AE 与CF 所成角的余弦值.试题解析:(Ⅰ)连接BD ,设BD∩AC=G ,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB=1,由ⅠABC=120°,可得3由BEⅠ平面ABCD ,AB=BC 可知,AE=EC ,又ⅠAEⅠEC ,3,EGⅠAC ,在RtⅠEBG 中,可得2,故DF=22.在RtⅠFDG 中,可得6 在直角梯形BDFE 中,由BD=2,2,2可得32,Ⅰ222EG FG EF +=,ⅠEGⅠFG , ⅠAC∩FG=G ,ⅠEGⅠ平面AFC ,ⅠEG ⊂面AEC ,Ⅰ平面AFCⅠ平面AEC.(Ⅰ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G -xyz ,由(Ⅰ)可得A (030),E (1,0, 2,F (-1,02,C (030),ⅠAE =(1,3,2),CF =(-1,-3,22).…10分 故3cos ,3AE CFAE CF AE CF ⋅==-. 所以直线AE 与CF 所成的角的余弦值为33. 二、线面角1.【分析】(1)由已知可得,BF PF ⊥,BF EF ⊥,又PFEF F =,所以BF ⊥平面PEF . 又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD ;(2)作PH EF ⊥,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H xyz -. 由(1)可得,DE PE ⊥.又2DP =,1DE =,所以3PE =.又1PF =,2EF =,故PE PF ⊥.可得33,22PH EH ==.则()33330,0,0,0,0,,1,,0,1,,,2222H P D DP ⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭30,0,2HP ⎛⎫= ⎪ ⎪⎝⎭为平面ABFD 的法向量. 设DP 与平面ABFD 所成角为θ,则334sin 43HP DP HP DPθ⋅===⋅. 所以DP 与平面ABFD 所成角的正弦值为34. 2.【分析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且23OP =. 连结OB .因为22AB BC AC ==,所以ABC 为等腰直角三角形,且1,22OB AC OB AC ⊥== 由222OP OB PB +=知PO OB ⊥.由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -由已知得(0,0,0),(2,0,0),(0,2,0),(0,2,0),(0,0,23),(0,2,23)O B A C P AP -= 取平面PAC 的法向量(2,0,0)OB =.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-. 设平面PAM 的法向量为(,,)n x y z =.由0,0AP n AM n ⋅=⋅=得2230(4)0y z ax a y ⎧+=⎪⎨+-=⎪⎩, 可取2(3(4),3,)n a a a =--所以22223(4)cos 23(4)3a OB n a a a -〈⋅〉=-++ .由已知得3cos 2OB n 〈⋅〉= . 所以22223|4|3223(4)3a a a a -=-++ .解得4a =-(舍去),43a = .所以83434,,333n ⎛⎫=-- ⎪ ⎪⎝⎭ . 又(0,2,23)PC =- ,所以3cos ,4PC n 〈〉=. 所以PC 与平面PAM 所成角的正弦值为34. 3.【详解】(Ⅰ)由已知得. 取的中点T ,连接,由为中点知,. 又,故=TN AM ∥,四边形AMNT 为平行四边形,于是MN AT ∥. 因为平面,平面,所以平面. (Ⅰ)取的中点,连结.由得,从而,且 . 以A 为坐标原点, AE 的方向为轴正方向,建立如图所示的空间直角坐标系.由题意知, ,,,, (0,2,4)PM =-, 5(,1,2)2PN =-,5(,1,2)2AN =.设(,,)x y z =n 为平面 PMN 的一个法向量,则0,{0,n PM n PN ⋅=⋅=即 240,520,2y z x y z -=+-= 可取(0,2,1)n =.于是85cos ,25n AN n AN n AN⋅〈〉==. 三、二面角1【分析】(1)PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP所在直线分别为x 、y 、z 轴建立如上图所示的空间直角坐标系D xyz -, 设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得22a =,故22BC a ==; (2)设平面PAM 的法向量为()111,,m x y z =,则22AM ⎛⎫=-⎪ ⎪⎝⎭,()2,0,1AP =-, 由111120220m AM x y m AP x z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取12x =,可得()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,2,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()2,1,1BP =--,由222220220n BM x n BP x y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3314cos ,1472m n m n m n⋅<>===⨯⋅,所以,270sin ,1cos ,14m n m n <>=-<>=,因此,二面角A PM B --的正弦值为7014. 2.【分析】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F , 在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG =,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =, 同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F , ()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的法向量为()111,,m x y z =,由0m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,37cos ,7321m n m n m n⋅<>===⨯⋅, 设二面角1A EF A --的平面角为θ,则7cos 7θ=,242sin 1cos 7θθ∴=-=. 因此,二面角1A EF A --的正弦值为427. 3【分析】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线 1//ME B C ∴且112ME B C =又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C =//ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE //MN ∴平面1C DE(2)设AC BD O ⋂=,11111A C B D O ⋂= 由直四棱柱性质可知:1OO ⊥平面ABCD 四边形ABCD 为菱形 AC BD ∴⊥则以O 为原点,可建立如下图所示的空间直角坐标系: 则:()3,0,0A,()0,1,2M ,()13,0,4A ,D (0,-1,0)31,,222N ⎛⎫- ⎪ ⎪⎝⎭取AB 中点F ,连接DF ,则31,,022F ⎛⎫⎪⎪⎝⎭四边形ABCD 为菱形且60BAD ∠= BAD ∴∆为等边三角形 DF AB ∴⊥ 又1AA ⊥平面ABCD ,DF ⊂平面ABCD 1DF AA ∴⊥DF ∴⊥平面11ABB A ,即DF ⊥平面1AMADF ∴为平面1AMA 的一个法向量,且33,,022DF ⎛⎫= ⎪ ⎪⎝⎭设平面1MA N 的法向量(),,n x y z =,又()13,1,2MA =-,33,,022MN ⎛⎫=- ⎪ ⎪⎝⎭132033022n MA x y z n MN x y ⎧⋅=-+=⎪∴⎨⋅=-=⎪⎩,令3x =,则1y =,1z =- ()3,1,1n ∴=-315cos ,515DF n DF n DF n⋅∴===⋅ 10sin ,5DF n ∴=∴二面角1A MA N --的正弦值为:1054.【分析】证明(1)因为1111ABCD A B C D -是长方体,所以11B C ⊥侧面11A B BA ,而BE ⊂平面11A B BA ,所以11BE B C ⊥又1BE EC ⊥,1111B C EC C ⋂=,111,B C EC ⊂平面11EB C ,因此BE ⊥平面11EB C ; (2)以点B 坐标原点,以1,,BC BA BB 分别为,,x y z 轴,建立如下图所示的空间直角坐标系,1(0,0,0),(,0,0),(,0,),(0,,)2b B C a C a b E a ,因为1BE EC ⊥,所以2210(0,,)(,,)002224b b b BE EC a a a a b a ⋅=⇒⋅-=⇒-+=⇒=,所以(0,,)E a a ,1(,,),(0,0,2),(0,,)EC a a a CC a BE a a =--==, 设111(,,)m x y z =是平面BEC 的法向量,所以111110,0,(0,1,1)0.0.ay az m BE m ax ay az m EC +=⎧⎧⋅=⇒⇒=-⎨⎨--=⋅=⎩⎩, 设222(,,)n x y z =是平面1ECC 的法向量,所以2122220,0,(1,1,0)0.0.az n CC n ax ay az n EC =⎧⎧⋅=⇒⇒=⎨⎨--=⋅=⎩⎩, 二面角1B EC C --的余弦值的绝对值为11222m n m n ⋅==⨯⋅,所以二面角1B EC C --的正弦值为2131()22-=. 5.【分析】解:(1)由题设知,平面CMD Ⅰ平面ABCD ,交线为CD .因为BC ⅠCD ,BC ⊂平面ABCD ,所以BC Ⅰ平面CMD ,故BC ⅠDM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以 DM ⅠCM . 又 BC CM =C ,所以DM Ⅰ平面BMC . 而DM ⊂平面AMD ,故平面AMD Ⅰ平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz . 当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,1,1D A B C M ,()()()2,1,1,0,2,0,2,0,0AM AB DA =-==设(),,n x y z =是平面MAB 的法向量,则0,0.n AM n AB ⎧⋅=⎨⋅=⎩即20,20.x y z y -++=⎧⎨=⎩ 可取()1,0,2n =.DA 是平面MCD 的法向量, 因此5cos ,5n DA n DA n DA⋅==,25sin ,5n DA =,所以面MAB 与面MCD 所成二面角的正弦值是255. 6.【详解】(1)由已知90BAP CDP ∠=∠=︒,得AB ⅠAP ,CD ⅠPD .由于AB//CD ,故AB ⅠPD ,从而AB Ⅰ平面P AD .又AB ⊂平面P AB ,所以平面P AB Ⅰ平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,AB 为单位长,建立如图所示的空间直角坐标系F xyz -. 由(1)及已知可得2,0,02A ⎛⎫ ⎪⎪⎝⎭,20,0,2P ⎛⎫ ⎪ ⎪⎝⎭,2,1,02B ⎛⎫ ⎪ ⎪⎝⎭,2,1,02C ⎛⎫- ⎪ ⎪⎝⎭. 所以22,1,22PC ⎛⎫=-- ⎪ ⎪⎝⎭,()2,0,0CB =,22,0,22PA ⎛⎫=- ⎪ ⎪⎝⎭,()0,1,0AB =.设(),,n x y z =是平面PCB 的法向量,则0,0,n PC n CB ⎧⋅=⎨⋅=⎩即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取()0,1,2n =--. 设(),,m x y z =是平面PAB 的法向量,则0,0,m PA m AB ⎧⋅=⎨⋅=⎩即220,220.x z y ⎧-=⎪⎨⎪=⎩可取()1,0,1m =. 则3cos ,3n m n m n m ⋅==-, 所以二面角A PB C --的余弦值为33-. 7.【解析】:(1)由题设可得,ABD CBD ≌△△,从而AD DC =. 又ACD △是直角三角形,所以=90ADC ∠︒. 取AC 的中点O ,连接DO ,BO ,则DO ⅠAC ,DO =AO . 又由于ABC 是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB 中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=. 所以平面ACD Ⅰ平面ABC .(2)由题设及(1)知,,,OA OB OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz -.则()()()()1,0,0,0,3,0,1,0,0,0,0,1A B C D -.由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得310,,22E ⎛⎫ ⎪ ⎪⎝⎭. 故()()311,0,1,2,0,0,1,,22AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭.设(),,n x y z =是平面DAE 的法向量,则00n AD n AE ⎧⋅=⎨⋅=⎩,,即0,310.22x z x y z -+=⎧⎪⎨-++=⎪⎩可取31,,13⎛⎫= ⎪ ⎪⎝⎭n . 设m 是平面AEC 的法向量,则00m AC m AE ⎧⋅=⎨⋅=⎩,,同理可取()0,1,3=-m .则7cos ,7⋅==n m n m n m . 所以二面角D -AE -C 的余弦值为77.8.【分析】(Ⅰ)因为四边形ABEF 为正方形,所以AF FE ⊥, 又AF DF ⊥,DF FE F ⋂=,所以AF ⊥平面EFDC . 又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC . (Ⅰ)过D 作DG EF ⊥,垂足为G , 因为平面ABEF ⊥平面EFDC ,平面ABEF平面EFDCEF ,DG ⊂平面EFDC ,故DG ⊥平面ABEF .以G 为坐标原点,GF 的方向为x 轴正方向,GD 的方向为z 轴正向, 建立如图所示的空间直角坐标系G xyz -.由(Ⅰ)知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=︒, 设()20DF a a =>,则3DG a =,FG a =,所以(),4,0A a a ,()3,4,0B a a -,()3,0,0E a -,()0,0,3D a . 由已知,//AB EF ,而AB ⊄平面EFDC ,EF ⊂平面EFDC , 所以//AB 平面EFDC ,又平面ABCD 平面EFDC DC =,AB ⊂平面ABCD ,故//AB CD ,所以//CD EF .由//BE AF ,可得BE ⊥平面EFDC ,同理CEF ∠为二面角C BE F --的平面角, 所以60CEF ∠=︒,从而可得()2,0,3C a a -.所以(),0,3EC a a =,()0,4,0EB a =,()3,4,3AC a a a =--,()4,0,0AB a =-. 设(),,n x y z =是平面BCE 的法向量,则00n EC n EB ⎧⋅=⎨⋅=⎩,即3040ax az ay ⎧+=⎪⎨=⎪⎩,取3x =,则0,3y z ==-,可取()3,0,3n =-.设m 是平面ABCD 的法向量,则00m AC m AB ⎧⋅=⎨⋅=⎩,同理可取()0,3,4m =,则43219cos ,192319n m n m n m⋅〈〉==-=-⨯.因为二面角E BC A --的平面角为钝角,故二面角E BC A --的余弦值为21919-.9.【详解】:(1)由已知得AC BD ⊥,AD CD =,又由AE CF =得AE CFAD CD=,故AC ⅠEF ,因此 EF HD ⊥,从而EF ⅠD H '.由56AB AC ==,得224DO BO AB AO ==-=.由AC ⅠEF 得14OH AE DO AD ==.所以1OH =,3D H DH '==. 于是222223110D H OH D O +=+='=',故D H OH '⊥.又D H EF '⊥,而OH EF H =,所以D H'⊥平面ABCD .如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,1,0A --,()0,6,0B -,()3,1,0C -,()0,0,3D ',()3,4,0AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量, 则0{m AB m AD '⋅=⋅=,即11111340{330x y x y z -=++=,可取()4,3,5m =-.设()222,,n x y z =是平面ACD '的法向量, 则0{n AC n AD '⋅=⋅=,即222260{330x x y z =++=,可取()0,3,1n =-于是1475cos ,255010m n m n m n ⋅-===-⨯, 设二面角的大小为θ,295sin 25θ=.因此二面角B D A C '--的正弦值是29525.。
空间中线线角、线面角、面面角成法原理与求法思路知识分享
D B A C α空间中的夹角空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。
1、异面直线所成的角(1)异面直线所成的角的范围是]2,0(π。
求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。
具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用解三角形来求角。
简称为“作,证,求”2、线面夹角直线与平面所成的角的范围是]2,0[π。
求直线和平面所成的角用的是射影转化法。
具体步骤如下:(若线面平行,线在面内,线面垂直,则不用此法,因为角度不用问你也知道)①找过斜线上一点与平面垂直的直线;②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角;③把该角置于三角形中计算。
也是简称为“作,证,求”注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,β为斜线与平面内任何一条直线所成的角,则有θβ≤;(这个证明,需要用到正弦函数的单调性,请跳过。
在右图的解释为 BAD CAD ∠>∠) )2.1确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;已知:如图,BAC ∠在一个平面α内,,,PN AC PM AB PN PM ⊥⊥且=(就是点P 到角两边的距离相等)过P 作PO α⊥(说明点O 为P 点在面α内的射影)求证:OAN OAM ∠∠=(OAN OAM ∠∠=,所以AO 为BAC ∠的角平分线,所以点O 会在BAC ∠的角平分线上)证明:Q PA =PA ,PN =PM ,90PNA PMA ∠∠︒==PNA PMA ∴∆≅∆(斜边直角边定理)AN AM ∴= ①(PO NO MO PN PM α⊥⎫⇒=⎬⎭斜线长相等推射影长相等)=O AN AM AO AO AMO ANO NAO MAO OM N ⎫⎪⇒∆≅∆⇒∠∠⎬⎪⎭==== 所以,点P 在面的射影为BAC ∠的角平分线上。
高一数学空间角求法题型(线线角、线面角、二面角)
空间角求法(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++∴直线1EC 与1FD所成的角的余弦值为14解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
高中立体几何专题:线面角与线线角
线面角与线线角1、异面直线所成的角:(1)范围:(0,]2πθ∈;(2)求法;2、直线和平面所成的角:(1)定义:(2)范围:[0,90];(3)求法; 【典型例题】例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( ) A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45角 D 、11AC 与1B C 成60角 答案:D 。
解析:A 1C 1与AD 成45°,D 1C 1与AB 平行,AC 1与DC所成角的正切为2。
(2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( )A 、2个B 、4个C 、6个D 、8个答案:B 。
解析:平面A 1ACC 1,平面BB 1D 1D ,平面ABC 1D 1,平面A 1D 1CC 1。
(3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1面对角线E 1D 与BC 1所成的角是 ( )A .90ºB .60ºC .45ºD .30º答案:B 。
解析将BC 1平移到E 1F 即可。
(4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。
答案:AC ⊥BD 。
解析:过A 作AH ⊥平面BCD ,垂足为H ,因为CD ⊥AB ,BC ⊥AD ,所以CD ⊥BH ,BC ⊥DH ,故H 为△BCD 的垂心,从而BD ⊥CH ,可得BD ⊥AC 。
(5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___.答案:16或64。
解析:分A 、B 在平面α的同侧和异侧进行讨论。
例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD.(Ⅰ) 证明:BC ⊥侧面PAB;(Ⅱ) 证明: 侧面PAD ⊥侧面PAB;(Ⅲ) 求侧棱PC 与底面ABCD 所成角的大小;答案: (Ⅰ)证: ∵侧面PAB ⊥底面ABCD, 且侧面PAB 与底面ABCD 的交线是AB, 在矩形ABCD 中, BC ⊥AB ,.∴BC ⊥侧面PAB.(Ⅱ)证: 在矩形ABCD 中, AD ∥BC, BC ⊥侧面PAB, ∴AD ⊥侧面PAB. 又AD ⊂平面PAD, ∴侧面PAD ⊥侧面PAB.(Ⅲ)解: 在侧面PAB 内, 过点P 做PE ⊥AB, 垂足为E, 连结EC, ∵侧面PAB 与底面ABCD 的交线是AB, PE ⊥AB, ∴PE ⊥底面ABCD. 于是EC 为PC 在底面ABCD 内的射影.∴∠PCE 为侧棱PC 与底面ABCD 所成的角. 在△PAB 和△BEC 中, 易求得PE=3, EC=3.在Rt △A BC D PAB C H S M PEC 中, ∠PCE=45°.例4:设△ABC 内接于⊙O ,其中AB 为⊙O 的直径,PA ⊥平面ABC 。
线线角和线面角
线线角和线面角[重点]:确定点、斜线在平面内的射影。
[知识要点]:一、线线角1、定义:设a、b是异面直线,过空间一点O引a′//a,b′//b,则a′、b′所成的锐角(或直角),叫做异面直线a、b所成的角.2、范围:(0,]3. 向量知识:对异面直线AB和CD(1);(2) 向量和的夹角<,>(或者说其补角)等于异面直线AB和CD的夹角;(3)二、线面角1、定义:平面的一条斜线和它在这个平面内的射影所成的锐角,斜线和平面所成角的范围是(0,).2、直线在平面内或直线与平面平行,它们所成角是零角;直线垂直平面它们所成角为,3、范围: [0,]。
4、射影定理:斜线长定理:从平面外一点向这个平面所引的垂线段和斜线段中:(1)射影相等的两条斜线段相等,射影较长的斜线段也较长;(2)相等的斜线段的射影相等,较长的斜线段的射影也较长;(3)垂线段比任何一条斜线段都短。
5、最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成的一切角中最小的角。
6、向量知识(法向量法)与平面的斜线共线的向量和这个平面的一个法向量的夹角<,>(或者说其补角)是这条斜线与该平面夹角的余角.[例题分析与解答]例1.如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,求:异面直线BA1与AC所成的角.分析:利用,求出向量的夹角,再根据异面直线BA1,AC所成角的范围确定异面直线所成角.解:∵,,∴∵AB⊥BC,BB1⊥AB,BB1⊥BC,∴∴又∴∴所以异面直线BA1与AC所成的角为60°.点评:求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示.例2.如图(1),ABCD是一直角梯形,AD⊥AB,AD//BC,AB=BC=a, AD=2a,且PA⊥平面ABCD,PD与平面ABCD成30°角.(1)若AE⊥PD,E为垂足,求证:BE⊥PD;(2)求异面直线AE与CD所成角的大小(用反三角函数表示)解法一:(1)证明:∵PA⊥平面ABCD,∴PA⊥AB,∵AD⊥AB,∴AB⊥平面PAD,∴AB⊥PD,又AE⊥PD,∴PD⊥平面ABE,∴BE⊥PD.(2)解:设G、H分别为ED、AD的中点,连BH、HG、GB(图(1))易知,∴BH//CD.∵G、H分别为ED、AD的中点,∴HG//AE则∠BHG或它的补角就是异面直线AE、CD所成的角,而,,,在ΔBHG中,由余弦定理,得,∴.∴异面直线AE、CD所成角的大小为.解法二:如图(2)所示建立空间直角坐标系A-xyz,则,,,,,(1)证明:∵∴∴∴(2)解:∵∴∴异面直线AE、CD所成角的大小为例3.如图,在正方体ABCD-A1B1C1D1中,,求BE1与DF1所成角的余弦值.解:以D为坐标原点,为x,y,z轴,建立空间直角坐标系D-xyz,设正方体的棱长为4,则D(0,0,0),B(4,4,0),E1(4,3,4), F1(0,1,4).则,∴,∵.∴∴BE1与DF1所成角的余弦值为点评:在计算和证明立体几何问题中,若能在原图中建立适当的空间直角坐标系,把图形中的点的坐标求出来,那么图形有关问题可用向量表示.利用空间向量的坐标运算来求解,这样可以避开较为复杂的空间想象。
高中立体几何专题:线面角与线线角
线面角与线线角1、异面直线所成的角:(1)范围:(0,]2πθ∈;(2)求法;2、直线和平面所成的角:(1)定义:(2)范围:[0,90]o o ;(3)求法; 【典型例题】例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( )A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45o 角D 、11AC 与1B C 成60o 角答案:D 。
解析:A 1C 1与AD 成45°,D 1C 1与AB 平行,AC 1与DC。
(2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( )A 、2个B 、4个C 、6个D 、8个答案:B 。
解析:平面A 1ACC 1,平面BB 1D 1D ,平面ABC 1D 1,平面A 1D 1CC 1。
(3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1面对角线E 1D 与BC 1所成的角是 ( )A .90ºB .60ºC .45ºD .30º答案:B 。
解析将BC 1平移到E 1F 即可。
(4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。
答案:AC ⊥BD 。
解析:过A 作AH ⊥平面BCD ,垂足为H ,因为CD ⊥AB ,BC ⊥AD ,所以CD ⊥BH ,BC ⊥DH ,故H 为△BCD 的垂心,从而BD ⊥CH ,可得BD ⊥AC 。
(5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___.答案:16或64。
解析:分A 、B 在平面α的同侧和异侧进行讨论。
例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD.(Ⅰ) 证明:BC ⊥侧面PAB;(Ⅱ) 证明: 侧面PAD ⊥侧面PAB;(Ⅲ) 求侧棱PC 与底面ABCD 所成角的大小;答案: (Ⅰ)证: ∵侧面PAB ⊥底面ABCD, 且侧面PAB 与底面ABCD 的交线是AB, 在矩形ABCD 中, BC ⊥AB ,.∴BC ⊥侧面PAB.(Ⅱ)证: 在矩形ABCD 中, AD ∥BC, BC ⊥侧面PAB, ∴AD ⊥侧面PAB. 又AD ⊂平面PAD, ∴侧面PAD ⊥侧面PAB.(Ⅲ)解: 在侧面PAB 内, 过点P 做PE ⊥AB, 垂足为E, 连结EC, ∵侧面PAB 与底面ABCD 的交线是AB, PE ⊥AB, ∴PE ⊥底面ABCD. 于是EC 为PC 在底面ABCD 内的射影.A BC D PAB C H S M ∴∠PCE 为侧棱PC 与底面ABCD 所成的角. 在△PAB 和△BEC 中, 易求得PE=3, EC=3.在Rt △PEC 中, ∠PCE=45°.例4:设△ABC 内接于⊙O ,其中AB 为⊙O 的直径,PA ⊥平面ABC 。
线面角二面角线线角的公式
线面角二面角线线角的公式线面角、二面角和线线角是在几何学中常见的概念,它们有各自的计算公式。
下面将分别介绍这三个角的定义和计算方法。
1.线面角:线面角是由一条线与一个平面相交所形成的角。
设平面上有一条直线L,平面上有一点A和直线上的一点B,在平面上从点A引一条垂线,与直线L相交,就形成了一个线面角。
线面角的度量是直线L的角度与平面的夹角。
线面角的计算公式如下:线面角=直线L与平面的夹角2.二面角:二面角是由两个平面相交所形成的角。
设有一个平面P1和一个不与P1平行的平面P2,两个平面相交于一条直线L。
通过P1和P2的交线L 可以确定两个交点A和B。
二面角的计算公式如下:二面角=(直线L在P1中所成的角)+(直线L在P2中所成的角)值得注意的是,二面角没有固定的度量单位,它的度量取决于直线L 在两个平面上的角度度量单位。
3.线线角:线线角是由两条直线相交所形成的角。
设有两条直线L1和L2,它们相交于一点O。
通过O可以确定L1上的一点A和L2上的一点B。
线线角的计算公式如下:线线角=∠AOB其中,∠AOB表示点A、O和B所形成的角。
总结:线面角、二面角和线线角是几何学中常见的角度概念。
线面角由一条直线与一个平面相交所形成,计算公式为线面角=直线L与平面的夹角。
二面角由两个平面相交所形成,计算公式为二面角=(直线L在P1中所成的角)+(直线L在P2中所成的角)。
线线角由两条直线相交所形成,计算公式为线线角=∠AOB。
这些角度概念在几何学的应用中起着重要的作用。
线面角,二面角,线线角的范围
线面角,二面角,线线角的范围线面角、二面角、线线角是数学中用来表示三维空间属性、特征及空间关系的几何概念。
线面角是三角形的两个边和另一条平面之间的夹角;二面角代表了两个平面之间的夹角;线线角是两条直线的夹角。
以上三个角,在数学计算以及生活应用当中都发挥着重要作用。
首先,线面角可以用来表示两个三角形之间的关系。
线面角可以应用在三角形交会、分析物体形状和寻找最大最小角等问题当中。
一般来说,如果两个三角形的三个面分别作直线链接,形成的角就是线面角。
线面角的计算可以采用向量的几何关系、勾股定理以及三角函数等方法。
而且,线面角也有助于解决实际问题,比如求解等腰三角形的外接圆的半径。
其次,二面角也可以用来表示三维空间中物体形状及其关系。
二面角由两个平面和它们之间的空间角度来定义。
常见的计算二面角的方法包括埃尔米特定理、直角坐标系和泰勒公式等。
此外,二面角也可以帮助我们计算三角形的表面积,例如求得两个平面的夹角就可以用二面角来解答。
最后,线线角是两条线段之间的夹角。
它是一种由两条非平行线之间的夹角来定义的几何形状。
线线角在求解三角形外接圆半径和求解正方形面积等几何问题上同样也有重要的作用。
并且,线线角也可以应用在具体工程当中,比如机械结构设计、火箭发射系统的控制与精确定位等技术。
线面角、二面角、线线角均是三维空间的重要几何概念,在平面几何和空间几何的计算以及实际技术应用中都发挥着重要作用。
像是线面角可以用来表示两个三角形之间的关系,计算等腰三角形的外接圆的半径等问题;二面角可以用来表示三维空间中物体形状及其关系,它也可以帮助我们计算三角形的表面积;线线角则是两条线段之间的夹角,可以用来求解三角形外接圆半径和求解正方形面积,也可以应用在具体工程当中,如机械结构设计、火箭发射系统的控制与精确定位等应用技术。
从上面的讨论可以看出,线面角、二面角、线线角三者在数学计算和实际应用中均发挥了重要作用。
这些概念涉及到数学计算中几何计算的技巧,也涉及到工程实践中实用技术的控制,这一举一动都极大地改变了我们对空间这一概念的认识,为我们解决了日常生活中的问题,也丰富了我们的数学认知。
线线角、线面角,二面角(高考立体几何法宝)
1A 1B 1C 1D ABCD E FG线线角、线面角、二面角的求法1.空间向量的直角坐标运算律:⑴两个非零向量与垂直的充要条件是1122330a b a b a b a b ⊥⇔++=⑵两个非零向量与平行的充要条件是a ·b =±|a ||b | 2.向量的数量积公式若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a ·b =|a ||b | cos θ(2)模长公式:则212||a a a a a =⋅=++2||b b b b =⋅=+(3)夹角公式:2cos ||||a ba b a b a ⋅⋅==⋅+(4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB x ==,A B d =①两条异面直线a 、b 间夹角0,2πα⎛⎫∈ ⎪⎝⎭在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( )A .515arccosB .4π C .510arccosD .2π(向量法,传统法)PBCA例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____.解:(1)向量法(2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB中,即t a n 2PDDBA DB∠==. 点评:本题是将三棱柱补成正方体'''DBCA D B C P -②直线a 与平面α所成的角0,2πθ⎛⎤∈ ⎥⎝⎦(重点讲述平行与垂直的证明)可转化成用向量→a 与平面α的法向量→n 的夹角ω表示,由向量平移得:若ππ(图);若ππ平面α的法向量→n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤:(1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z =(3)根据法向量的定义建立关于x,y,z 的方程组(0a <(4)解方程组,取其中的一组解,即得法向量。
几何法求线线角,线面角,二面角的10类题型(教师版)
几何法求线线角、线面角、二面角常考题型题型一平行四边形平移法求线线角 4题型二中位线平移法求线线角 6题型三补形平移法求线线角 8题型四作垂线法求线面角 10题型五等体积法求线面角 13题型六定义法求二面角 15题型七三垂线法求二面角 17题型八垂面法求二面角 19题型九补棱法求二面角 22题型十射影面积法求二面角 25知识梳理一、线线角的定义与求解线线角主要是求异面直线所成角。
1、线线角的定义:①定义:设a,b是两条异面直线,经过空间任一点O作直线a ⎳a,b ⎳b,把a 与b 所成的锐角或直角叫做异面直线a,b所成的角(或夹角)②范围:0,π22、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.3、可通过多种方法平移产生,主要有三种方法:①平行四边形平移法;②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).二、线面角的定义与求解1、线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角,取值范围:[0°,90°]2、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B为斜足;找线在面外的一点A,过点A向平面α做垂线,确定垂足O;(2)连结斜足与垂足为斜线AB在面α上的投影;投影BO与斜线AB之间的夹角为线面角;(3)把投影BO与斜线AB归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
3、公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解。
公式为:sinθ=h,其中θ是斜线与平面所成的角,h是垂线段的长,l是斜线段的长。
立体几何不建系专题学生版
专题 几何法求线线角,线面角与二面角一、求异面直线夹角常用方法:平移线段或构造中位线,范围0,π2注:异面直线和相交直线夹角的取值范围是0,π2,平行直线与重合直线的夹角为0°二、求线面角常用方法:直线上取一点往平面作垂线段,范围0,π2如图,作直线AB ∩α=B ,作AH ⊥α于H ,∠ABH 即为所求三、二面角与面面角(1)二面角与面面角的区别二面角的平面角建立在两个半平面的基础上,是一个张角概念,衡量打开程度;而平面与平面的夹角建立在两个整平面的基础上,类似于两条相交直线形成两组对顶角,人为选择不超过90°的角作为面面角二面角的平面角建立在两个半平面的基础上,是一个张角概念,衡量打开程度;而平面与平面的夹角建立在两个整平面的基础上,类似于两条相交直线形成两组对顶角,人为选择不超过90°的角作为面面角二面角:由一条直线引出的2个半平面所成夹角,范围0,π2 面面角:两个平面的夹角,范围0,π(2)常用方法介绍一、定义法:交线上取点½等腰三角形共底边时作二面角步骤第一步:在交线l 上取一点O第二步:在α平面内过O 点作l 的垂线OA 第三步:在β平面内过O 点作l 的垂线OB ∠AOB 即为二面角,余弦定理求角二、三垂线法(先作面的垂直)-后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B 作l 的垂线OB ∠AOB 即为二面角且△AOB 为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO ⊥l 第二步:作OB ⊥l连接AB ,∠AOB 即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO ⊥l第二步:作AB ⊥β(找不到垂足B 的位置用等体积求AB 长)连接AB ,∠AOB 即为二面角△AOB 为直角三角形,邻比斜五、转换成线线角-计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB ,且β平面存在垂线AC 则α平面与β平面的夹角等于直线AC 与AB 的夹角六、投影面积法--面积比(三垂线法进阶)将cos θ=边之比½面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC ,则平面α与平面ABC 的夹角余弦值cos θ=△A 1BC △ABC即cos θ=S 投影S 原补充:即使交线没有画出来也可以直接用一、异面直线平移法1如图所示,在长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E,F,G分别是DD1,AB,CC1的中点,则异面直线A1E与GF所成的角是.1(浙江·高二温州中学校联考期中)已知长方体,,,则直线与直线所成角的余弦值为()A. B. C.D.2(2023湖北武汉高一联考期末)如图所示,在三棱柱中,侧面A1ACC1是边长为2的菱形,侧面C1CBB1为正方形,平面A1ACC1⊥平面ABC.点M为的中点,N为AB的中点,异面直线AC与BB1所成的角为.(1)证明:平面C1CBB1;(2)求四棱锥的体积.2(2023江苏常州·高一常州市第一中学校考期末)如图,在三棱锥中,,且,,分别是棱,的中点,则和所成的角等于.1(浙江温州·高一统考期末)如图,在四面体中,,,、分别为、的中点,,则异面直线与所成的角是.2(天津高一耀华中学校考期末)如图,已知空间四边形的四条边以及对角线的长均为2,M、N 分别是与的中点,则异面直线和所成角的余弦值为.3(2023下浙江·高一路桥中学校联考期中)在直三棱柱中,,,E是的中点,则异面直线与所成的角的余弦值是=3(2023下·湖南长沙·高一长郡中学校考期中)如图,在直三棱柱中,是等边三角形,AAAB,D,E,F分别是棱,BB,的中点,则异面直线与C1E所成角的余弦值是.1四、线面角的求解方法4(2020·北京·统考高考真题)如图,在正方体中,E为BB1的中点.(1)求证:BC1⎳平面;(2)求直线与平面所成角的正弦值.4(2023·宁夏高一吴忠中学校考期末)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⎳BC ,AB ⊥BC ,PA =AD =4,BC =1,,CD =23.(1)证明:平面;(2)求与平面所成角的余弦值.5(2023哈尔滨·高一哈九中校考期末)如图,三棱柱中、四边形ABB 1A 1是菱形,且∠ABB 1=60°,AB =BC =2,CA =CB 1,CA ⊥CB 1,(1)证明:平面CAB 1⊥平面ABB 1A 1;(2)求直线BB 1和平面所成角的正弦值;6(2023下·广西河池·高一统考期末)如图,在直三棱柱中,.(1)求证:AC 1⊥B 1C ;(2)求B 1C 与平面AA 1C 1C 所成的角的大小.7如图,在三棱锥P -ABC 中,PC ⊥平面ABC ,AB =BC =12PC =2,PA =26.(1)求证:AB ⊥平面PBC ;(2)若M 是PA 的中点,求CM 与平面PAB 所成角的余弦值.五、定义法求二面角5(山东高一统考期末)如图,在三棱锥V -ABC 中,AB =22,VA =VB ,,,且,AC⊥BC ,则二面角V -AB -C的余弦值是8如图,四边形是正方形,平面,且PA =AB . 求二面角B -PA -C 的大小.9(2023下·天津河东·高一统考期末)在三棱锥P -ABC 中(如图所示),PC =5,则二面角P -AB -C 的余弦值为.六、三垂线法求二面角6(2023下·湖南岳阳·高一统考期末)如图,在直角梯形ABCD中,BC∥AD,,,,,边AD上一点E满足,现将沿BE折起到△A1BE的位置,使平面A1BE⊥平面BCDE,如图所示.(1)在棱上是否存在点F,使直线平面A1BE,若存在,求出A1FA1C,若不存在,请说明理由;(2)求二面角A1-BC-D的平面角的正切值.10(2023·全国·高一随堂练习)如图,在圆锥PO中,已知PO =2,的直径,点C 在上,且∠CAB =30°,点D 为AC 的中点.(1)证明:平面(2)求二面角的正弦值.11(2020下·湖南长沙·高一长沙一中校考阶段练习)如图,是圆的直径,点C 是圆上异于,的点,直线平面.(1)证明:平面平面;(2)设AB =PC =2,,求二面角B -PA -C的余弦值.12(2023下·安徽六安·高一六安二中校考期末)如图,在直角梯形中,AB ⎳DC ,∠ABC =90°,AB =2DC =2BC ,为的中点,沿将折起,使得点到点的位置,且,为的中点,是上的中点.(1)证明:平面平面;(2)求二面角B -EN -M 的正切值.13(2023下·湖北武汉期末联考)如图,在三棱柱中,面ABB 1A 1为正方形,面AA 1C 1C 为菱形,∠CAA 1=60°,侧面AA 1C 1C ⊥面ABB 1A 1.(1)求证:AC 1⊥面;(2)求二面角C -BB 1-A 的余弦值.14(2023下·湖南永州·高一统考期末)如图,在三棱锥A -BCD 中,平面ABD ⊥平面,AB =AD ,点O为BD的中点.(1)证明:AO ⊥BC ;(2)若是边长为4的等边三角形,点E 为AD 中点,且二面角E -BC -D 的大小为,求三棱锥A-BOC的体积.15(2023下·广东佛山·高一统考期末)如图,在四棱锥P -ABCD 中,底面是正方形,侧棱底面,.(1)证明:平面平面;(2)点H 在棱上,当二面角H -DB -C 的余弦值为时,求.16(2023下·陕西咸阳·高一统考期末)如图,是直角梯形底边的中点,,AB ⊥BC ,AB =2DC =2BC ,将沿折起形成四棱锥A -BCDE .(1)求证:平面;(2)若二面角A -DE -B 为,求二面角的余弦值.17(2023下·湖北武汉·高一湖北省水果湖高级中学校联考期末)如图,在四棱锥P -ABCD 中,底面为直角梯形,AD ⎳BC ,∠ADC =90°,AB =AD =2BC =2,△PAD ≌△BAD .(1)为上一点,且,当平面时,求实数的值;(2)设平面与平面的交线为,证明面;(3)当平面与平面所成的锐二面角的大小为45°时,求与平面所成角的正弦值.七、面积投影求二面角7(惠州高三调研)如图,在四棱锥P-ABCD中,已知AB⎳CD,AD⊥CD,BC=BP,CD=2AB=4,△ADP是等边三角形,E为DP的中点.(1)证明:AE⊥平面PCD;(2)若PA=42,求平面PBC与平面PAD夹角的余弦值18(2023·全国·高一专题练习)如图与△BCD所在平面垂直,且AB=BC=BD,,则二面角A-BD-C的余弦值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线线角、线面角、面面角专题
一、异面直线所成的角
1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。
2.角的取值范围:090θ<≤︒;
垂直时,异面直线当b a ,900=θ。
例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点异面直线1AC 与1B C 所成角的余弦值
二、直线与平面所成的角
1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角
2.角的取值范围:︒
︒
≤≤900θ。
_1
_A
例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中
点,求(1)BC 与平面SAB 所成的角。
(2)SC 与平面ABC 所成的角的正切值。
一、 二面角:
1. 从一条直线出发的两个半平面所组成的图形叫做二
面角。
这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
2. 二面角的取值范围:︒
︒
≤≤1800θ 两个平面垂直:直二面角。
B
M
H
S
C
A
3.作二面角的平面角的常用方法有六种:
1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。
2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。
3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。
二面角就是该夹角或其补角。
二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。
例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值.
A 1
D 1
B 1
C 1
E D
B
C
A
巩固练习
1.若直线a 不平行于平面α,则下列结论成立的是( )
A.α内所有的直线都与a 异面;
B.α内不存在与a 平行的直线;
C.α内所有的直线都与a 相交;
D.直线a 与平面α有公共点.
2.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AD 与BC 所成角为( )
A.030
B.045
C.060
D.090 3.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条
A.3
B.4
C.6
D.8
4.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1—BD —C 的大小为( ) A.300 B.450 C.600 D.900
5.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.
A
B
C D A 1
B 1
C 1
D 1
求证:(1)直线EF∥面ACD.
(2)平面EFC⊥平面BCD.
6.如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,
AB的中点.
(1)证明:PQ∥平面ACD;
(2)求AD与平面ABE所成角的正弦值.
7.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,设SA=4,AB=2,
求点A到平面SBD的距离;
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。