齿轮的误差及其分析

合集下载

常见齿轮加工误差问题分析

常见齿轮加工误差问题分析

常见齿轮加工误差问题分析摘要:齿轮,作为生产制造设备必不可少的基础零件,直接或间接地影响着生产设备的精密度,影响着生产产品的精细度。

为了保障设备与产品的质量得到提升,齿轮自身的精密度与精细度就必须得到提高。

在实际的齿轮生产中,因为机床精度、工装卡具、加工工艺等误差的存在,都会产生齿轮加工误差。

本文就齿轮加工出现的误差问题,做一个简要的分析,并提出一些降低齿轮加工误差的方法。

关键词:齿轮加工;加工;误差引言:当今社会发展迅猛,出现了自控机构、机器人机构、仿生机构、柔性及弹性机构和机电光液广义机构等,而传递与变换运动和力的可动装置中,齿轮是应用最广泛的机械结构。

齿轮传动是机械传动中最重要、应用最为广泛的一种传动机构,大到航天航空装备,小到玩具仪器。

它依靠轮齿齿廓直接接触来传递空间任意两轴间的运动和动力,并具有传递功率范围大、传动效率高、传动比准确、使用寿命长、工作可靠、结构紧凑等优点。

但齿轮传动的制造及安装精度要求高,价格较贵,一般不用于传动距离过大的场合。

对于齿轮的研究采用的方法很多,如弹性力学、动力学、有限元等,但这些方法对齿轮的模型要求高,建模越精确,仿真结果越接近实际,就齿轮啮合而言,实际啮合情况复杂多变,加上加工安装等环节都存在误差,许多数据采集较费时费力,从而使项目周期长,且齿轮的实际啮合情况与理论啮合情况不同,模拟出来的结果不能百分百与实际吻合。

由于齿轮误差的存在,轮齿的某些该接触点无法参与接触,齿轮刚度强度会变差,所以为了更好地研究齿轮,对齿轮误差进行分析是非常有必要的。

1 齿轮传动原理一对齿轮啮合,主动轮通过啮合线接触而将动力、速度、运动等传递给从动轮,两齿轮的传动,严格符合齿廓啮合基本定律即:相互啮合传动的一对齿轮,在任一位置时的传动比,都与其连心线被其啮合齿廓在接触点处的公法线所分成的两线段长成反比。

2 齿轮加工误差产生原因2.1 机床本身精度的误差机床精度的误差包括了几个方面的原因,首先是用来加工齿轮的机床工作台上、下两个的顶尖会有径向跳动的现象产生;其次是两顶尖之间所使用的轴为不相同的工作轴;最后是所使用的加工工作台在分度上有一定的误差。

齿轮的误差及其分析

齿轮的误差及其分析

齿轮误差及其分析第一节:渐开线圆柱齿轮精度和检测对于齿轮精度,主要建立了下列几个方面的评定指标:一.运动精度:评定齿轮的运动精度,可采用下列指标:1.切向综合总偏差F i′:定义:被测齿轮与理想精确的测量齿轮单面啮合时在被测齿轮一转内,(实际转角与公称转角之差的总幅度值)被测齿轮的实际转角与理论转角的最大差值。

切向综合总偏差F i′。

(它反映了齿轮的几何偏心、运动偏心和基节偏差、齿形误差等综合结果。

)Δ2.齿距累积总偏差F p,齿距累积偏差F pk。

定义:齿轮同侧齿面任意弧段(k=1或k=z)内的最大齿距累积偏差。

它表现为齿距累积偏差曲线的总幅值。

——齿距累积总偏差。

在分度圆上,k个齿距的实际弧长与公称弧长之差的最大绝对值,称k个齿距累积误差ΔF pk。

k为2到小于Z/2的正数。

这两个误差定义虽然都是在分度圆上,但实际测量可在齿高中部进行。

这项指标主要反映齿轮的几何偏心、运动偏心。

用ΔF p 评定不如ΔF i′全面。

因为ΔF i是在连续切向综合误差曲线上取得的,而ΔF p不是连续的,它是折线。

ΔF i′= ΔF p+ Δf f测量方法:一般用相对法,在齿轮测量机上测量。

3.齿圈径向跳动ΔF r与公法线长度变动ΔF w:ΔF r定义:在齿轮一转范围内,测头在齿槽内,于齿高中部双面接触,测头相对于齿轮轴线的最大变动量。

它只反映齿轮的几何偏心,不能反映其运动偏心。

(用径跳仪测量检测。

)由于齿圈径跳ΔF r 只反映齿轮的几何偏心,不能反映其运动偏心。

因此要增加另一项指标。

公法线长度变动ΔF w。

ΔF w定义:在齿轮一周范围内,实际公法线长度最大值与最小值之差。

ΔF w=W max-W min测量公法线长度实际是测量基圆弧长,它反映齿轮的运动偏心。

测量方法:用公法线千分尺测量。

4.径向综合误差ΔF i″和公法线长度变动ΔF w:齿轮的几何偏心还可以用径向综合误差这一指标来评定。

ΔF i″定义:被测齿轮与理想精确的测量齿轮双面啮合时,在被测齿轮一转内,双啮中心距的最大变动量。

综合偏差,齿形误差,压力角误差

综合偏差,齿形误差,压力角误差

综合偏差,齿形误差,压力角误差
综合偏差、齿形误差和压力角误差都是在齿轮传动中的重要概念,它们对于齿轮传动的性能和精度都有着重要的影响。

首先,我们来谈谈综合偏差。

综合偏差是指齿轮齿廓曲线与理论齿廓曲线之间的最大偏差,它是齿轮加工质量的重要指标之一。

综合偏差的大小直接影响着齿轮传动的传动误差和噪声。

通常情况下,综合偏差越小,齿轮传动的性能就越稳定、精度就越高。

其次,齿形误差是指实际齿轮齿形与标准齿形之间的偏差。

齿形误差会导致齿轮传动中的啮合不良、振动和噪声增加,甚至会引起齿轮损坏。

因此,控制齿形误差对于提高齿轮传动的工作效率和可靠性至关重要。

最后,压力角误差是指齿轮的实际压力角与理论压力角之间的偏差。

压力角误差会影响齿轮啮合时的载荷分布和传动误差,从而影响齿轮传动的工作性能。

通常情况下,压力角误差越小,齿轮传动的工作稳定性和传动精度就越高。

综合来看,综合偏差、齿形误差和压力角误差都是影响齿轮传
动性能的重要因素,它们的控制和改善对于提高齿轮传动的工作效率、精度和可靠性都具有重要意义。

在实际应用中,需要通过合理的设计和加工工艺来控制和减小这些误差,以确保齿轮传动的正常运行和长期稳定性。

齿轮齿条出现误差是什么原因造成的?

齿轮齿条出现误差是什么原因造成的?

齿轮齿条出现误差是什么原因造成的?齿轮齿条的生产需要特定的材料,它的制造工艺包括锻造、切割和热处理。

由于材料的选择,需要注意材料的工艺性能。

面对材料的工艺性能,我们可以通过改变工艺规程、热处理方法等来改善它。

那么出现误差是怎么造成的呢?接下来我们来探讨一下。

齿轮齿条应该选择什么材料?要了解我国工业发展形式,结合我国资源和生产条件,从实际出发,综合考虑机械性能、工艺性能和经济性等问题。

只有合理选择材料才能保证货架质量,降低产品成本,提高市场竞争力,有效提升产品性能。

为了满足材料的力学性能,材料的力学性能包括强度、硬度、塑性和韧性等,反映了材料在使用过程中的性能。

齿轮啮合时,与齿面接触有接触应力,齿根弯曲应力,可能造成齿面或齿体强度断裂。

齿面上的每一点都有相对滑动,从而引起磨损。

齿轮失效的主要方式有齿面麻点、齿面粘着、齿面塑性变形和断齿。

因此,要求齿轮材料具有较高的弯曲疲劳强度和接触疲劳强度,齿面必须具有足够的硬度和耐磨性,芯部必须具有一定的强度和韧性。

例如,在确定大小齿轮的硬度时,应注意小齿轮齿的表面硬度比大齿轮高30-50HBS,因为小齿轮比大齿轮和大齿轮的加载次数更多。

小齿轮齿根较细,强度低于大齿轮。

为了使两个齿轮的齿接近相同的强度,小齿轮齿的表面比大齿轮齿的表面更硬。

另一方面,后材料的质量是由材料的特性决定的。

为了明确材料的力学性能或硬度,我们可以通过各种热处理工艺达到所需的硬度范围,从而赋予材料不同的力学性能。

如果齿轮采用40Cr合金钢,油淬840-860C,回火540-620C,调质后硬度可达28-32HRC,可改善组织,提高综合力学性能;油淬时860-880C240-280C回火时,硬度可达46-51HRC,表面耐磨性好,芯部韧性好,变形小;52-54HRC,钢材具有高表面硬度、高耐磨性、高疲劳强度、高抗腐蚀性和抗粘附性,变形小;可改善齿轮工作面的摩擦性能,提高耐腐蚀性能总结误差三种情况:1.齿轮刀具齿形误差机床是一种结合了生成运动结构和分齿轮运动结构的齿轮加工机床,如滚齿机、插齿机等。

齿轮的误差及其分析

齿轮的误差及其分析

齿轮误差及其分析第一节:渐开线圆柱齿轮精度和检测对于齿轮精度,主要建立了下列几个方面的评定指标:一.运动精度:评定齿轮的运动精度,可采用下列指标:1.切向综合总偏差F i′:定义:被测齿轮与理想精确的测量齿轮单面啮合时在被测齿轮一转内,(实际转角与公称转角之差的总幅度值)被测齿轮的实际转角与理论转角的最大差值。

切向综合总偏差F i′。

(它反映了齿轮的几何偏心、运动偏心和基节偏差、齿形误差等综合结果。

)Δ2.齿距累积总偏差F p,齿距累积偏差F pk。

定义:齿轮同侧齿面任意弧段(k=1或k=z)内的最大齿距累积偏差。

它表现为齿距累积偏差曲线的总幅值。

——齿距累积总偏差。

在分度圆上,k个齿距的实际弧长与公称弧长之差的最大绝对值,称k个齿距累积误差ΔF pk。

k为2到小于Z/2的正数。

这两个误差定义虽然都是在分度圆上,但实际测量可在齿高中部进行。

这项指标主要反映齿轮的几何偏心、运动偏心。

用ΔF p 评定不如ΔF i′全面。

因为ΔF i是在连续切向综合误差曲线上取得的,而ΔF p不是连续的,它是折线。

ΔF i′= ΔF p + Δf f测量方法:一般用相对法,在齿轮测量机上测量。

3.齿圈径向跳动ΔF r与公法线长度变动ΔF w:ΔF r定义:在齿轮一转范围内,测头在齿槽内,于齿高中部双面接触,测头相对于齿轮轴线的最大变动量。

它只反映齿轮的几何偏心,不能反映其运动偏心。

(用径跳仪测量检测。

)由于齿圈径跳ΔF r 只反映齿轮的几何偏心,不能反映其运动偏心。

因此要增加另一项指标。

公法线长度变动ΔF w。

ΔF w定义:在齿轮一周范围内,实际公法线长度最大值与最小值之差。

ΔF w=W max-W min测量公法线长度实际是测量基圆弧长,它反映齿轮的运动偏心。

测量方法:用公法线千分尺测量。

4.径向综合误差ΔF i″和公法线长度变动ΔF w:齿轮的几何偏心还可以用径向综合误差这一指标来评定。

ΔF i″定义:被测齿轮与理想精确的测量齿轮双面啮合时,在被测齿轮一转内,双啮中心距的最大变动量。

齿轮传动轴的传动误差与回转间隙分析

齿轮传动轴的传动误差与回转间隙分析

齿轮传动轴的传动误差与回转间隙分析引言齿轮传动是常见的一种机械传动形式,广泛应用于工业机械领域。

在齿轮传动中,传动误差和回转间隙是重要的性能指标,对传动系统的精度和运行稳定性有着重要影响。

本文将针对齿轮传动轴的传动误差与回转间隙进行详细分析,探讨它们的原因以及对传动系统性能的影响。

一、传动误差的定义与分类传动误差是指齿轮传动轴在工作过程中由于齿轮的制造、装配等因素,导致输出轴承载方向的误差。

在齿轮传动中,常见的传动误差主要包括齿形误差、齿隙误差和轴向移位误差。

1. 齿形误差:齿形误差是指齿轮齿廓形状与理想齿廓的差异。

齿形误差可以通过齿轮的制造工艺、加工精度以及齿形检测仪器的性能等因素引起。

齿形误差会导致传动系统的噪声和振动增加,降低传动系统的工作效率。

2. 齿隙误差:齿隙误差是指齿轮齿槽之间的间隙大小不一致。

齿隙误差可以由齿轮的制造工艺、装配过程中的间隙控制等因素引起。

齿隙误差会导致传动系统的动态特性变差,降低传动系统的响应速度和稳定性。

3. 轴向移位误差:轴向移位误差是指齿轮轴在工作过程中由于装配不精确或轴向载荷造成的轴向偏移。

轴向移位误差会导致传动系统的运行不平稳,产生冲击和振动,严重时会导致传动轴的断裂。

二、传动误差的影响因素传动误差的产生与多个因素相关,主要包括齿轮的加工工艺、装配精度、使用环境、负载情况等。

1. 加工工艺:齿轮的加工工艺是影响传动误差的重要因素之一。

制造齿轮时,加工精度越高产生的传动误差就越小。

高精度的加工设备和工艺可以减少齿形误差和齿隙误差的产生。

2. 装配精度:齿轮装配过程中的精度控制也会对传动误差产生重要影响。

装配精度越高,齿轮的传动误差就越小。

装配精度主要包括齿轮齿轮间隙的控制、轴向偏移的控制等。

3. 使用环境:齿轮传动系统的使用环境对传动误差有着重要影响。

高温、高湿、高腐蚀等环境会导致齿轮表面的磨损加剧,进而影响传动误差。

4. 负载情况:齿轮传动系统的负载情况也会对传动误差产生影响。

齿轮精度出现偏差的5大原因

齿轮精度出现偏差的5大原因

齿轮精度出现偏差的5大原因来源:机械论坛()1.齿圈径向跳动误差(即几何偏心)齿圈径向跳动是指在齿轮一转范围内,测头在齿槽内或轮齿上,与齿高中部双面接触,测头相对于轮齿轴线的最大变动量。

也是轮齿齿圈相对于轴中心线的偏心,这种偏心是由于在安装零件时,零件的两中心孔与工作台的回转中心安装不重合或偏差太大而引起。

或因顶尖和顶尖孔制造不良,使定位面接触不好造成偏心,所以齿圈径跳主要应从以上原因分析解决。

2.公法线长度误差(即运动偏心)滚齿是用展成法原理加工齿轮的,从刀具到齿坯间的分齿传动链要按一定的传动比关系保持运动的精确性。

但是这些传动链是由一系列传动元件组成的。

它们的制造和装配误差在传递运动过程中必然要集中反映到传动链的末端零件上,产生相对运动的不均匀性,影响轮齿的加工精度。

公法线长度变动是反映齿轮牙齿分布不均匀的最大误差,这个误差主要是滚齿机工作台蜗轮副回转精度不均匀造成的,还有滚齿机工作台圆形导轨磨损、分度蜗轮与工作台圆形导轨不同轴造成,再者分齿挂轮齿面有严重磕碰或挂轮时咬合太松或太紧也会影响公法线变动超差。

3.齿形误差分析齿形误差是指在齿形工作部分内,包容实际齿形廓线的两理想齿形(渐开线)廓线间的法向距离。

在实际加工过程中不可能获得完全正确的渐开线齿形,总是存在各种误差,从而影响传动的平稳性。

齿轮的基圆是决定渐开线齿形的惟一参数,如果在滚齿加工时基圆产生误差,齿形势必也会有误差。

基圆半径R=滚刀移动速度/工作台回转角速度x cos ao (ao为滚刀原始齿形角),在滚齿加工过程中渐开线齿形主要靠滚刀与齿坯之间保持一定速比的分齿来保证,由此可见,齿形误差主要是滚刀齿形误差决定的,滚刀刃磨质量不好很容易出现齿形误差。

同时滚刀在安装中产生的径向跳动、轴向窜动(即安装误差)也对齿形误差有影响。

常见的齿形误差有不对称、齿形角误差(齿顶变肥或变厚)、产生周期误差等。

4.齿向误差分析齿向误差是在分度圆柱面上,全齿宽范围内,包容实际齿向线的两条设计齿向线的端面距离。

齿轮误差分析

齿轮误差分析

1.1 齿圈径向跳动误差(即几何偏心)齿圈径向跳动是指在齿轮一转范围内,测头在齿槽内或轮齿上,与齿高中部双面接触,测头相对于轮齿轴线的最大变动量。

也是轮齿齿圈相对于轴中心线的偏心,这种偏心是由于在安装零件时,零件的两中心孔与工作台的回转中心安装不重合或偏差太大而引起。

或因顶尖和顶尖孔制造不良,使定位面接触不好造成偏心,所以齿圈径跳主要应从以上原因分析解决。

1.2公法线长度误差(即运动偏心)滚齿是用展成法原理加工齿轮的,从刀具到齿坯间的分齿传动链要按一定的传动比关系保持运动的精确性。

但是这些传动链是由一系列传动元件组成的。

{HotTag}它们的制造和装配误差在传递运动过程中必然要集中反映到传动链的末端零件上,产生相对运动的不均匀性,影响轮齿的加工精度。

公法线长度变动是反映齿轮牙齿分布不均匀的最大误差,这个误差主要是滚齿机工作台蜗轮副回转精度不均匀造成的,还有滚齿机工作台圆形导轨磨损、分度蜗轮与工作台圆形导轨不同轴造成,再者分齿挂轮齿面有严重磕碰或挂轮时咬合太松或太紧也会影响公法线变动超差。

1.3齿形误差分析齿形误差是指在齿形工作部分内,包容实际齿形廓线的两理想齿形(渐开线)廓线间的法向距离。

在实际加工过程中不可能获得完全正确的渐开线齿形,总是存在各种误差,从而影响传动的平稳性。

齿轮的基圆是决定渐开线齿形的惟一参数,如果在滚齿加工时基圆产生误差,齿形势必也会有误差。

基圆半径R= 滚刀移动速度/工作台回转角速度x cos ao (ao为滚刀原始齿形角),在滚齿加工过程中渐开线齿形主要靠滚刀与齿坯之间保持一定速比的分齿来保证,由此可见,齿形误差主要是滚刀齿形误差决定的,滚刀刃磨质量不好很容易出现齿形误差。

同时滚刀在安装中产生的径向跳动、轴向窜动(即安装误差)也对齿形误差有影响。

常见的齿形误差有不对称、齿形角误差(齿顶变肥或变厚)、产生周期误差等。

1.4齿向误差分析齿向误差是在分度圆柱面上,全齿宽范围内,包容实际齿向线的两条设计齿向线的端面距离。

齿轮的误差及其分析

齿轮的误差及其分析

齿轮误差及其分析第一节:渐开线圆柱齿轮精度和检测对于齿轮精度,主要建立了下列几个方面的评定指标:一.运动精度:评定齿轮的运动精度,可采用下列指标:1.切向综合总偏差F i′:定义:被测齿轮与理想精确的测量齿轮单面啮合时在被测齿轮一转,(实际转角与公称转角之差的总幅度值)被测齿轮的实际转角与理论转角的最大差值。

切向综合总偏差F i′。

(它反映了齿轮的几何偏心、运动偏心和基节偏差、齿形误差等综合结果。

)ΔF i2.齿距累积总偏差F p,齿距累积偏差F pk。

定义:齿轮同侧齿面任意弧段(k=1或k=z)的最大齿距累积偏差。

它表现为齿距累积偏差曲线的总幅值。

——齿距累积总偏差。

在分度圆上,k个齿距的实际弧长与公称弧长之差的最大绝对值,称k个齿距累积误差ΔF pk。

k为2到小于Z/2的正数。

这两个误差定义虽然都是在分度圆上,但实际测量可在齿高中部进行。

这项指标主要反映齿轮的几何偏心、运动偏心。

用ΔF p 评定不如ΔF i′全面。

因为ΔF i是在连续切向综合误差曲线上取得的,而ΔF p不是连续的,它是折线。

ΔF i′= ΔF p+ Δf f测量方法:一般用相对法,在齿轮测量机上测量。

3.齿圈径向跳动ΔF r与公法线长度变动ΔF w:ΔF r定义:在齿轮一转围,测头在齿槽,于齿高中部双面接触,测头相对于齿轮轴线的最大变动量。

它只反映齿轮的几何偏心,不能反映其运动偏心。

(用径跳仪测量检测。

)由于齿圈径跳ΔF r 只反映齿轮的几何偏心,不能反映其运动偏心。

因此要增加另一项指标。

公法线长度变动ΔF w。

ΔF w定义:在齿轮一周围,实际公法线长度最大值与最小值之差。

ΔF w=W max-W min测量公法线长度实际是测量基圆弧长,它反映齿轮的运动偏心。

测量方法:用公法线千分尺测量。

4.径向综合误差ΔF i″和公法线长度变动ΔF w:齿轮的几何偏心还可以用径向综合误差这一指标来评定。

ΔF i″定义:被测齿轮与理想精确的测量齿轮双面啮合时,在被测齿轮一转,双啮中心距的最大变动量。

齿形误差的定义 -回复

齿形误差的定义 -回复

齿形误差的定义-回复齿形误差是指齿轮的实际轮廓和理论轮廓之间的偏差,是机械传动中常见的一种误差。

齿形误差会导致齿轮之间的不匹配和运动不平顺,进而影响机械传动的精度和可靠性。

本文将逐步回答关于齿形误差的定义及其影响的问题,详细探讨其成因以及常见的衡量方法。

最后,将提出一些常见的齿形误差纠正措施。

一、齿形误差的定义齿形误差是指理论齿轮轮廓与实际齿轮轮廓之间的偏差。

理论齿轮轮廓是指按照设计要求和几何原理计算得到的轮廓,而实际齿轮轮廓则是制造和加工过程中产生的轮廓。

齿形误差分为两种类型:径向齿形误差和周向齿形误差。

径向齿形误差是指齿轮齿面的径向高度误差,周向齿形误差是指齿轮齿面的周向高度误差。

二、齿形误差的影响齿形误差会影响齿轮传动的运动和传动特性,主要影响包括以下几个方面:1. 运动不平顺:齿形误差会导致齿轮传动中齿与齿之间的不匹配,从而引起传动过程中的震动和噪声。

特别是在高速、高负荷和精密传动中,齿形误差会更加明显地表现出来。

2. 动力特性降低:齿形误差会导致齿轮传动中的摩擦和损耗增加,从而降低传动效率和动力输出。

这会导致能量损失和传动效率的下降。

3. 精确性降低:齿形误差会导致齿轮传动的精确度降低,进而影响整个机械系统的精度和性能。

在需要高精度和高可靠性的应用中,齿形误差需要得到有效控制和管理。

三、齿形误差的成因齿形误差的产生是由多个因素综合作用的结果,其中一些常见的成因包括:1. 制造误差:齿轮的制造过程中,如切削、滚齿等加工操作会引入一定的误差。

制造误差包括切削工具和切削机床的精度、切削参数的控制等因素。

2. 材料误差:齿轮的材料本身存在一定的不均匀性和变形性。

这将导致齿轮的形状和尺寸发生变化,产生齿形误差。

3. 热变形:在齿轮传动的工作过程中,由于传动过程中的摩擦、热量和载荷等因素的作用,齿轮可能会发生热变形,导致齿形误差的产生。

四、齿形误差的衡量方法为了评估和衡量齿形误差的大小和影响,工程师们开发了一系列的测量和分析方法。

齿轮的误差及其分析

齿轮的误差及其分析

齿轮误差及其分析第一节:渐开线圆柱齿轮精度和检测对于齿轮精度,主要建立了下列几个方面的评定指标:一.运动精度:评定齿轮的运动精度,可采用下列指标:1.切向综合总偏差F i′:定义:被测齿轮与理想精确的测量齿轮单面啮合时在被测齿轮一转内,(实际转角与公称转角之差的总幅度值)被测齿轮的实际转角与理论转角的最大差值。

切向综合总偏差F i′。

(它反映了齿轮的几何偏心、运动偏心和基节偏差、齿形误差等综合结果。

)测量方法:用单啮仪、齿轮测量机检测。

ΔF i2.齿距累积总偏差F p,齿距累积偏差F pk。

定义:齿轮同侧齿面任意弧段(k=1或k=z)内的最大齿距累积偏差。

它表现为齿距累积偏差曲线的总幅值。

——齿距累积总偏差。

在分度圆上,k个齿距的实际弧长与公称弧长之差的最大绝对值,称k个齿距累积误差ΔF pk。

k为2到小于Z/2的正数。

这两个误差定义虽然都是在分度圆上,但实际测量可在齿高中部进行。

这项指标主要反映齿轮的几何偏心、运动偏心。

用ΔF p 评定不如ΔF i′全面。

因为ΔF i是在连续切向综合误差曲线上取得的,而ΔF p不是连续的,它是折线。

ΔF i′= ΔF p+ Δf f测量方法:一般用相对法,在齿轮测量机上测量。

3.齿圈径向跳动ΔF r与公法线长度变动ΔF w:ΔF r定义:在齿轮一转范围内,测头在齿槽内,于齿高中部双面接触,测头相对于齿轮轴线的最大变动量。

它只反映齿轮的几何偏心,不能反映其运动偏心。

(用径跳仪测量检测。

)由于齿圈径跳ΔF r 只反映齿轮的几何偏心,不能反映其运动偏心。

因此要增加另一项指标。

公法线长度变动ΔF w。

ΔF w定义:在齿轮一周范围内,实际公法线长度最大值与最小值之差。

ΔF w=W max-W min测量公法线长度实际是测量基圆弧长,它反映齿轮的运动偏心。

测量方法:用公法线千分尺测量。

4.径向综合误差ΔF i″和公法线长度变动ΔF w:齿轮的几何偏心还可以用径向综合误差这一指标来评定。

齿轮误差名词解释

齿轮误差名词解释

齿轮误差名词解释齿轮误差是指齿轮传动中由于制造和装配等因素导致的偏差,常常表现为齿轮间的轴向偏移、径向偏移、倾斜、测量误差等。

齿轮误差对于齿轮传动的正常运行具有重要影响,这也是工程师在设计和制造齿轮时需要考虑的一项重要指标。

首先,齿轮误差通常被描述为齿轮齿形偏差。

齿轮的齿形偏差主要是由于制造和切削等工艺过程中产生的偏差所致。

齿形偏差包括齿距偏差、齿顶偏差、齿根偏差等。

齿距偏差是指齿轮齿距与其理论值之间的偏差,这会直接影响到齿轮传动的传动比和传动效率。

齿顶和齿根偏差则会影响到齿轮的啮合性能和噪声水平。

其次,齿轮误差还包括轴向偏移误差。

轴向偏移误差是指齿轮轴线与理想位置之间的偏差。

这种误差会导致齿轮轴向力的不均匀分布,从而引发齿轮的振动和噪声。

除了轴向偏移误差,径向偏移误差也是一种常见的齿轮误差。

径向偏移误差是指齿轮中心距离理想中心线的偏差。

这种误差会导致齿轮轴承载荷不均匀,从而影响齿轮传动的工作寿命和可靠性。

齿轮的倾斜是另一种常见的齿轮误差。

倾斜是指齿轮齿面与它所在平面之间的夹角偏差。

这种误差会导致齿轮在传动过程中发生侧向力和额外的扭矩,从而引起齿轮传动的低效率和噪声。

除了倾斜误差外,测量误差也是一种重要的齿轮误差。

由于齿轮通常需要通过测量来确定其精度和质量,测量误差会对齿轮传动的评估和使用产生重要影响。

为了解决齿轮误差对齿轮传动性能的不利影响,工程师们通常采取一系列措施进行误差补偿和校正。

例如,制造过程中可以采用高精度的数控切削技术来减小齿形偏差;装配过程中可以通过精度检测和调整来减小轴向偏移和径向偏移误差。

此外,齿轮的设计和传动结构的优化也是降低齿轮误差的重要手段。

总结起来,齿轮误差是指齿轮传动中由于制造和装配等因素造成的偏差。

齿轮误差主要包括齿形偏差、轴向偏移误差、径向偏移误差、倾斜误差和测量误差等。

这些误差会对齿轮传动的性能和可靠性产生重要影响,因此在齿轮设计和制造过程中需要重视对齿轮误差的控制和优化。

齿轮加工误差产生的原因和消除方法

齿轮加工误差产生的原因和消除方法

螺旋线偏差的说明:1、螺旋线偏差的评定范围Lβ除另有规定外,系指在轮齿两端处各减去下面两个数值中较小的一个以后的“齿线长度”,此两个数值为5%的齿宽或等于一个模数的长度。

2、使偏差量增加的偏向齿体外的正偏差,必须计算入误差值。

3、除另有规定外,对于负偏差,其允许值为评定范围Lβ规定的公差的3倍数。

4、螺旋线偏差是在齿轮端面基圆切线方向测量,如果在齿面的法向测量,应将测量值除以cosβb后再与公差值比较。

5、被测齿面的平均螺旋线是设计螺旋线的纵坐标减去一条斜直线的纵坐标后得到的曲线。

这条斜直线使得在评定范围内,实际螺旋线对平均螺旋线偏差的平方和最小。

因此,平均螺旋线的位置和倾斜可以用“最小二乘法”求得。

6、除另有规定外,螺旋线偏差应在沿齿轮圆周均布的不少于三个轮齿的两侧面的齿高中部进行测量。

齿廓(齿形)的说明:1、齿廓偏差在齿轮端平面内且垂直于渐开线齿廓的方向计算,若在齿面的法向测量,应将测量值除以cosβb后再与公差数值进行比较。

2、设计齿廓系指符合设计规定的齿廓,当物其他限定时,是指端面齿廓。

设计齿廓可以设备修正的理论渐开线,包括修缘齿形。

凸齿形等。

3、被测齿面的平均齿廓是设计齿廓线的纵坐标减去一条斜直线的纵坐标后得到的曲线。

这条斜直线使得在齿廓评定范围内,实际齿廓线对平均齿廓线偏差的平方和为最小。

因此,平均齿廓线的位置和倾斜可以用“最小二乘法”求得。

4、齿廓评定范围La系指可用长度L AE中的一部分,除另有规定,其长度等于从E点开始延伸刀有效长度L AE的92%。

对于L AE剩下的8%为靠近齿顶处的L AE与La之差。

在评定齿廓总偏差和齿廓形状偏差时,应遵守下述规则:①、使偏差量增加的偏向齿体外的正偏差,必须计算入误差值。

②、除另有规定外,对于负偏差,其允许值为评定范围La规定的公差的3倍数。

5、有效长度L AE系指可用长度对应于有效齿廓的那部分。

对于齿顶,其有与可用长度同样的限定(A点)。

齿轮周节邻接误差

齿轮周节邻接误差

齿轮周节邻接误差一、概述齿轮是机械传动中常用的元件,其传递动力的效率和精度直接影响着机械传动系统的性能。

而齿轮周节邻接误差则是影响齿轮精度的重要因素之一。

二、定义齿轮周节邻接误差指相邻两个齿距点之间的距离误差,也就是相邻两个齿距点之间实际距离与理论距离之间的偏差。

三、成因1.加工误差:在齿轮加工过程中,由于刀具磨损、机床刚度不足等原因会导致加工误差。

2.装配误差:在齿轮装配过程中,由于零件尺寸偏差、安装位置不准确等原因会导致装配误差。

3.变形误差:在机械传动过程中,由于受力和温度等因素会导致零件变形而引起变形误差。

四、影响1.噪声和振动:当齿轮周节邻接误差较大时,会导致齿面间摩擦增大,从而产生噪声和振动。

2.传动精度:齿轮周节邻接误差会影响齿轮传动精度,降低机械传动系统的性能。

3.寿命:齿轮周节邻接误差会使齿面磨损加剧,从而降低齿轮的使用寿命。

五、测量方法1.测量仪器:常用的测量仪器有光学投影仪、三坐标测量机等。

2.测量方法:将待测齿轮放在测量仪器上进行扫描或者点云采集,然后通过软件计算相邻两个齿距点之间的距离误差。

六、控制方法1.加工控制:通过提高加工精度、改进刀具设计等方式来降低加工误差。

2.装配控制:通过提高零件尺寸精度、改进装配工艺等方式来降低装配误差。

3.设计控制:通过优化设计方案、增加支撑结构等方式来减小变形误差。

七、总结齿轮周节邻接误差是影响机械传动系统性能的重要因素之一,其测量和控制对于提高齿轮传动精度和延长使用寿命具有重要意义。

在实际应用中,应根据具体情况采取相应的措施来降低齿轮周节邻接误差。

齿轮齿形误差分析及3D数模推测方法

齿轮齿形误差分析及3D数模推测方法

齿轮齿形误差分析及3D数模推测方法摘要:本文以实际测量零件的齿形误差报告时进行原因分析,根据齿轮参数表参数与3D图形找原因,并提出改善方案参数。

关键词:压力角;公法线;齿轮设计优化一、引言齿轮作为机械工业重要的基础件,广泛应用于航天、军事工业等领域,特别是近些年能源汽车行业的发展,对齿轮传动提出了更高的要求。

齿轮能够较好地进行啮合,并提升齿轮动态特性及承载能力,降低机械设备在运行中的噪音及振动与齿轮副参数有着相关重要的合理参数设计要求。

现有一减速箱在进行噪音测试过程中,发现NVH不合格现象,因此对啮合齿轮副进行检测测量分析。

二、客户提供3D图与2D工程齿轮参数表图1:3D图形图2:齿轮参数表根据客户参数进行齿廓压力角25°检测,(检测齿形报告如图3所示)。

从测量报告可知实际零件压力角不足25 °,即工程图标注与实物零件压力角不相一致。

图3:齿形报告图4:公法线测量示意图那么,3D图压力角为多大?我们可以从公法线大小上去测量推导分析。

标准齿轮公法线W:直齿轮:W=cosα[π(k-0.5)+zinvα]斜齿轮:W=cosαn[π(k-0.5)+z’invα]其中z’=z(invαt/invαn)k为跨测齿数,k=αz/180 °+0.5K值4舍5入成整数。

上述公式中,公法线大小与压力角α相关。

公法线的基本概念是:一条与基圆相切的直线同时跨过几个轮齿时,直线上某两齿的相交长度的距离(如图4所示)。

(注意:公法线测量不是以分度圆直径作为基准)公法线测量的优点:1、测量时不以齿顶圆为基准,因此不受齿顶圆误差的影响,测量精度较高并可放宽对齿顶圆的精度要求;2、测量方便;3、与量具接触的齿廓曲率半径较大,量具的磨损较轻。

但公法线测试也存在一定的缺点:对斜齿轮,当齿宽b<Wnsinβ时不能测量。

三、测量3D图公法线尺寸与理论计算值对比1、假设压力角为25°时,跨测齿数k=αz/180 °+0.5=25*9/180+0.5=1.75≈2;基圆尺寸db=mzcosα=1*9*cos25°=8.1568;公法线W=cosα[π(k-0.5)+zinvα]=4.5154。

齿轮加工误差产生的原因和消除方法

齿轮加工误差产生的原因和消除方法

螺旋线偏差的说明:1、螺旋线偏差的评定范围Lβ除另有规定外,系指在轮齿两端处各减去下面两个数值中较小的一个以后的“齿线长度”,此两个数值为5%的齿宽或等于一个模数的长度。

2、使偏差量增加的偏向齿体外的正偏差,必须计算入误差值。

3、除另有规定外,对于负偏差,其允许值为评定范围Lβ规定的公差的3倍数。

4、螺旋线偏差是在齿轮端面基圆切线方向测量,如果在齿面的法向测量,应将测量值除以cosβb后再与公差值比较。

5、被测齿面的平均螺旋线是设计螺旋线的纵坐标减去一条斜直线的纵坐标后得到的曲线。

这条斜直线使得在评定范围内,实际螺旋线对平均螺旋线偏差的平方和最小。

因此,平均螺旋线的位置和倾斜可以用“最小二乘法”求得。

6、除另有规定外,螺旋线偏差应在沿齿轮圆周均布的不少于三个轮齿的两侧面的齿高中部进行测量。

齿廓(齿形)的说明:1、齿廓偏差在齿轮端平面内且垂直于渐开线齿廓的方向计算,若在齿面的法向测量,应将测量值除以cosβb后再与公差数值进行比较。

2、设计齿廓系指符合设计规定的齿廓,当物其他限定时,是指端面齿廓。

设计齿廓可以设备修正的理论渐开线,包括修缘齿形。

凸齿形等。

3、被测齿面的平均齿廓是设计齿廓线的纵坐标减去一条斜直线的纵坐标后得到的曲线。

这条斜直线使得在齿廓评定范围内,实际齿廓线对平均齿廓线偏差的平方和为最小。

因此,平均齿廓线的位置和倾斜可以用“最小二乘法”求得。

4、齿廓评定范围La系指可用长度L AE中的一部分,除另有规定,其长度等于从E点开始延伸刀有效长度L AE的92%。

对于L AE剩下的8%为靠近齿顶处的L AE与La之差。

在评定齿廓总偏差和齿廓形状偏差时,应遵守下述规则:①、使偏差量增加的偏向齿体外的正偏差,必须计算入误差值。

②、除另有规定外,对于负偏差,其允许值为评定范围La规定的公差的3倍数。

5、有效长度L AE系指可用长度对应于有效齿廓的那部分。

对于齿顶,其有与可用长度同样的限定(A点)。

齿轮加工误差产生的原因和消除方法

齿轮加工误差产生的原因和消除方法

螺旋线偏2、使偏差3、除另有4、螺旋线6、除另有齿廓(齿①、使偏②、除另6、可用长6、至少测1、螺旋线偏差的评定范围L β除另有规定外,系指在轮齿两端处各减去下面两个数值中较小的一个以后的“齿线长度”,此两个数值为5%的齿宽或等于一个模数的长度。

5、被测齿面的平均螺旋线是设计螺旋线的纵坐标减去一条斜直线的纵坐标后得到的曲线。

这条斜直线使得在评定范围内,实际螺旋线对平均螺旋线偏差的平方和最小。

因此,平均螺旋线的位置和倾斜可以用“最小二乘法”求得。

1、齿廓偏差在齿轮端平面内且垂直于渐开线齿廓的方向计算,若在齿面的法向测量,应将测量值除以cosβb 后再与公差数值进行比较。

7、除另有规定外,齿廓偏差应在齿宽中间位置测量。

当齿宽大于250mm时,应增加两个测量部位,即在距齿宽每侧15%的齿宽处测量。

2、设计齿廓系指符合设计规定的齿廓,当物其他限定时,是指端面齿廓。

设计齿廓可以设备修正的理论渐开线,包括修缘齿形。

凸齿形等。

3、被测齿面的平均齿廓是设计齿廓线的纵坐标减去一条斜直线的纵坐标后得到的曲线。

这条斜直线使得在齿廓评定范围内,实际齿廓线对平均齿廓线偏差的平方和为最小。

因此,平均齿廓线的位置和倾斜可以用“最小二乘法”求得。

4、齿廓评定范围La系指可用长度L AE 中的一部分,除另有规定,其长度等于从E点开始延伸刀有效长度L AE 的92%。

对于L AE 剩下的8%为靠近齿顶处的L AE 与La之差。

在评定齿廓总偏差和齿廓形状偏差时,应遵守下述规则:5、有效长度L AE 系指可用长度对应于有效齿廓的那部分。

对于齿顶,其有与可用长度同样的限定(A点)。

对于齿根,有效长度延伸刀与配对齿轮有效啮合的终止点E(即有效齿廓的起始点)。

如果不知道配对齿轮,则E点为与基本齿条相啮合的有效齿廓的起始点。

齿形齿向误差分析

齿形齿向误差分析

齿形误差曲线分析
一、齿形误差曲线的形状 当齿形为理论渐开线时,仪器所记录的曲线为一条直线。 1、无齿形误差的曲线为理论渐开线曲,为一条直线,如《图 一》所示,当设计齿形为鼓形齿时,而无齿形误差的曲线为中 凸,如《图二》所示。
《图一》
《图二》
2、有压力角误差的齿形误差曲线:曲线倾斜,齿顶比齿
根高,压力角误差为负,基圆误差为负,见《图三》所示目视
《图七》
7、齿向形状误差是由滚齿机分度蜗轮副的周期误差和进
给丝杆的轴向窜动产生的。
第八页
a
b
《图五》
5、由径向和切向误差同时影响的曲线:两种误差同时出
现时,而且大小相等,则会在一侧齿面上两种误差相互抵消,
而在另一侧齿面上两种误差互相加强,因而就出现如《图六》
所示一齿面正确,一齿面有齿齿向误差。如《图七》所示。是由于齿坯基准 端面的端面圆跳动引起的,是由齿坯轴线对齿轮机床的歪斜而 产生的,这一误差对齿的纵向接触具有很大的影响。当一组齿 向曲线同时存在锥度有正有负时,全齿范围内同时存在一端齿 有厚有薄,也称齿向有正“八”字或倒“八”字,造成此现象 的主要原因是刀架导轨镶条有松动、磨损或调整不对称造成 的。
《图二》
2、同一侧四根曲线向同一方向倾斜,而另一侧四根曲线 也向同一方向倾斜,且倾斜程度大约一至,如《图三》所示。 这种形状是存在螺旋线斜率误差,即螺旋线误差,主要有以下 两个方面引起的:a、滚斜齿时,差动挂轮精度不够;b、刀架 导轨相对于工作台回转轴线在切向的平行度误差的影响。【即 刀架导轨与工件轴线的切向不平行】
窜动和径向跳动,也同样会使滚刀的刀齿产生“空切”或“过
切”引起齿轮的齿面出棱。
第三页
《图八》
4、同一侧四根曲线一至,但曲线弯弯曲曲,走向与基准 线平行,如《图九》所示。这种曲线我们称之为齿形形状误差 曲线。齿形形状误差又分两种:一种为周期误差,如《图九》 所示,其特点为齿面凸凹不平,一般齿形形状误差在 0.01~0.05mm 之间,甚至可达到 0.08mm,产生周期误差的主要 原因有:滚刀安装后,滚刀径向跳动和端面跳动过大,机床传 动链短周期误差的影响,如机床分齿挂轮的运动误差和分度蜗 杆的径向、轴向跳动引起分度蜗轮的小周期转角误差,这些误 差最终在齿形上形成周期性的波形误差。

齿轮转动的要求及误差分析

齿轮转动的要求及误差分析

传递运动准确性要求传递运动准确可靠,保证传动比恒定,限制转角误差传动平稳性要求传递运动要稳。

冲击,噪音和震动要小,限制瞬时速比载荷分布均匀性要求受力均匀,避免接触应力过大合理的齿轮副侧隙要求非工作面应有间隙以补偿安装,制造的误差,热变形、弹性变形等。

一、主要误差来源:机—刀—工件系统的周期性的误差。

1、安装偏心e {齿坯;机床心轴}结果:齿圈有径跳。

周节,齿厚也有误差。

2、ek {f分度蜗轮;工作台}结果:周节,公法线由长变短。

有误差。

这两种误差是以齿坯转一转为一个周期,叫长周期误差(低频)。

3、ew{分度蜗杆;轴的穿动}n次结果:周节和齿形误差。

4、ed{滚刀,轴线倾斜;轴向举动}结果:径向和轴向误差。

5、滚刀本身的基节,齿形误差结果:基节和齿形误差。

后三项是在3坯一转中多次重复出现的,叫短周期误差(交频)。

二、影响运动准确性的误差及测量——主要是长周期误差,即以齿坯转一转为一个周期的误差,第Ⅰ公差组。

1、切向综合误差ΔFi ·(控制运动的不均匀)3测齿轮与理想精确齿轮单面啮合时,被测齿轮在一转内的最大转角误差(其量值以分度圆的弧长计)2、齿距累积误差误差ΔFp(齿跳不均匀)它是指在分度圆任意两个同侧齿面的实际弧长与公称弧长之差的最大绝对值。

ΔFp=ΔFpmax-ΔFpminΔFp3e,ek的综合误差,必要时,亦可控制局部的累积误差ΔFpk,k from 2 to z/2的整数。

测量主要是相对测量。

用齿轮仪测3、齿圈径向跳动ΔFr(径向误差)在齿轮一转中,测头相对于齿轮轴线的最大变动量。

ΔFr=Rmax-Rmin主要齿轮偏心造成的齿轮径向长周期误差。

测量:用偏摆仪。

最大读数差{小圆棒;百分表}标准齿轮:d球=d棒=1.68m(m:模数)4、径向综合误差ΔFi″(径向误差)ΔFi″被测与理想齿轮双面啮合时,x被测齿轮一转内没,双啮中心距的最大变动。

ΔFi″主要反映齿坯偏心造成齿轮的径向综合误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齿轮误差及其分析第一节:渐开线圆柱齿轮精度和检测对于齿轮精度,主要建立了下列几个方面的评定指标:一.运动精度:评定齿轮的运动精度,可采用下列指标:1.切向综合总偏差F i′:定义:被测齿轮与理想精确的测量齿轮单面啮合时在被测齿轮一转内,(实际转角与公称转角之差的总幅度值)被测齿轮的实际转角与理论转角的最大差值。

切向综合总偏差F i′。

(它反映了齿轮的几何偏心、运动偏心和基节偏差、齿形误差等综合结果。

)测量方法:用单啮仪、齿轮测量机检测。

ΔF i′2.齿距累积总偏差F p,齿距累积偏差F pk。

定义:齿轮同侧齿面任意弧段(k=1或k=z)内的最大齿距累积偏差。

它表现为齿距累积偏差曲线的总幅值。

——齿距累积总偏差。

在分度圆上,k个齿距的实际弧长与公称弧长之差的最大绝对值,称k个齿距累积误差ΔF pk。

k为2到小于Z/2的正数。

这两个误差定义虽然都是在分度圆上,但实际测量可在齿高中部进行。

这项指标主要反映齿轮的几何偏心、运动偏心。

用ΔF p 评定不如ΔF i′全面。

因为ΔF i是在连续切向综合误差曲线上取得的,而ΔF p不是连续的,它是折线。

ΔF i′= ΔF p+ Δf f测量方法:一般用相对法,在齿轮测量机上测量。

3.齿圈径向跳动ΔF r与公法线长度变动ΔF w:ΔF r定义:在齿轮一转范围内,测头在齿槽内,于齿高中部双面接触,测头相对于齿轮轴线的最大变动量。

它只反映齿轮的几何偏心,不能反映其运动偏心。

(用径跳仪测量检测。

)由于齿圈径跳ΔF r 只反映齿轮的几何偏心,不能反映其运动偏心。

因此要增加另一项指标。

公法线长度变动ΔF w。

ΔF w定义:在齿轮一周范围内,实际公法线长度最大值与最小值之差。

ΔF w=W max-W min测量公法线长度实际是测量基圆弧长,它反映齿轮的运动偏心。

测量方法:用公法线千分尺测量。

4.径向综合误差ΔF i″和公法线长度变动ΔF w:齿轮的几何偏心还可以用径向综合误差这一指标来评定。

ΔF i″定义:被测齿轮与理想精确的测量齿轮双面啮合时,在被测齿轮一转内,双啮中心距的最大变动量。

二.工作平稳性的评定指标:1.齿切向综合误差Δf i′:定义:被测齿轮与理想精确的测量齿轮单面啮合时,在被测齿轮一齿距角内,实际转角与公称转角之差的最大幅度值。

以分度圆弧长计值。

它反映出基节偏差和齿形误差的综合结果。

测量方法:与ΔF i′同时测量出。

2.齿形误差Δf f与基节偏差Δf pb:齿形误差Δf f 定义:在端截面上,齿形工作部分内(齿顶倒棱部分除外),包容实际齿形且距离为最小的两条设计支形间的法向距离,称为齿形误差。

设计齿形可以是修正的理论渐开线,包括修缘齿形,凸齿形等。

测量方法:渐开线检测仪、齿轮测量中心。

基节偏差Δf pb定义:实际基节与公称基节之差。

实际基节是指基圆柱切平面所截两相邻同侧齿面的交线之间的法向距离。

法向基节:P bn=πm n cosαfn测量方法:万能测齿仪3.Δf f(齿形误差)与齿距偏差Δf pt:Δf pt定义:在分度圆上,实际齿距与公称齿距之差。

公称齿距是指所有实际齿距的平均值4.齿径向综合误差Δf i:″定义:被测齿轮与理想精确的测量齿轮双面啮合时,在被测齿轮一齿距角内,双啮中心距的最大变动量。

它是齿轮的基节偏差和齿形误差的综合结果。

但测量结果受左右两齿面误差的共同影响,因此不如Δf i′精确。

测量方法:与ΔFi″同时测量出。

三.接触精度的评定指标及检测:齿轮齿面的接触精度,在齿高方向用工作平稳性的评定指标来评定即齿形误差,在齿长方向用齿向误差来评定。

齿向误差ΔFβ定义——在分度圆柱面上,齿宽有效部分范围内(端面倒角部分除外),包容实际齿线且距离为最小的两条设计齿线之间的端面距离。

Fβ:螺旋线总误差(齿向误差)f Hβ:螺旋线斜率偏差f fβ:螺旋线形状误差(设计齿线可以是修正的圆柱螺旋线,包括鼓形线、齿端修薄及其它修正曲线)四.侧隙的评定指标及其检测:1.齿厚偏差ΔEs定义——在分度圆柱面上,齿厚实际值与公称值之差。

对于斜齿轮,是指法向齿厚。

测量方法:齿厚游标卡尺。

(以齿轮的齿顶为基准,顶圆如有误差,最好要修正)2.公法线长度:是指齿轮一圈范围内公法线长度的平均值(测量方法:公法线千分尺)3.齿轮的跨测距M值。

测量方法:外径千分尺及量球(量棒)五.齿轮精度评定指标的应用:1.公差检验组:在前面已经介绍过,评定一各齿轮精度主要从三个方面:运动精度、工作平稳性精度、接触度。

每个精度都有一定的评定指标,我们分别称它们为第Ⅰ公差组、第Ⅱ公差组、第Ⅲ公差组。

第Ⅰ公差组:F i′、F p(F pk)、F i、F r、第Ⅱ公差组:f i′、f pt、f i″、f pb、f f第Ⅲ公差组:Fβ以上这些指标不可能也没有必要都进行检测,因此有必要对这些指标进行组合,构成检验组。

2.检验组的组合见下表:3.图样上的标注方法:产品的零件上应标注齿轮的精度等级和齿厚极限偏差的字母代号。

精度等级分为1~12级,数字越小、精度越高。

齿厚极限偏差共有C、D、E、F、G、H、J、K、L、M、N、P、R、S共14种。

如:三个公差组精度相同,则用一个数字表示。

三个公差组精度不相同,则用三个数字表示。

例1:一齿轮的三个公差组精度同为7级,其齿厚上偏差为F,为L则应表示为:7 F L GB10095-88齿厚下偏差齿厚上偏差第Ⅰ、Ⅱ、Ⅲ公差组的精度等级例2:齿轮第Ⅰ公差组精度为7级,第Ⅱ公差组精度为6级,第Ⅲ公差组的精度为6级,齿厚上偏差为G,齿厚下偏差为M。

则表示为:7 –6 –6 G M GB10095-88齿厚下偏差齿厚上偏差第Ⅲ公差组的精度等级第Ⅱ公差组的精度等级第Ⅰ公差组的精度等级例3:齿轮的三个公差组精度同为4级,其齿厚上偏差为-330μm,下偏差为-495μm。

那么应表示为:4 ()GB10095-88齿厚上、下偏差第Ⅰ、Ⅱ、Ⅲ公差组的精度等级第二节:齿形误差曲线及齿向误差曲线的评定与分析一齿形误差曲线的评定与分析:齿形测量设备记录下来的齿形误差曲线除了供检查人员来评定齿形精度是否达到要求外,还有一个重要作用:由工艺人员或操作人员来分析工艺误差,调整刀具、夹具、机床等。

现在的齿形测量设备,不仅画出了齿形误差曲线,还给出了误差数值,如:Ff(齿形总误差)、ff(形状误差)、f Hα(齿形角斜率偏差)、f Hαm(齿形角斜率平均偏差)等。

有了这些曲线和数值给我们来分析误差来源提供了很好的帮助。

一.测量部位、测量长度的选取为正确地、全面地反映齿轮的形状,一般在齿轮圆周上均布4个齿面测量齿形误差,然后在另一侧齿面上进行同样的测量。

测量部位应距离齿轮端面2mm以上,防止因齿端倒棱而影响测量结果。

如果齿宽较窄,则在齿宽的中部测量。

如果齿轮很宽则要考虑在同一齿面上测量两个位置。

测量长度应略大于齿形工作部分,评定长度应在齿形工作部分内。

按渐开线形成原理,渐开线是从基圆开始的,但实际工作部分不一定从基圆开始,而是随着被测齿轮和相啮齿轮的齿数、变位系数、实际中心距变化的。

齿形测量在仪器上是按展开长度或展开角来决定起始点与终止点的。

一般有两种计算方法:1.按相啮齿轮计算:见图1起始点展开长度L c1:Lc1 应小于起评点展开长度约0.3~0.5mm起评点展开长度L p1:2b 2a 1p r r sin A L --=α 终评点展开长度:L p2 扣除齿顶倒棱部分的高度h 121b 211a 2p r h r L --=)(终止点展开长度L c2 :21b 21a 2c r r L -=评定长度L p :Lp= L p2- L p1 式中:r a1、r b1、h 1——被测齿轮的顶圆半径、基圆半径、齿顶倒棱高度 r a2、r b2——相啮齿轮的顶圆半径、基圆半径 A ——实际中心距; α′——啮合角inv α′=αfs + inv αfs 式中:x 1、z 1 x 2、z 2——相啮齿轮的变位系数、齿数αfs ——分度圆压力角2.与齿条啮合计算:起始点展开长度Lc1:Lc1 应小于起评点展开长度约0.3~0.5mm起始点展开长度L P1:L P1= r b1×tgαfs- h a*m nsinαfs终评点展开长度、终止点展开长度与按相啮齿轮计算相同。

式中:m n——被测齿轮模数;ha*——齿顶高系数;αfs 分度圆法面压力角如果用展开角来表示实际齿形工作部分,则可用基圆半径r b除相应展开长度即可:起始点展开角:φc1= Lc1rb ×360 2π°起评点展开角:φp1= L P1rb ×360 2π°终评点展开角:φp2= L P2rb ×360 2π°终止点展开角:φc2= Lc2rb ×360 2π°评定角度:φp=φp2-φp1在测量中,一般应按与相啮齿轮来计算,它的实际齿形工作部分当在相啮齿轮不知道的情况下,才按齿条啮合计算。

很明显,按与齿条啮合其展开长度要比实际啮合长度长。

啮合齿轮的齿数越少,长的就越多。

从经济成本上看,评定实际齿形工作部分以外的齿形是不经济的,有时还会导致误判。

因此,尽可能按相啮合齿轮来计算。

一.齿形误差曲线分析:1.齿形误差曲线的形状当测量齿形仪器的测头在齿形上滑动时,每滑动一点,齿轮就有一个相应的转角给予补充。

测头在齿形上滑动是连续的,齿轮的转角也是连续的。

因此当齿形为理论渐开线时,仪器所记录的曲线为一条直线。

1)无齿形误差的曲线为理论渐开线曲线,即一条直线:见图3a。

当设计齿形为鼓形齿时,无齿形误差的曲线为中凸见图3b。

2)有压力角误差的齿形误差的曲线:曲线倾斜,齿顶比齿根高,压力角误差为负,基圆误差为正,见图3c。

曲线倾斜,齿顶比齿根低,则压力角误差为正,基圆误差为负见图3d。

3)有形状误差的齿形误差曲线:曲线弯弯曲曲,但基本走向与基准线平行,见图3e。

a b c d e图3实际中的误差曲线可能要比上述介绍的曲线复杂的多,但是不外乎是上述几种误差曲线的复合,只要我们按上述类型进行分解、归纳就能找出误差产生的原因。

2.齿形误差曲线分解1)同一侧四根曲线,对面的两根为直线,另两根倾斜且倾斜的方向相反。

如图4所示a b c d图4这表明齿轮的齿形角没有什么误差,主要是基圆一边大,另一边小。

说明齿轮有几何偏心,不是加工芯轴与内孔配合过松而产生的加工安装偏心就是加工芯轴的轴线与机床工作台回转中心不重合。

2)同一侧四根曲线向同一方向倾斜,而另一侧四根曲线也向同一方向倾斜。

如果两侧都是顶正或顶负。

如下图所示。

这种形状是齿形角误差,主要由刀具原始齿形角不正确引起的,压力角小,齿顶高,压力角大齿顶低。

或者是刀具在刃磨后,如滚刀、前刃面非径向性引起的。

相关文档
最新文档