(完整)高中数学不等式练习题

合集下载

不等式练习题及讲解高中答案

不等式练习题及讲解高中答案

不等式练习题及讲解高中答案### 不等式练习题及讲解#### 一、基础不等式练习题1. 题目一:若 \( a, b, c \) 均为正数,证明不等式 \( a + b\geq 2\sqrt{ab} \) 成立。

2. 题目二:已知 \( x \) 和 \( y \) 均为实数,且 \( x^2 + y^2 = 1 \),求证 \( x + y \leq \sqrt{2} \)。

3. 题目三:若 \( a, b \) 均为正整数,证明 \( a^2 + b^2 \geq 2ab \)。

4. 题目四:对于任意实数 \( x \),证明 \( \frac{x^2}{2} +\frac{1}{2x^2} \geq 1 \)。

5. 题目五:若 \( x, y, z \) 均为正数,证明 \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{9}{xy + yz + zx} \)。

#### 二、不等式练习题讲解题目一讲解:利用算术平均数-几何平均数不等式(AM-GM不等式):\[ a + b \geq 2\sqrt{ab} \]这是因为对于任意非负实数 \( a \) 和 \( b \),它们的算术平均数总是大于或等于它们的几何平均数。

题目二讲解:由于 \( x^2 + y^2 = 1 \),我们有 \( (x + y)^2 \leq 2(x^2 +y^2) = 2 \),从而 \( x + y \leq \sqrt{2} \)。

题目三讲解:同样使用AM-GM不等式:\[ a^2 + b^2 \geq 2\sqrt{a^2b^2} = 2ab \]当且仅当 \( a = b \) 时,等号成立。

题目四讲解:利用AM-GM不等式:\[ \frac{x^2}{2} + \frac{1}{2x^2} \geq 2\sqrt{\frac{x^2}{2}\cdot \frac{1}{2x^2}} = 1 \]等号成立条件是 \( x^2 = 1 \),即 \( x = \pm 1 \)。

(完整)高中数学不等式习题及详细答案

(完整)高中数学不等式习题及详细答案

第三章 不等式一、选择题1.已知x ≥25,则f (x )=4-25+4-2x x x 有( ).A .最大值45B .最小值45C .最大值1D .最小值12.若x >0,y >0,则221+)(y x +221+)(xy 的最小值是( ).A .3B .27 C .4 D .29 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b +ab1≥22B .(a +b )(a 1+b1)≥4 C22≥a +bD .ba ab+2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式xx f x f )()(--<0的解集为( ).A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5.当0<x <2π时,函数f (x )=x xx 2sin sin 8+2cos +12的最小值为( ).A .2B .32C .4D .346.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18B .6C .23D .2437.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ).A .73B .37C .43D .348.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为35,则点P 的坐标是( ).A .(-5,1)B .(-1,5)C .(-7,2)D .(2,-7)9.已知平面区域如图所示,z =mx +y (m >0)在平面区域内取得最优解(最大值)有无数多个,则m 的值为( ).A .-207B .207 C .21D .不存在10.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]二、填空题11.不等式组⎩⎨⎧ 所表示的平面区域的面积是 .12.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧ 若目标函数z =ax +y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是 .13.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是 . 14.设a ,b 均为正的常数且x >0,y >0,xa+y b =1,则x +y 的最小值为 .15.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m 1+n2的最小值为 . 16.某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分率为p 2,若p 1+p 2为定值,则年平均增长的百分率p 的最大值为 .(x -y +5)(x +y )≥00≤x ≤3 x +2y -3≤0 x +3y -3≥0, y -1≤0(第9题)三、解答题17.求函数y =1+10+7+2x x x (x >-1)的最小值.18.已知直线l 经过点P (3,2),且与x 轴、y 轴正半轴分别交于A ,B 两点,当△AOB 面积最小时,求直线l 的方程.(第18题)19.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是多少?20.(1)已知x <45,求函数y =4x -1+5-41x 的最大值; (2)已知x ,y ∈R *(正实数集),且x 1+y 9=1,求x +y 的最小值;(3)已知a >0,b >0,且a 2+22b =1,求2+1b a 的最大值.参考答案1.D解析:由已知f (x )=4-25+4-2x x x =)()(2-21+2-2x x =21⎥⎦⎤⎢⎣⎡2-1+2-x x )(, ∵ x ≥25,x -2>0, ∴21⎥⎦⎤⎢⎣⎡2-1+2-x x )(≥21·2-12-2x x ⋅)(=1, 当且仅当x -2=2-1x ,即x =3时取等号. 2.C 解析:221+)(y x +221+)(xy =x 2+22241+++41+x x y y yy x =⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫⎝⎛x y y x +. ∵ x 2+241x ≥22241x x ⋅=1,当且仅当x2=241x ,x =22时取等号; 41+22y y ≥22241y y ⋅=1,当且仅当y 2=241y ,y =22时取等号; x yy x +≥2x y y x ⋅=2(x >0,y >0),当且仅当y x =xy,y 2=x 2时取等号. ∴⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫ ⎝⎛x y y x +≥1+1+2=4,前三个不等式的等号同时成立时,原式取最小值,故当且仅当x =y =22时原式取最小值4. 3.D 解析:方法一:特值法,如取a =4,b =1,代入各选项中的不等式,易判断只有ba ab+2≥ab 不成立.方法二:可逐项使用均值不等式判断 A :a +b +ab1≥2ab +ab1≥2abab 12⋅=22,不等式成立.B :∵ a +b ≥2ab >0,a 1+b 1≥2ab 1>0,相乘得 (a +b )( a 1+b1)≥4成立.C :∵ a 2+b 2=(a +b )2-2ab ≥(a +b )2-222⎪⎭⎫ ⎝⎛+b a =222⎪⎭⎫⎝⎛+b a ,又ab ≤2b a +⇒ab1≥b a +222≥a +b 成立. D :∵ a +b ≥2ab ⇒b a +1≤ab 21,∴b a ab +2≤ab ab 22=ab ,即ba ab+2≥ab 不成立.4.D解析: 因为f (x )是奇函数,则f (-x )=-f (x ),x x f x f )()(--<0x x f )(2⇔<0⇔xf (x )<0,满足x 与f (x )异号的x 的集合为所求.因为f (x )在(0,+∞)上是增函数,且f (1)=0,画出f (x )在(0,+∞)的简图如图,再根据f (x )是奇函数的性质得到f (x ) 在(-∞,0)的图象.由f (x )的图象可知,当且仅当x ∈(-1,0)∪(0,1)时,x 与f (x )异号. 5.C解析:由0<x <2π,有sin x >0,cos x >0. f (x )=x x x 2sin sin 8+2cos +12=x x x x cos sin 2sin 8+cos 222=xx sin cos +x x cos sin 4≥2x x x x cos sin 4sin cos· =4,当且仅当xx sin cos =x xcos sin 4,即tan x =21时,取“=”. ∵ 0<x <2π,∴ 存在x 使tan x =21,这时f (x )min =4.6.B解析:∵ a +b =2,故3a +3b ≥2b a 33⋅=2b a +3=6,当且仅当a =b =1时取等号.(第4题)故3a +3b 的最小值是6.7.A解析:不等式组表示的平面区域为如图所示阴影部分 △ABC .由⎩⎨⎧4343=+=+y x y x 得A (1,1),又B (0,4),C (0,43).由于直线y =k x +43过点C (0,43),设它与直线 3x +y =4的交点为D ,则由S △BCD =21S △ABC ,知D 为AB 的中点,即x D =21,∴ y D =25, ∴ 25=k ×21+34,k =37.8.A解析:设P 点的坐标为(x 0,y 0),则⎪⎪⎩⎪⎪⎨⎧解得⎩⎨⎧. 1=, 5=-00y x∴ 点P 坐标是(-5,1). 9.B解析:当直线mx +y =z 与直线AC 平行时,线段AC 上的每个点都是最优解.∵ k AC =1-5522-3=-207, ∴ -m =-207,即m =207. 10.D 解析:由x +1-1x =(x -1)+1-1x +1, ∵ x >1,∴ x -1>0,则有(x -1)+1-1x +1≥21-11-x x )·(+1=3,则a ≤3.. 53=56+2, 0<1--, 0=3+2+000000-y x y x y x二、填空题 11.24.解析:不等式(x -y +5)(x +y )≥0可转化为两个 二元一次不等式组. ⎩⎨⎧⎪⎩⎪⎨⎧⇔ 或⎪⎩⎪⎨⎧这两个不等式组所对应的区域面积之和为所求.第一个不等式组所对应的区域如图,而第二个不等式组所对应的区域不存在.图中A (3,8),B (3,-3),C (0,5),阴影部分的面积为25+113)(⨯=24. 12.⎭⎬⎫⎩⎨⎧21 >a a .解析:若z =ax +y (a >0)仅在点(3,0)处取得最大值,则直线z =ax +y 的倾斜角一定小于直线x +2y -3=0的倾斜角,直线z =ax +y 的斜率就一定小于直线x +2y -3=0的斜率,可得:-a <-21,即a >21.13.a b ≥9.解析:由于a ,b 均为正数,等式中含有ab 和a +b 这个特征,可以设想使用2+ba ≥ab 构造一个不等式.∵ ab =a +b +3≥ab 2+3,即a b ≥ab 2+3(当且仅当a =b 时等号成立), ∴ (ab )2-ab 2-3≥0,∴ (ab -3)(ab +1)≥0,∴ab ≥3,即a b ≥9(当且仅当a =b =3时等号成立). 14.(a +b )2. 解析:由已知xay ,y bx 均为正数,(x -y +5)(x +y )≥0 0≤x ≤3x -y +5≥0 x +y ≥0 0≤x ≤3 x -y +5≤0 x + y ≤0 0≤x ≤3(第11题)∴ x +y =(x +y )(x a+y b )=a +b +x ay +y bx ≥a +b +ybx x ay ·2 =a +b +2ab , 即x +y ≥(a +b )2,当且仅当1=+ =yb x a y bxx ay 即 ab b y ab a x +=+=时取等号. 15.8.解析:因为y =log a x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知mn ,n m 4均为正,∴m 1+n2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且仅当1=+24=n m n m m n 即 21=41=n m 时取等号. 16.221p p +. 解析:设该厂第一年的产值为a ,由题意,a (1+p )2=a (1+p 1)(1+p 2),且1+p 1>0, 1+p 2>0,所以a (1+p )2=a (1+p1)(1+p 2)≤a 2212+1++1⎪⎭⎫ ⎝⎛p p =a 2212++1⎪⎭⎫ ⎝⎛p p ,解得p ≤2+21p p ,当且仅当1+p 1=1+p 2,即p 1=p 2时取等号.所以p 的最大值是2+21pp . 三、解答题17.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9.18.解:因为直线l 经过点P (3,2)且与x 轴y 轴都相交, 故其斜率必存在且小于0.设直线l 的斜率为k , 则l 的方程可写成y -2=k (x -3),其中k <0. 令x =0,则y =2-3k ;令y =0,则x =-k2+3. S △AOB =21(2-3k )(-k 2+3)=21⎥⎦⎤⎢⎣⎡)()(k k 4-+9-+12≥⎥⎦⎤⎢⎣⎡⋅)()(k k 4-9-2+1221=12,当且仅当(-9k )=(-k 4),即k =-32时,S △AOB 有最小值12,所求直线方程为 y -2=-32(x -3),即2x +3y -12=0. 19.解:设生产甲产品x 吨,生产乙产品y 吨,则有关系:A 原料用量B 原料用量甲产品x 吨 3x 2x 乙产品y 吨y3y则有⎪⎪⎩⎪⎪⎨⎧++>> 18≤3213≤ 30 0y x y x y x ,目标函数z =5x +3y作出可行域后求出可行域边界上各端点的坐标,可知 当x =3,y =4时可获得最大利润为27万元.20.解:(1)∵ x <45,∴ 4x -5<0,故5-4x >0. y =4x -1+541x -=-(5-4x +x-451)+4.∵ 5-4x +x-451≥x -x -451452)(=2,∴ y ≤-2+4=2, 当且仅当5-4x =x -451,即x =1或x =23(舍)时,等号成立, 故当x =1时,y max =2.xOAy P (3,2)B(第18题)(第18题)第 11 页 共 11 页 (2)∵ x >0,y >0,x1+y 9=1, ∴ x +y =(x 1+y 9)(x +y )=x y +y x 9+10≥2yx x y 9 · +10=6+10=16. 当且仅当x y =y x 9,且x 1+y 9=1,即⎩⎨⎧12=, 4=y x 时等号成立, ∴ 当x =4,y =12时,(x +y )min =16.(3)a 2+1b =a ⎪⎪⎭⎫ ⎝⎛2+2122b =2·a 2+212b ≤22⎪⎪⎭⎫ ⎝⎛2+21+22b a =423, 当且仅当a =2+212b ,即a =23,b =22时,a 2+1b 有最大值423.。

(完整版)高中不等式难题

(完整版)高中不等式难题

不等式单元测试一:填空题1.不等式 x 1 x2 a 解集为 R ,则实数 a 的取值范围为 _________________2.察看以下式子: 1 1 3, 1+ 11 5, 1 1117,由此可222 2232 3 22 32 424 概括出的一般结论是.3.已知 a+1, a+2, a+3 是钝角三角形的三边,则 a 的取值范围是4.不等式 (1) 2x 12 x 1 1的解集为 __________.5.(2013?重庆)设 0≤α≤π,不等式 8x 2﹣( 8sin α) x+cos2α≥0 对 x ∈R 恒建立,则 α 的取值范围为_________.x 0,6.设不等式组x 2y 4, 所表示的平面地区为 D ,则地区 D 的面积为 ;若直2x y 4线 y ax 1 与地区 D 有公共点, 则 a 的取值范围是.x y 1y1恒建立,则实数7.已知变量 x , y 知足拘束条件x y 1 ,若a 的取值范x ax 2 2围为 ________.8.若 log a 4b1,则 a b 的最小值为 _________.9.设 =(1,-2),=(a,-1),=(-b,0),a>0,b>0,O 为坐标原点 , 若 A,B,C 三点共线 , 则 +的最小值是 ________.10.已知 a R ,b R ,函数 y2ae x b 的图象过( 0, 1)点,则1 1 的最小值a b是 ______.11.若正数 x , y 知足 2xy1 0 ,则x 2 y的最小值为.xy12.设 x , y , z 均为大于 1 的实数,且 z 为 x 和 y 的等比中项,则lg zlg z4lg x lg y的最小值为.试卷第 1页,总 9页二:解答题13.假如a5 x a x 7 (a 0, 且 a 1) ,求x的取值范围.14.(本小题满分10 分)已知对于x 的不等式2x 1 x 1log 2 a.(1)当a 8时,求不等式解集;(2)若不等式有解,求a的范围 .试卷第 2页,总 9页15.某企业计划2014 年在 A,B 两个电视台做总时间不超出300 分钟的广告 , 广告总花费不超出 9 万元 .A,B 两个电视台的广告收费标准分别为500 元 / 分钟和 200 元/ 分钟 , 假设A,B 两个电视台为该企业所做的每分钟广告, 能给企业带来的利润分别为0.3 万元和万元 . 问该企业如何分派在两个电视台做广告的时间, 才能使企业的利润最大?最大利润是多少万元 ?16.如图,已知小矩形花坛 ABCD中, AB= 3 m, AD= 2 m,现要将小矩形花坛建成大矩形花坛 AMPN,使点 B 在 AM上,点 D在 AN上,且对角线 MN过点 C.(1)要使矩形 AMPN的面积大于 32 m2, AN的长应在什么范围内?(2)M , N 能否存在这样的地点,使矩形 AMPN的面积最小?若存在,求出这个最小面积及相应的 AM, AN的长度;若不存在,说明原因.试卷第 3页,总 9页参照答案1.( - ∞, -3 )(或 a<-3 ) 【分析】3 x 1试题剖析: 由于 x 1x 2 2x 1 1 x2 ,它的最小值为3 ,因此 a 3 .3 x2考点:绝对值不等式的性质,恒建立问题.1 112n 12. 132n 1n 1222【分析】解:察看左右两边表达式吧变化规律发现,左边表示的为连续正整数平方的倒 数和, 2,3 , 4 项,项数逐个增添 1,右侧则是项数的倒数分之,等差数列 2n+1, 则依据这个规律我们就能够获得11 11 2n 12232n 1 2 n13. (0,2)【分析】略4.( 1,1]2【分析】x 11x 1试题剖析:原不等式变形为:( 1) 2x 11 ,由于 1 ,因此 0 同解变形22 2 2x 1为:2x 1 0 解得:1 x 1,因此原不等式的解集为: (1,1]. 1 x 1 2x22 考点: 1. 解指数型不等式;2. 接分式不等式 .5. [0 ,] ∪[ ,π ]【分析】由题意可得,△ =64sin 2α﹣ 32cos2α≤ 0,得 2sin 2α﹣( 1﹣ 2sin 2α)≤0 ∴sin 2α≤ ,﹣ ≤sin α≤ ,∵0≤α≤π∴α∈ [0 ,] ∪[ ,π ]试卷第 4页,总 9页6.4;[7, ) 3 4【分析】试题剖析:由x 2y 4得 B(4,4) .易得 A(0,4), C(0,2) .因此地区 D 的面积为2x y 4 3 31 4 4 4 ( 1) 7,直线 yS 2 . 直线 BD的斜率为k 3 ax 1 与地区 D 有公共2 3 3 4 43点,因此 a k 7 .4y 5 y54 A4 A3 3y=ax-1 22 CC B B11xx2 –1 O 123 4–2 –1O 1 234 –1–1 D–2考点:不等式组表示的平面地区–2.7. [0,1].【分析】试题剖析:易知 a 1 ,不等式表示的平面地区如下图,y1Q12x-1P设 Q(2,0) ,平面地区内动点 P(x,y) ,则y,kPQx 2当 P 是 x a 与x y 1 交点时, PQ 的斜率最大,为a 1a 2当 P 是 x a 与xy1 交点时,PQ的斜率最小,为 1 a ,a 21 a 1a 1 11 ,因此a[01],.由a2 2 且 a 2 2 得 0 a 2 ,又 a考点:线性规划 .试卷第 5页,总 9页8. 1 【分析】试题剖析:由 log a 4b1,得 a10 ,4b因此 a b1 1 b 1 1 b 即 b1b 24b (当且仅当时,等号建立)4b4b2因此答案应填1.考点: 1、对数的运算性质; 2、基本不等式 .9. 8【分析】 =-= (a-1,1),=-=(-b-1,2), 由于 A,B,C 三点共线 , 因此与共线 ,因此 2(a-1)+b+1=0, 即 2a+b=1. 由于 a>0,b>0,因此 +=(2a+b)=4++ ≥ 4+4=8, 当且仅当 =, 即 b=2a 时等号建立 .10.32 2【分析】试题剖析:由于函数过点0,1 , 把点带入函数y 2ae xb 可得 2a b 1 ,因此1 1 2a b 2a bb 2a 3 2 2.当且仅当b 2a a bab3ba时取等号 . 故填ab3 2 2考点:基本不等式11. 9 【分析】试题剖析: Q 2x y 1 0, 2x y 1Q x 0, y 0x 2 y x 2 y 1 2 2x y2 2x y=xyxyxy yxyx2x 142 y 52x 2 yy xyx5 22x2 y 5 4 9 (当且仅当 2x 2 y, 即 xy 1 y xyx3时 , “=”建立 )考点:基本不等式试卷第 6页,总 9页12.98【分析】试题剖析:由于 z 为 x 和 y 的等比中项,因此z 2xy ,则 z xy ,lg z lg z lg xy lg xylg x lg ylg x lg y 5 lg y lg x 5 1 9 4lg xlg y4lg xlg y8lg x2lg y88lg x2lg y216 88,当且仅当 yx 2 时等号建立,因此 lg zlg z的最小值为9 ;4lg x lg y8考点: 1. 等比中项; 2. 对数的运算性质; 3. 基本不等式的应用;13.当 a 1 时, x 7 a 1 时, x7;当 0.66【分析】试题剖析:解指数不等式第一确立其单一性, 当底数大于 1是单一递加,当底数介于 0 : 1之间单一递减, 本题中底数为a (a 0 且 a 1 ),需按 a 1 单一递加和 0 a单一1递减,两种状况进行议论,再利用单一性解不等式.试题分析:①当a 1 时, Q a 5 xa x 75xx 7, 解得 x7 ..4分6②当 0a 1时, Q a 5xa x 75xx7, 解得 x7 分86综上所述:当7a 1 时, x6当 0 a7 ..12分1时, x6考点: 1. 分类议论思想; 2. 指数函数的单一性 .14.( 1) x 3 x3 ;( 2) a2 .2【分析】试题剖析:( 1)当 a 8 时,原不等式即为 2 x 1 x 1 3 ,分三类状况进行议论:x1 1x1,分别求出其知足的解集,再作并集即为所求不等式的解集;,x 1和2 2(2)要使不等式有解,即2x 1 x 1minlog 2 a. , 于 是 问 题 转 化 为求2x1 x 1 min ,令 f ( x)2x1 x 1 ,分三种状况 x1 ,1 x 1和 x 1,2 2分别求出其最小值并作交集,最后得出结果即可 .试卷第 7页,总 9页试题分析:(1)由题意可得: 2x1 x 13 ,当 x1时, 2x 1 x 13, x3 ,2即 3 x1;当125;当 x 1时, 2x 1 x 1 3 ,即 x 3x1时, 2x 1 x 1 3 ,即 x23该不等式解集为 x 3 x 3 .( 2)令 f (x) 2x 1x 1 ,有题意可知: log 2a f ( x) minx, x12111 2又Q f ( x)3x x1f ( x) min,a. 2,,即 a 222122x, x考点: 1、含绝对值不等式的解法; 2、对数不等式的解法;15.该企业在 A 电视台做 100 分钟广告 , 在 B 电视台做 200 分钟广告 , 企业的利润最大 , 最大利润是 70 万元 . 【分析】设企业在 A 和 B 做广告的时间分别为x 分钟和 y 分钟 , 总利润为 z 元,由题意得目标函数 z=3000x+2000y.二元一次不等式组等价于作出二元一次不等式组所表示的平面地区 , 即可行域 ,如图暗影部分 .作直线 l:3000x+2000y=0, 即 3x+2y=0,平移直线 l, 从图中可知 , 当直线 l 过 M 点时 , 目标函数获得最大值 .联立解得∴点 M 的坐标为 (100,200),∴ z max =3000× 100+2000×200=700000,即该企业在 A 电视台做 100 分钟广告 , 在 B 电视台做 200 分钟广告 , 企业的利润最大 , 最大利润是 70 万元 .试卷第 8页,总 9页【方法技巧】常有的线性规划应用题的种类(1)给定必定量的人力、物力资源, 问如何运用这些资源 , 使达成的任务量最大 , 利润最大 .(2)给定一项任务 , 问如何兼顾安排 , 使达成这项任务耗资的人力、物力资源最小.16.( 1)在 (2 ,8) 或(8 ,+∞ ) 内3(2) AM= 6, AN= 4 时, S min= 24.【分析】解:(1) 设 AM= x, AN= y(x>3 , y>2) ,矩形 AMPN的面积为S,则 S= xy.∵△ NDC∽△ NAM,∴y2=3,∴x=3 y,y x y 2∴S=3 y2 (y>2) .y 2由3 y2 >32,得 2<y<8,或 y>8,y 2 3∴ AN的长度应在 (2 ,8) 或 (8 ,+∞ ) 内.3(2) 当 y>2 时, S=3y 2 4≥3×(4 + 4)=24,y= 3(y -2++4)2 y 2当且仅当 y- 2= 4 ,2y即 y= 4 时,等号建立,解得x= 6.∴存在 M,N 点,当 AM= 6, AN= 4 时, S min=24.试卷第 9页,总 9页。

高三数学解不等式练习题

高三数学解不等式练习题

高三数学解不等式练习题解答一:1. 解不等式2x - 5 < 7:首先加5得到:2x < 12然后除以2:x < 6因此解集为x < 62. 解不等式3(x - 1) + 2 > 5:首先化简得到:3x - 3 + 2 > 5再合并同类项:3x - 1 > 5最后加1得到:3x > 6除以3:x > 2因此解集为x > 23. 解不等式4 - x > 2x + 5:首先整理得到:4 - 2x > 3x + 5然后移项得到:4 - 5 > 3x + 2x化简得到:-1 > 5x最后除以5:x < -1/5因此解集为x < -1/54. 解不等式2x - 3 < 4 - x:首先移项得到:2x + x < 4 + 3合并同类项得到:3x < 7最后除以3:x < 7/3因此解集为x < 7/35. 解不等式|x - 2| > 3:针对绝对值不等式,分为正负两种情况求解:当x - 2 > 0时,即x > 2时,不等式转换为:x - 2 > 3移项得到:x > 5当x - 2 < 0时,即x < 2时,不等式转换为:-(x - 2) > 3移项得到:-x + 2 > 3再移项得到:-x > 1最后乘以-1(注意改变不等号方向):x < -1综合两种情况,解集为x < -1 或 x > 5解答二:1. 解不等式3x - 4 > 7:首先加4得到:3x > 11然后除以3:x > 11/3因此解集为x > 11/32. 解不等式2(x + 3) - 5 > 4(x - 1):首先化简得到:2x + 6 - 5 > 4x - 4再合并同类项:2x + 1 > 4x - 4最后移项得到:5 > 2x因此解集为x < 5/23. 解不等式-2x - 3 < 5 - x:首先移项得到:-2x + x < 5 + 3合并同类项得到:-x < 8最后乘以-1(注意改变不等号方向):x > -8因此解集为x > -84. 解不等式3x - 2 > 4(x + 1):首先化简得到:3x - 2 > 4x + 4然后移项得到:-2 - 4 > 4x - 3x化简得到:-6 > x因此解集为x < -65. 解不等式|2x + 1| < 5:针对绝对值不等式,分为正负两种情况求解:当2x + 1 > 0时,即2x > -1时,不等式转换为:2x + 1 < 5移项得到:2x < 4最后除以2:x < 2当2x + 1 < 0时,即2x < -1时,不等式转换为:-(2x + 1) < 5移项得到:-2x - 1 < 5再移项得到:-2x < 6最后除以-2(注意改变不等号方向):x > -3综合两种情况,解集为-3 < x < 2通过以上解答,你可以更好地理解高三数学中的解不等式练习题。

高中数学不等式经典练习题1(含答案)

高中数学不等式经典练习题1(含答案)

高中数学不等式经典练习题1(含答案) 高中数学不等式经典练题【编著】黄勇权一、选择题1、若a∈R,下列不等式恒成立的是()A、a²+1≥a2、已知x>y>0,若x+y=1,则下列数中最大的是()D、x²+y²3、a∈R,b∈R,若a²+b²=1,则a+b()C、有最小值24、a,b为任意实数,若a>b,则有()A、a²>b²5、实数a,b>0,则a+b的最大值是。

C、36、已知x>0,y>0,z>0,且x+y+z=3,则xy+xz+yz的最大值是。

B、37、已知a,b,c∈R,若a>b,则以下不等式成立的是()A、ac>bc。

8、实数a≥1,b≥0,若3a²+6a+2b²=3,则(a+1)3b²+1的最大值。

D、39、已知a、b为正实数,且满足2ab=2a+b+3,则a+b/2的最小值是。

B、310、已知x,y,z为正数,若ab+bc+ca=1,则a+b+c的最小值是A、2.二、填空题1、已知实数x,y满足x+y=2xy,则xy的最小值是1/2.2、已知m>0,n>0,且m+n=1,则(m-1)(n-1)的最小值是1/4.3、函数y=x+2-x的最大值是2.4、已知x、y为正数,若2x+3y=4,则x/2+y/3的最小值是8/15.5、函数f(a)=a-a²的最大值是1/4.6、m、n均为正数,若m+n=1,则mn最小值是1/4.7、已知x,y,z为正数,若3x+2y+z=2,则9x²+4y²+z²的最小值是13/9.8、x+2y=4,则x/2+3y/4的最大值是8/3.9、已知a、b、c为正实数,若a+b+c=1,则ab+bc+ca的最小值为1/3.三道数学题的解答1.已知实数 $x,y,z$ 满足$x^2+y^2=2,y^2+z^2=3,z^2+x^2=3$,求$xy+yz+zx$ 的最大值。

高中不等式例题(超全超经典)

高中不等式例题(超全超经典)

一. 不等式的性质:二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。

其中比较法(作差、作商)是最基本的方法。

三.重要不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”); 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 2ab a +b ≤ab ≤ a +b 2 ≤ a 2+b 22 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x 解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。

高三复习基本不等式练习题

高三复习基本不等式练习题

高三复习基本不等式练习题不等式作为高中数学中的一个重要内容,占据了复习的重要一部分。

本文将提供一些基本不等式的练习题,供高三学生复习使用。

练习题1:解不等式组:{x+2>0, x-3<0}练习题2:求解不等式:(x+1)(x-3)<0练习题3:解不等式组:{x^2 - 4>0, x-1<0}练习题4:求解不等式:x^2 - 5x + 6>0练习题5:解不等式组:{x^2-4x+3>0, x^2+6x+8>0}练习题6:求解不等式:(x-2)(x+3)(x-7)<0练习题7:解不等式组:{x^3-9x^2+20x-12>0, x^2-4x+4>0}练习题8:求解不等式:(x-2)^2(x+4)>0练习题9:解不等式组:{x^3-x^2+4x-4>0, x^2 + 3x + 2>0}练习题10:求解不等式:(x-1)^3+8>0以上是关于高三复习基本不等式的一些练习题。

希望同学们能够认真思考,按照正确的解题步骤解答。

复习不等式时,应重点掌握不等式的基本性质和解不等式的方法,如辨别二次不等式的判别式、区间法等。

在解题过程中,也要注意进行化简和因式分解,以便于对不等式进行分类讨论。

基本不等式是高中数学中一个重要的内容,对于加深对不等式的理解和掌握不等式的解法有着重要的意义。

因此,同学们要多进行基本不等式的练习,理解和掌握不等式的性质和方法,为高考做好充分准备。

希望以上的练习题能够帮助到高三的同学们,祝大家能够在高三阶段取得优异的成绩!。

高中数学不等式练习题及参考答案2023

高中数学不等式练习题及参考答案2023

高中数学不等式练习题及参考答案2023不等式是高中数学中重要的概念之一,也是很多考试中必考的内容。

为帮助大家复习巩固,本文整理了十道高中数学不等式练习题及参考答案,供大家练习参考。

1. 已知 $x>0$,求证:$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}>1$【参考答案】$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}=\frac{1}{1+x}+\frac{x}{x+1}=\frac{x+1}{x+1}=1$。

2. 解不等式 $\frac{2-x}{x+1}\geq 1$。

【参考答案】$\frac{2-x}{x+1}\geq 1$,移项得 $\frac{1-x}{x+1}\geq 0$,即$\frac{x-1}{x+1}\leq 0$。

因此,$x\in(-\infty,-1]\cup[1,+\infty)$。

3. 解不等式 $\log_{\frac{1}{2}}(x^2-3x+2)<2$。

【参考答案】$\log_{\frac{1}{2}}(x^2-3x+2)<2$,移项得 $x^2-3x+2>4$。

解得 $x\in(-\infty,1)\cup(3,+\infty)$。

4. 已知 $a+b=1$,$a>0$,$b>0$,求证:$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。

【参考答案】By Jensen 不等式,$\frac{1}{2}(a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}) \geq\log_{\frac{1}{2}}(\frac{1}{2}(a+b))=\log_{\frac{1}{2}}\frac{1}{ 2} =1$。

所以,$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。

不等式计算题50道

不等式计算题50道

不等式计算题50道一、一元一次不等式1. 解不等式2x + 3>5- 解析:首先将常数项移到右边,得到2x>5 - 3,即2x>2。

然后两边同时除以2,解得x > 1。

2. 解不等式3x-1<8- 解析:先将常数项移到右边,3x<8 + 1,也就是3x<9。

两边同时除以3,解得x<3。

3. 解不等式(1)/(2)x+5≥slant3- 解析:先将常数项移到右边,(1)/(2)x≥slant3 - 5,即(1)/(2)x≥slant - 2。

两边同时乘以2,解得x≥slant - 4。

4. 解不等式4-(2)/(3)x>2- 解析:先将常数4移到右边,-(2)/(3)x>2 - 4,即-(2)/(3)x>-2。

两边同时乘以-(3)/(2),不等号方向改变,解得x < 3。

5. 解不等式5x+2≤slant3x - 4- 解析:先将含x的项移到左边,常数项移到右边,5x-3x≤slant - 4 - 2,即2x≤slant - 6。

两边同时除以2,解得x≤slant - 3。

6. 解不等式2(x - 1)+3>3x- 解析:先展开括号2x-2 + 3>3x,即2x + 1>3x。

将2x移到右边,得到1>3x-2x,解得x < 1。

7. 解不等式3(x + 2)-1≥slant5x-2- 解析:展开括号得3x+6 - 1≥slant5x-2,即3x + 5≥slant5x-2。

移项3x-5x≥slant - 2 - 5,-2x≥slant - 7。

两边同时除以-2,不等号方向改变,解得x≤slant(7)/(2)。

8. 解不等式(3x - 1)/(2)<(2x+3)/(3)- 解析:两边同时乘以6去分母,得到3(3x - 1)<2(2x + 3)。

展开括号9x-3<4x + 6。

移项9x-4x<6 + 3,5x<9,解得x<(9)/(5)。

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。

高中数学不等式证明题目训练卷及答案

高中数学不等式证明题目训练卷及答案

高中数学不等式证明题目训练卷及答案一、选择题1、若\(a > b > 0\),则下列不等式中一定成立的是()A \(a +\frac{1}{b} > b +\frac{1}{a}\)B \(\frac{b + 1}{a + 1} >\frac{b}{a}\)C \(a \frac{1}{b} > b \frac{1}{a}\)D \(\frac{2a + b}{a + 2b} >\frac{a}{b}\)答案:A解析:因为\(a > b > 0\),所以\(a b > 0\)。

A 选项:\((a +\frac{1}{b})(b +\frac{1}{a})=(a b) +(\frac{1}{b} \frac{1}{a})=(a b) +\frac{a b}{ab}> 0\),所以\(a +\frac{1}{b} > b +\frac{1}{a}\),A 选项正确。

B 选项:\(\frac{b + 1}{a + 1} \frac{b}{a} =\frac{a(b+ 1) b(a + 1)}{a(a + 1)}=\frac{a b}{a(a + 1)}\),因为\(a(a + 1) > 0\),但\(a b\)的正负不确定,所以\(\frac{b + 1}{a + 1}\)与\(\frac{b}{a}\)大小不确定,B 选项错误。

C 选项:\((a \frac{1}{b})(b \frac{1}{a})=(a b) (\frac{1}{b} \frac{1}{a})=(a b) \frac{a b}{ab}\),当\(ab > 1\)时,\((a b) \frac{a b}{ab} < 0\),C 选项错误。

D 选项:\(\frac{2a + b}{a + 2b} \frac{a}{b} =\frac{b(2a + b) a(a + 2b)}{b(a + 2b)}=\frac{b^2 a^2}{b(a +2b)}\),因为\(b^2 a^2 < 0\),\(b(a + 2b) > 0\),所以\(\frac{2a + b}{a + 2b} \frac{a}{b} < 0\),D 选项错误。

高中数学不等式经典练习题1(含答案)

高中数学不等式经典练习题1(含答案)

高中数学 不等式 经典练习题【编著】黄勇权一、选择题1、若a ∈R ,下列不等式恒成立的是( )A 、a ²+1≥ aB 、a ²+4>4aC 、 1a>1 D 、2a >2a-1 2、已知x >y >0,若x+y=1,则下列数中最大的是( ) A 、12 B 、 x+y 2C 、2xyD x ²+y ² 3、a ∈R ,b ∈R ,若a ²+b ²=1,则a+b ( )A 、 有最小值 - 2B 、有最小值-1C 、 有最小值 2D 、有最小值14、a ,b 为任意实数,若a >b ,则有( )A 、 a ²>b ²B 、(a-1 )²>(b-1)²C 、丨a-1丨> 丨b-1丨D 、2a-1>2b-15、实数a ,b >0,则ba b a ++的最大值是 。

A 、 1 B 、 2 C 、 3 D 、 26、已知 x >0,y >0,z >0,若 x+y+z= 3,则 xy+xz+yz 的最大值是 。

A 、3、B 、 3C 、 2D 、 17、已知a ,b ,c ∈R ,若a >b ,以下不等式成立的是( )A 、 ac >bcB 、 a ³>b ³C 、1b 11a 1++> D 、22b1a 1> 8、实数a ≥1,b ≥0,若3a ²+6a+2b ²=3,则(a+1)1b 32+的最大值 。

A 、 2B 、 3C 、 53 2D 、 523 9、已知a 、b 为正实数,且满足2ab=2a+b+3,则a+2b 的最小值是 。

A 、 1 B 、 3 C 、4 D 、610、已知x ,y ,z 为正数,若ab+bc+ca=1,则a+b+c 的最小值是A 、 2B 、 3C 、2D 、3二、填空题1、已知实数x ,y 满足 1x + 4y= 2 xy ,则xy 则最小值是 。

完整版)高中数学不等式习题及详细答案

完整版)高中数学不等式习题及详细答案

完整版)高中数学不等式习题及详细答案第三章不等式一、选择题1.已知 $x\geq 2$,则 $f(x)=\frac{x^2-4x+5}{2x-4}$ 的取值范围是()。

A。

最大值为 5,最小值为 1B。

最大值为 5,最小值为 $\frac{11}{2}$C。

最大值为 1,最小值为 $\frac{11}{2}$D。

最大值为 1,最小值为 02.若 $x>0$,$y>0$,则$(x+\frac{1}{y})^2+(y+\frac{1}{x})^2$ 的最小值是()。

A。

3B。

$\frac{7}{2}$C。

4D。

$\frac{9}{2}$3.设 $a>0$,$b>0$,则下列不等式中不成立的是()。

A。

$a+b+\frac{1}{ab}\geq 2\sqrt{2}$B。

$(a+b)(\frac{1}{a}+\frac{1}{b}+\frac{1}{2})\geq 4$C。

$\sqrt{a^2+b^2}\geq a+b-\sqrt{2ab}$D。

$\frac{2ab}{a+b}\geq \sqrt{ab}$4.已知奇函数 $f(x)$ 在 $(-\infty,+\infty)$ 上是增函数,且$f(1)=3$,则不等式 $f(x)-f(-x)<0$ 的解集为()。

A。

$(-1,+\infty)$B。

$(-\infty,-1)\cup (1,+\infty)$C。

$(-\infty,-1)\cup (1,+\infty)$D。

$(-1,1)$5.当 $0<x<\frac{\pi}{2}$ 时,函数 $f(x)=\frac{1+\cos^2 x+8\sin^2 x}{2\sin^2 x}$ 的最小值为()。

A。

2B。

$\frac{2}{3}$C。

4D。

$\frac{3}{2}$6.若实数 $a,b$ 满足 $a+b=2$,则 $3a+3b$ 的最小值是()。

A。

18B。

高三数学不等式练习题及答案

高三数学不等式练习题及答案

高三数学不等式练习题及答案1. 求解以下不等式,并将解集表示在数轴上:a) 3x - 5 > 7b) 2x + 1 ≤ 9c) 4 - 3x ≥ 1解析:a) 首先将不等式转化成等式:3x - 5 = 7解这个等式可以得到 x = 4,所以 x 大于 4。

因此解集表示在数轴上为(4, +∞)。

b) 将不等式转化成等式:2x + 1 = 9解这个等式可以得到 x = 4,所以 x 小于等于 4。

因此解集表示在数轴上为 (-∞, 4]。

c) 不等式已经是等式形式:4 - 3x = 1解这个等式可以得到 x = 1,所以 x 小于等于 1。

因此解集表示在数轴上为 (-∞, 1]。

2. 计算以下不等式的解集,并将解集表示在数轴上:a) 2x + 3 > 10 - xb) 5 - 3x ≤ 2x + 4c) 3(2x - 1) ≥ 2(x + 3)解析:a) 通过整理不等式,得到 3x > 7,解为 x > 7/3,即解集为(7/3, +∞)。

b) 整理不等式可以得到8 ≤ 5x,解为x ≥ 8/5,即解集为[8/5, +∞)。

c) 展开括号得到 6x - 3 ≥ 2x + 6,然后整理不等式可以得到4x ≥ 9,解为x ≥ 9/4,即解集为[9/4, +∞)。

3. 解以下含有绝对值的不等式,并将解集表示在数轴上:a) |3x + 1| < 5b) |2x - 1| ≥ 3c) |x - 4| > 2解析:a) 当 3x + 1 > 0 时,原不等式可以化简为 3x + 1 < 5,解为 x < 4/3。

当 3x + 1 < 0 时,原不等式可以化简为 -(3x + 1) < 5,解为 x > -6/3。

综合起来,解集为 (-∞, -6/3)∪(4/3, +∞)。

b) 当 2x - 1 ≥ 0 时,原不等式可以化简为 2x - 1 ≥ 3,解为x ≥ 4/2。

高中数学必修不等式练习题(附答案)

高中数学必修不等式练习题(附答案)

高中数学必修不等式练习题学校:______姓名:_____班级:_____考号:______一.单选题(共__小题)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b2.不等式||>的解集是()A.(0,2)B.(-∞,0)C.(2,+∞)D.(-∞,0)∪(0,+∞)3.若<<0,则下列不等式中不正确的是()A.ab<b2B.a+b<ab C.a2>b2D.+>24.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a5.已知a、b、c满足c<b<a,且ac<0,那么下列选项中一定不成立的()A.ab>ac B.c(b-a)<0C.cb2≤ab2D.ac(a-c)<06.下列各组的大小比较正确的是()B.>C.0.8-2<D.>A.>7.若关于x的不等式mx-2>0的解集是{x|x>2},则实数m等于()D.2A.-1B.-2C.1二.填空题(共__小题)8.不等式|2-x|+|x+1|≤a,对∀x∈[1,5]恒成立的实数a的取值范围______.9.已知正数a,b,c满足abc=1,求证:(a+2)(b+2)(c+2)≥27.10.若角α、β满足,则α-β的取值范围是______.11.已知,,,则a,b,c按从大到小的顺序排列为______.12.比较a=2,b=3,c=4的大小关系为______.三.简答题(共__小题)13.求证:-≤≤.14.已知3b=6a-2a,4a=8b-5b,试判断实数a,b的大小关系,并给出证明.15.设a,b,c都是正实数,求证:(Ⅰ)a+b+c≥++(Ⅱ)(a+b+c)(a2+b2+c2)≥9abc.16.设x,y均为正数,且x>y,求证:2x+≥2y+3.17.求证:-≤x≤.18.已知x1,x2,x3为正实数,若x1+x2+x3=1,求证:.19.解关于x的不等式|ax-1|>a+1(a>-1).20.(1)设x>0,y>0,且,求x+y的最小值.(2)若x∈R,y∈R,求证:.21.已知a>b>0,求证:.22.已知a>0,b>0,c>0,d>0,求证(ab+cd)(ac+bd)≥4abcd.23.已知实数a,b,c满足a>b>c,求证:++>0.24.求证:x∈R时,|x-1|≤4|x3-1|.参考答案一.单选题(共__小题)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b答案:D解析:解:由题意知,a=sin14°+cos14°==,同理可得,b=sin16°+cos16°=,=,∵y=sinx在(0,90°)是增函数,∴sin59°<sin60°<sin61°,∴a<c<b,故选D.2.不等式||>的解集是()A.(0,2)B.(-∞,0)C.(2,+∞)D.(-∞,0)∪(0,+∞)答案:A解析:解:分析不等式||>,故的值必为负数.即,解得0<x<2.故选A.3.若<<0,则下列不等式中不正确的是()A.ab<b2B.a+b<ab C.a2>b2D.+>2答案:C解析:解:∵<<0,∴b<a<0,∴b2>a2,因此C不正确.故选:C.4.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a答案:A解析:解:∵函数y=0.2x是减函数,0.3>0.2,故有a=0.20.3<0.20.2=1,又a=0.20.3>0,可得b>a >0.由于函数y=log2x在(0,+∞)上是增函数,故c=log20.4<log21=0,即c<0.综上可得,b>a>c,故选A.5.已知a、b、c满足c<b<a,且ac<0,那么下列选项中一定不成立的()A.ab>ac B.c(b-a)<0C.cb2≤ab2D.ac(a-c)<0答案:B解析:解:∵c<b<a,且ac<0,∴c<0,a>0,b-a<0;∴ab>ac,cb2≤ab2,c(b-a)>0;ac(a-c)<0;故选B.6.下列各组的大小比较正确的是()B.>C.0.8-2<D.>A.>答案:D解析:解:A.考察指数函数y=0.45x在R单调递减,∴<,不正确;B.考察幂函数在(0,+∞)上单调递减,∴=,不正确;C.∵0.8-2>1,<1,∴<0.8-2,不正确;D.考察对数函数y=在(0,+∞)上单调递增,∴>.正确.故选:D.7.若关于x的不等式mx-2>0的解集是{x|x>2},则实数m等于()A.-1B.-2C.1D.2答案:C解析:解:∵关于x的不等式mx-2>0的解集是{x|x>2},∴m>0,,因此,解得m=1.故选:C.二.填空题(共__小题)8.不等式|2-x|+|x+1|≤a,对∀x∈[1,5]恒成立的实数a 的取值范围______.答案:[9,+∞)解析:解:∵不等式|2-x|+|x+1|≤a,对∀x∈[1,5]恒成立,故|2-x|+|x+1|的最大值小于或等于a.|2-x|+|x+1|表示数轴上的x对应点到-1和2对应点的距离之和,故当x∈[1,5]时,只有x=5时,|2-x|+|x+1|取得最大值9,∴a≥9,故答案为[9,+∞).9.已知正数a,b,c满足abc=1,求证:(a+2)(b+2)(c+2)≥27.答案:解析:证明:由于正数a,b,c满足abc=1,故有(a+2)(b+2)(c+2)=(a+1+1)(b+1+1)(c+1+1)≥3•3•3=27=27,当且仅当a=b=c=1时等号成立,故:(a+2)(b+2)(c+2)≥27成立.10.若角α、β满足,则α-β的取值范围是______.答案:解析:解:∵角α、β满足,∴-π<-β<-,∴-<α-β<,∵α-β<0,∴-<α-β<0,故答案为:;11.已知,,,则a,b,c按从大到小的顺序排列为______.答案:c,a,b解析:解:∵=,<0,=log23>1,∴c>a>b.故答案为:c,a,b.12.比较a=2,b=3,c=4的大小关系为______.答案:a>c>b解析:解:∵a=2>1,b=3=,1>c=4=>.∴a>c>b.故答案为:a>c>b.三.简答题(共__小题)13.求证:-≤≤.答案:证明:要证明-≤≤只需证明-≤,≤成立要证明-≤,只需证明-(2x2+3x+6)≤13(x+2)只需证明2x2+16x+32≥0又△=0,故2x2+16x+32≥0明显成立,∴-≤成立同理,≤成立综上可知,-≤≤14.已知3b=6a-2a,4a=8b-5b,试判断实数a,b的大小关系,并给出证明.答案:解:假设a≥b,则3a≥3b,4a≥4b.∴6a=3b+2a≤3a+2a,8b=4a+5b≥4b+5b,化为f(a)=≥1,g(b)=≤1,利用指数函数的单调性可知:f(x)与g(x)在R上单调递减,f(1)=<1,g(1)=>1,∴f(a)≥1>f(1),g(b)≤1<g(1),∴a<1,b>1,∴a<1<b,与假设a≥b,∴假设不成立.∴a<b.15.设a,b,c都是正实数,求证:(Ⅰ)a+b+c≥++(Ⅱ)(a+b+c)(a2+b2+c2)≥9abc.答案:证明:(Ⅰ)∵a,b,c都是正实数,∴a+b≥2,b+c≥2,a+c≥2∴把以上三个式子相加得:2(a+b+c)≥2+2+2∴a+b+c≥++;(Ⅱ)∵a,b,c都是正实数,∴a+b+c≥,a2+b2+c2≥相乘可得(a+b+c)(a2+b2+c2)≥9abc.16.设x,y均为正数,且x>y,求证:2x+≥2y+3.答案:证明:由题设x>y,可得x-y>0;∵2x+-2y=2(x-y)+=(x-y)+(x-y)+;又(x-y)+(x-y)+,当x-y=1时取“=“;∴2x+-2y≥3,即2x+≥2y+3.17.求证:-≤x≤.答案:证明:∵|x|≤=,∴-≤x≤.18.已知x1,x2,x3为正实数,若x1+x2+x3=1,求证:.答案:证明:∵x1,x2,x3为正实数,∴,,,∴三式相加,可得+x3≥2(x1+x2+x3),∵若x1+x2+x3=1,∴.19.解关于x的不等式|ax-1|>a+1(a>-1).答案:解:|ax-1|>a+1⇔ax-1>a+1或ax-1<-a-1⇔ax>a+2或ax<-a.…(2分)当-1<a<0时,x<或x>-1,∴原不等式的解集为(-∞,)∪(-1,+∞).…(5分)当a=0时,原不等式的解集为φ.…(7分)当a>0时,x>,或x<-1,∴原不等式的解集为(-∞,-1)∪(,+∞).…(10分)20.(1)设x>0,y>0,且,求x+y的最小值.(2)若x∈R,y∈R,求证:.答案:证明:(1)∵x>0,y>0,+=1,∴x+y=(x+y)(+)=8+++2≥2+10=18(当且仅当x=12,y=6时取“=”),∴x+y的最小值为18.(2)∵x∈R,y∈R,∴-=-==≥0,∴≥.21.已知a>b>0,求证:.答案:证明:由于a+-(b+)=(a-b)+(-)=(a-b)(1+)=(a-b)•,因为a>b>0⇒ab>0⇒ab+1>0且a-b>0,所以(a-b)•>0.即a+-(b+)>0.所以a>b>0时,成立.22.已知a>0,b>0,c>0,d>0,求证(ab+cd)(ac+bd)≥4abcd.答案:证明:由于a>0,b>0,c>0,d>0,则(ab+cd)(ac+bd)=a2bc+b2ad+c2ad+d2bc=(a2+d2)bc+(b2+c2)ad≥2adbc+2bcad=4abcd,当且仅当a=d,b=c取得等号.则有(ab+cd)(ac+bd)≥4abcd成立.23.已知实数a,b,c满足a>b>c,求证:++>0.答案:证明:∵实数a,b,c满足a>b>c,∴a-c>a-b>0,b-c>0,∴>•>0,∴+>,∴++>0.24.求证:x∈R时,|x-1|≤4|x3-1|.答案:证明:|x-1|≤4|x3-1||x-1|≤4|(x-1)(x2+x+1)||x-1|≤4|x-1||(x2+x+1)| x=1时,左式=右式=0,符合题意;x≠1时,x2+x+1=(x+)2+>,所以4|x-1||(x2+x+1)|>|x-1|;综上,x∈R时,|x-1|≤4|x3-1|.解析:证明:|x-1|≤4|x3-1||x-1|≤4|(x-1)(x2+x+1)||x-1|≤4|x-1||(x2+x+1)| x=1时,左式=右式=0,符合题意;x≠1时,x2+x+1=(x+)2+>,所以4|x-1||(x2+x+1)|>|x-1|;综上,x∈R时,|x-1|≤4|x3-1|.。

高中数学不等式专题训练7套含答案

高中数学不等式专题训练7套含答案

不等式单元试卷一班级 姓名 座号 成绩一、选择题(每题正确答案只有一个,共8题,每小题5分)1.若a <b <0,则 ( )A . b 11<aB . 0<b a <1C . a b >b 2D . bb a a >2.若|a +c|<b ,则 ( )A . |a |<|b|-|c|B . |a |>|c|-|b|C . |a |>|b|-|c|D . |a |<|c|-|b| 3.设b <0<a ,d <c <0,则下列各不等式中必成立的是 ( )A . a c >bdB . db>c a C . a +c >b +d D . a -c >b -d4.下列命题中正确的一个是 ( ) A .ba ab +≥2成立当且仅当a ,b 均为正数B .2222ba b a +≥+成立当且仅当a ,b 均为正数 C .log a b +log a b ≥2成立当且仅当a ,b ∈(1,+∞) D .|a +a1|≥2成立当且仅当a ≠0 5函数y =log ⎪⎭⎫⎝⎛-+⋅+-2134223x x x x 的定义域是 ( )A .x ≤1或x ≥3B .x <-2或x >1C .x <-2或x ≥3D .x <-2或x >36.已知x,y ∈R ,命题甲: |x -1|<5,命题乙: ||x |-1|<5,那么 ( ) A 甲是乙的充分条件,但不是乙的必要条件 B 甲是乙的必要条件,但不是乙的充要条件 C 甲是乙的充要条件 D 甲不是乙的充分条件,也不是乙的必要条件7.已知实数x ,y 满足x 2+y 2=1,则代数式(1-x y)(1+x y)有 ( ) A .最小值21和最大值1 B .最小值43和最大值1 C .最小值21和最大值43D .最小值1 8.函数y =xx x +++132(x >0)的最小值是( )A .23B .-1+23C .1+23D .-2+23二、填空题(请将正确的答案填到横线上,共4题,每小题4分)9.关于x 的不等式a x 2+b x +2>0的解集是}3121|{<<-x x ,则a +b=_____________.10.实数=+=+>x y x y x y x ,此时的最大值是,那么,且,______log log 42022_________,y=_________.11.方程()02lg 222=-+-a a x x 又一正根一负根,则实数a 的取值范围是 .12.建造一个容积83m ,深为m 2长的游泳池,若池底和池壁的造价每平方米分别为120元和80元,则游泳池的最低总造价为__________元. 三、解答题(本大题共4小题,共44分)13.(10分)已知.))((,1,0,xy bx ay by ax b a b a ≥++=+>求证:且14 (10分)解关于x 的不等式:0122<++x ax (其中R a ∈).15.(12分)设f(x)是定义在上]1,1[-的奇函数,g(x)的图象与f(x)的图象关于直线x =1对称,而当]3,2[∈x 时,44)(2-+-=x x x g .(1)求f(x)的解析式;(2)对于任意的,]1,0[,2121x x x x ≠∈且求证:;2)()(1212x x x f x f -<- (3)对于任意的,]1,0[,2121x x x x ≠∈且求证:.1)()(12≤-x f x f16.(12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm2. 问x、y分别为多少(精确到0.001m) 时用料最省?参考答案二、填空题9.-14 10.1,2,1 11.)1,21()0,21(⋃- 12. 1760 三、解答题13.[解析]: 左边=)()(22222222y x ab xy b a aby abx xy b xy a +++=+++,xy xy b a xy ab b a xy y x =+=++≥∴≥+22222)()2(,2左边 .15.[解析]:(1)由题意知f(x+1)=g(1-x))2()(x g x f -=⇒当224)2(4)2()(,32201x x x x f x x -=--+--=≤-≤≤≤-时,当2)(0110x x f x x -=-∴<-≤-≤<时,,由于f(x)是奇函数2)(x x f =∴ ⎪⎩⎪⎨⎧≤<≤≤--=∴)10()01()(22x x x x x f(2)当,20]1,0[,212121<+<≠∈x x x x x x 时,且 1212122122122))(()()(x x x x x x x x x f x f -<+-=-=-∴(3)当1110,10]1,0[,212222212121≤-≤-∴≤≤≤≤≠∈x x x x x x x x 时,且.12122≤-x x 即 .1)()(212212≤-=-∴x x x f x f16.[解析]:由题意得 x y+41x 2=8,∴y=xx 482-=48xx-(0<x <42). 于定, 框架用料长度为 l =2x +2y+2(x 22)=(23+2)x +x16≥4246+. 当(23+2)x =x16,即x =8-42时等号成立. 此时, x ≈2.343, y=22≈2.828.故当x 为2.343m, y 为2.828m 时, 用料最省.不等式基本性质二一,不等式的8条基本性质补充1,b a b a ab 110<⇔>>且2,)(0+∈>⇒>>R x b a b a x x 3, )(0-∈<⇒>>R x b a b a x x二,基本练习( )1, 2003京春文,1)设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是A.a +c >b +dB.a -c >b -dC.ac >bdD.cb d a >( )2,(2001上海春)若a 、b 为实数,则a >b >0是a 2>b 2的A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也非必要条件( )3,若,011<<ba 则下列结论正确..的是A .22b a <B .2b ab <C .ab a <2D .b a >( )4,“a>b”是“ac 2>bc 2”成立的A .必要不充分条件B .充分不必要条C .充要条件D .以上均错( )5,若b a , 为任意实数且b a >,则( ) A ,22b a > B ,1>b a C ,0)lg(>-b a D ,b a )21()21(<( )6,“1>a ”是“11<a”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件( )7,设10<<<a b ,则下列不等式成立的是A .12<<b abB .0log log 2121<<a b C .222<<a b D .12<<ab a( )8,1>ab是0)(<-b a a 成立的A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分不必要条件( )9,若0,0,0><>+ay a y x ,则y x -的值A ,小于0B ,大于0C ,等于0D ,正负不确定( )10,若a >b ,在①ba 11<;②a 3>b 3;③)1lg()1lg(22+>+b a ;④ba 22>中,正确的有 A.1个 B.2个 C.3个 D.4个( )11,(04高考试题)已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 A .ab ac >B . c b a ()-<0C . cb ab 22<D . 0)(<-c a ac( )12,(04高考试题)若011<<ba ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④02<-ab a 中,正确的不等式有A .1个B .2个C .3个D .4个二,填空题13,设01,0<<-<b a ,则2,,ab ab a 三者的大小关系为14,设R x x x B x A ∈+=+=,2,21234且1≠x ,则B A ,的大小关系为15,如果01<<<-b a ,则22,,1,1a b ab 的大小关系为16,设,则b a >是bb a a 11->-成立的 条件17,若53,42≤<<≤b a ,则b a -3的取值范围为 ,bba +2的取值范围为18,若a b a a 231,63<<<≤,则b a +的取值范围为三,解答题19,证明:若0>>b a >0>m ,则ma mb a b m a m b ++<<--不等式的性质三A 卷一、选择题1、下列命题中,正确的是( )A 若ac >bc,则a >bB 、若a 2>b 2,则a >bC 、若,则a <bD 、若b a <,则a <b2、 若a >b,则( ) A 、b a 33>B 、b a >C 、a 3>b 2D 、a 2>b 33、不等式a >b 和同时成立的充分且必要条件是( ) A 、a >b >0 B 、a >0>b C 、011<<a b D 、 011>>ba4、若a <b <0,则下列不等式中不能成立的是( )A 、B 、ab a 11>- C 、| a | > | b | D 、a 2>b 25、设a 、b 、c 、d 都是正数,a >b ,c >d ,a + b > c + d ,ab = cd ,那么a 、b 、c 、d 之间的大小关系是( )A 、a >b >c >dB 、a >c >b >dC 、c >a >d >bD 、a >c >d >b 6、已知a <0 ,-1<b <0,那么( )A 、a >ab >ab 2B 、ab 2>ab >aC 、ab >a >ab 2D 、ab >ab 2>a 7、若x + y = 2,b <x <a ,则下列不等式正确的是( )A 、b + 2<y <a + 2B 、a + 2<y <b + 2C 、2-a <y <2-bD 、2-b <y <2-a8、给定命题(1) a >b 且ab <0,(2)b a > b,(3)| a | <b b <a < 2a >b ,其中真命题的个数是( ) A 、3 B 、2 C 、1 D 、0 二、填空题9、已知a <b <0,c >0,在下列空白处填上恰当的不等号。

高中数学基本不等式训练题(含答案)

高中数学基本不等式训练题(含答案)

高中数学基本不等式训练题(含答案)高中数学基本不等式训练题(含答案)1.若xy>0,则对 xy+yx说法正确的是()A.有最大值-2 B.有最小值2C.无最大值和最小值 D.无法确定答案:B2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是()A.400 B.100C.40 D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:2 44.已知f(x)=12x+4x.(1)当x>0时,求f(x)的最小值;(2)当x<0 时,求f(x)的最大值.解:(1)∵x>0,12x,4x>0.12x+4x212x4x=83.当且仅当12x=4x,即x=3时取最小值83,当x>0时,f(x)的最小值为83.(2)∵x<0,-x>0.则-f(x)=12-x+(-4x)212-x-4x=83,当且仅当12-x=-4x时,即x=-3时取等号.A.①② B.②③C.③④ D.①④解析:选D.从基本不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合基本不等式的条件,故①的推导过程正确;②虽然x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;③∵aR,不符合基本不等式的条件,4a+a24aa=4是错误的;④由xy<0得xy,yx均为负数,但在推导过程中将全体xy +yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a>0,b>0,则1a+1b+2ab的最小值是()A.2 B.22C.4 D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab =1时,等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64 B.最大值164C.最小值64 D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x2y=8xy,当且仅当8x=2y时等号成立.xy64.二、填空题7.函数y=x+1x+1(x0)的最小值为________.答案:18.若x>0,y>0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y4y=4xy,xy116.答案:大1169.(2019年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.解析:∵x>0,y>0且1=x3+y42xy12,xy3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x>-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x>1)的最值.解:(1)∵x>-1,x+1>0.y=x+4x+1+6=x+1+4x+1+52 x+14x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x>1,x-1>0.(x-1)+9x-1+22x-19x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,y有最小值8.11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)(1b -1)(1c-1)8.证明:∵a,b,c(0,+),a+b+c=1,1a-1=1-aa=b+ca=ba+ca2bca,同理1b-12acb,1c-12abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400(2x+2200x)+100200x+60200=800(x+225x)+120191600x225x+12019=36000(元)当且仅当x=225x(x>0),即x=15时等号成立.。

高中不等式练习题及答案

高中不等式练习题及答案

不等式1、解不等式:1211922+-+-x x x x ≥7. 2、解不等式:x 4-2x 3-3x 2<0.3、解不等式:65592+--x x x ≥-2. 4、解不等式:2269x x x -+->3.5、解不等式:232+-x x >x +5.6、若x 2+y 2=1,求(1+xy)(1-xy)的最大、最小值。

7、若x,y >0,求y x yx ++的最大值。

8、已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大, 求参数m 的取值范围。

9、解不等式:log a (x +1-a)>1.10解不等式38->-x x .11.解log (2x – 3)(x 2-3)>012.不等式049)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。

13.求y x z +=2的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y14在函数x y 1=的图象上,求使y x 11+取最小值的点的坐标。

15函数4522++=x x y 的最小值为多少?16.若a -1≤x 21log ≤a 的解集是[41,21],则求a 的值为多少?17.设,10<<a 解不等式:()02log 2<--x x a a a18.已知函数y =13422+++x n x mx 的最大值为7,最小值为-1,求此函数式。

19.已知2>a ,求证:()()1log log 1+>-a a a a20.已知集合A=⎭⎬⎫⎩⎨⎧-<-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛<---)26(log )9(log |,212|31231)1(3322x x x B x x x x , 又A ∩B={x|x 2+ax+b <0},求a+b 等于多少?21画出下列不等式组表示的平面区域,⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+≤+.110,100,3623,242y x y x y x1、[-21,1]∪(1,34) 2、(-1,0)∪(0,3) 3、(-∞,2)∪(3,+∞) 4、(0,3) 5、(-∞,-1323) 6、1, 43 7、2 8、-2<m <0 9、解:(I)当a>1时,原不等式等价于不等式组:⎩⎨⎧>-+>-+.101a a x a x , 解得x>2a-1. (II)当0<a<1时,原不等式等价于不等式组:⎩⎨⎧<->-+.101a a x a x +, 解得:a-1<x<2a-1.综上,当a>1时,不等式的解集为{x|x>2a-1};当0<a<1时,不等式的解集为{x|a-1<x<2a-1}.10、原不等价于不等式组(1)⎪⎩⎪⎨⎧->-≥-≥-2)3(80308x x x x 或(2)⎩⎨⎧<-≥-0308x x 由(1)得22153+<≤x , 由(2)得x <3, 故原不等式的解集为⎭⎬⎫⎩⎨⎧+<2215|x x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学不等式练习题一.选择题(共16小题)1.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<2.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z3.若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.94.设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.95.已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.66.设x,y满足约束条件,则z=x+y的最大值为()A.0 B.1 C.2 D.37.设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]8.已知变量x,y满足约束条件,则z=x﹣y的最小值为()A.﹣3 B.0 C.D.39.若变量x,y满足约束条件,则目标函数z=﹣2x+y的最大值为()A.1 B.﹣1 C.﹣ D.﹣310.若a,b∈R,且ab>0,则+的最小值是()A.1 B.C.2 D.211.已知0<c<1,a>b>1,下列不等式成立的是()A.c a>c b B.a c<b c C.D.log a c>log b c12.已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是()A.2 B.2 C.4 D.213.设a>0,b>2,且a+b=3,则的最小值是()A.6 B.C.D.14.已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是()A.35 B.105 C.140 D.21015.设正实数x,y满足x>,y>1,不等式+≥m恒成立,则m的最大值为()A.2 B.4 C.8 D.1616.已知两正数x,y 满足x+y=1,则z=的最小值为()A.B.C.D.二.解答题(共10小题)17.已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同.(Ⅰ)求m﹣n;(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值.18.已知不等式x2﹣2x﹣3<0的解集为A,不等式x2+x﹣6<0的解集为B.(1)求A∩B;(2)若不等式x2+ax+b<0的解集为A∩B,求不等式ax2+x+b<0的解集.19.解不等式:≥2.20.已知不等式ax2+x+c>0的解集为{x|1<x<3}.(1)求a,c的值;(2)若不等式ax2+2x+4c>0的解集为A,不等式3ax+cm<0的解集为B,且A ⊂B,求实数m的取值范围.21.(1)已知实数x,y均为正数,求证:;(2)解关于x的不等式x2﹣2ax+a2﹣1<0(a∈R).22.已知a,b,c是全不相等的正实数,求证:>3.23.设a、b为正实数,且+=2.(1)求a2+b2的最小值;(2)若(a﹣b)2≥4(ab)3,求ab的值.24.已知x,y∈(0,+∞),x2+y2=x+y.(1)求的最小值;(2)是否存在x,y,满足(x+1)(y+1)=5?并说明理由.25.某车间计划生产甲、乙两种产品,甲种产品每吨消耗A原料6吨、B原料4吨、C原料4吨,乙种产品每吨消耗A原料3吨、B原料12吨、C原料6吨.已知每天原料的使用限额为A原料240吨、B原料400吨、C原料240吨.生产甲种产品每吨可获利900元,生产乙种产品每吨可获利600元,分别用x,y表示每天生产甲、乙两种产品的吨数(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)每天分别生甲、乙两种产品各多少吨,才能使得利润最大?并求出此最大利润.26.某家公司每月生产两种布料A和B,所有原料是三种不同颜色的羊毛.下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.羊毛颜色每匹需要/kg供应量/kg布料A布料B红331050绿421200黄261800已知生产每匹布料A、B的利润分别为60元、40元.分别用x、y表示每月生产布料A、B的匹数.(Ⅰ)用x、y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)如何安排生产才能使得利润最大?并求出最大的利润.高中数学不等式练习题参考答案与试题解析一.选择题(共16小题)1.(2017•山东)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【分析】a>b>0,且ab=1,可取a=2,b=.代入计算即可得出大小关系.【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.【点评】本题考查了函数的单调性、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.2.(2017•新课标Ⅰ)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.3.(2017•北京)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.4.(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最小值即可.【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.【点评】本题考查线性规划的简单应用,考查数形结合以及计算能力.5.(2017•山东)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6【分析】画出约束条件表示的平面区域,根据图形找出最优解是由解得的点A的坐标,代入目标函数求出最大值.【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.故选:C.【点评】本题考查了线性规划的应用问题,是中档题.6.(2017•新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为()A.0 B.1 C.2 D.3【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最大值即可.【解答】解:x,y满足约束条件的可行域如图:,则z=x+y经过可行域的A时,目标函数取得最大值,由解得A(3,0),所以z=x+y 的最大值为:3.故选:D.【点评】本题考查线性规划的简单应用,考查约束条件的可行域,判断目标函数的最优解是解题的关键.7.(2017•新课标Ⅲ)设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的范围即可.【解答】解:x,y满足约束条件的可行域如图:目标函数z=x﹣y,经过可行域的A,B时,目标函数取得最值,由解得A(0,3),由解得B(2,0),目标函数的最大值为:2,最小值为:﹣3,目标函数的取值范围:[﹣3,2].故选:B.【点评】本题考查线性规划的简单应用,目标函数的最优解以及可行域的作法是解题的关键.8.(2017•大石桥市校级学业考试)已知变量x,y满足约束条件,则z=x﹣y的最小值为()A.﹣3 B.0 C.D.3【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,A(0,3),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最大,z有最小值为﹣3.故选:A.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.9.(2017•天津学业考试)若变量x,y满足约束条件,则目标函数z=﹣2x+y的最大值为()A.1 B.﹣1 C.﹣ D.﹣3【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(1,1),化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过A时,直线在y轴上的截距最大,为﹣1.故选:B.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.(2017•明山区校级学业考试)若a,b∈R,且ab>0,则+的最小值是()A.1 B.C.2 D.2【分析】根据题意,首先由ab>0可得>0且>0,进而由基本不等式可得+≥2,计算可得答案.【解答】解:根据题意,若a,b∈R,且ab>0,则>0且>0,+≥2=2,即+的最小值是2;故选:C.【点评】本题考查基本不等式的性质,注意首先要满足基本不等式的使用条件.11.(2017•资阳模拟)已知0<c<1,a>b>1,下列不等式成立的是()A.c a>c b B.a c<b c C.D.log a c>log b c【分析】根据题意,依次分析选项:对于A、构造函数y=c x,由指数函数的性质分析可得A错误,对于B、构造函数y=x c,由幂函数的性质分析可得B错误,对于C、由作差法比较可得C错误,对于D、由作差法利用对数函数的运算性质分析可得D正确,即可得答案.【解答】解:根据题意,依次分析选项:对于A、构造函数y=c x,由于0<c<1,则函数y=c x是减函数,又由a>b>1,则有c a>c b,故A错误;对于B、构造函数y=x c,由于0<c<1,则函数y=x c是增函数,又由a>b>1,则有a c>b c,故B错误;对于C、﹣==,又由0<c<1,a>b>1,则(a﹣c)>0、(b﹣c)>0、(b﹣a)<0,进而有﹣<0,故有<,故C错误;对于D、log a c﹣log b c=﹣=lgc(),又由0<c<1,a>b>1,则有lgc<0,lga>lgb>0,则有log a c﹣log b c=﹣=lgc()>0,即有log a c >log b c,故D正确;故选:D.【点评】本题考查不等式比较大小,关键是掌握不等式的性质并灵活运用.12.(2017•全国模拟)已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是()A.2 B.2 C.4 D.2【分析】利用对数的运算法则和基本不等式的性质即可得出.【解答】解:∵lg2x+lg8y=lg2,∴lg(2x•8y)=lg2,∴2x+3y=2,∴x+3y=1.∵x>0,y>0,∴==2+=4,当且仅当x=3y=时取等号.故选C.【点评】熟练掌握对数的运算法则和基本不等式的性质是解题的关键.13.(2017•锦州一模)设a>0,b>2,且a+b=3,则的最小值是()A.6 B.C.D.【分析】=()(a+b﹣2)=2+1++,根据基本不等式即可求出【解答】解:∵a>0,b>2,且a+b=3,∴a+b﹣2=1,∴=()(a+b﹣2)=2+1++≥3+2,当且仅当a=(b ﹣2)时取等号,即b=1+,a=2﹣时取等号,则的最小值是3+2,故选:D【点评】本题考查了基本不等式的应用,掌握一正二定三相等,属于中档题14.(2017•乌鲁木齐模拟)已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是()A.35 B.105 C.140 D.210【分析】x,y∈R,x2+y2+xy=315,可得x2+y2=315﹣xy≥2xy,因此xy≤105.即可得出.【解答】解:∵x,y∈R,x2+y2+xy=315,∴x2+y2=315﹣xy,315﹣xy≥2xy,当且仅当x=y=±时取等号.∴xy≤105.∴x2+y2﹣xy=315﹣2xy≥315﹣210=105.故选:B.【点评】本题考查了重要不等式的性质,考查了推理能力与计算能力,属于中档题.15.(2017•和平区校级二模)设正实数x,y满足x>,y>1,不等式+≥m恒成立,则m的最大值为()A.2 B.4 C.8 D.16【分析】不等式+≥m恒成立,转化为求+的最小值,可得m 的最大值.将分母转化为整数,设y﹣1=b,则y=b+1,令2y﹣1=a,y=(a+1),利用基本不等式的性质即可得出.【解答】解:设y﹣1=b,则y=b+1,令2y﹣1=a,y=(a+1),a>0,b>0.那么:+==(当且仅当a=b=1即x=2,y=1时取等号.∴+的最小值为8,则m的最大值为8.故选:C.【点评】本题考查了基本不等式的性质的运用解决恒成立的问题,利用了换元法转化求解,多次使用基本不等式式解决问题的关键,属于中档题.16.(2017春•温江区校级月考)已知两正数x,y 满足x+y=1,则z=的最小值为()A.B.C.D.【分析】展开,并根据x+y=1可以得到,可令t=xy,并求出,而根据的单调性即可求出f(t)的最小值,进而求出z的最小值.【解答】解:z====;令t=xy,则;由在上单调递减,故当t=时有最小值,即:时z有最小值.故选B.【点评】考查基本不等式的应用,注意等号成立的条件,要熟悉函数的单调性.二.解答题(共10小题)17.(2017•郑州二模)已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同.(Ⅰ)求m﹣n;(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值.【分析】(Ⅰ)讨论2x﹣3≥0或2x﹣3<0,求出不等式|2x﹣3|<x的解集,得出不等式x2﹣mx+n<0的解集,利用根与系数的关系求出m、n的值;(Ⅱ)根据a、b、c∈(0,1),且ab+bc+ac=1,求出(a+b+c)2的最小值,即可得出a+b+c的最小值.【解答】解:(Ⅰ)当2x﹣3≥0,即x≥时,不等式|2x﹣3|<x可化为2x﹣3<x,解得x<3,∴≤x<3;当2x﹣3<0,即x<时,不等式|2x﹣3|<x可化为3﹣2x<x,解得x>1,∴1<x<;综上,不等式的解集为{x|1<x<3};∴不等式x2﹣mx+n<0的解集为{x|1<x<3},∴方程x2﹣mx+n=0的两实数根为1和3,∴,∴m﹣n=4﹣3=1;(Ⅱ)a、b、c∈(0,1),且ab+bc+ac=m﹣n=1,∴(a+b+c)2=a2+b2+c2+2(ab+bc+ca)≥(2ab+2bc+2ac)+2(ab+bc+ac)=3(ab+bc+ca)=3;∴a+b+c的最小值是.【点评】本题考查了解不等式以及根与系数的关系应用问题,也考查了基本不等式的应用问题,是综合题.18.(2017春•巢湖市校级期中)已知不等式x2﹣2x﹣3<0的解集为A,不等式x2+x﹣6<0的解集为B.(1)求A∩B;(2)若不等式x2+ax+b<0的解集为A∩B,求不等式ax2+x+b<0的解集.【分析】(1)由一元二次不等式的解法分别求出集合A,B,再利用集合的交集即可求出;(2)由一元二次方程的实数根与不等式的解集的关系及判别式与解集的关系即可求出.【解答】解:(1)由不等式x2﹣2x﹣3<0,解得﹣1<x<3,∴A=(﹣1,3);由不等式x2+x﹣6<0,解得﹣3<x<2,∴B=(﹣3,2).∴A∩B=(﹣1,2).(2)由不等式x2+ax+b<0的解集为A∩B=(﹣1,2),∴解得∴不等式﹣x2+x﹣2<0可化为x2﹣x+2>0,∵△=1﹣4×2=﹣7<0,∴x2﹣x+2>0的解集为R.【点评】熟练掌握一元二次不等式的解法是解题的关键.19.(2017春•齐河县校级期中)解不等式:≥2.【分析】把不等式的右边移项到左边,通分后把分子分母都分解因式,得到的式子小于等于0,然后根据题意画出图形,在数轴上即可得到原不等式的解集.【解答】解:不等式移项得:﹣2≥0,变形得:≤0,即2(x﹣)(x﹣6)(x﹣3)(x﹣5)≤0,且x≠3,x≠5,根据题意画出图形,如图所示:根据图形得:≤x<3或5<x≤6,则原不等式的解集为[,3)∪(5,6].【点评】此题考查了一元二次不等式的解法,考查了转化的思想及数形结合的思想.此类题先把分子分母分解因式,然后借助数轴达到求解集的目的.20.(2017春•涞水县校级期中)已知不等式ax2+x+c>0的解集为{x|1<x<3}.(1)求a,c的值;(2)若不等式ax2+2x+4c>0的解集为A,不等式3ax+cm<0的解集为B,且A ⊂B,求实数m的取值范围.【分析】(1)由一元二次不等式和对应方程的关系,利用根与系数的关系即可求出a、c的值;(2)由(1)中a、c的值求解不等式ax2+2x+4c>0,再根据真子集的定义求出m的取值范围.【解答】解:(1)∵不等式ax2+x+c>0的解集为{x|1<x<3},∴1、3是方程ax2+x+c=0的两根,且a<0,…(1分)所以;…(3分)解得a=﹣,c=﹣;…(5分)(2)由(1)得a=﹣,c=﹣,所以不等式ax2+2x+4c>0化为﹣x2+2x﹣3>0,解得2<x<6,∴A={x|2<x<6},又3ax+cm<0,即为x+m>0,解得x>﹣m,∴B={x|x>﹣m},…(8分)∵A⊂B,∴{x|2<x<6}⊂{x|x>﹣m},∴﹣m≤2,即m≥﹣2,∴m的取值范围是[2,+∞).…(10分)【点评】本题考查了一元二次不等式和对应方程的应用问题,也考查了真子集的定义与应用问题,是中档题目.21.(2017春•雨城区校级期中)(1)已知实数x,y均为正数,求证:;(2)解关于x的不等式x2﹣2ax+a2﹣1<0(a∈R).【分析】(1)化简不等式的左边,利用基本不等式求得最小值即可;(2)原不等式可化为[x﹣(a+1)]•[x﹣(a﹣1)]<0,求出不等式对应方程的根,再写出不等式的解集.【解答】解:(1)证明:=,…(2分)又因为x>0,y>0,所以,由基本不等式得,,…(4分)当且仅当时,取等号,即2y=3x时取等号,所以;…(5分)(2)原不等式可化为[x﹣(a+1)]•[x﹣(a﹣1)]<0,…(7分)令[x﹣(a+1)]•[x﹣(a﹣1)]=0,得x1=a+1,x2=a﹣1,又因为a+1>a﹣1,…(9分)所以原不等式的解集为(a﹣1,a+1).…(10分)【点评】本题考查了基本不等式与一元二次不等式的解法和应用问题,是中档题.22.(2017•泉州模拟)已知a,b,c是全不相等的正实数,求证:>3.【分析】根据a,b,c全不相等,推断出全不相等,然后利用基本不等式求得>2,>2,>2,三式相加整理求得>3,原式得证.【解答】解:∵a,b,c全不相等,∴全不相等∴>2,>2,>2三式相加得,>6∴>3即>3【点评】本题主要考查了基本不等式在最值问题中的应用.使用基本不等式时一定要把握好“一定,二正,三相等”的原则.23.(2017•泉州模拟)设a、b为正实数,且+=2.(1)求a2+b2的最小值;(2)若(a﹣b)2≥4(ab)3,求ab的值.【分析】(1)根据基本不等式得出ab(a=b时等号成立),利用a2+b2≥2ab=(a=b时等号成立)求解即可.(2)根据+=2.∴a,代入得出(a+b)2﹣4ab≥4(ab)3,即(2)2﹣4ab≥4(ab)3求解即可得出ab=1【解答】解:(1)∵a、b为正实数,且+=2.∴a、b为正实数,且+=2≥2(a=b时等号成立).即ab(a=b时等号成立)∵a2+b2≥2ab=(a=b时等号成立).∴a2+b2的最小值为1,(2)∵且+=2.∴a∵(a﹣b)2≥4(ab)3,∴(a+b)2﹣4ab≥4(ab)3即(2)2﹣4ab≥4(ab)3即(ab)2﹣2ab+1≤0,(ab﹣1)2≤0,∵a、b为正实数,∴ab=1【点评】本题考查了基本不等式,考查了运用基本不等式求函数的最值,运用基本不等式求函数最值时,要保证:“一正、二定、三相等”,此题是基础题24.(2017•唐山一模)已知x,y∈(0,+∞),x2+y2=x+y.(1)求的最小值;(2)是否存在x,y,满足(x+1)(y+1)=5?并说明理由.【分析】(1)根据基本不等式的性质求出的最小值即可;(2)根据基本不等式的性质得到(x+1)(y+1)的最大值是4,从而判断出结论即可.【解答】解:(1),当且仅当x=y=1时,等号成立.所以的最小值为2.(2)不存在.因为x2+y2≥2xy,所以(x+y)2≤2(x2+y2)=2(x+y),∴(x+y)2﹣2(x+y)≤0,又x,y∈(0,+∞),所以x+y≤2.从而有(x+1)(y+1)≤≤=4,因此不存在x,y,满足(x+1)(y+1)=5.【点评】本题考查了基本不等式的性质,注意应用性质的条件,本题是一道中档题.25.(2017•天津一模)某车间计划生产甲、乙两种产品,甲种产品每吨消耗A 原料6吨、B原料4吨、C原料4吨,乙种产品每吨消耗A原料3吨、B原料12吨、C原料6吨.已知每天原料的使用限额为A原料240吨、B原料400吨、C 原料240吨.生产甲种产品每吨可获利900元,生产乙种产品每吨可获利600元,分别用x,y表示每天生产甲、乙两种产品的吨数(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)每天分别生甲、乙两种产品各多少吨,才能使得利润最大?并求出此最大利润.【分析】(Ⅰ)写出约束条件,画出图象即可,(Ⅱ)设出目标函数,欲求利润最大,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数Z与直线截距的关系,进而求出最优解.【解答】解:(Ⅰ)由已知x,y满足的数学关系式为,该二元一次不等式组所表示的平面区域为图中的阴影部分.(Ⅱ)解:设利润为z万元,则目标函数z=900x+600y,所以y=﹣x+,这是斜率为﹣,在y轴上的截距为的一族平行直线.当取最大值时,z的值最大,又因为x,y满足约束条件,所以由图可知,当直线z=900x+600y经过可行域中的点M时,截距的值最大,即z的值最大.解方程组,得点M的坐标为(30,20),所以Z max=900×30+600×20=39000.故每天生产甲种产品30吨,乙种产品20吨时利润最大,且最大利润为39000元.【点评】本题主要考查生活中的优化问题,利用条件建立二元二次不等式组,利用线性规划的知识进行求解是解决本题的关键.26.(2017•滨海新区模拟)某家公司每月生产两种布料A和B,所有原料是三种不同颜色的羊毛.下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.羊毛颜色每匹需要/kg供应量/kg布料A布料B红331050绿421200黄261800已知生产每匹布料A、B的利润分别为60元、40元.分别用x、y表示每月生产布料A、B的匹数.(Ⅰ)用x、y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)如何安排生产才能使得利润最大?并求出最大的利润.【分析】(Ⅰ)根据条件建立不等式关系,利用二元一次不等式组表示平面区域进行作图即可.(Ⅱ)求出目标函数,利用线性规划的知识进行求解.【解答】解:(Ⅰ)设每月生产布料A、B分别为x匹、y匹,利润为Z元,则,对应的可行域如图:(Ⅱ)设最大利润为z,则目标函数为z=60x+40y,则y=﹣x+,平移直线y=﹣x+,当直线y=﹣x+经过可行域上M时,截距最大,即z最大.解方程组,得M的坐标为x=250,y=100所以z max=60x+40y=19000.答:该公司每月生产布料A、B分别为250、100匹时,能够产生最大的利润,最大的利润是19000 元.【点评】本题主要考查线性规划的应用,建立约束条件,利用线性规划的知识进行求解是解决本题的关键.。

相关文档
最新文档