2.2.1直线的参数方程 (2)
湘教版选修4《直线的参数方程》评课稿
湘教版选修4《直线的参数方程》评课稿一、教材分析1.1 教材内容本文评价的教材为湘教版选修4《直线的参数方程》课程教材。
该教材主要介绍了直线的参数方程及其在几何中的应用,包括直线的定义、参数方程的定义与性质、直线的平行及垂直关系等内容。
1.2 教材结构该教材共分为四个模块,首先介绍了直线的定义和基本性质,然后详细介绍了直线的参数方程的定义与性质,接着讲解了直线的平行及垂直关系,并结合实际问题进行了一些例题分析,最后通过总结和复习巩固所学知识。
二、教材评价2.1 教材优点2.1.1 知识结构合理教材从直线的定义出发,逐步引入参数方程的概念,并通过示例与练习,帮助学生深入理解直线的参数方程的含义和计算方法,适合学生的认知水平,能够有效培养学生的抽象思维和解决实际问题的能力。
2.1.2 示例丰富多样在参数方程的解法和应用过程中,教材提供了丰富的示例,涵盖了直线方程的各个应用场景,如平面图形的交点、直线的平移等,能够帮助学生灵活运用参数方程解决实际问题。
2.1.3 突出实践运用教材通过一些实际问题的引入,将参数方程与实际生活和工程问题相结合,激发学生的学习兴趣,增强学生对数学在实际生活中的认识和应用能力。
2.2 教材不足2.2.1 缺乏拓展探究在直线的参数方程的学习过程中,教材没有设置足够的拓展探究内容,如直线与圆的参数方程的关系、参数方程的应用于其他几何图形等,有待进一步完善,以提高学生的综合应用能力。
2.2.2 缺乏综合实践题教材的练习题主要围绕参数方程的计算和应用展开,缺乏一些综合实践题,如将参数方程应用到三角函数的性质中,解决实际生活中的问题等,需要增加这方面的题目来提高学习的综合应用能力。
2.3 教材改进建议2.3.1 添加拓展探究内容在教材中可以增加一些与直线参数方程相关的拓展探究内容,如直线与圆的参数方程的关系、参数方程的应用于其他几何图形等,以提高学生的综合应用能力和对数学的兴趣。
2.3.2 增加综合实践题在教材的练习题中,可以增加一些综合实践题,如将参数方程应用到三角函数的性质中,解决实际生活中的问题等,以提高学习的综合应用能力和思维能力。
三维空间中直线的方程式
三维空间中直线的方程式在三维空间中,直线的方程可以用参数方程和一般方程两种形式表示。
参数方程是将直线上的每一个点都表示为一个参数所确定的向量,而一般方程则是通过直线上两个点的坐标来表示的。
1.参数方程:直线的参数方程可以表示为:x = x0 + aty = y0 + btz = z0 + ct其中(x0,y0,z0)为直线上的已知点,而(a,b,c)为直线的方向向量,t为参数。
2.一般方程:首先,我们需要确定直线的方向向量。
假设直线上的两个点分别为P(x1,y1,z1)和Q(x2,y2,z2),则直线的方向向量可以表示为V=PQ=(x2-x1,y2-y1,z2-z1)。
然后,我们可以通过点P的坐标和方向向量V来推导直线的一般方程。
2.1.点向式:直线的一般方程可以表示为:(x-x1)/a=(y-y1)/b=(z-z1)/c其中(a,b,c)为方向向量V的分量。
2.2.对称式:直线的一般方程也可以表示为:(x-x1)/a=(y-y1)/b=(z-z1)/c=t这里的t为参数。
2.3.常法式:直线的一般方程还可以表示为:Ax+By+Cz+D=0其中A,B,C为方向向量V的分量,而D为常数。
对于两个不平行的直线,我们可以通过将它们的方向向量进行叉乘来求得它们的交点。
除了参数方程和一般方程,还有其他表示直线的方法,比如点法式、斜截式等。
这些方法都根据直线上已知点和方向向量的不同形式而有所不同。
需要注意的是,在使用直线的方程时,我们需要根据实际情况选择最适合的表达形式。
有时候参数方程更方便,可以直接通过改变参数t来表示直线上的任意一点;而一般方程则适合于求直线与其他平面或直线的交点等问题。
参数方程
(一)参数方程的概念1.1参数方程的定义及用途1.2参数方程化为普通方程1.3普通方程化为参数方程(二)直线的参数方程2.1直线的参数方程化为标准参数方程2.2直线的标准参数方程的三种应用(三)圆锥曲线参数方程3.1圆锥曲线的参数方程及参数的几何意义3.2圆锥曲线参数方程应用于表示曲线上一点坐标(四)参数法求动点轨迹方程(五)同步练习(一)参数方程的概念1.1参数方程的定义及用途(1)参数方程的定义:一般来说参数方程是指:在直角坐标系中,一动点的坐标x和y同时可以独立地表示成第三个变量t的函数。
即且满足(1)对于[a,b]中的任何一个t1,则①得到的(x1,y1)点都在曲线l上;(2)曲线上的任意一点P(x0,y)的坐标x,y通过①在[a,b]上可求得一个t.那么上述方程叫曲线l的参数方程。
相对参数方程而言,过去的方程就叫做曲线l 的直角坐标方程,简称普通方程。
(2)参数方程定义的几点说明:①在曲线的参数方程中,应明确参数t的取值范围,它往往决定了方程和曲线能不能对应。
如方程θ为参数,θ∈[0,2π),是表示中心在原点,焦点在x轴上,长轴8的椭圆;而方程θ为参数,θ∈[0,π],只是表示上述椭圆的x轴上方的部分。
在没有明确注明参数的取值范围时,可由参数的物理或几何意义,或由两个函数x=f(t),y=g(t)的定义域的交集点去确定;②一个参数方程只对应一条曲线,但一条曲线的参数方程则可以是多个。
当我们选择的参数不同时,一条曲线的参数方程可以是多个;③一条曲线可能存在参数方程,但不一定存在普通方程。
课本中圆的渐开线的参数方程是,其普通方程很难得出,不会理它。
(3)参数方程的用途:引进曲线参数方程有何用处?其用途主要有下列几个方面:①有些曲线在实际应用中用途非常广,如圆的渐开线在齿轮制造中必不可少,可它的普通方程没法直接表示,而参数方程很容易得出;②有些动点(x,y)的轨迹,坐标x、y的关系不好找,我们引入参变量t后,很容易找到x与t和y与t的等量关系式,消去参变量后即得动点轨迹方程。
直线和圆锥曲线的参数方程
3 3 4 倾斜角为 α,则 tan α=4,sin α=5,cos α=5.又点 P(1,1)在直线 4 x=1+5t, l 上,所以直线 l 的参数方程为 (t 为参数). 3 y=1+ t 5 因为 3×5-4×4+1=0,所以点 M 在直线 l 上. 4 由 1+5t=5,得 t=5,即点 P 到点 M 的距离为 5. 因为点 N 不在直线 l 上,故根据两点之间的距离公式,可得|PN| = (1+2)2+(1-6)2= 34.
QM → 动点 M 分有向线段QP的数量比 MP
自主预习
讲练互动
课堂达标
教材链接
2.圆的参数方程 (1)圆心在原点、 半径为 r 为参数).
x=rcos α, y=rsin α 的圆的参数方程_____________( α
OP与x轴正方向的夹角 参数 α 的几何意义是_________________________.
x=t, 得到参数方程 y=2t+1
t (t 为参数);如果令 x=2,可得到
t x= , 参数方程 2 (t 为参数) y=t+1
自主预习 讲练互动 课堂达标 教材链接
这样的参数方程中的 t 不具有一定的几何意义,但是在 实际应用中有时能够简化某些运算.例如,动点 M 做匀 速直线运动,它在 x 轴和 y 轴方向的分速度分别为 9 和 12,点 M 从 A 点(1,1)开始运动,求点 M 的轨迹的参数 方程.点 M (t 为参数).
【思维导图】
自主预习
讲练互动
课堂达标
教材链接
【知能要点】
1.直线的参数方程.
2.直线的参数方程的应用.
3.圆的参数方程及应用.
自主预习
讲练互动
(最新整理)2.2.1直线的参数方程
2021/7/26
16
练习:
(1) 直线xy3tcotss2i0n020( 0 t为 参 数 ) 的 倾 斜B角 )是 ( A.200 B.700 C.1100 D.1600
x 1
2t 2 (t为 参 数 )
(2)
直x线 y10的
一
个
参
数
方程 y
2
是 2 t
。
2、(2
009
广东理)(坐标系与
点斜式: yy0k(xx0)
两点式:
y y1 xx1 y2 y1 x2 x1
y kxb
x y 1 ab
一般式: AxByC0
k
y2 x2
y1 x1
tan
2021/7/26
6
3、什么叫做向量?向量有哪些表示方法? 4、向量的数量是怎样的?
二、新课讲解:
1、引出问题:直线的参数方程是怎样的?今天我们 来研究直线的参数方程,
情感、态度与价值观:通过观察、探索、发现 的创造性过程,培养创新意识。
二重难点:教学重点:曲线参数方程的定义及 方法
教学难点:选择适当的参数写出曲线的参数方 程.
三、教学方法:启发、诱导发现教学.
一、复习回顾
1、参数方程的概念
(1)在取定的坐标系中,如果曲线上任意一点的坐 标x 、y都是某个变数t的函数,即
由韦达 x1定 x2 1 理 , x1x 得 2 1:
A B 1 k 2( x 1 x 2 ) 2 4 x 1 x 22 5 1 0
由 (* 解 ) x 得 11: 25, x21 25
y1325, y2325
记直线与 坐 抛 A (标 1 物 5,线 35的 ), B ( 交 15点 ,35)
第2章2.1~2.2 直线与圆的参数方程
§2 直线和圆锥曲线的参数方程2.1 直线的参数方程 2.2 圆的参数方程1.直线的参数方程(1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为 ⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)① 其中M (x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M 的位移,可以用有向线段PM→的数量来表示. (2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为 ⎩⎪⎨⎪⎧x =x 1+λx 21+λ,y =y 1+λy 21+λ(λ为参数,λ≠-1). 其中M (x ,y )为直线上的任意一点,参数λ的几何意义是动点M 分有向线段QP →的数量比QM MP .当λ>0时,M 为内分点;当λ<0且λ≠-1时,M 为外分点; 当λ=0时,点M 与Q 重合. 2.圆的参数方程(1)圆心在原点、半径为r 的圆的参数方程⎩⎨⎧x =r cos α,y =r sin α(α为参数).参数α的几何意义是OP 与x 轴正方向的夹角.(2)去掉圆与x 轴负半轴交点,圆心在原点、半径为r 的圆的参数方程.⎩⎪⎨⎪⎧x =(1-k 2)r 1+k 2,y =2kr 1+k 2(k 为参数)参数k 的几何意义是直线AP 的斜率.【思维导图】【知能要点】 1.直线的参数方程. 2.直线的参数方程的应用. 3.圆的参数方程及应用.题型一 直线的参数方程直线的参数方程⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α (α为参数)中,α,x 0,y 0都是常数,对于同一直线,选取的参数不同,会得到不同的参数方程.对于直线普通方程y =2x +1,如果令x =t ,可得到参数方程⎩⎨⎧x =t ,y =2t +1 (t 为参数);如果令x =t2,可得到参数方程⎩⎪⎨⎪⎧x =t 2,y =t +1(t 为参数).这样的参数方程中的t 不具有一定的几何意义,但是在实际应用中有时能够简化某些运算.例如,动点M 做匀速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,点M 从A 点(1,1)开始运动,求点M 的轨迹的参数方程.点M 的轨迹的参数方程可以直接写为⎩⎨⎧x =1+9t ,y =1+12t (t 为参数).【例1】 设直线的参数方程为⎩⎪⎨⎪⎧x =-4+22t ,y =22t(t 为参数),点P 在直线上,且与点M 0(-4,0)的距离为2,若该直线的参数方程改写成⎩⎨⎧x =-4+t ,y =t (t 为参数),则在这个方程中点P 对应的t 值为________. 解析 由|PM 0|=2知t =±2,代入第一个参数方程,得点P 的坐标分别为(-3,1)或(-5,-1),再把点P 的坐标代入第二个参数方程可得t =1或t =-1. 答案 ±1【反思感悟】 直线参数方程的标准形式中的参数具有相应的几何意义,本题正是使用了其几何意义,简化了运算,这也正是直线参数方程标准式的优越性所在.1.已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)和点N (-2,6)的距离.解 由直线方程3x -4y +1=0可知,直线的斜率为34,设直线的倾斜角为α,则tan α=34,sin α=35,cos α=45.又点P (1,1)在直线l 上,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =1+35t(t 为参数). 因为3×5-4×4+1=0,所以点M 在直线l 上. 由1+45t =5,得t =5,即点P 到点M 的距离为5.因为点N 不在直线l 上,故根据两点之间的距离公式,可得|PN |=(1+2)2+(1-6)2=34.【例2】 已知直线l 经过点P (1,1),倾斜角α=π6, (1)写出直线l 的参数方程;(2)设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积.解(1)直线的参数方程是⎩⎪⎨⎪⎧x =1+32t ,y =1+12t(t 是参数).(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A ,B 的坐标分别为A ⎝ ⎛⎭⎪⎫1+32t 1,1+12t 1,B ⎝⎛⎭⎪⎫1+32t 2,1+12t 2.以直线l 的参数方程代入圆的方程x 2+y 2=4, 整理得到t 2+(3+1)t -2=0.①因为t 1和t 2是方程①的解,从而t 1t 2=-2. 所以|P A |·|PB |=|t 1t 2|=|-2|=2.【反思感悟】 本题P 到A 、B 两点的距离就是参数方程中t 的两个值,可以充分利用参数的几何意义.2.已知直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t (t 为参数).(1)分别求t =0,2,-2时对应的点M (x ,y ); (2)求直线l 的倾斜角;(3)求直线l 上的点M (-33,0)对应的参数t ,并说明t 的几何意义.解(1)由直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t(t 为参数)知当t =0,2,-2时,分别对应直线l 上的点(-3,2),(0,3),(-23,1).(2)法一 化直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t(t 为参数)为普通方程为y -2=33(x +3),其中k =tan α=33,0≤α<π. ∴直线l 的倾斜角α=π6.法二由于直线l :⎩⎪⎨⎪⎧x =-3+t cos π6,y =2+t sin π6(t 为参数),这是过点M 0(-3,2),且倾斜角α=π6的直线,故π6为所求. (3)由上述可知直线l 的单位方向向量 e =⎝ ⎛⎭⎪⎫cos π6,sin π6=⎝ ⎛⎭⎪⎫32,12. ∵M 0(-3,2),M (-33,0),∴M 0M →=(-23,-2)=-4⎝ ⎛⎭⎪⎫32,12=-4e , ∴点M 对应的参数t =-4,几何意义为|M 0M →|=4, 且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方).题型二 直线参数方程的应用利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.【例3】 过点P ⎝ ⎛⎭⎪⎫102,0作倾斜角为α的直线与曲线x 2+12y 2=1交于点M ,N ,求|PM |·|PN |的最小值及相应的α的值. 解设直线为⎩⎨⎧x =102+t cos α,y =t sin α(t 为参数),代入曲线并整理得(1+11sin 2α)t 2+(10cos α)t +32=0. 则|PM |·|PN |=|t 1t 2|=321+11sin 2 α.所以当sin 2 α=1时,即α=π2,|PM |·|PN |的最小值为18,此时α=π2.【反思感悟】 利用直线的参数方程中参数的几何意义,将最值问题转化为三角函数的值域,利用三角函数的有界性解决.3.已知曲线的参数方程⎩⎨⎧x =3cos θ,y =2sin θ(θ为参数),求曲线上一点P 到直线⎩⎨⎧x =2-3t ,y =2+2t(t 为参数)的最短距离. 解 P (3cos θ,2sin θ)直线:2x +3y -10=0 d =|6cos θ+6sin θ-10|13=|62sin ⎝ ⎛⎭⎪⎫θ+π4-10|1362sin ⎝ ⎛⎭⎪⎫θ+π4-10∈[-62-10,62-10]∴|62sin ⎝ ⎛⎭⎪⎫θ+π4-10|13∈⎣⎢⎡⎦⎥⎤10-6213,10+6213 ∴d min =10-6213.【例4】 如图所示,过不在椭圆x 2a 2+y 2b 2=1上的任一点P 作两条直线l 1,l 2分别交椭圆于A ,B 和C ,D 四点,若l 1,l 2的倾斜角为α,β且满足α+β=π.求证:A ,B ,C ,D 四点共圆. 证明 设P (x 0,y 0),直线l 1:⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α (t 为参数),直线l 2:⎩⎨⎧x =x 0+p cos β,y =y 0+p sin β (p 为参数),分别代入椭圆方程得(b 2cos 2 α+a 2sin 2 α)t 2+2(b 2x 0cos α+a 2y 0sin α)t +b 2x 20+a 2y 20-a 2b 2=0; (b 2cos 2 β+a 2sin 2 β)p 2+2(b 2x 0cos β+a 2y 0sin β)p +b 2x 20+a 2y 20-a 2b 2=0.∵α+β=π,∴cos 2 α=cos 2 β,sin 2 α=sin 2 β,∴t 1t 2=p 1p 2,即|P A |·|PB |=|PC |·|PD |.由平面几何知识知,A ,B ,C ,D 四点共圆. 【反思感悟】 本题利用平面几何知识,要证四点A ,B ,C ,D 共圆,只需证|P A |·|PB |=|PC |·|PD |,又转化为距离问题,利用参数的几何意义计算即可.4.直线l 通过P 0(-4,0),倾斜角α=π6,l 与圆x 2+y 2=7相交于A ,B 两点. (1)求弦长|AB |;(2)过P 0作圆的切线,求切线长; (3)求|P 0A |和|P 0B |的长; (4)求交点A ,B 的坐标.解 ∵直线l 通过P 0(-4,0),倾斜角α=π6, 所以可设直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =t 2,代入圆方程,得⎝ ⎛⎭⎪⎫-4+32t 2+⎝ ⎛⎭⎪⎫12t 2=7,整理得t 2-43t +9=0.(1)设A ,B 对应的参数分别为t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1t 2=9, ∴|AB |=|t 2-t 1|=(t 1+t 2)2-4t 1t 2=2 3. (2)设过P 0的切线为P 0T ,切点为T , 则|P 0T |2=|P 0A |·|P 0B |=|t 1t 2|=9, ∴切线长|P 0T |=3.(3)解方程t 2-43t +9=0,得t 1=33,t 2=3, ∴|P 0A |=33,|P 0B |= 3.(4)将t 1=33,t 2=3代入直线参数方程⎩⎪⎨⎪⎧x =-4+32t ,y =t 2,得A 点坐标为⎝ ⎛⎭⎪⎫12,332,B 点坐标为⎝ ⎛⎭⎪⎫-52,32. 题型三 圆的参数方程及其应用如果取半径绕原点O 逆时针旋转的转过的角度θ为参数,圆x 2+y 2=r 2对应的参数方程为⎩⎨⎧x =r cos θ,y =r sin θ.同理,圆(x -x 0)2+(y -y 0)2=r 2对应的参数方程为⎩⎨⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).圆的参数方程对于需要将圆上点的两个坐标分别表示,代入计算的问题比较方便. 【例5】 圆的直径AB 上有两点C 、D ,且|AB |=10,|AC |=|BD |=4,P 为圆上一点,求|PC |+|PD |的最大值.分析 本题应考虑数形结合的方法,因此需要先建立平面直角坐标系.将P 点坐标用圆的参数方程的形式表示出来,θ为参数,那么|PC |+|PD |就可以用只含有θ的式子来表示,再利用三角函数等相关知识计算出最大值.解 以AB 所在直线为x 轴,以线段AB 的中点为原点建立平面直角坐标系.因为|AB |=10,所以圆的参数方程为⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数).因为|AC |=|BD |=4,所以C ,D 两点的坐标为C (-1,0),D (1,0).因为点P 在圆上,所以可设点P 的坐标为(5cos θ,5sin θ). 所以|PC |+|PD |=(5cos θ+1)2+(5sin θ)2 +(5cos θ-1)2+(5sin θ)2 =26+10cos θ+26-10cos θ =(26+10cos θ+26-10cos θ)2 =52+2262-100cos 2 θ.当cos θ=0时,(|PC |+|PD |)max =52+52=226. ∴|PC |+|PD |的最大值为226.【反思感悟】 解题时将所求式子和图形联系起来,利用圆的参数方程表示P 点坐标,结合三角函数的值域进行计算.5.已知实数x ,y 满足(x -1)2+(y -1)2=9,求x 2+y 2的最大值和最小值.解 由已知,可把点(x ,y )视为圆(x -1)2+(y -1)2=9上的点,设⎩⎨⎧x =1+3cos θ,y =1+3sin θ(θ为参数).则x 2+y 2=(1+3cos θ)2+(1+3sin θ)2 =11+6(sin θ+cos θ)=11+62sin ⎝ ⎛⎭⎪⎫θ+π4∵-1≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,∴11-62≤x 2+y 2≤11+6 2. ∴x 2+y 2的最大值为11+62, 最小值为11-6 2.1.求直线l 1:⎩⎨⎧x =1+t ,y =-5+3t (t 为参数)和直线l 2:x -y -23=0的交点P 的坐标,及点P 与Q (1,-5)的距离.解 将⎩⎨⎧x =1+t ,y =-5+3t 代入x -y -23=0,得t =23,∴P (1+23,1),而Q (1,-5), 得|PQ |=(23)2+62=4 3.2.已知直线l 的参数方程为⎩⎨⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.解 (1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.3.已知椭圆的中心在原点,焦点在y 轴上且长轴长为4,短轴长为2,直线l 的参数方程为⎩⎨⎧x =t ,y =m +2t (t 为参数).当m 为何值时,直线l 被椭圆截得的弦长为6?解 椭圆方程为y 24+x 2=1,化直线参数方程⎩⎨⎧x =t ,y =m +2t 为⎩⎪⎨⎪⎧x =55t ′,y =m +255t ′ (t ′为参数). 代入椭圆方程得⎝ ⎛⎭⎪⎫m +255t ′2+4⎝ ⎛⎭⎪⎫55t ′2=4 ⇔8t ′2+45mt ′+5m 2-20=0.当Δ=80m 2-160m 2+640=640-80m 2>0, 即-22<m <22, 方程有两不等实根t ′1、t ′2,则弦长为|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=640-80m 28,依题意知640-80m 28=6,解得m =±455.[P 30思考交流]1.经过两点Q (1,1),P (4,3)的直线的参数方程.如果应用共线向量的充要条件来求,方程及参数的含义分别是什么?答 在直线PQ 上任取一点M (x ,y ),PM→=(x -1,y -1),QM →=(x -4,y -3),∵P 、Q 、M 三点共线,∴PM→∥QM →,∴PM →=tQM →,⎩⎪⎨⎪⎧x -1=t (x -4),y -1=t (y -3),化简为⎩⎪⎨⎪⎧x =1-4t 1-t,y =1-3t 1-t,此即为过P 、Q 两点的直线的参数方程.参数t 的含义是有向线段PM→、QM →的比值.2.比较直线的参数方程与普通方程体会各自的优势.答 直线的普通方程直观地反映了变量x、y 之间的关系,方程是唯一的. 直线的参数方程中反映了变量x 、y 分别随参数的变化而变化的规律.方程是不唯一的,随参数的选取而有所不同.[P 33思考交流]给定参数方程⎩⎨⎧x =a +r cos α,y =b +r sin α其中a 、b 是常数. 讨论下列问题:(1)如果r 是常数,α是参数,那么参数方程表示的曲线是什么?(2)如果α是常数,r 是参数,那么参数方程表示的曲线是什么?答 (1)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α⇒⎩⎪⎨⎪⎧x -a =r cos α,y -b =r sin α=====消掉参数α>(x -a )2+(y -b )2=r 2. 其中r 为常数,表示以(a ,b )为圆心,r 为半径的圆.(2)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α⇒⎩⎪⎨⎪⎧x -a =r cos α,y -b =r sin α=====消掉参数t >x -a y -b =tan α.整理得x -tan α·y +b ·tan α-a =0,其中a 、b 、tan α为常数.方程为过点(a ,b ),斜率为1tan α的直线.【规律方法总结】1.利用直线的参数方程⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(α为参数)中参数的几何意义,在解决直线与曲线交点问题时,可以方便地求出相应的距离.2.直线的参数方程有不同的形式,可以允许参数t 没有明显的几何意义,在直线与圆锥曲线的问题中,利用参数方程有时可以简化计算.一、选择题1.若直线的参数方程为⎩⎨⎧x =1+2t ,y =2-3t(t 为参数),则直线的斜率为( ) A.23 B.-23C.32D.-32 解析 k =y -2x -1=-3t 2t =-32. 答案 D2.曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析 消去参数θ,将参数方程化为普通方程.曲线可化为(x +1)2+(y -2)2=1,其对称中心为圆心(-1,2),该点在直线y =-2x 上,故选B.答案 B3.直线⎩⎪⎨⎪⎧x =1+12t ,y =-33+32t(t 为参数)和圆x 2+y 2=16交于A ,B 两点,则AB 的中点坐标为( )A.(3,-3)B.(-3,3)C.(3,-3)D.(3,-3)解析 ⎝ ⎛⎭⎪⎫1+12t 2+⎝⎛⎭⎪⎫-33+32t 2=16, 得t 2-8t +12=0,t 1+t 2=8,t 1+t 22=4, 中点为⎩⎪⎨⎪⎧x =1+12×4,y =-33+32×4,⇒⎩⎪⎨⎪⎧x =3,y =- 3. 答案 D4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.14B.214C. 2D.2 2解析 直线l 的参数方程⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数)化为直角坐标方程是y =x -4,圆C 的极坐标方程ρ=4cos θ化为直角坐标方程是x 2+y 2-4x =0.圆C 的圆心(2,0)到直线x -y -4=0的距离为d =22= 2.又圆C 的半径r =2,因此直线l 被圆C 截得的弦长为2r 2-d 2=2 2. 故选D.答案 D5.直线⎩⎨⎧x =t cos α,y =t sin α (t 为参数)与圆⎩⎨⎧x =4+2cos θ,y =2sin θ(θ为参数)相切,则直线的倾斜角为( )A.π6或5π6B.π4或5π6C.π3或2π3D.-π6或-5π6 解析 直线方程为y =tan α·x ,圆为:(x -4)2+y 2=4,利用图形可知直线的倾斜角为π6或56π.答案 A二、填空题6.在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t(t 为参数)的普通方程为________. 解析 ∵x =2+22t ,∴22t =x -2,代入y =1+22t ,得y =x -1,即x -y -1=0.答案 x -y -1=07.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________. 解析 直线为x +y -1=0,圆心到直线的距离d =12=22,弦长d =2 22-⎝ ⎛⎭⎪⎫222=14. 答案 148.经过点P (1,0),斜率为34的直线和抛物线y 2=x 交于A 、B 两点,若线段AB 中点为M ,则M 的坐标为________.解析直线的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =35t (t 是参数),代入抛物线方程得9t 2-20t -25=0.∴中点M 的相应参数为t =12×209=109.∴点M 的坐标是⎝ ⎛⎭⎪⎫179,23. 答案 ⎝ ⎛⎭⎪⎫179,23 9.在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t -1t ,y =t +1t (t 为参数),l 与C 相交于A ,B 两点,则|AB |=________.解析 化极坐标方程为直角坐标方程,化参数方程为普通方程,联立直线l 和曲线C 的方程,求出交点A ,B 的坐标,利用两点间的距离公式求解.由ρ(sin θ-3cos θ)=0,得ρsin θ=3ρcos θ,则y =3x .由⎩⎪⎨⎪⎧x =t -1t ,y =t +1t ,得y 2-x 2=4. 由⎩⎪⎨⎪⎧y =3x ,y 2-x 2=4,可得⎩⎪⎨⎪⎧x =22,y =322或⎩⎪⎨⎪⎧x =-22,y =-322,不妨设A ⎝ ⎛⎭⎪⎫22,322,则B ⎝ ⎛⎭⎪⎫-22,-322, 故|AB |=⎝ ⎛⎭⎪⎫-22-222+⎝ ⎛⎭⎪⎫-322-3222=2 5. 答案 2 5三、解答题10.直线过点A (1,3),且与向量(2,-4)共线.(1)写出该直线的参数方程;(2)求点P (-2,-1)到此直线的距离.解 (1)设直线上任意一点坐标为(x ,y ),则(x ,y )=(1,3)+t (2,-4). ∴直线的参数方程为⎩⎨⎧x =1+2t ,y =3-4t . (2)将参数方程化为普通方程为2x +y -5=0,则|-4-1-5|5=25, ∴点P (-2,-1)到此直线的距离是2 5.11.经过点A ⎝ ⎛⎭⎪⎫-3,-32,倾斜角为α的直线l 与圆x 2+y 2=25相交于B ,C 两点. (1)求弦BC 的长;(2)当A 恰为BC 的中点时,求直线BC 的方程;(3)当|BC |=8时,求直线BC 的方程;(4)当α变化时,求动弦BC 的中点M 的轨迹方程.解 取AP =t 为参数(P 为l 上的动点),则l 的参数方程为⎩⎪⎨⎪⎧x =-3+t cos α,y =-32+t sin α,代入x 2+y 2=25,整理,得t 2-3(2cos α+sin α)t -554=0.∵Δ=9(2cos α+sin α)2+55>0恒成立.∴方程必有相异两实根t 1,t 2,且t 1+t 2=3(2cos α+sin α),t 1·t 2=-554.(1)|BC |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =9(2cos α+sin α)2+55.(2)∵A 为BC 中点,∴t 1+t 2=0,即2cos α+sin α=0,∴tan α=-2.故直线BC 的方程为y +32=-2(x +3),即4x +2y +15=0.(3)∵|BC |=9(2cos α+sin α)2+55=8, ∴(2cos α+sin α)2=1,∴cos α=0或tan α=-34.∴直线BC 的方程是x =-3或3x +4y +15=0.(4)∵BC 的中点M 对应的参数是t =t 1+t 22=32(2cos α+sin α),∴点M 的轨迹方程为⎩⎪⎨⎪⎧x =-3+32cos α(2cos α+sin α),y =-32+32sin α(2cos α+sin α)(0≤α<π), ∴⎩⎪⎨⎪⎧x +32=32⎝ ⎛⎭⎪⎫cos 2α+12sin 2α,y +34=32⎝ ⎛⎭⎪⎫sin 2α-12cos 2α.∴⎝ ⎛⎭⎪⎫x +322+⎝ ⎛⎭⎪⎫y +342=4516.即点M 的轨迹是以⎝ ⎛⎭⎪⎫-32,-34为圆心,以354为半径的圆.。
教案直线的参数方程
课题:直线的参数方程(1)教学设计教学目标:(一)知识目标1.了解直线参数方程的建立过程,会与普通方程进行互化;2. 初步掌握运用参数方程解决问题,理解其中参数t 的几何意义. (二)能力目标1.通过思考引入,让学生感受学习直线参数方程的必要性;2.通过学习直线的参数方程探究直线与圆锥曲线的位置关系,培养学生数形结合以及运算求解能力. (三)情感目标1.培养学生的探究,研讨,综合自学应用能力;2.培养学生分析问题,解决问题的能力. 教学重点:1.联系数轴、向量积等知识;2.求出直线的参数方程. 教学难点:通过向量法,建立参数t 与点在直角坐标系中的坐标y x ,之间的联系. 教学过程: 一、学前准备(1)若由a b →→与共线,则存在实数λ,使得 . (2)设e →为a →方向上的 ,则a →=︱a →︱e →.(3)已知=AB y x B y x A 则),,(),,(2211.==y x ),( . (4)经过点00(,)M x y ,倾斜角为()2παα≠的直线的普通方程为 .(5)直线0=++C By Ax 的斜率=k ,倾斜角α与斜率k 的关系为 . 二、新课讲授探究新知(预习教材P35~P36,找出疑惑之处)1、选择怎样的参数,才能使直线上任一点M 的坐标,x y 与点0M 的坐标00,x y 和倾斜角α 联系起来呢?由于倾斜角可以与方向联系,M 与0M 可以用距离或线段0M M 数量的大小联系,这种“方向”和“有向线段数量大小”启发我们想到利用向量工具建立直线的参数方程. 如图,在直线上任取一点(,)M x y ,则0MM = ,而直线l 的单位方向向量e →=( , )因为M 0//e,所以存在实数t R ∈,使得0MM = ,即有()()00,cos ,sin x x y y t αα--=,因此,经过点00(,)M x y ,倾斜角为()2παα≠的直线的参数方程的标准形式为:)(sin cos 00为参数t t y y t x x ⎩⎨⎧+=+=αα当堂训练(1)经过点)5,1(0M ,倾斜角为3π的直线l 的参数方程为 . (2)直线)(20cos 20sin 3为参数t s t y t x ⎝⎛=+=︒︒的倾斜角是( )︒20.A ︒70.B ︒110.C ︒160.D2、直线l 的参数方程的几种形式直线的参数方程形式不是唯一的,令ααsin ,cos ==b a ,则直线参数方程的标准形式可以是)1,0,(22200=+≥⎩⎨⎧+=+=b a b t bty y atx x 为参数直线的参数方程的一般式可以写成)(00为参数t dt y y ctx x ⎩⎨⎧+=+=,这里R d c ∈,,其中122=+d c 时,t有明确的几何意义,当122≠+d c 时,t 没有明确的几何意义. 直线的参数方程的一般式化为直线的参数方程的标准式的方法:),,0,,0()()(2222222222222222022220b dc da d c c t t d c db dcd a d c c t t d c d t d c d c d y y t d c d c c x x =+-=+-'=⋅+-≤=+=+'=⋅+≥⎪⎪⎩⎪⎪⎨⎧⋅+++=⋅+++=时,令,时,令其中,3、直线的参数方程中参数的几何意义x参数t 的绝对值表示参数t 所对应的点M 到定点M 0t =.由于α为直线的倾斜角,且),0[πα∈,α是第二象限角,0sin ≥α.所以e的方向总是向上的,当M M 0与e (直线的单位方向向量)同向时,0>t ,当M M 0与e反向时,0<t ,当M 与M 0重合时,0=t .4、用直线l 的参数方程求弦长和弦的中点坐标的方法①已知直线l 过),(00y x M ,倾斜角为α,l 与圆锥曲线相交于B A ,两点,则求弦长AB 的方法如下:将直线l 的参数方程)(sin cos 00为参数t t y y t x x ⎩⎨⎧+=+=αα代入圆锥曲线的方程,消去y x ,得到关于t 的一元二次方程,由判别式∆和韦达定理得到21t t +,21t t 的值,代入弦长公式21221214)(t t t t t t AB -+=-=,M 到两交点的距离之积为21t t MB MA =∙. ②弦的中点坐标对应的参数221t t t +=,先计算221tt t +=,再把t 代入直线l 的参数方程,即得到弦中点的坐标.三、知识应用例.已知直线:10l x y +-=与抛物线2y x =交于A 、B 两点,求线段AB 的长和点(1,2)M -到A ,B 两点的距离之积.四、课堂检测直线)(,2333,211为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+-=+=和圆1622=+y x 交于B A ,两点,则B A ,的中点坐标为( ))3,3.(-A )3,3.(--B )3,3.(-C )3,3.(-D五 、课堂小结(1)经过点00(,)M x y ,倾斜角为()2παα≠的直线的参数方程的标准形式为:)(s i n c o s 00为参数t t y y t x x ⎩⎨⎧+=+=αα,其中参数t 具有明确的意义. (2)直线的标准方程主要用来解决过定点的直线与圆锥曲线相交时的弦长或距离,它可以避免求交点时解方程组的繁琐运算,但是应用直线的参数方程时,应先判别是否是标准形式,再考虑t 的几何意义.(3)弦长公式21221214)(t t t t t t AB -+=-=,定点M 到两交点的距离之积为21t t MB MA =∙.弦的中点坐标对应的参数221t t t +=. 六、高考衔接(2016江苏)在平面直角坐标系xoy 中,已知直线l 的参数方程为)(23211为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧=+=,椭圆C 的参数方程为)(sin 2cos 为参数θθθ⎩⎨⎧==y x .设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.七、作业布置课本p39 习题2.3第3题 八、课后反思。
直线的参数方程教案
直线的参数方程教案一、教学目标1.理解直线的参数方程的概念和基本思想;2.掌握直线的参数方程的求解方法;3.能够应用直线的参数方程解决相关问题。
二、教学内容1.直线的参数方程的定义和思想;2.直线的参数方程的求解方法;3.直线参数方程的应用。
三、教学重难点1.直线参数方程的概念和思想;2.直线参数方程的求解方法。
四、教学过程1. 引入教师可以通过一个生活中的例子引入直线的参数方程,如一辆汽车在直线道路上的行驶。
引导学生思考,如何用一个参数来描述汽车在直线上的位置。
2. 知识讲解2.1 直线的参数方程的定义直线的参数方程是指用参数的形式来表示直线上的点的坐标。
一般形式为:x = x0 + t * ay = y0 + t * b其中,(x0, y0)为直线上的一点,(a, b)为直线的方向向量,t为参数。
2.2 直线参数方程的求解方法求解直线的参数方程,可以根据直线上的已知点和方向向量来确定参数方程的具体形式。
步骤如下:1.确定直线上的一点(x0, y0)和方向向量(a, b);2.应用参数方程的定义,写出直线的参数方程。
3. 实例演练教师可以选择一些具体实例,引导学生运用直线的参数方程解决问题。
例如,求直线L上距离(1, 2)最近的点。
解:已知直线L的参数方程为:x = 3 + ty = -1 + t点(1, 2)到直线L上的任意点(3 + t, -1 + t)的距离可以表示为:d = sqrt((1 - 3 - t)^2 + (2 + 1 - t)^2)为了求d最小,可以对d求导,令导数为零。
通过求导和解方程,可得t = 1。
代入参数方程,得(4, 0)。
故直线L上距离(1, 2)最近的点为(4, 0)。
4. 拓展应用教师可以引导学生思考直线参数方程在其他几何问题中的应用,如求两直线的交点、求直线与平面的交点等。
五、教学本节课我们学习了直线的参数方程的概念、基本思想和求解方法。
通过实例演练,我们掌握了如何应用直线的参数方程解决相关问题。
直线和曲线的区分
直线和曲线的区分直线和曲线是几何学中常见的两种曲线形态。
在数学和物理学等学科中,对于直线和曲线的区分有着重要的作用。
本文将从数学和物理学的角度出发,详细讨论直线和曲线的定义、特点以及区别。
一、直线的定义直线是一条在平面上无限延伸的路径,它由无数个连续的相邻点所组成,且任意两点之间的线段无弯曲。
直线可以用函数方程形式或斜率截距形式进行表达。
1.1 函数方程形式直线的函数方程形式通常表示为y = kx + b,其中k是直线的斜率,b是直线与y轴的截距。
1.2 斜率截距形式直线的斜率截距形式表示为y = mx + c,其中m是直线的斜率,c 是直线与y轴的截距。
二、曲线的定义曲线是一条在平面上弯曲或曲折的路径,它的形态可以多样化,可以闭合,也可以无限延伸。
曲线常常由曲线方程或参数方程来描述。
2.1 曲线方程形式曲线方程形式一般为F(x, y) = 0,其中F(x, y)是一个关于x和y的函数。
2.2 参数方程形式参数方程形式表示为x = f(t),y = g(t),其中f(t)和g(t)是关于参数t 的函数。
三、直线和曲线的特点直线和曲线具有以下特点,可以通过这些特点来区分它们:3.1 直线的特点(1)直线是无限延伸的,具有无数个点。
(2)直线的斜率是唯一的,可以通过斜率来判断直线的趋势和方向。
(3)直线的弯曲度为0,所有点到直线的距离都相等。
3.2 曲线的特点(1)曲线可以是有限的也可以是无限的,形态可以各异。
(2)曲线的斜率是局部变化的,可以通过斜率的变化来描述曲线的形状。
(3)曲线的弯曲度不为0,所有点到曲线的距离不相等。
四、直线和曲线的区别直线和曲线在形态、特点和使用上有着明显的区别。
4.1 形态上的区别直线在平面上呈现直的形态,没有弯曲或曲折;而曲线则可以呈现弯曲、曲折以及闭合等多种形态。
4.2 特点上的区别直线的斜率是常数,具有唯一性;而曲线的斜率随着曲线的形状而变化,不具有唯一性。
4.3 使用上的区别直线在几何学、物理学等学科中广泛应用,用于描述直线运动、轨迹等问题;曲线则在曲线积分、曲线拟合、曲线生成等问题中得到广泛应用。
第2章 2.2 直线和圆的参数方程
第2章 2.2 直线和圆的参数方程2.2 直线和圆的参数方程 2.2.1 直线的参数方程 2.2.2 圆的参数方程1.理解直线的参数方程.(难点)2.掌握圆的参数方程.(重点)[基础·初探]1.直线的参数方程(1)经过点M 0(x 0,y 0),倾斜角为α(α≠π2)的直线l 的参数方程为⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),其中参数t 的几何意义是:|t |是直线l 上任一点M (x ,y )到点M 0(x 0,y 0)的距离,即|t |=|M 0M |.(2)设直线过点M 0(x 0,y 0),且与平面向量a =(l ,m )平行(或称直线与a 共线,其中l ,m 都不为0),直线的参数方程的一般形式为⎩⎨⎧x =x 0+lt y =y 0+mtt ∈R.2.圆的参数方程若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为⎩⎨⎧x =x 0+R cos θy =y 0+R sin θ0≤θ≤2π.特别地,若圆心在原点,半径为R ,则圆的参数方程为⎩⎨⎧x =R cos θy =R sin θ.[思考·探究]1.若直线l 的倾斜角α=0,则直线l 的参数方程是什么? 【提示】 参数方程为⎩⎪⎨⎪⎧x =x 0+t ,y =y 0.2.如何理解直线参数方程中参数的几何意义?【提示】 过定点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为∴⎩⎪⎨⎪⎧x =cos α ①y -1=sin α ②(α为参数). ①2+②2得x 2+(y -1)2=1,此即为所求普通方程. 【答案】 x 2+(y -1)2=14.若直线⎩⎨⎧x =1-2t y =2+3t (t 为参数)与直线4x +ky =1垂直,则常数k =________.【解析】 将⎩⎪⎨⎪⎧x =1-2t y =2+3t化为y =-32x +72,∴斜率k 1=-32,显然k =0时,直线4x +ky =1与上述直线不垂直.∴k ≠0,从而直线4x +ky =1的斜率k 2=-4k . 依题意k 1k 2=-1,即-4k ×(-32)=-1,∴k =-6.【答案】 -6[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 类型一 直线的参数方程已知直线l :⎩⎪⎨⎪⎧x =-3+32t y =2+12t (t 为参数).(1)求直线l 的倾斜角;(2)若点M (-33,0)在直线l 上,求t ,并说明t 的几何意义.【精彩点拨】 将直线l 的参数方程化为标准形式,求得倾斜角,利用参数的几何意义,求得t .【尝试解答】 (1)由于直线l : ⎩⎪⎨⎪⎧x =-3+t cos π6y =2+t sin π6(t 为参数)表示过点M 0(-3,2)且倾斜角为π6的直线,故直线l 的倾斜角α=π6.(2)由(1)知,直线l 的单位方向向量 e =(cos π6,sin π6)=(32,12).∵M 0(-3,2),M (-33,0),∴M 0M →=(-23,-2)=-4(32,12)=-4e ,∴点M 对应的参数t =-4,几何意义为|M 0M →|=4,且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方).1.一条直线可以由定点M 0(x 0,y 0),倾斜角α(0≤α<π)惟一确定,直线上的动点M (x ,y )的参数方程为⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),这是直线参数方程的标准形式.2.直线参数方程的形式不同,参数t 的几何意义也不同,过定点M 0(x 0,y 0),斜率为ba 的直线的参数方程是⎩⎨⎧x =x 0+at y =y 0+bt (a 、b 为常数,t 为参数).[再练一题]1.设直线l 过点P (-3,3),且倾斜角为5π6. 【导学号:62790011】(1)写出直线l 的参数方程;(2)设此直线与曲线C :⎩⎨⎧x =2cos θy =4sin θ(θ为参数)交于A ,B 两点,求|PA |·|PB |.【解】 (1)直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-3+t cos 56π=-3-32t y =3+t sin 56π=3+t 2(t 为参数).(2)把曲线C 的参数方程中参数θ消去,得4x 2+y 2-16=0. 把直线l 的参数方程代入曲线C 的普通方程中,得 4⎝⎛⎭⎪⎫-3-32t 2+(3+12t )2-16=0.即13t 2+4(3+123)t +116=0. 由t 的几何意义,知 |PA |·|PB |=|t 1·t 2|, 故|PA |·|PB |=|t 1·t 2|=11613. 类型二 圆的参数方程及应用设曲线C 的参数方程为⎩⎨⎧x =2+3cos θy =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( ) A.1 B.2 C.3D.4【精彩点拨】 求曲线C 的几何特征,化参数方程为普通方程(x -2)2+(y +1)2=9,根据圆心到直线l 的距离与半径大小作出判定.【尝试解答】 由⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ.得(x -2)2+(y +1)2=9.曲线C 表示以(2,-1)为圆心,以3为半径的圆, 则圆心C (2,-1)到直线l 的距离d =710=71010<3,所以直线与圆相交.所以过圆心(2,-1)与l 平行的直线与圆的2个交点满足题意,又3-d <71010,故满足题意的点有2个.【答案】 B1.本题利用三角函数的平方关系,消去参数;数形结合,判定直线与圆的位置关系.2.参数方程表示怎样的曲线,一般是通过消参,得到普通方程来判断.特别要注意变量的取值范围.[再练一题]2.已知直线x =y ,与曲线⎩⎨⎧x =1+2cos αy =2+2sin α(α为参数)相交于两点A 和B ,求弦长|AB |.【解】 由⎩⎪⎨⎪⎧x =1+2cos α,y =2+2sin α.得⎩⎪⎨⎪⎧x -1=2cos α,y -2=2sin α.∴(x -1)2+(y -2)2=4,其圆心为(1,2),半径r =2, 则圆心(1,2)到直线y =x 的距离d =|1-2|12+(-1)2=22. ∴|AB |=2r 2-d 2=2 22-(22)2=14. 类型三 直线参数方程的简单应用已知直线的参数方程为⎩⎨⎧x =1+2ty =2+t(t 为参数),则该直线被圆x 2+y 2=9截得的弦长是多少?【精彩点拨】 考虑参数方程标准形式中参数t 的几何意义,所以首先要把原参数方程转化为标准形式⎩⎪⎨⎪⎧x =1+25 t ′,y =2+15t ′,再把此式代入圆的方程,整理得到一个关于t 的一元二次方程,弦长即为方程两根之差的绝对值.【尝试解答】 将参数方程⎩⎪⎨⎪⎧x =1+2t y =2+t (t 为参数)转化为直线参数方程的标准形式为⎩⎪⎨⎪⎧x =1+25 t ′y =2+15t ′(t ′为参数).代入圆方程x 2+y 2=9, 得(1+25 t ′)2+(2+15t ′)2=9, 整理,得5t ′2+8t ′-45=0 由韦达定理,t ′1+t ′2=-85, t ′1·t ′2=-4.根据参数t ′的几何意义. |t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=1255, 故直线被圆截得的弦长为1255. 在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.[再练一题]3.若将条件改为“直线l 经过点A (1,2),倾斜角为π3,圆x 2+y 2=9不变”,试求:(1)直线l 的参数方程;(2)直线l 和圆x 2+y 2=9的两个交点到点A 的距离之积.【解】(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t2y =2+32t ,(t 为参数).(2)将⎩⎪⎨⎪⎧x =1+t2y =2+32t ,代入x 2+y 2=9,得t 2+(1+23)t -4=0,∴t 1t 2=-4.由参数t 的几何意义,得直线l 和圆x 2+y 2=9的两个交点到点A 的距离之积为|t 1t 2|=4.[真题链接赏析](教材P 41习题2-2T 6)写出过点A (-1,2),倾斜角为34π的直线的参数方程,并求该直线与圆x 2+y 2=8的交点.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t ,(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .【命题立意】 知识:曲线的参数方程与极坐标方程.能力:通过参数方程与极坐标方程的互化,考查转化与化归的数学思想方法.试题难度:中.【解】 (1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1. 我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。
直线的参数方程怎么写
直线的参数方程怎么写直线是几何学中最基础的图形之一,它由无数个点组成,且这些点都在同一条直线上。
直线的方程是用来表示直线上的所有点的数学表达式。
在解析几何中,我们通常使用直线的一般方程、斜截式、点斜式和参数方程来描述和研究直线的性质。
本文将着重介绍直线的参数方程的基本概念和应用。
一、直线的一般定义直线是由无数个点组成的无穷集合,它是经过两个不同点的最短路径。
直线还有一些重要的性质,如无宽度、无曲率和无限延伸等。
二、直线的一般方程直线的一般方程通常表示为Ax + By + C = 0,其中A、B和C是实数常数,且A和B不同时为0。
一般方程是直线的一种常用形式,它可以描述直线上的所有点。
然而,一般方程不够直观,不能直接得到直线的斜率和截距等重要信息。
三、直线的斜截式直线的斜截式是直线的另一种常见表达形式,它是以直线与y轴的交点和直线的斜率来表示的。
斜截式的一般形式是y = mx + b,其中m是直线的斜率,b是直线与y轴的交点的纵坐标。
斜截式可以更直观地反映直线的性质,如斜率和截距等。
四、直线的点斜式直线的点斜式是一种更加灵活和简洁的表达方式,它是以直线上的一个已知点和直线的斜率来表示的。
点斜式的一般形式是y - y₁ = m(x - x₁),其中(x₁, y₁)是直线上的已知点,m是直线的斜率。
点斜式可以直接得到直线的方程,且适用于非垂直于坐标轴的直线。
五、直线的参数方程直线的参数方程是一种用参数表示直线上的点的表达形式。
参数方程的一般形式是x = x₁ + at,y= y₁ + bt,其中(x₁, y₁)是直线上的一个已知点,a和b是参数,t是参数的取值范围。
参数方程实际上是将直线上的每一个点转化成了一个参数化的形式,可以方便地进行计算和描述。
直线的参数方程可以通过以下步骤来确定:1. 选择任意两个不同的点来确定直线的斜率。
2. 使用斜率和一个已知点来确定直线的点斜式方程。
3. 将点斜式方程转化成参数方程形式。
高中数学新湘教版精品教案《湖南教育出版社高中数学选修4-4:坐标系与参数方程 2.2 直线的参数方程
直线的参数方程教学设计教材:湘教版《选修4—4》执教人:林禄云指导教师:苏华春学校:宁德市民族中学直线的参数方程宁德市民族中学林禄云教材:湘教版普通高中课程标准实验教科书《数学》选修4—4 坐标系与参数方程0M M te =在直线L 上运动时,都有哪些量在发生变化?可以用以前数学中学过的什么量表示?【师生活动】教师提出问题,并引发学生探究思考,通过提问方式,对学生所得结论进行展示。
【设计意图】结合多媒体动态功能,展示动点M 在直线上的变化,帮助提升学生的直观想象能力,根据学生探究结果的反馈时引导学生用向量来描述问题中的变化情况,为后面引入参数t 做好必要的铺垫。
问题 2 是否可以引入一个实数t 来刻画点M 在直线上的位置,如何引入?【师生活动】引导学生去建立数量和向量的联系,回忆必修四中的平面向量共线定理,引出直线的方向向量,为了接下来的计算简便,选定与直线向上方向同向的单位向量e 。
【设计意图】回忆旧知识,加强知识间的联系与串通,促进知识网络的构建。
用一元参数来控制点的变化,探究过程也促进数学建模思想的生成,提升学生跨维度研究问题的能力,培养创新思维。
问题3 如何描述e 的坐标,思考如何求得直线的参数方程?直线的标准参数方程有何特点?【师生活动】教师通过多媒体软件动态功能, 确定判断单位向量e 的坐标的方法,并通过0M M te = 过程求得直线的参数方程,具体过程如下:一般地,设直线l 经过点000M x y (,),且倾斜角为α,动点M x y (,)为直线上任意一点,直线l 的单位方向向量记作cos sin e αα=(,),[)0απ∈,,那么0//M M e ,因此根据共线向量的充要条件可知,存在实数t ,使得0=M M te ,即00cos sin x x y y t αα--=(,)(,),于是,有00cos sin x x t t y y t αα-=⎧⎨-=⎩(为参数) 因此,把上面的方程叫做经过点000M x y (,),倾斜角为α的直线l 的参数方程. 直线参数方程的文字表述:直线上任意动点的纵横坐标等于定点相应坐标加上参数乘以倾斜角的正余弦.注意:直线上的任意一个点都唯一对应一个参数t .并探究思考该参数方程的形式特征为:≤≤0(1)两t 前系数平方和为1.(2)y =y +tsin θ中的系数0sin θ 1.故也可称该形式方程为直线标准的参数方程。
辽宁省沈阳市第二十一中学高中数学2.2.1直线的参数方
2.2.1直线的参数方程【教学重点】理解直线参数方程的形式。
直线参数方程的应用。
【教学难点】直线参数方程的应用一.课前预习阅读教材P35—37,理解下列问题:1 将直线的普通方程化为参数方程过点M0(x0, y0),倾斜角为α的直线l 的参数方程为)( sin cos 00为参数t t y y t x x ⎪⎩⎪⎨⎧+=+=αα直线的参数方程(标准形式)中参数t 的绝对值几何意义是:当t>0时,M M 0的方向向上 ;当t<0时,M M 0的方向向下;当t=0时,点M 与点0M 重合 ①设直线上的任意两点21P P 和 对应的参数分别为21t t 和,则||21P P =12t t -(弦长公式)②位于直线上的三点P ,21P P 和所对应的参数分别为t, 21t t 和,若P 是线段21P P 中点,则有t =122t t +2.用向量法推导直线参数方程设直线l过点M0(x0, y0),且与向量e=(l,m)平行,则直线l的参数方程为二.课上学习直线的参数方程为x=5+3t,y=10-4t,(1)求直线的直角坐标方程;(2)化为参数方程的标准形式。
直线l1过点A(2,-4),倾斜角为150度,求l1的参数方程;设直线l2;x-y+1=0, l2与l1的交点为B,求点B与点A的距离。
直线过点A(1,3),且与向量(2,-4)共线:写出该直线的参数方程;(2 ) 求点P(-2,-1)到此直线的距离。
x yOMMle三.课堂小结四、课后练习o o o o 135.D 45.C 60.B 30.A -)( 9 )( 221.222截得的弦长等于被圆为参数直线=+⎪⎩⎪⎨⎧+=+=y x t t y t x1059.D 529.C 5512.B 512.A)(22,3)( )( 2322.3的点的坐标是的距离等于上与点为参数直线-⎪⎩⎪⎨⎧+=--=P t t y t x)1,0()5,4.(D )2,1()4,3.(C )4,3.(B )5,4.(A 或或-----)( )( sin cos .421对应的参数值是的中点,则线段、的参数值分别为两点,它们对应、所表示的曲线上有为参数在参数方程M BC t t C B t t b y t a x ⎪⎩⎪⎨⎧+=+=θθ2.D 2.C 2.B 2.A 21212121t t t t t t t t +-+-到该直线的距离是,则点设直线的参数方程)6,3(421.5⎪⎩⎪⎨⎧-=+-=t y t x ?)( )( 60sin 330cos 2.1o o 等于的倾斜角为参数直线αt t y t x ⎪⎩⎪⎨⎧-=+-=。
2.2 直线的参数方程 课件 (北师大选修4-4)
我们学过的直线的普通方程都有哪些? 点斜式: y y0 k ( x x0 )
y y1 x x1 两点式: y2 y1 x2 x1
y kx b
x y 1 a b
一般式: Ax By C 0
y2 y1 k x2 x1
tan
①
( ) AB 、 MB 与t1,t 2有什么关系? 3 MA
探究
直线与曲线y f ( x)交于M 1 , M 2两点,对应的参数 分别为t1 , t2 . (1)曲线的弦M 1M 2的长是多少?
(2)线段M 1M 2的中点M 对应的参数t的值是多少?
(1) M 1M 2 t1 t2 t1 t2 (2)t 2
程中参数t的几何意义吗?
y M M0
又 e是单位向量, e 1 这就是t的几何 M 0M t e t 意义,要牢记
所以,直线参数方程中 参数t的绝对值等于直 线上动点M到定点M0的 距离. |t|=|M0M|
e
O
x
我们是否可以根据t的值来确定向量 M 0 M
x x0 t cos (t为参数) y y0 t sin
问题:已知一条直线过点M 0(x0 ,y0 ),倾斜角, 求这条直线的方程. 解: 在直线上任取一点M(x,y),则
x
x 3 t sin 200 ()直线 1 (t为参数)的倾斜角是( ) B 0 y t cos 20 A.200 B .700 C .1100 D.1600
C. 45
0
D.135
0
(*)
由韦达定理得:1 x2 1,x1 x2 1 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考情分析
通过对近几年高考试题的分析可见,高考对本讲知识的 考查,主要是以参数方程为工具,考查直线与圆或圆锥曲线 的有关问题.
直线的参数方程
直线的参数方程主要考查求直线的参数方程,根据参数方程 参数的几何意义,求直线上两点间的距离;求直线的倾斜角;判 断两直线的位置关系;直线与圆锥曲线有关的最值、l 经过点 P(-1,2),倾斜角为
4
,
求直线 l 上到点 P 的距离为 2 的点 M 的坐标.
[例 3] 已知直线参数方程为yx==2--14+t 3t, (t 为参数) 它与曲线(y-2)2-x2=1 相交于 A,B 两点. (1)求|AB|的长; (2)求 A,B 的中点到 P(-1,2)的距离.
[例 4] 已知直线经过点 P( 210,0),其倾斜角为 α,它与椭圆 x2+2y2=1 相交于 P1,P2 两点. 当 α 取何值时,|PP1|·|PP2|有最值,并求出最值.
参数t的几何意义的几个应用;
1.用参数t表示点的坐标、 2.直线上两点间的距离、 3.直线被曲线所截得的弦的长, 4.中点对应的参数t.