MRI也就是核磁共振成像
CT与MRI有何区别,为何后者更贵
亿到200亿,6个月到两岁之间的孩子白细胞的数量为每升11亿到12亿,四岁到14岁的孩子白细胞的数量为80亿到100亿左右。
白细胞的临床意义白细胞增多,经常发生急性感染,发热,引发白血病,大出血等。
白细胞减少会造成感染病毒,引发血液病,降低自身免疫力,脾功能亢进等一系列问题。
嗜中性粒细胞增多或者减少的发病症状与白细胞的发病状完全相同;当体内是嗜酸性粒细胞增多时,会引起一些过敏性疾病,也会发生皮肤疾病,严重还会引发白血病肺癌。
当嗜酸性粒细胞减少时,容易引发的并发症状会产生胃寒。
嗜碱性粒细胞的并发症状大多是白血病,同时也会发生一些铅中毒,转移癌等并发症状。
当淋巴细胞增多时,会引发一系列的病毒传染或者细菌传染病,同时还会发生慢性血液病,造成溶血性贫血等。
当淋巴细胞减少时,会对淋巴细胞造成破坏,是身体的机能大幅度下降造成免疫缺陷。
单核细胞增多过程当中常会引发感染病以及血液病等等,但是在减少过程当中没有实际的临床意义。
2.红细胞红细胞正常男性体内的红细胞数量为每生4000亿到5500亿之间,而常年女性体内的红细胞正常数量为每升3500亿到5000亿之间。
而新生儿体内的红细胞大约为每升6000亿到7000亿之间。
婴儿体内红细胞的数量为每升3000亿到4500亿之间,而儿童的红细胞数量为每升4000亿到5300亿之间。
当红细胞增多过程中,产生的临床现象是呕吐,腹泻多尿,当体内开始大量的增多红细胞时,会造成缺氧等现象。
当红细胞减少的过程当中容易产生溶血性疾病,引发障碍性贫血以及慢性失血等症状。
3.血小板血小板正常体内血小板的数量每升1000亿到3000亿之间。
当体内的血小板增多时容易引发急性感染,同时会造成骨折,原发性血小板增多等现象。
当体内的血小板减少时会发生再生障碍性贫血,白血病,脾功能亢进等一系列症状。
4.总结在人体的血液当中存在两种主要的胆固醇。
其中一种为低密度脂蛋白,低密度脂蛋白过多会对动脉进行硬化,从而导致心脏疾病。
磁共振知识问答
磁共振知识问答磁共振MRI问答1.什么是MRI,MRI是英文Magnetic ResonanceImaging的缩写,即核磁共振成像。
是近年来一种新型的高科技影像学检查方法,是80年代初才应用于临床的医学影像诊断新技术。
它具有无电离辐射性(放射线)损害;无骨性伪影;能多方向(横断、冠状、矢状切面等)和多参数成像;高度的软组织分辨能力;无需使用对比剂即可显示血管结构等独特的优点。
因而被誉为医学影像领域中继X线和CT后的又一重大发展。
2、什么是T1和T2,T1和12是组织在一定时间间隔内接受一系列脉冲后的物理变化特性,不同组织有不同的T1和T2,它取决于组织内氢质子对磁场施加的射频脉冲的反应。
通过设定MRI的成像参数(TR和TE),TR是重复时间即射频脉冲的间隔时间,TE是回波时间即从施加射频脉冲到接受到信号问的时间,TR和TE的单位均为毫秒(ms),可以做出分别代表组织Tl或T2特性的图像(T1加权像或T2加权像;通过成像参数的设定也可以做出既有Tl特性又有T2特性的图像,称为质子密度加权像。
3、血肿的信号强度变化特征是什么,血肿的信号强度由于血红蛋白性质的改变而随时间变化(如含氧血红蛋白转变成去氧血红蛋白和正铁血红蛋白)。
这些特征有助于确定出血的时期,急性出血(含氧或去氧血红蛋白)T1加权像上呈低信号或等信号,而亚急性血肿呈高信号;慢性期血肿由于含铁血黄素的沉积,在所有序列上均呈低信号。
4、MRI在临床的应用表现在哪些方面?磁共振成像的图像与CT图像非常相似,二者都是“数字图像”,并以不同灰度显示不同结构的解剖和病理的断面图像。
与CT一样,磁共振成像也几乎适用于全身各系统的不同疾病,例如肿瘤、炎症、创伤、退行性病变,以及各种先天性疾病等的检查。
磁共振成像无骨性伪影,可随意作直接的多方向(横断、冠状、矢状或任何角度)切层,对颅脑、脊柱和脊髓等的解剖和病变的显示,尤优于CT,磁共振成象借其“流空效应”,可不用血管造影剂,显示血管结构,故在“无损伤”地显示血管(微小血管除外),以及对肿块、淋巴结和血管结构之间的相互鉴别方面,有独到之处。
MRI和CT有什么区别?
MRI和CT有什么区别?MRI和CT是目前临床上常见的两种影像学检查方式,广泛应用到各类疾病的检查诊断上。
两者从原理上都属于影像断层成像,不过在工作原理、适应症、优缺点等维度也存在一定差异,今天就带大家一起了解MRI和CT有哪些区别?认识MRI和CT分别是什么,各自又有哪些优势和劣势。
一、CT 的含义以及优势?1、含义:CT又称为计算机X线断层扫描,它是利用x射线对人体进行断层扫描,由探测器收得的模拟信号R再变成数字信号,经过电子计算机计算出每一个像素的衰减系数,再重新构建图像后显示出人体各部位的断层结构的装置。
2、优势:(1)CT检查的扫描速度快、图像清晰,而且能够进行身体全方位的检查,对于急诊病人能够快速成像,由检查医生及时做出诊断,尽早做出治疗方案,为急诊赢得宝贵时间。
(2)多排螺旋CT成像可以进行图像的重建,从任意方位都能够显示组织和器官,可防止诊断时出现遗漏。
(3)做CT检查时,通过注射造影剂进行增强扫描,能够观察病变的血液供应情况,以此和周围正常组织进行对照,可以让病变显示更清晰,从而能够判断病变的性质和血液供应状态,提高病变的诊断准确率及显示率。
二、MRI的含义以及优势?1、含义:MRI即核磁共振成像,MRI检查原理是将人体放置在一个强大的磁场内,通过射频脉冲来激发人体内氢质子,从而发生磁共振,接收质子发出的磁共振信号,经过梯度场三个方向的定位,再通过计算机的运算,以构成各方位的图像,能够做出横断、矢状、冠状和任意切面的成像。
通俗来讲,核磁共振检查是利用强大的磁场,让身体中的水分可以振动起来,通过不同组织里水分震动的差异来形成影像,从而来区分正常组织和病变组织。
2、优势:(1)MRI检查相比于CT检查的最大优势在于没有电离辐射;(2)MRI检查能够实现多参数、多方位成像,各种扫描序列相互补充,综合判断病灶内的成分以及血液供应情况。
(3)MRI检查能够进行不注射造影剂的血管和流体成像,观察血管以及胆道系统、泌尿系统等的情况。
MRI(磁共振)和CT有什么区别?
MRI(磁共振)和CT有什么区别?随着科学技术的不断发展,临床上对于疾病进行诊断越来越依赖于影像学检查。
很多患者在就诊时,医生会让患者去拍片室进行影像检查,常见的影像检查包括CT、MRI(核磁共振)两种,这两种检查流程大致相同,都是做完检查后,由检查科室出具检查报告。
很多患者误以为两种检查都一样,实际上,CT与MRI是两种截然不同的检查方法,适应症也不相同。
1.MRI和CT概述MRI又称为核磁共振成像,患者躺在一个具有强大磁场的平台上,进入一个很厚的扫描环里,通过射频脉冲激发人体内氢质子,发生核磁共振,然后接受质子发出的无线电波信号,经过梯度场三个方向的定位,再经过计算机的运算,形成身体内部具体的图像。
MRI对疾病的早期诊断比较敏感,通过形成的图像可以看出早期正常组织出现的生物化学变化,与同位素、CT及超声等其他影像检查相比,可以更早地识别疾病组织,无需注射造影剂,无电离辐射。
CT扫描是患者躺在平台上,穿过一个巨大的环形扫描环,X线球管和探测器环绕人体检查部位旋转,用X线球管产生的X光穿透人体,形成各个器官、骨骼和其他组织的具体图像。
通过收集到的数据形成三维图像,显示骨骼和软组织的异常变化,例如肺炎,肿瘤或骨折。
CT扫描成像速度快,分辨力好,可用于癌症诊断、判断癌症复发、发现癌症转移部位等方面。
一般情况下,进行癌症分期检查时,CT扫描是第一选择。
但是X线属于电离辐射,过多照射对人体会产生危害。
2.MRI和CT的区别2.1成像原理不同MRI利用磁场让患者身体中水分振动起来,根据不同气管或者组织里水分的震动差异形成图像,从而区分正常组织和病变组织,对脑、肝、肾、胰等实质器官以及心脑血管疾病诊断效果比较好。
CT即电子计算机断层扫描,利用X线束与探测器围绕人体某一部位进行断面扫描,一层一层穿过人体检查,最终利用计算机将一系列图像整合处理,精确准直、灵敏度高,可以直接反映出人体骨骼的三维形态,方便医生从多个平面观察组织结构。
核磁共振成像的原理与应用
核磁共振成像的原理与应用核磁共振成像(NMR)技术,也被称为磁共振成像(MRI),是现代医学领域中应用广泛的无创成像技术。
该技术的原理基于核磁共振现象,通过对人体内的原子核进行激发和检测,获得人体内部结构的高清图像,这大大改进了人体内部疾病的诊断和治疗。
本文将从核磁共振成像的原理和应用两个方面进行详细介绍。
一、核磁共振成像的原理核磁共振现象是物理学中的一种基本现象。
当原子核处于强磁场中时,其会发生预cession(进动)现象,即前进和退后的往返运动,其中这一运动的频率与磁场的强度有着密切的关系。
当原子核在外部强磁场中的方向与磁场相连时,将构成高度秩序的、统一前进的状态。
在这一状态下,当对原子核提供一个特定的射频信号时,这些原子核将被激发,产生旋翼运动,并放出周围的能量。
通过激励原子核的磁场脉冲的强度和频率可以产生不同的共振响应,每一个响应都对应着具有不同的特征的原子核,然后我们可以对这些响应进行检测和汇总,最终得到被测量的物体的结构图像。
在核磁共振成像中,我们通常使用磁共振扫描仪来探测原子核,其原理是通过预设区域内的高强度均匀静磁场,使得被探测的原子核都处于同一方向,接着施加特定的射频脉冲,对区域内的原子核进行激发,之后切换成观测模式,检测每个原子核发出的信号,并将这些信号转换成 3D 扫描图像。
二、核磁共振的应用核磁共振成像技术可以被广泛地应用在不同领域,下面将分别介绍医学、生命科学和材料科学领域中的应用。
2.1 医学领域核磁共振成像技术是现代医学中极为重要的成像方法,它可以准确地捕捉人体内部的各种器官和组织的结构特征,从而在医疗精细化发展的进程中显得越发重要。
在肿瘤诊断中,核磁共振成像技术可以提供高精度的3D图像,协助医生更好地判断肿瘤的大小和位置,从而选择更加合适的治疗方案。
在神经科学领域中,核磁共振成像技术可以准确显示人脑中的各个功能区域,如医生可以利用磁共振技术来诊断失眠等神经系统的基础异常。
MRI检查过程及注意事项
四、磁共振成像的安全性
➢铁磁性投射物 ➢体内植入物 ➢梯度场噪声 ➢孕妇的MRI检查 ➢不良心理反应及
其预防
1.常见铁磁性投射物
➢典型的铁磁性投射物含有铁的成分,但镍和钴等元素也
具有较强的铁磁性。非铁磁性物品虽然不产生投射效应, 却能形成金属伪影而干扰图像。
三、MRI优点
• MRI无损伤性,对人体没有电离辐射损伤; • 多序列成像、多种图像类型,为明确病变性质提供更丰富的影像信息; • MRI有鲜明的软组织对比,软组织结构显示清晰,对中枢神经系统、
膀胱、直肠、子宫、阴道、关节、肌肉等检查优于CT;
• 无骨骼伪影干扰,在脑、骨骼系统成像优于CT; • 常规扫描以轴位为主,MRI可选用矢状和冠状位可进行扩散与灌注成
而获得的。磁共振一问世,很快就成为在对许多疾病诊断方面 有用的成像工具,包括骨骼肌肉系统。肌肉骨骼系统最适于做 磁共振成像,因为它的组织密度对比范围大。
• 磁共振成像通过它பைடு நூலகம்向平面成像的功能,应用高分辨的毒面线
圈可明显提高各关节部位的成像质量,使神经、肌腱、韧带、 血管、软骨等其他影像检查所不能分辨的细微结果得以显示。
的噪声就会越大。
➢1.0~2.0T时,梯度场达到25mT/m时,噪
声可高达110dB。心理伤害是可诱发癫痫 和幽闭恐惧症。
➢生理伤害是暂时性听力下降或永久性听力损害。
5.孕妇的MRI检查
➢MRI是否有致畸作用一直是一个有争议的话题。 ➢建议“在妊娠的头3个月谨慎应用”MRI检查。 ➢孕期的工作人员对MRI电磁场的接触也应受到限制。一般来说,
3.金属异物的预检查
➢眼内的金属异物被拉出时容易造成伤害,已经有眼内金属异物致盲的报告。 ➢体内可能存留诸如弹片、金属屑、铁砂等金属碎片患者的危险性决定于它
核磁共振成像技术的优势与局限
核磁共振成像技术的优势与局限核磁共振成像技术,简称MRI,是一种非常常见的医学成像技术。
它利用磁场和射频脉冲来探察组织和器官内部的结构,从而为医生提供图像信息,帮助医生做出诊断和治疗方案。
MRI 在医学成像领域中得到了广泛的应用,这一点无疑是非常的显著的,但是 MRI 也有其优势和局限,下面我们就来详细的了解一下。
一、优势1.安全性高MRI 没有辐射,也不需要使用任何有害的化学物质来扫描人体,因此对人体伤害极小,可以重复性的进行检查,不会对人体造成任何害处。
与传统的放射成像技术相比,其安全性得到了大幅度的提高。
2.成像清晰MRI 技术可以获取身体内部三维结构的图像,且在解剖学和生理空间上比较精确。
它可以帮助医生更好的了解组织器官的结构以及异常,从而能够为医生提供更准确的诊断和治疗方案。
同时,MRI 还可以检查很小的软组织和血管,如脑血管,还可以在检查严重的骨折时提供相关散卓的了解。
3.无创性高MRI 技术扫描过程中不需要穿刺,不会对人体造成任何损伤,对于有心理恐惧的患者, MRI 技术也是非常的友好,可以减少患者的痛苦,减缓患者对诊断过程的压力。
4.多样性MRI 技术不仅仅只用于医学领域,而且在化学、材料科学以及天文学等领域也得到了广泛的应用。
它可以为不同领域科学的研究者提供高清晰度的数据提供支持。
二、局限性1.费用高MRI 技术的设备和培训成本都很高,甚至远高于传统的 CT 检测技术。
这也就导致了检查费用非常昂贵,适用于医疗条件优越的地方。
2.扫描时间长MRI 技术每次扫描的时间较长,很多时间需要到 30 ~ 60 分钟以上,这会给患者带来不便,可能对患者的身体健康产生潜在危害,对于那些严重病情的患者,这个时间就显得相当的宝贵。
3.射频线性伤害MRI 技术的使用过程中,由于 MRI 设备加热射线产生了局部氧化反应,可以导致扫描区域的线性伤害甚至是烧伤。
虽然这种情况极为少见,但是一旦发生,对于患者就是非常的痛苦和危险。
核磁共振(MRI)又称核磁共振成像技术(英文nuclear
核磁共振(MRI)又称核磁共振成像技术(英文:nuclear magnetic resonance spectrometer;NMR spectrometer)是一种无电离辐射,无痛苦,无需做任何检查前介入的、高级医学成像技术,是继CT后医学影像学的又一重大进步,和传统的X光,CR、DR、CT等设备对于人体的做出的医学影像不同、MRI对各种疾病的诊断具有很大的潜在优越性。
他可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,MR对检测各种颅内损伤,对原发性癌症的早期的预判,各种血管类的疾病诊断,和外伤的深度检查都具有无可替代的作用和效果。
遗憾的是由于核磁共振对生产技术和安装环境(电磁铜屏蔽,主要是怕外界的电磁波影响到设备的正常运作)要求相当高,并且目前已知成熟的产品基本以国外的品牌为主、价格及其的昂贵,所以在目前国内的医疗机构中,几乎只有3级甲等医院才能建立有效的核磁共振检查室,就目前的医疗环境来说,3甲医院大多在省会城市,患者在就医途花费了大量的时间,精力和金钱,检查成本异常的高昂,导致了大量的患者得不到及时的检查和治疗,为了缓解这种“难检查”“查不起”得医患矛盾,晴隆济康医院,本着以人为本,济贫康复的原则,,花巨资引进了MRI并在医院建立了高效低价的核磁共振检查室,就是希望该设备能够依托医院数年的的科研成果,为广大的晴隆县人民提供一种,高效,低价,的检查手段。
本院位于晴隆县莲城镇东街(老水泥厂对面),环境幽雅、舒适,配备病床90余张,所有病房均按宾馆配置。
我们的宗旨是以人为本,
济贫康复。
MRI检查是怎么回事呢刘淑英
MRI检查是怎么回事呢刘淑英发布时间:2023-06-19T09:41:00.848Z 来源:《医师在线》2023年6期作者:刘淑英[导读] 近几年,随着我国医疗技术快速的发展,我国人群对于自身的健康问题十分重视。
目前,有研究结果显示,该技术可以有效的提高临床重要作用。
核磁共振成像(Magnetic Resonce Imaging,MRI)是我国临床医学领域使用较多的医学诊断方式,可以有效的为医生提供疾病判断依据,制定有效的治疗方式,同时可以有效的观察患者生命体征。
MRI就是核磁共振成像,磁共振主要是利用核磁原理将人体置于强大均匀的静磁场中,该技术主要通过特定的无线电波脉冲改变区域磁场,可以有效的激发人体组织内的氢质子核产生共振现象,而发生信号经过计算机有效的处理成像。
磁共振的成像原理不同于核医学以及X线检查,可以有效的避免射线辐射对于人体的损伤,该技术属于无创检查。
由于人体不同组织成分含氢质子不同,因此人群在做核磁共振检查时,会产生不同的型号成像。
而核磁共振成在MRI中,较多的患者对于该技术产生一定的疑问,因此,MRI到底是怎么一回事呢?梓潼县人民医院放射科四川梓潼 622150近几年,随着我国医疗技术快速的发展,我国人群对于自身的健康问题十分重视。
目前,有研究结果显示,该技术可以有效的提高临床重要作用。
核磁共振成像(Magnetic Resonce Imaging,MRI)是我国临床医学领域使用较多的医学诊断方式,可以有效的为医生提供疾病判断依据,制定有效的治疗方式,同时可以有效的观察患者生命体征。
MRI就是核磁共振成像,磁共振主要是利用核磁原理将人体置于强大均匀的静磁场中,该技术主要通过特定的无线电波脉冲改变区域磁场,可以有效的激发人体组织内的氢质子核产生共振现象,而发生信号经过计算机有效的处理成像。
磁共振的成像原理不同于核医学以及X线检查,可以有效的避免射线辐射对于人体的损伤,该技术属于无创检查。
mri的基本概念
MRI是磁共振成像(Magnetic Resonance Imaging)的缩写,是一种利用核磁共振现象获取人体组织结构和功能信息的医学影像技术。
本文将从MRI的基本原理、影像生成过程以及临床应用等方面进行介绍,希望能够为您提供全面的了解。
一、MRI的基本原理MRI的基本原理建立在核磁共振现象之上。
核磁共振是指原子核在外加磁场和射频场的作用下发生共振吸收和辐射的现象。
在MRI中,主要利用水素原子核的核磁共振特性来获取人体组织的影像信息。
当被放置在强静态磁场中时,人体组织中的水分子会产生特定的共振信号,通过对这些信号的检测和分析,可以得到高分辨率的影像信息。
二、MRI的影像生成过程1. 磁场建立:首先,患者被置于强静态磁场中,这个磁场可以使体内的水分子的原子核朝向发生变化,使其产生共振信号。
2. 射频激射:在静态磁场的作用下,通过向人体施加射频脉冲,可以激发体内的水分子原子核,使其发出特定的共振信号。
3. 信号检测:接收体内产生的共振信号,并将其转化为电信号进行处理。
4. 影像重建:通过计算机对接收到的信号进行处理和重建,生成图像。
三、MRI的临床应用1. 诊断性应用:MRI在临床上广泛应用于各种疾病的诊断,如脑部肿瘤、脊柱疾病、关节损伤等。
由于其高分辨率和无辐射的优势,MRI成为了很多病症的首选影像学检查方法。
2. 术前评估:在外科手术前,MRI可以提供准确的解剖结构信息,帮助医生进行手术方案的制定和评估,降低手术风险。
3. 研究应用:MRI在医学研究领域也有着广泛的应用,例如在神经科学、心血管疾病等方面发挥着重要作用。
四、MRI的发展趋势1. 高场强技术:随着MRI设备技术的不断进步,高场强MRI 技术的应用越来越广泛,可以提供更高分辨率的影像信息。
2. 功能性MRI:功能性磁共振成像(fMRI)可以观察大脑在特定任务下的代谢活动,对认知科学研究具有重要意义。
3. 分子成像:分子成像技术的发展,使得MRI可以在细胞水平上观察生物分子的活动和分布,对疾病的早期诊断有着重要意义。
核磁共振成像原理
核磁共振成像原理核磁共振成像(NuclearMagneticResonanceImaging,简称为NMR 或MRI)是一种无损散射技术,可用于显示分子的结构和化学环境。
NMR成像的基本原理是精确测量受磁场影响的原子核的磁共振信号。
与X射线成像技术不同,NMR成像技术不需要用过量的放射性来获取图像,可以以较安全的方式分离、解剖和探测真实世界中的分子结构。
NMR成像的基本原理是根据核磁共振原理获得成像信息。
在NMR 成像中,【NMR】原子或分子核在特定的磁场中存在自旋,而且这些自旋可以吸收和释放电磁波,这种电磁波称为磁共振信号。
当磁共振的频率等于噪声的频率时,自旋受到磁场的影响而被磁场激活,释放出电磁辐射。
这种电磁辐射会被特定的探头收集,并被转换为信号,然后将信号输入计算机,最终根据这些信号在计算机上显示出一幅类似彩色图片的结果,即NMR成像所得到的图像。
NMR成像可以用来直接测量物质的形状、质量和结构,从而获得精细的图像。
NMR成像技术可以应用于医学影像诊断,可以在脑和脊椎等软组织中显示出清晰的图像,以及可以显示出各种病灶,例如肿瘤、炎症、脑卒中等,其中肿瘤尤其容易被检测出来。
而且,这种技术也可以用于其他领域,比如环境科学、材料科学、地质学等。
NMR成像最大的优点是具有无损检测的优势,可以用于检测生物样本,而不会造成破坏,例如通过NMR成像,可以对包含有生物样本的瓶子甚至是蜡块进行检测。
即使在瓶子中的样本较多,也可以获得良好的成像结果。
NMR成像技术还有另一个重要优点就是其立体图像处理功能,可以提供四维的动态反映,即可以捕获短暂的生物活动,以便更好的识别和显示活动的细节。
另外,NMR成像技术也特别适合对有机物、分子结构进行解析。
NMR成像技术有可以提供良好的结构解析效果,但由于其使用磁场,会对人体造成一定的影响,因此,有些情况下无法使用NMR成像技术,比如当患者体内金属器件,或者患者同时进行其他检查(比如X射线检查)时,要小心使用NMR成像技术。
简述MRI成像原理
简述MRI成像原理
MRI全称为磁共振成像,是一种医学影像学的技术。
其原理基于核磁共振现象,利用强磁场和无线电波对人体进行扫描,产生高清晰度三维图像。
具体实现过程包括以下几个步骤:
1. 构建磁场:在MRI扫描过程中,需要产生非常强的磁场。
通常使用超导磁体,其内部绕有电流,可以产生非常强的磁场。
2. 激发磁共振:在强磁场中,人体内的原子核会对磁场进行反应。
使用无线电波来激发原子核的磁共振,使其发生共振吸收和发射。
3. 接收信号:激发原子核后,其会发出无线电信号。
使用接收线圈来捕获这些信号。
4. 信号处理:通过数学算法对接收到的信号进行处理,可以得到一幅高清晰度的三维图像。
MRI成像原理的优势在于它不会对人体造成辐射,适用于对柔软组织的成像,如脑部、胸部、骨骼等。
同时,MRI成像原理也被广泛应用于医学诊断、科学研究和生物医学工程领域。
- 1 -。
医学影像中的MRI技术
医学影像中的MRI技术
MRI技术是指核磁共振成像,是一种常用的医学影像技术之一。
MRI技术具有无创、高清晰度、多平面成像等特点,经常被用于
诊断各种病症。
MRI技术的原理是利用磁场和高频电磁波的相互作用,对人体
内各种物质的核磁共振信号进行检测和分析。
其本质是一种通过
核磁共振现象来获得成像信息的无损检测技术。
MRI技术的优势在于图像清晰、分辨率高、对软组织成像效果
良好、无放射性和无创伤等。
同时,它还可进行动态观察,可以
对血管、脏器和神经系统等进行特征分析。
目前,MRI技术已经广泛应用于医疗领域,特别是在诊断神经、肝胆、肾脏和骨关节等方面具有很高的应用价值。
MRI技术还可
以帮助医生更好地了解疾病的程度和发展,对于难以诊断的疾病
有着特殊的辅助诊断价值。
MRI技术在医学中的应用具有广泛的发展前景。
随着MRI技术的不断改进和创新,其成像质量和速度得到了进一步提升,能够更好地满足临床医疗领域的需求。
总的来说,MRI技术是一项极为重要的医疗技术,与人们的健康生活息息相关。
希望在未来,MRI技术能够发展得更为完备和成熟,更好地服务于人类健康事业。
初学MRI记忆
初学MRI记忆MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imagingMR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。
它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。
MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。
弛豫时间有两种即T1和T2,T1为自旋-点阵或纵向驰豫时间T2,T2为自旋-自旋或横向弛豫时间。
磁共振最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。
影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血液和脑脊液的流动;(d)顺磁性物质(e)蛋白质。
磁共振影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共振的信号弱,则亮度也小MRI TW1高信号,从白色、灰色到黑色。
各种组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈黑色。
MRI TW1高信号的组织常见有五种:顺磁性物质,血肿,钙化,脂肪,蛋白,顺磁性物质-代表-黑色素瘤取字头为~~~~~~~黑-血-盖-子-弹~~~~~~~~~黑色的血液盖住了子弹~~~~~~~~~~~~~~~~~~~~~医用磁共振成像设备医用磁共振成像原理很复杂,建议参考人民卫生出版社出版的医学影像学专业《影像设备学》的相关章节[1]?和考察中西远大科技。
简单归纳为:用特定频率的射频脉冲RF进行激发氢质子,吸收一定量的能而共振,即发生了磁共振现象。
停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和能级都恢复到激发前的状态。
MRI也就是核磁共振成像
MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。
核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。
为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。
MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。
MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。
它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。
MR对检测脑血肿、脑外血肿、脑肿瘤、颅动脉瘤、动静脉血管畸形、脑缺血、椎管肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。
MR也存在不足之处。
它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。
磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。
1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。
磁共振成像技术正是基于这一物理现象。
1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。
磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。
了解一下什么是核磁共振MRI检查?
了解一下什么是核磁共振MRI检查?核磁共振检查,又称磁共振成像(简称MRI),是利用脉冲磁场成像,记录体内含氢原子的成分在组织内的分布情况。
核磁共振MRI检查是目前最先进的影像检查之一,随着磁共振技术的发展和应用领域的拓展,并且因其无辐射,成像清晰,越来越多地应用到各类疾病诊断中,成为临床医生诊断疾病的“左膀右臂”,大部分患者在就医过程中,都可能接受过磁共振检查。
不过还有一些患者对此还不是特别了解,下面就和大家一起来揭开核磁共振MRI检查的神秘面纱。
一、核磁共振MRI检查原理磁共振成像,通俗的讲就是在患者身体上施加一个磁场,使身体里的氢原子核都朝向磁场方向,然后撤掉这个磁场,捕捉这些原子核返回原来状态所释放出的能量,形成MR信号,然后就能区分出不同脏器了。
磁共振原理主要依赖于电流激发所产生的高频磁场,与X线检查所形成的电离辐射原理是不同的。
目前医学还未发现临床常用磁共振会对人体产生不良影响。
二、核磁共振MRI检查的优势1、这是一种无创伤,无放射性伤害的安全绿色的检查方式,可以反复检查;患者不需要变换体位,可以进行任意方向的扫描;MRI成像参数多,为临床提供的信息更大。
2、颅脑MRI对脑梗塞、脑肿瘤、炎症、脑白质变性、先天畸形等的诊断更为敏感,可以发现早期病变,定位也更加准确,也可以不用造影剂显示脑血管(MRA扫描),发现有无动脉瘤或动静脉畸形。
3、MRI对骨内感染、肿瘤、外伤的诊断与病变范围,尤其对骨髓的病变,如骨挫伤、骨髓炎、无菌性坏死、白血病骨髓浸润等能早期发现。
MRI对关节内软骨、韧带、半月板、滑膜、滑液囊等病变有较高诊断价值。
对椎间盘病变,MRI可以显示其变性、突出、膨出或脱出,也可以显示椎管狭窄程度,对神经根压迫的定位也能做出诊断。
4、腹部MRI对肝、胆、胰腺、脾脏等实质性器官疾病的诊断可提供十分有价值的信息,有助于确诊,如良恶性肿瘤鉴别、感染、肝硬化、脂肪肝等,尤其是腹膜后的病变。
不用造影剂,胰胆道MR水成像(MRCP)即可显示胆道及胰管,对胆系梗阻有较大价值。
MRI检查知识小科普
MRI检查知识小科普随着现代医学的蓬勃发展,临床疾病的诊断和治疗方法也日益丰富,对人类健康发挥着不可替代的积极作用。
MRI是一种新兴的现代医学影像检查方法,由于具有较高的准确率和安全可靠性,被广泛地应用在临床实践中;但因现代社会节奏快和人群阅读兴趣的不同等,有一些人并不完全了解MRI,在检查过程中也不能密切配合医生,妨碍检查的顺利进行。
作为“大家都很忙”的现代人,花费一点时间聊一聊MRI检查的科普小知识,显得尤其重要!一、MRI检查特点简述MRI是核磁共振成像的简称。
此处所说的“核”,是指日常生活中最常见,同时也是人体中含量最多的水分子中的氢原子核,与我们平常所说的“核武器”“核反应堆”等所涉及到的“核”没有半点关系,所以严格意义上来讲应该叫磁共振,同时也避免了部分人群谈“核”色变!MRI检查属于无创性检查。
其基本原理是:人体中不同组织、器官的含水量不一样,其氢质子运动的频率和强度也不一样。
利用MRI设备所形成的磁场,对人体中某一病变组织或器官中本身就存在的氢质子施加一定频率的脉冲,使其产生共振,从而显示出与组织或器官中正常状态下氢质子运动不一样的运行轨迹,得到不同组织或器官的图像,对疾病的诊断具有较高的价值。
因MRI对人体安全无辐射,属于无创性检查,是一种值得推广使用的检查方法。
MRI检查的另一个特点是成像角度灵活多变,可以获得任何方向的断层图像、三维立体图像。
与CT检查等断层成像技术相比,MRI检查能进一步获得空间-波普分布的四维图像,再加上MRI检查独特的成像原理和成像方式的多样化,最终获得的用于疾病诊断的信息也更加丰富,能早期发现病变并显示病变确切的大小和范围,从而具有较高的诊断准确率。
随着现代医学技术和MRI检查设备功能的不断发展,MRI逐渐应用于全身各系统的成像诊断,比如颅脑、脊髓、心脏、大血管、腹部脏器、关节软骨、软组织等相关疾病的检查。
但MRI也存在不足之处。
一是与CT检查相比,MRI的空间分辨率有限;二是对于带有心脏起搏器或某些金属异物的患者不能采用MRI检查;三是由于检查价格相对昂贵,不容易被患者接受。
CT检查和MRI检查的区别
CT 检查和 MRI 检查的区别随着医疗技术水平不断提高,临床医学检验中的医疗仪器使用也越来越广泛,各种形状不一的仪器,为患者提供先进的诊疗方法。
因此不论是医生的责任还是患者的愿望,在治疗时都想要选择一种既便宜,操作简单,对人体伤害较小的方式。
临床医学中较为常用的影像检查有两种,分为CT和MRI,这两种检查方式完全不一样,并且经常会被大家拿来做比较,现在我给大家介绍下这两种方法的区别在哪里。
一、什么是MRI?MRI就是核磁共振成像,将受检人员放在一个磁场非常强大的环境。
再由RF以激发受检人员体内的H质子,进而产生磁共振。
然后,经过梯度场三个方位,将磁共振信号(由接收的质子)定位,由计算机计算,最终形成图形。
MRI,最大的优点就是不会对人体产生辐射,保障受检人员的身心健康,和其他相比安全性更高一些。
MRI可以将检测到的各种参数形成各种图像,为病情的诊断提供丰硕的信息,有利于提高医学治疗技术。
使用MRI,可以通过调节受检人员周围的磁场,选择受检人员需要检查的剖面,这种自由选择的方式也是它的一大优点。
二、什么是CT?CT,目前发展比较迅速。
由X线管和探测器(不同数目)构成CT机,可以对受检部位进行扫描,也可以用来收集信息。
CT扫描受检人员的某一剖面,因疏密的程度具有差异的部位与X线的强度相互反应,而出现相应的接收和降低。
X线信号被探测器收集并转化为电信号,转化为数字由膜/数(A/D)相互转化,并将数输进到电脑中进行存档和分析,最终获得CT的数字,排列而成数字矩阵,在经数/模(D/A)转化为图片,即为测定部位的横断图片。
CT对于一些高密度组织的成像效果较好,图片清晰,分辨率高,测量具体时,其准确度具有较好的价值。
受检人员体内的血管走向以及血管病变情况都会进行清晰的显示。
而且,多排螺旋CT能够形成三维成像,对于一些器官和组织发生病变的情况也会充分的进行立体显示。
CT通常会对受检人员注射一定剂量的含碘水溶性造影剂,以此对淋巴结是否肿大、原发和转移性纵膈肿瘤等疾病进行明确的诊断,在病情判断中起到帮助作用。
医疗信息化名词解释
RIS(Radiology Information System)
LIS(Laboratory Information System)
患者主索引(Enterprise Master Patient Index,EMPI)
MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。
是二十世纪未出现的医疗信息化专业用语,简单来说,它是患者基本信息检索目录。其主要用途是在一个复杂的医疗体系内,通过唯一的患者标识将多个医疗信息系统有效地关联在一起。以实现各个系统之间的互联互通,保证对同一个患者,分布在不同系统中的个人信息采集的完整性和准确性。建立患者主索引是实现大型医院内部系统集成,医院集团内资源共享,以及建立居民健康档案实现区域医疗共享的必要条件。
决策支持系统(Decision Support System,DSS)
数据仓库(Data Warehouse,DW)
数据挖掘(Data Mining)
电子签名与认证
HL7 开发框架(HDF)
HL7 参考信息模型(HL7 RIM)
计算机化医嘱录入(Computerized Physician Order Entry,CPOE)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。
核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。
为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。
MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。
MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。
它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。
MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。
MR也存在不足之处。
它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。
磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。
1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。
磁共振成像技术正是基于这一物理现象。
1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。
磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。
像PET和SPET一样,用于成像的磁共振信号直接来自于物体本身,也可以说,磁共振成像也是一种发射断层成像。
但与PET和SPET不同的是磁共振成像不用注射放射性同位素就可成像。
这一点也使磁共振成像技术更加安全。
从磁共振图像中我们可以得到物质的多种物理特性参数,如质子密度,自旋-晶格驰豫时间T1,自旋-自旋驰豫时间T2,扩散系数,磁化系数,化学位移等等。
对比其它成像技术(如CT 超声 PET等)磁共振成像方式更加多样,成像原理更加复杂,所得到信息也更加丰富。
因此磁共振成像成为医学影像中一个热门的研究方向。
MRI也就是磁共振成像,英文全称是:Magnetic Resonance Imaging。
在这项技术诞生之初曾被称为核磁共振成像,到了20世纪80年代初,作为医学新技术的NMR成像(NMR Imaging)一词越来越为公众所熟悉。
随着大磁体的安装,有人开始担心字母“N”可能会对磁共振成像的发展产生负面影响。
另外,“nuclear”一词还容易使医院工作人员对磁共振室产生另一个核医学科的联想。
因此,为了突出这一检查技术不产生电离辐射的优点,同时与使用放射性元素的核医学相区别,放射学家和设备制造商均同意把“核磁共振成像术”简称为“磁共振成像(MRI)”。
目录1技术特点2工作原理3仪器设备医疗特点4MRI检查缩写5MRI图像的分析与诊断6核磁共振技术的历史折叠编辑本段技术特点磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。
1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell 各自独立的发现了核磁共振现象。
磁共振成像技术正是基于这一物理现象。
1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。
MRI磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。
像PET和SPECT一样,用于成像的磁共振信号直接来自于物体本身,也可以说,磁共振成像也是一种发射断层成像。
但与PET和SPECT不同的是磁共振成像不用注射放射性同位素就可成像。
这一点也使磁共振成像技术更加安全。
从磁共振图像中我们可以得到物质的多种物理特性参数,如质子密度,自旋-晶格驰豫时间T1,自旋-自旋驰豫时间T2,扩散系数,磁化系数,化学位移等等。
对比其它成像技术(如CT 超声 PET等)磁共振成像方式更加多样,成像原理更加复杂,所得到信息也更加丰富。
因此磁共振成像成为医学影像中一个热门的研究方向。
MRI也存在不足之处。
它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格比较昂贵。
折叠编辑本段工作原理核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。
为了避免与核医学中放射成像混淆,把它称为磁共振成像术(MR)。
MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过计算机处理转换后在屏幕上显示图像。
[1]成像原理核磁共振成像原理:原子核带有正电,许多元素的原子核,如1H、19FT和31P 等进行自旋运动。
通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。
这样一来,自旋的核同时也以自旋轴和外加磁场的向量方向的夹角绕外加磁场向量旋进,这种旋进叫做拉莫尔旋进,就像旋转的陀螺在地球的重力下的转动。
自旋系统的磁化矢量由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。
如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起共振效应。
这样,自旋核还要在射频方向上旋进,这种叠加的旋进状态叫做章动。
在射频脉冲停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之能进行空间分辨,就得到运动中原子核分布图像。
原子核从激化的状态回复到平衡排列状态的过程叫弛豫过程。
它所需的时间叫弛豫时间。
弛豫时间有两种即T1和T2,T1为自旋-点阵或纵向驰豫时间,T2为自旋-自旋或横向弛豫时间。
医疗用途磁共振最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。
影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血液和脑脊液的流动;(d)顺磁性物质(e)蛋白质。
磁共振影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共振的信号弱,则亮度也小,从白色、灰色到黑色。
各种组织磁共振影像灰阶特点如下:脂肪组织,松质骨呈白色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈黑色。
核磁共振的另一特点是流动液体不产生信号称为流动效应或流动空白效应。
因此血管是灰白色管状结构,而血液为无信号的黑色。
这样使血管很容易与软组织分开。
正常脊髓周围有脑脊液包围,脑脊液为黑色的,并有白色的硬膜为脂肪所衬托,使脊髓显示为白色的强信号结构。
核磁共振(MRI)已应用于全身各系统的成像诊断。
效果最佳的是颅脑,及其脊髓、心脏大血管、关节骨骼、软组织及盆腔等。
对心血管疾病不但可以观察各腔室、大血管及瓣膜的解剖变化,而且可作心室分析,进行定性及半定量的诊断,可作多个切面图,空间分辨率高,显示心脏及病变全貌,及其与周围结构的关系,优于其他X线成像、二维超声、核素及CT检查。
在对脑脊髓病变诊断时,可作冠状、矢状及横断面像。
折叠编辑本段仪器设备医疗特点MRI提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。
它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。
MRI对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。
检查目的:颅脑及脊柱、脊髓病变,五官科疾病,心脏疾病,纵膈肿块,骨关节和肌肉病变,子宫、卵巢、膀胱、前列腺、肝、肾、胰等部位的病变。
优点:1.MRI对人体没有电离辐射损伤;2.MRI能获得原生三维断面成像而无需重建就可获得多方位的图像;3.软组织结构显示清晰,对中枢神经系统、膀胱、直肠、子宫、阴道、关节、肌肉等检查优于CT。
4.多序列成像、多种图像类型,为明确病变性质提供更丰富的影像信息。
缺点:1.和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断;2.对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多;3.对胃肠道的病变不如内窥镜检查;4.对骨折的诊断的敏感性不如CT及X线平片;5.体内留有金属物品者不宜接受MRI。
6. 危重病人不宜做7.妊娠3个月内者除非必须,不推荐进行MRI检查8.带有心脏起搏器者不能进行MRI检查,也不能靠近MRI设备9.多数MRI设备检查空间较为封闭,部分患者因恐惧不能配合完成检查10.检查所需时间较长注意事项由于在核磁共振机器及核磁共振检查室内存在非常强大的磁场,因此,装有心脏起搏器者,以及血管手术后留有金属夹、金属支架者,或其他的冠状动脉、食管、前列腺、胆道进行金属支架手术者,绝对严禁作核磁共振检查,否则,由于金属受强大磁场的吸引而移动,将可能产生严重后果以致生命危险。
一般在医院的核磁共振检查室门外,都有红色或黄色的醒目标志注明绝对严禁进行核磁共振检查的情况。
身体内有不能除去的其他金属异物,如金属内固定物、人工关节、金属假牙、支架、银夹、弹片等金属存留者,为检查的相对禁忌,必须检查时,应严密观察,以防检查中金属在强大磁场中移动而损伤邻近大血管和重要组织,产生严重后果,如无特殊必要一般不要接受核磁共振检查。
有金属避孕环及活动的金属假牙者一定要取出后再进行检查。
有时,遗留在体内的金属铁离子可能影响图像质量,甚至影响正确诊断。
在进入核磁共振检查室之前,应去除身上带的手机、呼机、磁卡、手表、硬币、钥匙、打火机、金属皮带、金属项链、金属耳环、金属纽扣及其他金属饰品或金属物品。
否则,检查时可能影响磁场的均匀性,造成图像的干扰,形成伪影,不利于病灶的显示;而且由于强磁场的作用,金属物品可能被吸进核磁共振机,从而对非常昂贵的核磁共振机造成破坏;另外,手机、呼机、磁卡、手表等物品也可能会遭到强磁场的破坏,而造成个人财物不必要的损失。