动量、动能定理、机械能守恒、能量守恒综合运用
力学三大观点的综合应用
(2)若滑块恰好能够经过 C 点, 设此时滑块的速度为 v C', 根据牛顿
解得水平恒力F应满足的条件为F≥0.625 N。
-7-
知识梳理
考点自诊
2.如图所示,一质量为m2的小车支架上用细线悬挂着一质量为m3 的小球停在光滑水平面上。另一质量为m1的小车以速度v0向m2撞 来,并立即与它粘连在一起。求小球m3能向上摆起的最大高度。
-10-
命题点一
命题点二
命题点三
例1(优质试题· 全国卷Ⅲ)如图,水平地面上有两个静止的小物块a 和b,其连线与墙垂直:a和b相距l,b与墙之间也相距l;a的质量为m,b 3 的质量为 m。两物块与地面间的动摩擦因数均相同。现使a以初 4 速度v0向右滑动。此后a与b发生弹性碰撞,但b没有与墙发生碰撞。 重力加速度大小为g。求物块与地面间的动摩擦因数满足的条件。
答案:2������ (������
������ 1 2 ������ 0 2
1 +������ 2 )( ������ 1 +������ 2 +������ 3 )
解析:m1、m2碰撞瞬间,m3保持静止。设m1、m2碰后共同速度为 v1,由动量守恒得 m1v0=(m1+m2)v1①
即 v 1=
������ 1 ������ 0
-8-ቤተ መጻሕፍቲ ባይዱ
������ 1 + ������ 2
知识梳理
考点自诊
然后m3上摆的过程系统水平方向动量守恒、系统机械能守恒,三 者速度相同时小球m3向上摆起的高度最大,设三者最后共同的速度 为v,有 (m1+m2)v1=(m1+m2+m3)v②
1 1 2 2 ( m 1 +m2 ) ������ 1 =m3 gh+ ( m1 +m2 +m3 ) v ③ 2 2 ������ 1 ������ 0 由①②式得 v=������ +������ 1 2 + ������ 3
力学的三大基本观点及其应用
力学的三大基本观点及其应用一、力学的三个基本观点:力的观点: 牛顿运动定律、运动学规律动量观点:动量定理、动量守恒定律能量观点:动能定理、机械能守恒定律、能的转化和守恒定律例1.质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,速度为v0 ,某时刻拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?小结:先大后小,守恒优先变1:质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为v0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?小结:涉及时间,动量定理优先变2: 质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,中途拖车脱钩,待司机发现时,汽车已行驶了L 的距离,于是立即关闭油门.设运行过程中所受阻力与重力成正比,汽车牵引力恒定不变,汽车停下时与拖车相距多远?小结:涉及位移,动能定理优先二、力的观点与动量观点结合:例2.如图所示,长 12 m、质量为 50 kg 的木板右端有一立柱,木板置于水平地面上,木板与地面间的动摩因数为 0.1,质量为 50 kg 的人立于木板左端,木板与人均静止,当人以 4 m/s2的加速度匀加速向右奔跑至板右端时立即抱住立柱,(取 g=10 m/s2)试求:(1)人在奔跑过程中受到的摩擦力的大小.(2)人从开始奔跑至到达木板右端所经历的时间.(3)人抱住立柱后,木板向什么方向滑动?还能滑行多远的距离?三、动量观点与能量观点综合:例3.如图所示,坡道顶端距水平面高度为 h,质量为 m1的小物块 A 从坡道顶端由静止滑下,在进入水平面上的滑道时无机械能损失,为使 A 制动,将轻弹簧的一端固定在水平滑道延长线 M 处的墙上,另一端与质量为 m2的挡板 B 相连,弹簧处于原长时,B 恰位于滑道的末端 O 点.A 与 B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在 OM 段 A、B 与水平面间动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为 g,求:(1)物块 A 在与挡板 B 碰撞前瞬间速度 v 的大小.(2)弹簧最大压缩量为 d 时的弹性势能 E p(设弹簧处于原长时弹性势能为零).四、三种观点综合应用:例4.对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型:A、B 两物体位于光滑水平面上,仅限于沿同一直线运动.当它们之间的距离大于等于某一定值 d 时,相互作用力为零,当它们之间的距离小于 d 时,存在大小恒为 F 的斥力.设 A 物体质量 m1=1.0 kg,开始时静止在直线上某点;B 物体质量 m2=3。
动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。
动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。
动能定理指的是物体受到力的加速,物体的动能就会增加,其表达
式为:
µv2 =W,其中µ为物体的质量,v为物体的速度,W为物体受力的势能。
只要施加力,物体的动能就会改变,当物体处于静止状态时,动
能为零。
机械能守恒定律认为物体的机械能是不变的,总的机械能等于其动能
与势能的总和,表达式为:K0+U0=K+U,其中K0是物体的初始动能,U0为物体初始势能,K是物体的最终动能,U为物体的最终势能,表
示物体的动能和势能之和均不变、守恒。
能量守恒定律认为,物质运动时,能量不会被创建或消失,也就是说
能量是守恒的,它们只能以同样的形式互相转变,表达式为:Ε=Ε0,
其中Ε表示物体最终的能量,Ε0代表物体的初始能量,Ε等于Ε0,表
示能量守恒。
动量定理指的是物体受到力时,其动量就会改变,表达式为:p = mv,其中p为物体的冲量,m为物体的质量,v是物体的速度,物体的冲量
与其质量和速度成正比。
动量守恒定律认为物体的总冲量是守恒的,不会改变,表达式为:
∆p=0,虽然物体加力后,它的总冲量会改变,但是这个变化是可以由
其他物体抵消的,总的冲量是守恒的。
所有这些定律和定理都适用于物体受到力而加速或减速运动时,其运动规律是相同的,即动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定理的适用。
只要物体的势能发生变化,就可以使用这些定律和定理来描述物体的运动特性。
2025高考物理总复习力学三大观点的综合应用
台最右端 N 点停下,随后滑下的 B 以 2v0 的速度与 A 发
图1
生正碰,碰撞时间极短,碰撞后 A、B 恰好落在桌面上圆盘内直径的两端。已知 A、
B 的质量分别为 m 和 2m,碰撞过程中损失的能量为碰撞前瞬间总动能的14。A 与
传送带间的动摩擦因数为 μ,重力加速度为 g,A、B 在滑至 N 点之前不发生碰撞,
答案 (1)8 N 5 N (2)8 m/s (3)0.2 m
解析 (1)当滑块处于静止时桌面对滑杆的支持力等于滑块和
滑杆的重力,即N1=(m+M)g=8 N 当滑块向上滑动时受到滑杆的摩擦力f=1 N,根据牛顿第三定
律可知滑块对滑杆的摩擦力f′=1 N,方向竖直向上,则此时桌
面对滑杆的支持力为N2=Mg-f′=5 N。
一起竖直向上运动。已知滑块的质量m=0.2 kg,滑杆的质量
M=0.6 kg,A、B间的距离l=1.2 m,重力加速度g取10 m/s2,
不计空气阻力。求:
图4
01 02 03 04
目录
提升素养能力
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大
小N1和N2; (2)滑块碰撞前瞬间的速度大小v1; (3)滑杆向上运动的最大高度h。
该过程中弹簧对物体B冲量的大小。
答案 (1)mA 2gH mA+mB
(2)2t 2(mA+mB)gt+2mA 2gH
解析 (1)设A和B碰前瞬间的速度大小为v0,和B碰后瞬间的
速度大小为v,有 mAgH=21mAv20 v0= 2gH
01 02 03 04
目录
提升素养能力
由动量守恒定律有 mAv0=(mA+mB)v 解得 v=mmAA+2mgHB 。 (2)从碰后至返回到碰撞点的过程中,AB结合体做简谐运动。 根据简谐运动的对称性,可得运动时间t总=2t 回到碰撞点时速度大小为 vt=v=mmAA+2mgHB 方向竖直向上 取向上为正方向,由动量定理得I-(mA+mB)g·2t=(mA+mB)vt-[-(mA+mB)v] 解得 I=2(mA+mB)gt+2mA 2gH。
力学三大观点的应用
解析 (1)设 B 离开弹簧时,A 的瞬时速度为 vA0,B 的瞬时速度为 vB0,细线被剪断前, 弹簧的弹性势能为 Ep1 由动量守恒定律 mAvA0=mBvB0 解得:vA0=2 m/s 1 1 2 再根据机械能守恒定律:Ep1= mAv2 A0+ mBvB0=48 J 2 2 (2)当 B 第一次反弹,开始压缩弹簧,A、B 具有相同速度 v 时弹性势能最大,设为 Ep2, 由动量守恒定律: mAvA0+mBvB0=(mA+mB)v 再根据机械能守恒定律 1 1 1 2 2 Ep2= mAv2 A0+ mBvB0- (mA+mB)v =12 J 2 2 2
令小滑块 b 在长木板 c 上的滑行时间为 t,则: 1 时间 t 内小滑块 b 的位移 s1=v2t- a1t2 2 1 两块长木板的位移 s2= a2t2 2 且 s1-s2=L 10 解得:t1=1 s 或 t2= s(舍去) 3 b 刚离开长木板 c 时 b 的速度 v2′=v2-a1t1=3.6 m/s b 刚离开长木板 c 时 d 的速度 v3=a2t1=0.8 m/s
接静止在光滑的水平面上,中间放一被压缩的轻弹簧,左端与 A 连接,右端与 B 不连 接.现剪断细线,A、B 被弹簧弹开,离开弹簧时,B 物体的速度为 6 m/s,此后 B 与右 侧的挡板发生碰撞,碰撞没有能量损失.求:
图6 (1)细线被剪断前,弹簧的弹性势能; (2)B 物体被挡板反弹后,通过弹簧再次与 A 发生作用的过程中,弹簧具有弹性势能的 最大值. 答案 (1)48 J (2)12 J
力学三大观点的应用
考纲解读 1.理解动量守恒定律和机械能守恒定律守恒条件的区别及二者的综合应用.2.掌 握多过程问题的分析思路和方法,能熟练应用动量和能量观点处理多过程问题. 考点一 应用动量观点和能量观点处理多过程问题
应用力学的“三大观点”解题
分类 力的瞬时
作用 力的空间 积累作用
力的时间 积累作用
对应规律 牛顿第二定律
动能定理 机械能守恒定律
动量定理
动量守恒定律
规律内容 物体的加速度大小与合外力成正比,与质量 成反比,方向与合外力的方向相同 外力对物体所做功的代数和等于物体动能的增量 在只有重力(弹簧弹力)做功的情况下,物体的机械 能的总量保持不变 物体所受合外力的冲量等于它的动量的增量 系统不受外力或所受外力之和为零时,系统的总动 量就保持不变.(在某个方向上系统所受外力之和 为零,系统在这个方向上的动量分量就保持不变)
令 h 表示 B 上升的高度,有 h=v′2g22④ 由以上各式并代入数据得 h=4.05 m⑤ 【答案】 4.05 m
动量、能量、牛顿运动定律、匀变速直线运动综合 例 4 如图的水平轨道中,AC 段的中点 B 的正上方有一探 测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止 在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作.已知 P1、P2 的质 量都为 m=1 kg,P 与 AC 间的动摩擦因数为 μ=0.1,AB 段长 L =4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的碰撞 为弹性碰撞.
(1)物块 C 的质量 mC; (2)墙壁对物块 B 的弹力在 4 s 到 12 s 的时间内对 B 的冲量 I 的大小和方向; (3)B 离开墙后的过程中弹簧具有的最大弹性势能 Ep.
【解析】 (1)由图知,C 与 A 碰前速度为 v1=9 m/s,碰后 速度为 v2=3 m/s,C 与 A 碰撞过程动量守恒,
【解析】 设物块受到水平冲量后速度为 v0.滑环固定时12 Mv02=MgL 得 v0= 2gL.
热点专题系列(5) 动力学、动量和能量观点在力学中的应用
热点专题系列(五)动力学、动量和能量观点在力学中的应用热点概述:处理力学问题的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律)。
熟练应用三大观点分析和解决综合问题是本专题要达到的目的。
[热点透析]动量与动力学观点的综合应用1.解动力学问题的三个基本观点(1)力的观点:用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题。
(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题。
(3)动量观点:用动量定理和动量守恒观点解题,可处理非匀变速运动问题。
2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的动力学关系式,可用牛顿第二定律。
(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题。
(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和能量守恒定律(机械能守恒定律)去解决问题,但需注意所研究的问题是否满足守恒的条件。
(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量。
(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换,这种问题由于作用时间都极短,因此用动量守恒定律去解决。
(2020·湖北省七市州教科研协作体高三下学期5月联考)如图甲所示,在光滑水平面上有一小车,其质量M=2 kg,车上放置有质量m A=2 kg的木板A,木板上有可视为质点的物体B,其质量m B=4 kg。
已知木板A与小车间的动摩擦因数μ0=0.3。
A 、B 紧靠车厢前壁,A 的左端与小车后壁间的距离为x =2 m 。
现对小车施加水平向右的恒力F ,使小车从静止开始做匀加速直线运动,经过1 s 木板A 与车厢后壁发生碰撞,该过程中A 的速度—时间图象如图乙所示,已知重力加速度大小g =10 m/s 2,最大静摩擦力等于滑动摩擦力。
专题六 力学中三大观点的综合应用
(1)最终A、B、C的共同速度为多大;
(2)求运动过程中A的最小速度; (3)整个过程中A与C及B与C因摩擦所 产生的热量之比为多大? 图3
解析
(1)由动量守恒定律有 mv0+2mv0=5mv1
3 得 v1= v0 5 (2)设经时间 t,A 与 C 恰好速度相等,此时 A 的速度最小. aA=-μg aC=μg
(3)滑块经过传送带作用后做平抛运动 1 2 h2= gt3 2 当两滑块速度相差最大时,它们的水平射程相差最大,当 m1≫m2 时,滑块 m1、m2 碰撞后的速度相差最大,经过传送带后速度相差 也最大 m1-m2 v1= v0=v0=5.0 m/s m1+m2 2m1 v2= v0=2v0=10.0 m/s m1+m2
即学即练1 如图2所示,一水平面上P点左侧光滑,右侧粗糙,
质量为m的劈A在水平面上静止,上表面光滑,A右端与 水平面平滑连接,质量为M的 物块B恰好放在水平面上P点,物块B与水平面间的动摩擦 因数为μ.一质量为m的小球C位于劈A的斜面上,距水平面
的高度为h.小球C从静止开始滑下,然后与B发生正碰(碰
撞时间极短,且无机械能损失).
图2
已知M=2m,求:
(1)小球C与劈A分离时,A的速度; (2)小球C的最后速度和物块B的运动时间.
解析 (1)设小球 C 与劈 A 分离时速度大小为 v0,此时劈 A 速度
大小为 vA 小球 C 运动到劈 A 最低点的过程中,规定向右为正方向,由水平 方向动量守恒、机械能守恒有 mv0-mvA=0 1 2 1 2 mgh= mv0+ mvA 2 2 得 v0= gh,vA= gh,之后 A 向左匀速运动
即学即练2 如图4所示,圆管构成的半圆形轨道竖直固定在水
(机械能守恒定律、能量守恒定律、动能定理的区别)
-μmgL-mgR=-E,
解得 CD 圆弧半径至少为 R=3mEg.
答案
2E (1)3mgL
E (2)3mg
解析 (1)设小车在轨道 CD 上加速的距离为 s,由动能定理得
Fs-μMgs2=12Mv2①
设小车在轨道 CD 上做加速运动时的加速度为 a,由牛顿运动定律得
F-μMg=Ma②
7
s=12at2③ 联立①②③式,代入数据得 t=1 s.④ (2)设小车在轨道 CD 上做加速运动的末速度为 v′,撤去力 F 后小车做减速运动时的加速度为 a′, 减速时间为 t′,由牛顿运动定律得 v′=at⑤ -μMg=Ma′⑥ v=v′+a′t′⑦ 设滑块的质量为 m,运动到 A 点的速度为 vA,由动能定理得 mgR=12mvA2 ⑧ 设滑块由 A 点运动到 B 点的时间为 t1,由运动学公式得 s1=vAt1⑨ 设滑块做平抛运动的时间为 t1′,则 t1′=t+t′-t1⑩ 由平抛规律得 h=12gt1t2⑪ 联立②④⑤⑥⑦⑧⑨⑩⑪式,代入数据得 h=0.8 m.
A.mgLcos θ
B.FLsin θ
C.mgL(1-cos θ)
D.FL(1-cos θ)
图 5-2-9 图 5-2-10 4.如图 5-2-10 所示,质量为 M 的木块放在光滑的水平面上,质量为 m 的子弹以速度 v0 沿水平 方向射中木块,并最终留在木块中与木块一起以速度 v 运动.已知当子弹相对木块静止时,木块前 进距离 L,子弹进入木块的深度为 s,若木块对子弹的阻力 F 视为恒定,则下列关系式中正确的是 A.FL=12Mv2 B.-Fs=12mv2-12mv20 C.-F(L+s)=12mv2-12mv20 D.F(L+s)=12Mv2 5.一质量为 m 的物体在水平恒力 F 的作用下沿水平面运动,在 t0 时刻撤去力 F, 其 v-t 图象如图 5-2-11 所示.已知物体与水平面间的动摩擦因数为 μ,则下列关于力 F 的大小和 力 F 做的功 W 的大小关系式,正确的是
动能定理、机械能守恒、动量守恒综合应用
动能定理、机械能守恒、动量守恒综合应用一、动能定理:合力对物体所做的功等于物体动能的变化 2022121mv mv W -=合注:W 合为合力做功,一般有两种求法:①是物体所有力做功的代数和W 总 = W 1+W 2+…+W n ; ②是先求合力然后用功的定义式:θLCOS F W 合=二、机械能守恒定律:1、两种表述方法:①在只有重力和弹力(弹簧)做功的情况下,物体的动能和势能发生相互转化,但机械能总量保持不变。
222121v m h mg mv mgh '+'=+ 即 k p k p E E E E '+'=+②如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
减增E E ∆=∆2、解题步骤:①明确研究对象和它的运动过程。
②分析研究对象的受力情况,判断机械能是否守恒。
③确定对象运动的起始和终了状态,选定零势能参考平面,确定物体在始、末两状态的机械能 ④选定一种表达式,统一单位,列式求解三、动量守恒定律1、定律内容及公式:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
22112211v m v m v m v m '+'=+ 即:p 1+p 2=p 1/+p 2/ 或:Δp 1= -Δp 2 2、动量守恒定律成立的条件①系统不受外力或者所受外力之和为零;②系统受外力,但外力远小于内力,可以忽略不计;③系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
④全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
训练1如图所示,AB 为1/4圆弧轨道,半径为R=0.8m ,BC 是水平轨道,长S=3m ,BC 处的摩擦系数为μ=1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止。
求物体在轨道AB 段所受的阻力对物体做的功。
训练2抛出的手雷在最高点时水平速度为10m/s ,这时突然炸成两块,其中大块质量300g 仍按原方向飞行,其速度测得为50m/s ,另一小块质量为200g ,求它的速度的大小和方向。
动量、动能定理、机械能守恒、能量守恒综合运用
图5-3-1动能、动量、机械能守恒 综合运用 动能定理的理解1.动能定理的公式是标量式,v 为物体相对于同一参照系的瞬时速度.2.动能定理的研究对象是单一物体,或可看成单一物体的物体系.3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功. (3)选择初、末状态及参照系. (4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ. 解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2, 有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,ghv s 22=……③ 由①、②、③可得μ=0.50【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理.机械能(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.图5-3-2Lhs图5-3-3(2)说明①机械能是标量,单位为焦耳(J ).②机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能.机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化.一、应用机械能守恒定律解题的步骤:1.根据题意选取研究对象(物体或系统);2.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;4.根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点 多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.图5-5-1【例2】质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离. 物块从3x 0位置自由落下,与地球构成的系统机械能守恒.则有200213.mv x mg =(1) v 0为物块与钢板碰撞时的的速度.因为碰撞板短,内力远大于外力,钢板与物块间动量守恒.设v 1为两者碰撞后共同速m v 0=2m v 1 (2)两者以v l 向下运动恰返回O 点,说明此位置速度为零。
专题6 力学三大观点的综合运用
高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题1 动量和能量的观点在力学中的应用例1 如图1所示,长为L 的平台固定在地面上,平台的上平面光滑,平台上放有小物体A 和B ,两者彼此接触.物体A 的上表面是半径为R (R ≪L )的光滑半圆形轨道,轨道顶端有一小物体C ,A 、B 、C 的质量均为m .现物体C 从静止状态沿轨道下滑,已知在运动过程中,A 、C 始终保持接触.试求:图1(1)物体A 和B 刚分离时,物体B 的速度;(2)物体A 和B 刚分离后,物体C 所能达到距台面的最大高度; (3)判断物体A 从平台左边还是右边落地并简要说明理由.解析 (1)设C 物体到达最低点的速度是v C ,A 、B 、C 组成的系统在水平方向动量守恒,系统内机械能守恒.m v A +m v B -m v C =0①mgR =12m v 2A +12m v 2B +12m v 2C②在C 物体到达最低点之前一直有:v A =v B③ 联立①②③解得:v B =133gR ,方向水平向右④(2)设C 能够到达轨道最大高度为h ,A 、C 此时的水平速度相等,设它们的共同速度为v ,对系统应用动量守恒和机械能守恒规律可得:m v B -2m v =0⑤ mgR =mgh +12m v 2B +12·2m v 2⑥ 联立⑤⑥式解得:h =34R⑦(3)因为A 与B 脱离接触后B 的速度向右,A 、C 的总动量是向左的,又R ≪L ,所以A 从平台的左边落地.答案 (1)133gR ,方向水平向右 (2)34R (3)A 从平台的左边落地1.如图2,半径R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 的水平面相切于D 点,质量M =1.0 kg 的小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0.5 kg 的静止物块B 相碰,碰后A 的速度变为v A =2.0 m /s ,仍向右运动.已知两物块与水平面间的动摩擦因数均为μ=0.1,若B 与E 处的竖直挡板相碰,没有机械能损失,取g =10 m/s 2.求:图2(1)滑块A 刚到达圆弧的最低点D 时对圆弧的压力; (2)滑块B 被碰后瞬间的速度; (3)讨论两滑块是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点的速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧的压力为30 N ,方向竖直向下. (2)设B 滑块被碰后的速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后的速度v B =4 m/s(3)讨论:由于B 物块的速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则对于A 物块 -μMgs A =0-12M v 2A 解得s A =2 m对于B 物块,由于B 与竖直挡板的碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞.1.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题2 应用动力学观点、能量观点、动量观点解决综合问题例2 如图3所示,一倾斜的传送带倾角θ=37°,始终以v =12 m /s 的恒定速度顺时针转动,传送带两端点P 、Q 间的距离L =2 m ,紧靠Q 点右侧有一水平面长为x =2 m ,水平面右端与一光滑的半径R =1.6 m 的竖直半圆轨道相切于M 点,MN 为竖直的直径.现有一质量M =2.5 kg 的物块A 以v 0=10 m/s 的速度自P 点沿传送带下滑,A 与传送带间的动摩擦因数μ1=0.75,到Q 点后滑上水平面(不计拐弯处的能量损失),并与静止在水平面最左端的质量m =0.5 kg 的B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面的动摩擦因数相同均为μ2,忽略物块的大小.已知sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.求:图3(1)A 滑上传送带时的加速度a 和到达Q 点时的速度; (2)若AB 恰能通过半圆轨道的最高点N ,求μ2;(3)要使AB 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件?审题突破 (1)由牛顿第二定律求出加速度,由运动学公式求出A 的速度.(2)A 、B 碰撞过程动量守恒,由动量守恒定律可以求出碰后的速度;由牛顿第二定律求出AB 在最高点的速度,然后应用机械能守恒定律与动能定理求出动摩擦因数.(3)物块离开N 点后做平抛运动,应用平抛运动规律、机械能守恒定律与动能定理求出动摩擦因数的范围.解析 (1)A 刚滑上传送带时,由牛顿第二定律得: Mg sin θ+μ1Mg cos θ=Ma , 代入数据得:a =12 m/s 2,A 在传送带上运动,速度与传送带速度相等时,由匀变速运动的速度位移公式得:v 2-v 20=2 as代入数据得:s =116m <L =2 m ,A 没有到达Q 点前已经与传送带速度相等,到达Q 点的速度为:v =12 m/s ;(2)设AB 碰后的共同速度为v 1,以A 的初速度方向为正方向,A 、B 碰撞过程中,由动量守恒定律得: M v =(M +m )v 1,代入数据得:v 1=10 m/s ,AB 恰好滑到最高点N 时速度为v 3,在最高点,由牛顿第二定律得:(M +m )g =(M +m )v 23R设AB 在M 点速度为v 2,由机械能守恒定律得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ·2R , 在水平面上由动能定理得: 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx , 代入数据得:μ2=0.5;(3)①若以v 3由N 点抛出,做平抛运动,在竖直方向上:2R =12gt 2,水平方向上:x 1=v 3t ,联立并代入数据得:x 1=3.2 m >x ,则要使AB 能沿半圆轨道运动到N 点,并能落在传动带上,则μ2≤0.5; ②若AB 恰能落在P 点,在竖直方向上:2R -L sin θ=12gt ′2,水平方向上:x +L cos θ=v 3′t ′,由机械能守恒定律得:12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ·2R ,在水平面上由动能定理得:12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx , 联立并代入数据得:μ2=0.09, 综上所述,μ2应满足:0.09≤μ2≤0.5.答案 (1)12 m /s 2 12 m/s (2)0.5 (3)0.09≤μ2≤0.52.(2014·广东·35)如图4所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿光滑轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE =12m v 21-12×2m v 22②解得ΔE =9 J(2)P 滑动过程中,由牛顿第二定律知 ma =-μmg③ 可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L =v 2t +12at 2④由①③④式得v 1=6L -at 2t①若t =2 s 时通过B 点,解得:v 1=14 m/s ②若t =4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点的速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E =17 J.根据题中设及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果碰撞及涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练 训练6题组1 动量和能量的观点在力学中的应用1.如图1所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,0点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B相碰后立即一起沿斜面向下运动,并恰好回到0点(A 、B 均初为质点).试求:图1(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧的具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前的速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0.2.如图2所示,质量为m 1的滑块(可视为质点)自光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点,A 、B 的高度差为h 1=1.25 m .传导轮半径很小,两个轮之间的距离为L =4.00 m .滑块与传送带间的动摩擦因数μ=0.20.右端的轮子上沿距离地面高度h 2=1.80 m ,g 取10 m/s 2.图2(1)若槽的底端没有滑块m 2,传送带静止不运转,求滑块m 1滑过C 点时的速度大小v ;(结果保留两位有效数字)(2)在m 1下滑前将质量为m 2的滑块(可视为质点)停放在槽的底端.m 1下滑后与m 2发生弹性碰撞,且碰撞后m 1速度方向不变,则m 1、m 2应该满足什么条件?(3)满足(2)的条件前提下,传送带顺时针运转,速度为v =5.0 m/s.求出滑块m 1、m 2落地点间的最大距离(结果可带根号).答案 (1)3.0 m/s (2)m 1>m 2 (3)(6215-3) m解析 (1)滑块m 1滑到B 点有m 1gh 1=12m 1v 20 解得v 0=5 m/s滑块m 1由B 滑到C 点有-μm 1gL =12m 1v 2-12m 1v 20 解得v =3.0 m/s.(2)滑块m 2停放在槽的底端,m 1下滑并与滑块m 2弹性碰撞,则有 m 1v 0=m 1v 1+m 2v 2 12m 1v 20=12m 1v 21+12m 2v 22 m 1速度方向不变即v 1=m 1-m 2m 1+m 2v 0>0则m 1>m 2.(3)滑块经过传送带作用后做平抛运动h 2=12gt 2当两滑块速度相差最大时,它们的水平射程相差最大,当m 1≫m 2时,滑块m 1、m 2碰撞后的速度相差最大,经过传送带后速度相差也最大v 1=m 1-m 2m 1+m 2v 0=1-m 2m 11+m 2m 1v 0≈v 0=5.0 m/sv 2=2m 1m 1+m 2v 0=21+m 2m 1v 0≈2v 0=10.0 m/s 滑块m 1与传送带同速度,没有摩擦,落地点射程为 x 1=v 1t =3.0 m滑块m 2与传送带发生摩擦,有-μm 2gL =12m 2v 2′2-12m 2v 22 解得v 2′=221 m/s落地点射程为x 2=v 2′t =6215mm 2、m 1的水平射程相差最大值为Δx =(6215-3) m.题组2 应用动力学观点、能量观点、动量观点解决综合问题3.如图3所示,质量为M =4 kg 的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1 kg 可视为质点的电动小车,车与木板右端的固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2)图3(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的? (2)求出小车与挡板碰撞前,车的速率v 1和板的速率v 2; (3)求出碰后木板在水平地面上滑动的距离s . 答案 (1)向左运动 (2)4.2 m /s 0.8 m/s (3)0.2 m解析 (1)假设木板不动,电动车在板上运动的加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2.5 m/s 2此时木板使车向右运动的摩擦力:f =ma 0=2.5 N 木板受车向左的反作用力:f ′=f =2.5 N木板受地面向右最大静摩擦力:f 0=μ(M +m )g =0.5 N 由于f ′>f 0,所以木板不可能静止,将向左运动;(2)设车与木板碰前,车与木板的加速度分别为a 1和a 2,相互作用力为F ,由牛顿定律与运动学公式: 对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者的位移的关系:v 12t +v 22t =L联立并代入数据解得:v 1=4.2 m /s ,v 2=0.8 m/s ;(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有m v 1-M v 2=(m +M )v对碰后滑行s 的过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0.2 m.4.如图4所示,光滑的水平面AB (足够长)与半径为R =0.8 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看作质点.图4(1)求甲球离开弹簧时的速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离;(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.解析 (1)设甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒: 12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2D R联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙的速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为:s =v 2乙2a=12 m<20 m即乙在传送带上滑行的最远距离为12 m.(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 答案 (1)4 3 m/s (2)12 m (3)见解析 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0.6 m<0.8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向向右,乙的速度为6 3 m/s ,方向向左。
专题力学三大观点的综合应用
力学三大观点综合应用高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题 1动量和能量观点在力学中的应用例1(2014 ·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离如图1所示,L为 1.0 m ,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v 0=5 m/s的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g 取10 m/s2.求:图1(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者相对静止所经历的时间及该时间内凹槽运动的位移大小.答案(1)2.5 m/s(2)6次(3)5 s12.75 m解析(1) 设两者间相对静止时速度为v,由动量守恒定律得m v0= 2m vv=2.5 m/s.(2)解得物块与凹槽间的滑动摩擦力F =μF=μmgf N设两者相对静止前相对运动的路程为s1,由功能关系得1212- F f·s1=(m+m)v- m v022解得 s1= 12.5 m已知 L= 1 m,可推知物块与右侧槽壁共发生 6 次碰撞.(3)设凹槽与物块碰前的速度分别为 v1、 v2,碰后的速度分别为 v 1′、 v2′.有m v1+ m v2=m v1′+ m v2′121m v22121m v2′2m v1+=m v1′+2222得 v 1′= v2, v2′= v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为 13 段,凹槽、物块的v —t图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则v= v 0+ata =- μg解得 t = 5 s凹槽的 v —t 图象所包围的阴影部分面积即为凹槽的位移大小 s 2.(等腰三角形面积共分13 份,第一份面积为 0.5 L ,其余每两份面积和均为 L.)1 v 0)t + 6.5L ,解得 s 2= 12.75 m.s 2=(221.如图 2 所示,倾角 45°高 h 的固定斜面.右边有一高3h的平台,平台顶部左边水平,上面有一质量为1圆弧.质量为2m 的小球 A 从斜面底端以某一初速度沿斜面上滑,M 的静止小球 B ,右边有一半径为 h 的 4从斜面最高点飞出后恰好沿水平方向滑上平台,与 B 发生弹性碰撞, 碰后 B 从圆弧上的某点离开圆弧. 所有接触面均光滑, A 、 B 均可视为质点,重力加速度为 g.图 2(1) 求斜面与平台间的水平距离s 和 A 的初速度 v 0;(2) 若 M = 2m ,求碰后 B 的速度;(3) 若 B 的质量 M 可以从小到大取不同值,碰后B 从圆弧上不同位置脱离圆弧,该位置与圆心的连线和竖直方向的夹角为 α.求 cos α的取值范围.答案(1) h 2gh (2) 2gh(3)2≤ cos α≤ 133解析(1) 设小球 A 飞上平台的速度为 v 1,小球由斜面顶端飞上平台,可看成以速度v 1 反向平抛运动,由平抛运动规律得:1h = 1gt 2, s =v 1t , tan 45 =°gt2 2v 1解得: v 1= gh , s = h由机械能守恒定律得:1m v 0 2= 3mgh + 1m v 1 222 2解得: v 0= 2 gh.(2) 设碰后 A 、 B 的速度分别为 v A 、 v B ,由动量、能量守恒得m v 1= m v A + M v B1 2 1 21 2m v 1 =m v A + M v B2222m2v B = m + M v 1= 3gh.(3) 由 (2) 可知,当 M ? m 时 v B ≈ 2 gh > gh 从顶端飞离则 cos α= 1 当 M ? m 时, v B = 0,设 B 球与圆弧面在 C 处分离,则:1 2 Mgh (1- cos α)=2M v Cv C 2 , cos α= 2,故 2≤ cos α≤ 1Mg cos α= M h331.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题 2应用动力学、能量、动量解决综合问题例 2如图3所示,在光滑的水平面上有一质量为m= 1 kg 的足够长的木板C,在 C 上放置有A、 B 两物体, A 的质量 m A= 1 kg,B 的质量为 m B= 2 kg.A、B 之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能 E p= 3 J,现突然给A、B 一瞬时冲量作用,使A、B同时获得v 0=2 m/s的初速度,速度方向水平向右,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与 A、B 分离.已知 A 和的摩擦因数为μ= 0.2,B、 C 之间的动摩擦因数为μ= 0.1,且滑动摩擦力略小于最大静摩擦力.求:1 2C 之间图3(1)弹簧与 A、 B 分离的瞬间, A、 B 的速度分别是多大?(2) 已知在 C 第一次碰到右边的固定挡板之前,A、B 和 C 已经达到了共同速度,求在到达共同速度之前B、 C 的加速度分别是多大及该过程中产生的内能为多少?(3) 已知 C 与挡板的碰撞无机械能损失,求在第一次碰撞后到第二次碰撞前 A 在 C 上滑行的距离?审题突破(1) 根据动量守恒和能量守恒列方程组求A、B 分离时的速度; (2) 由牛顿第二定律求三者的加速A、度,该过程中产生的内能等于系统损失的机械能,只需求出三者达到的共同速度便可以由能量守恒求解;(3)根据牛顿第二定律和运动学公式联立求解.答案(1)0 3 m/s(2)4.5 J 1.5 m/s (3)0.75 m解析(1) 在弹簧弹开两物体的过程中,由于作用时间极短,对A、B 和弹簧组成的系统由动量和能量守恒定律可得:(m A+m B)v0= m A v A+ m B v B121212E p+ (m A+ m B)v0=m A v A+ m B v B222联立解得: v A=0, v B=3 m/s.2(2) 对物体 B 有: a =μg= 1 m/s ,方向水平向左B2对 A、 C 有:μ+ m)a2m B g=(m A又因为: m A a<μ1m A g故物体 A、 C 的共同加速度为a= 1 m/s 2,方向水平向右对 A、 B、 C 整个系统来说,水平方向不受外力,故由动量和能量守恒定律可得:m B v B= ( m A+ m B+ m)v 121(m A+ m B+ m)v2Q= m B v B-22解得: Q= 4.5 J,v= 1.5 m/s.(3)C 和挡板碰撞后,先向左匀减速运动,速度减至0 后向右匀加速运动,分析可知,在向右加速过程中先和 A 达到共同速度v1,之后 A、C 再以共同的加速度向右匀加速, B 一直向右匀减速,最后三者达共同速度 v 2后做匀速运动.在此过程中由于摩擦力做负功,故 C 向右不能一直匀加速至挡板处,所以和挡板再次碰撞前三者已经达共同速度.a A=μ1g= 2 m/s2, a B=μ2g= 1 m/s2μ,解得: a = 4 m/s 21m A g + μ2m B g = ma C C v 1= v - a A t =- v + a C t解得: v 1= 0.5 m/st = 0.5 s- v + v 1 x A1=v + v 12 t = 0.5 m , x C1= 2 t =- 0.25 m故 A 、 C 间的相对运动距离为x AC = x A1+ |x C1|= 0.75 m.2. (2014 广·东 ·35)如图 4 所示,的水平轨道中, AC 段的中点 B 的正上方有一探测器, C 处有一竖直挡板,物体 P 1 沿光滑轨道向右以速度v 1 与静止在 A 点的物体 P 2 碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在 t 1= 2 s 至 t 2= 4 s 内工作.已知 P 1、 P 2 的质量都为 m = 1 kg , P 与 AC 间的动摩擦因数2为 μ= 0.1, AB 段长 L = 4 m , g 取 10 m/s , P 1、 P 2 和 P 均视为质点, P 与挡板的碰撞为弹性碰撞.图 4(1) 若 v 1= 6 m/s ,求 P 1、 P 2 碰后瞬间的速度大小 v 和碰撞损失的动能E ;(2) 若 P 与挡板碰后, 能在探测器的工作时间内通过 B 点,求 v 1 的取值范围和 P 向左经过 A 点时的最大动能 E .答案 (1)3 m/s 9 J (2)10 m/s ≤ v 1≤ 14 m/s 17 J解析(1) 设 P 1 和 P 2 发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1= 2m v 2①解得: v 2=v 1= 3 m/s2E = 1m v 11× 2m v 2碰撞过程中损失的动能为:2- 2②2 2解得E =9 J.(2) P 滑动过程中,由牛顿第二定律知2ma =- 2μ mg③可以把 P 从 A 点运动到 C 点再返回 B 点的全过程看作匀减速直线运动,根据运动学公式有1 2 3L = v 2t + at2④26L - at由 ①③④ 式得 v 1=t① 若 2 s 时通过 B 点,解得: v 1= 14 m/s ② 若 4 s 时通过 B 点,解得: v 1= 10 m/s 故 v 1 的取值范围为: 10 m/s ≤ v 1≤ 14 m/s设向左经过 A 点的速度为 v A ,由动能定理知1× 2m v A 2- 1× 2m v 2 2=- μ·2mg ·4L22 当 v = 1v 1 = 7 m/s 时,复合体向左通过 A 点时的动能最大, E =17 J.22根据题中涉及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果是碰撞并涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练训练 6题组 1动量和能量的观点在力学中的应用1.如图 1 所示,在倾角为 30°的光滑斜面上放置一质量为 m 的物块 B , B 的下端连接一轻质弹簧,弹簧下端与挡板相连接, B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块 A ,距物块 B 为 3x 0,现让 A 从静止开始沿斜面下滑, A 与 B 相碰后立即一起沿斜面向下运动,并恰好回到 O 点(A 、 B 均视为质点 ).试求:图 1(1) A 、 B 相碰后瞬间的共同速度的大小;(2) A 、 B 相碰前弹簧具有的弹性势能;(3) 若在斜面顶端再连接一光滑的半径 R = x 0 的半圆轨道 PQ ,圆轨道与斜面相切于最高点 P ,现让物块 A以初速度 v 从 P 点沿斜面下滑,与 B 碰后返回到 P 点还具有向上的速度,试问:v 为多大时物块 A 恰能通过圆弧轨道的最高点?答案 (1) 1 3gx 0 120+ 4 3 gx 02(2) mgx 0 (3)4解析(1) 设 A 与 B 相碰前 A 的速度为 v 1, A 与 B 相碰后共同速度为 v 2由机械能守恒定律得 3mgx 0 sin 30 1 2=°m v 12由动量守恒定律得m v 1= 2m v 21解以上二式得 v 2= 2 3gx 0.(2) 设 A 、B 相碰前弹簧所具有的弹性势能为 E p ,从 A 、 B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p + 1·2m v 2 2= 2mgx 0 sin 30 °2解得 E p = 1mgx 0.4(3) 设物块 A 与 B 相碰前的速度为 v 3,碰后 A 、 B 的共同速度为 v 41 21 2m v + 3mgx 0 sin 30 =°m v 322m v 3= 2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则1·2m v 4 2+ E p = 1·2m v 5 2+ 2mgx 0sin 30 °2 211此后 A 继续上滑到半圆轨道最高点时速度为v 6,则2 2+ 2mgx 0 sin 30 +°mgR(1+ sin 60 ) °2m v 5= m v 62在最高点有 mg =m v 6 R 2联立以上各式解得v =20+ 4 3 gx 0.2.如图 2 所示,质量为 m 1 的滑块 (可视为质点 )自光滑圆弧形槽的顶端 A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点, A 、 B 的高度差为 h 1= 1.25 m .传导轮半径很小,两个轮之间的距离为 L = 4.00 m .滑块与传送带间的动摩擦因数 μ= 0.20.右端的轮子上沿距离地面高度h 2= 1.80 m ,g取 10 m/s 2.(1) 若槽的底端没有滑块图m 2,传送带静止不运转,求滑块2m 1 滑过C 点时的速度大小v ; (结果保留两位有效数字)(2)在m 1 下滑前将质量为 m 2 的滑块(可视为质点)停放在槽的底端.m 1 下滑后与 m 2 发生弹性碰撞,且碰撞后 m 1 速度方向不变,则m 1、 m 2 应该满足什么条件?(3) 满足 (2) 的条件前提下, 传送带顺时针运转, 速度为 v = 5.0 m/s.求出滑块 m 1、m 2 落地点间的最大距离 (结果可带根号 ).答案(1)3.0 m/s (2)m 1> m 2 (3)(621 - 3) m5 解析(1) 滑块 m 11 2滑到 B 点有 m 1gh 1= m 1v 02解得 v 0= 5 m/s滑块 m 由 B 滑到 C 点有- μm1 2-1211gL = m 1 vm 1v 022解得 v = 3.0 m/s.(2) 滑块 m 2 停放在槽的底端, m 1 下滑并与滑块 m 2 弹性碰撞,则有m 1v 0=m 1v 1+ m 2v 211 v 0 2= 11v 1 2 + 1 2v 2 22m2m2mm 1 速度方向不变即v 1= m 1- m 2+ m v 0> 0m 12 则 m 1> m 2.(3) 滑块经过传送带作用后做平抛运动12h 2=2gt当两滑块速度相差最大时,它们的水平射程相差最大,当 m 1? m 2 时,滑块 m 1、 m 2 碰撞后的速度相差最大,经过传送带后速度相差也最大m 2m 1- m 2 1- m 1 v 0≈ v 0= 5.0 m/s v 1= + m v 0=2m 1+m 1v 2= 2m 1v 0= 2v 0≈ 2v 0= 10.0 m/s+ m 2m2m1+m 1滑块 m 1 与传送带同速度,没有摩擦,落地点射程为x 1= v 1t = 3.0 m滑块 m 2 与传送带发生摩擦,有 - μm1′ 2- 122gL =2m 2v 2 2m 2v 2解得 v 2′= 2 21 m/s落地点射程为 x 2= v 2′ t =621 m5m 2、m 1 的水平射程相差最大值为x = (6 21- 3) m.5题组 2应用动力学观点、能量观点、动量观点解决综合问题3.如图 3 所示,质量 M = 4 kg 的平板小车停在光滑水平面上,车上表面高 h 1= 1.6 m .水平面右边的台阶高 h 2= 0.8 m ,台阶宽l = 0.7 m ,台阶右端B 恰好与半径r = 5 m的光滑圆弧轨道连接,B 和圆心O 的连线与竖直方向夹角θ= 53°,在平板小车的A 处有质量m 1= 2 kg 的甲物体和质量m 2= 1 kg 的乙物体紧靠在一起,中间放有少量炸药(甲、乙两物体都可以看作质点).小车上 A 点左侧表面光滑,右侧粗糙且动摩擦因数为 μ= 0.2.现点燃炸药,炸药爆炸后两物体瞬间分开,甲物体获得5 m/s 的水平初速度向右运动,离开平板车后恰能从光滑圆弧轨道的左端B 点沿切线进入圆弧轨道.已知车与台阶相碰后不再运动(g 取 10 m/s 2,sin 53=°0.8, cos 53 =°0.6).求:图 3(1) 炸药爆炸使两物体增加的机械能E ;(2) 物体在圆弧轨道最低点 C 处对轨道的压力 F ;(3) 平板车上表面的长度 L 和平板车运动位移 s 的大小.答案 (1)75 J (2)46 N ,方向竖直向下(3)1 m解析(1) 甲、乙物体在爆炸瞬间动量守恒:m 1v 1-m 2v 2= 01 2 1 m 2v 22=75 J.E = m 1v 1 +22(2) 设甲物体平抛到 B 点时,水平方向速度为 v x ,竖直分速度为 v yv y = 2g h 1- h 2 = 4 m/s v x =v y= 3 m/stan θ合速度为: v B = 5 m/s物体从 B 到 C 过程中:m 1gr(1- cos θ)= 1m 1v C 2- 1m 1v B222v C 2F N - m 1 g = m 1 rF N =46 N由牛顿第三定律可知:F = F N = 46 N ,方向竖直向下.v y(3) 甲物体平抛运动时间: t = g = 0.4 s 平抛水平位移: x = v x t = 1.2 m > 0.7 m甲物体在车上运动时的加速度为: a 1= μg = 2 m/s2甲物体在车上运动时间为:t 1= v 0- v x = 1 sa 1甲物体的对地位移: x =1+ v = 4 m12 (v 0 x )t 1a 2= μm 1g = 1 m/s 2甲物体在车上运动时,车的加速度为:1M甲离开车时,车对地的位移:2= 0.5 mx 2= a 2t 12车长为: L = 2(x 1- x 2)= 7 m车的位移为: s = x 2+ (x - l)= 1 m.4.如图 4 所示,光滑的水平面 AB(足够长 )与半径为 R = 0.8 m 的光滑竖直半圆轨道 BCD 在 B 点相切, D点为半圆轨道最高点.A 点的右侧等高地放置着一个长为 L = 20 m 、逆时针转动且速度为v = 10 m/s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1= 3 kg ,乙的质量为 m 2= 1 kg ,甲、乙均静止在光滑的水平面上.现固定乙球,烧断细线,甲离开弹簧后进入半圆轨道并可以通过 D 点,且过 D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为 0.6,重力加速度 g 取 10 m/s 2,甲、乙两物体可看做质点.图 4(1) 求甲球离开弹簧时的速度.(2) 若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离.(3) 甲、乙均不固定,烧断细线以后,求甲和乙能否再次在 AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.答案(1)4 3 m/s (2)12 m (3)甲、乙会再次碰撞,碰撞时甲的速度为23 m/s ,方向水平向右,乙的速度为 6 3m/s ,方向水平向左解析(1) 甲离开弹簧时的速度大小为v 0,运动至 D 点的过程中机械能守恒:12 1 2m 1 v 0 = m 1g ·2R +m 1v D ,22 在最高点 D ,由牛顿第二定律,v D 2 有 2m 1g = m 1 R联立解得: v 0= 4 3 m/s.(2) 甲固定,烧断细线后乙的速度大小为 v 乙 ,由能量守恒:E p =1m 1v 0 2=1m 2v 乙 2,2 2得 v 乙 = 12 m/s之后乙滑上传送带做匀减速运动:μm 2g = m 2a得 a = 6 m/s 2乙的速度为零时,在传送带滑行的距离最远,最远距离为:2v 乙s=2a= 12 m < 20 m即乙在传送带上滑行的最远距离为12 m. (3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为 v1、 v 2,甲、乙分离瞬间动量守恒: m1v1= m2v2甲、乙弹簧组成的系统能量守恒:121212E p= m1v0= m1v1+m2v2222解得: v1=2 3 m/s,v2= 6 3 m/s之后甲沿轨道上滑,设上滑最高点高度为h,12则2m1v1=m1gh得 h= 0.6 m< 0.8 m则甲上滑不到同圆心等高位置就会返回,返回AB 面上时速度大小仍然是v2=2 3 m/s乙滑上传送带,因v 2=6 3 m/s< 12 m/s,则乙先向右做匀减速运动,后向左匀加速.由对称性可知乙返回 AB 面上时速度大小仍然为v2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为 2 3 m/s,方向水平向右,乙的速度为 6 3 m/s,方向水平向左.。
三大力学观点的综合应用
(2)设 A 车的质量为 mA,碰后加速度大小为 aA,根据牛顿 第二定律有
μmAg=mAaA④ 设碰撞后瞬间 A 车速度的大小为 vA′,碰撞后滑行的距离 为 sA,由运动学公式有 vA′2=2aAsA⑤ 设碰撞前的瞬间 A 车速度的大小为 vA。两车在碰撞过程中 动量守恒,有 mAvA=mAvA′+mBvB′⑥ 联立③④⑤⑥式并利用题给数据得 vA=4.3 m/s。⑦
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与 小球的初始距离为 x1=1.3 m,求物块 M 在 P 处的初速度大小。
[解析] (1)碰后物块 M 做平抛运动,设其平抛运动的初速 度为 v3,平抛运动时间为 t,由平抛运动规律得
h=12gt2① x=v3t② 得:v3=x 2gh=3.0 m/s。③ (2)物块 M 与小球在 B 点处碰撞,设碰撞前物块 M 的速度 为 v1,碰撞后小球的速度为 v2,由动量守恒定律: Mv1=mv2+Mv3④
解析:(1)由题图乙可知: 长木板的加速度 a1=12 m/s2=0.5 m/s2 由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力 Ff= m1a1=2 N 小物块与长木板之间的动摩擦因数:μ=mF2fg=0.2。 (2)由题图乙可知,小物块的加速度 a2=42 m/s2=2 m/s2 由牛顿第二定律可知:F-μm2g=m2a2 解得 F=4 N。
碰后小球从 B 点处运动到最高点 A 过程中机械能守恒,设 小球在 A 点的速度为 vA,则12mv22=12mvA2+2mgL⑤
小球在最高点时有:2mg=mvLA2⑥ 由⑤⑥解得:v2=6.0 m/s⑦ 由③④⑦解得:v1=mv2+MMv3=6.0 m/s⑧ 物块 M 从 P 点运动到 B 点过程中,由动能定理: -μMgx1=12Mv12-12Mv02⑨ 解得:v0= v12+2μgx1=7.0 m/s。 [答案] (1)3.0 m/s (2)7.0 m/s
专题(29)专题五 力学三大观点的综合应用(解析版)
2021年高考物理一轮复习必热考点整合回扣练专题(29)专题五力学三大观点的综合应用(解析版)知识点一力的三个作用效果与五个规律知识点二常见的力学模型及其结论命题热点 动力学、动量和能量观点在力学中的应用 力学三大观点的综合应用 选择力学三大观点的一般原则1、在光滑的水平面上有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球碰撞前后的速度—时间图象如图所示,下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【答案】B【解析】由图象知a 球以一初速度向原来静止的b 球运动,碰后a 球反弹且速度大小小于其初速度大小,根据动量守恒定律,a 球的质量小于b 球的质量。
2、如图所示,质量为M 的盒子放在光滑的水平面上,盒子内表面不光滑,盒内放有一块质量为m 的物体,某时刻给物体一个水平向右的初速度v 0,那么在物体与盒子前后壁多次往复碰撞后( )A .两者的速度均为零B .两者的速度总不会相等C .盒子的最终速度为mv 0M ,方向水平向右D .盒子的最终速度为mv 0M +m ,方向水平向右【答案】D【解析】由于盒子内表面不光滑,在多次碰后物体与盒相对静止,由动量守恒得:mv 0=(M +m )v ′,解得:v ′=mv 0M +m,故D 正确。
3、(多选)A 、B 两球沿同一条直线运动,如图所示的x -t 图象记录了它们碰撞前后的运动情况,其中a 、b 分别为A 、B 碰撞前的x -t 图象。
c 为碰撞后它们的x -t 图象。
若A 球质量为1 kg ,则B 球质量及碰后它们的速度大小为( )A .2 kg B.23kgC .4 m/sD .1 m/s【答案】BD【解析】由图象可知碰撞前二者都做匀速直线运动,v a =4-102 m/s =-3 m/s ,v b =4-02 m/s=2 m/s ,碰撞后二者连在一起做匀速直线运动,v c =2-44-2m/s =-1 m/s 。
专题十二 力学三大观点的综合应用
第七章 动量守恒定律专题十二 力学三大观点的综合应用核心考点五年考情命题分析预测动量与能量观点的综合应用2022:广东T13,湖北T16;2021:湖北T15;2020:山东T18力学三大观点的综合应用往往以高考压轴题的形式考查,综合性强,难度大,常与曲线运动、带电粒子在电磁场中的运动或导体棒切割磁感线等知识点相结合进行考查.预计2025年高考可能会出现三大观点应用的计算题.三大观点的综合应用2023:山东T18,广东T15,辽宁T15,浙江6月T18,浙江1月T18;2022:浙江6月T20;2021:北京T17,湖南T14题型1 动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律.能量的观点:动能定理和能量守恒定律. 2.三种技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处,特别对于变力做功问题,就更显出它们的优越性.1.[2024江西九校联考]如图所示,质量M =4kg 的滑块套在光滑的水平轨道上,质量m =2kg 的小球通过长L =0.5m 的轻质细杆与滑块上的光滑轴O 连接,小球和轻杆可在竖直平面内绕轴O自由转动.开始时轻杆处于水平状态,现给小球一个竖直向上的初速度v 0=4m/s ,以初始时刻轴O 的位置为坐标原点,在竖直平面内建立固定的直角坐标系xOy ,取g =10m/s 2.(1)若锁定滑块,求小球通过最高点时轻杆对小球的作用力大小;(2)若解除对滑块的锁定,求小球运动到最高点时的动能E k ;(3)若解除对滑块的锁定,在平面直角坐标系xOy 中,求出小球从出发至运动到最高点的过程的轨迹方程.答案 (1)4N (2)4J (3)(32x -14)2+y 2=14解析 (1)若锁定滑块,则小球从开始运动到上升至最高点的过程,机械能守恒,有12m v 02=12m v 12+mgL小球在最高点时,设轻杆对小球的作用力大小为F ,则有mg +F =mv 12L联立解得F =4N(2)若解除对滑块的锁定,由于小球与滑块组成的系统在水平方向上不受力,因此小球与滑块组成的系统在水平方向上动量守恒.设小球通过最高点时的速度大小为v 2,此时滑块的速度大小为v ,以水平向右为正方向,则有0=mv 2-Mv运动过程中,系统的机械能守恒,则有12m v 02=12m v 22+12Mv 2+mgL又E k =12m v 22联立解得E k =4J(3)若解除对滑块的锁定,在小球上升的过程中,滑块向左运动,小球在水平方向上向右运动,设小球的位置坐标为(x ,y )时,滑块向左运动的位移大小为Δx ,则由人船模型有m (L -x )=M Δx由几何关系可知(x -Δx )2+y 2=L 2联立可得小球运动的轨迹方程为(32x -14)2+y 2=14.题型2 三大观点的综合应用1.三大基本观点动力学观点 运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题能量观点 用动能定理和能量守恒观点解题,可处理非匀变速运动问题动量观点用动量定理和动量守恒观点解题,可处理非匀变速运动问题2.三大观点的选用原则力学中首先考虑使用两个守恒定律.从两个守恒定律的表达式看出多项都是状态量(如速度、位置),所以守恒定律能解决状态问题,不能解决过程(如位移x 、时间t )问题,不能解决力(F )的问题.(1)若是多个物体组成的系统,优先考虑使用两个守恒定律.(2)若物体(或系统)涉及速度和时间,应考虑使用动量定理.(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑使用牛顿运动定律.(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,动能定理解决曲线运动和变加速运动问题特别方便.2.[三大观点的综合应用/2021湖北]如图所示,一圆心为O 、半径为R 的光滑半圆弧轨道固定在竖直平面内,其下端与光滑水平面在Q 点相切.在水平面上,质量为m 的小物块A 以某一速度向质量也为m 的静止小物块B 运动.A 、B 发生正碰后,B 到达半圆弧轨道最高点时对轨道压力恰好为零,A 沿半圆弧轨道运动到与O 点等高的C 点时速度为零.已知重力加速度大小为g ,忽略空气阻力.(1)求B 从半圆弧轨道飞出后落到水平面的位置到Q 点的距离;(2)当A 由C 点沿半圆弧轨道下滑到D 点时,OD 与OQ 夹角为θ,求此时A 所受力对A 做功的功率;(3)求碰撞过程中A 和B 损失的总动能.答案 (1)2R (2)mg sin θ√2gRcosθ (3)√10mgR解析 (1)设B 到半圆弧轨道最高点时速度为v 2',由于B 对轨道最高点的压力为零,则由牛顿第二定律得mg =mv 22'RB 离开最高点后做平抛运动,则在竖直方向上有2R =12gt 2在水平方向上有x =v 2't联立解得x =2R(2)对A 由C 到D 的过程,由机械能守恒定律得mgR cos θ=12m v D2由于对A 做功的力只有重力,则A 所受力对A 做功的功率为P =mgv D sin θ解得P =mg sin θ√2gRcosθ(3)设A 、B 碰后瞬间的速度分别为v 1、v 2,对B 由Q 到最高点的过程,由机械能守恒定律得12m v 22=12m v 22'+mg ·2R解得v 2=√5gR对A 由Q 到C 的过程,由机械能守恒定律得12m v 12=mgR解得v 1=√2gR设碰前瞬间A 的速度为v 0,对A 、B 碰撞的过程,由动量守恒定律得mv 0=mv 1+mv 2解得v 0=√2gR +√5gR碰撞过程中A 和B 损失的总动能为ΔE =12m v 02-12m v 12-12m v 22解得ΔE =√10mgR .3.[三大观点的综合应用/2023浙江6月]为了探究物体间的碰撞特性,设计了如图所示的实验装置.水平直轨道AB 、CD 和水平传送带平滑无缝连接,两半径均为R =0.4m 的四分之一圆周组成的竖直细圆弧管道DEF 与轨道CD 和足够长的水平直轨道FG 平滑相切连接.质量为3m 的滑块b 与质量为2m 的滑块c 用劲度系数k =100N/m 的轻质弹簧连接,静置于轨道FG 上.现有质量m =0.12kg 的滑块a 以初速度v 0=2√21m/s 从D 处进入,经DEF 管道后,与FG 上的滑块b 碰撞(时间极短).已知传送带长L =0.8m ,以v =2m/s 的速率顺时针转动,滑块a 与传送带间的动摩擦因数μ=0.5,其他摩擦和阻力均不计,各滑块均可视为质点,弹簧的弹性势能E p =12kx 2(x 为形变量).(1)求滑块a 到达圆弧管道DEF 最低点F 时速度大小v F 和所受支持力大小F N ;(2)若滑块a 碰后返回到B 点时速度v B =1m/s ,求滑块a 、b 碰撞过程中损失的机械能ΔE ;(3)若滑块a 碰到滑块b 立即被粘住,求碰撞后弹簧最大长度与最小长度之差Δx .答案 (1)v F =10m/s F N =31.2N (2)ΔE =0 (3)Δx =0.2m解析 (1)滑块a 以初速度v 0从D 处进入竖直圆弧管道DEF 运动,由动能定理有mg ·2R=12m v F 2-12m v 02解得v F=10m/s在最低点F ,由牛顿第二定律有F N -mg =m v F2R解得F N =31.2N(2)碰撞后滑块a 返回到B 点的过程,由动能定理有-mg ·2R -μmgL =12m v B 2-12m v a2解得v a =5m/s滑块a 、b 碰撞过程,由动量守恒定律有mv F =-mv a +3mv b解得v b =5m/s碰撞过程中损失的机械能为ΔE =12m v F 2-12m v a 2-12·3m v b 2=0(3)滑块a 碰撞b 后立即被粘住,由动量守恒定律有mv F =(m +3m )v ab解得v ab =2.5m/s滑块ab 一起向右运动,压缩弹簧,ab 减速运动,c 加速运动,当abc 三者速度相等时,弹簧长度最小,由动量守恒定律有(m +3m )v ab =(m +3m +2m )v abc解得v abc =53m/s由机械能守恒定律有E p1=12×4m v ab 2-12×6m v abc2解得E p1=0.5J由E p1=12k x 12解得最大压缩量x 1=0.1m滑块ab 一起继续向右运动,弹簧弹力使c 继续加速,使ab 继续减速,当弹簧弹力减小到零时,c 速度最大,ab 速度最小;滑块ab 一起再继续向右运动,弹簧弹力使c 减速,使ab 加速,当abc 三者速度相等时,弹簧长度最大,其对应的弹性势能与弹簧长度最小时的弹性势能相等,由弹簧的弹性势能公式可知最大伸长量x 2=0.1m所以碰撞后弹簧最大长度与最小长度之差Δx =x 1+x 2=0.2m.方法点拨深化观念、建构模型,解决力学综合难题1.[2023浙江1月]一游戏装置竖直截面如图所示,该装置由固定在水平地面上倾角θ=37°的直轨道AB 、螺旋圆形轨道BCDE 、倾角θ=37°的直轨道EF 、水平直轨道FG 组成,除FG 段外各段轨道均光滑,且各处平滑连接.螺旋圆形轨道与轨道AB 、EF 相切于B (E )处.凹槽GHIJ 底面HI 水平光滑,上面放有一无动力摆渡车,并紧靠在竖直侧壁GH 处,摆渡车上表面与直轨道FG 、平台JK 位于同一水平面.已知螺旋圆形轨道半径R =0.5m ,B 点高度为1.2R ,FG 长度L FG =2.5m ,HI 长度L 0=9m ,摆渡车长度L =3m 、质量m =1kg.将一质量也为m 的滑块从倾斜轨道AB 上高度h =2.3m 处静止释放,滑块在FG 段运动时的阻力为其重力的0.2倍.(摆渡车碰到竖直侧壁IJ 立即静止,滑块视为质点,不计空气阻力,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2)(1)求滑块过C 点的速度大小v C和轨道对滑块的作用力大小F C;(2)摆渡车碰到IJ 前,滑块恰好不脱离摆渡车,求滑块与摆渡车之间的动摩擦因数μ;(3)在(2)的条件下,求滑块从G 到J 所用的时间t .答案 (1)4m/s 22N (2)0.3 (3)2.5s解析 (1)C 点离地高度为1.2R +R cos θ+R =3R滑块从静止释放到C 点过程,根据动能定理可得 mg (h -3R )=12m v C2-0 解得v C=4m/s在最高点C 时,根据牛顿第二定律可得 F C+mg =m v C2R解得F C=22N(2)从静止释放到G 点,由动能定理可得 mgh -0.2mgL FG=12m v G2由题可知,滑块到达摆渡车右端时刚好与摆渡车共速,速度大小设为v根据动量守恒定律可得2mv =mv G由功能关系可得μmgL =12m v G 2-12×2mv 2综合解得μ=0.3(3)滑块从滑上摆渡车到与摆渡车共速过程,滑块的加速度大小为a =μg设滑块从滑上摆渡车到共速的时间为t 1,有t 1=v G -v μg=1s共速后继续向右匀速运动的时间t 2=L 0-L -12vt 1v=1.5st =t 1+t 2=2.5s .2.[2022广东]某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型.竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态.当滑块从A 处以初速度v 0为10m/s 向上滑动时,受到滑杆的摩擦力f 为1N.滑块滑到B 处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动.已知滑块的质量m =0.2kg ,滑杆的质量M =0.6kg ,A 、B 间的距离l =1.2m ,重力加速度g 取10m/s 2,不计空气阻力.求:(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大小N 1和N 2;(2)滑块碰撞前瞬间的速度大小v ;(3)滑杆向上运动的最大高度h .答案 (1)8N 5N (2)8m/s (3)0.2m解析 (1)滑块静止时,滑块和滑杆均处于静止状态,以滑块和滑杆整体为研究对象,由平衡条件可知N 1=(m +M )g =8N滑块向上滑动时,滑杆受重力、滑块对其向上的摩擦力以及桌面的支持力,则有N 2=Mg -f',f'=f代入数据得N 2=5N(2)解法1 碰前,滑块向上做匀减速直线运动,由牛顿第二定律得mg +f =ma 1解得a 1=15m/s 2,方向向下由运动学公式得v 2-v 02=-2a 1l代入数据得v =8m/s解法2 由动能定理得-(mg +f )l =12mv 2-12m v 02代入数据解得v =8m/s(3)滑块和滑杆发生的碰撞为完全非弹性碰撞,根据动量守恒定律有mv =(M +m )v 共代入数据得v 共=2m/s此后滑块与滑杆一起竖直向上运动,根据动能定理有-(M +m )gh =0-12(M +m )v 共2代入数据得h =0.2m.3.[2021湖南]如图,竖直平面内一足够长的光滑倾斜轨道与一长为L 的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ .质量为m 的小物块A 与水平轨道间的动摩擦因数为μ.以水平轨道末端O 点为坐标原点建立平面直角坐标系xOy ,x 轴的正方向水平向右,y 轴的正方向竖直向下,弧形轨道P 端坐标为(2μL ,μL ),Q 端在y 轴上.重力加速度为g .(1)若A 从倾斜轨道上距x 轴高度为2μL 的位置由静止开始下滑,求A 经过O 点时的速度大小;(2)若A 从倾斜轨道上不同位置由静止开始下滑,经过O 点落在弧形轨道PQ 上的动能均相同,求PQ 的曲线方程;(3)将质量为λm (λ为常数且λ≥5)的小物块B 置于O 点,A 沿倾斜轨道由静止开始下滑,与B 发生弹性碰撞(碰撞时间极短),要使A 和B 均能落在弧形轨道上,且A 落在B 落点的右侧,求A 下滑的初始位置距x 轴高度的取值范围.答案 (1)√2μgL (2)x 22y +2y =4μL (0≤x ≤2μL ) (3)3λ-1λ-3μL <h ≤μL +3μL (λ+1)2(λ-1)2解析 (1)设A 滑到O 点时速度为v 0,A 从倾斜轨道上滑到O 点过程中,由动能定理有mg ·2μL -μmgL =12m v 02解得v 0=√2μgL(2)若A 以(1)中的位置从倾斜轨道上下滑,A 从O 点抛出,假设能运动到弧形轨道上的P 点,水平方向有2μL =v 0t 1竖直方向有y P =12g t 12解得y P =μL ,假设成立所以A 落在弧形轨道时的动能E k 满足mg ·2μL -μmgL +mg ·μL =E k -0A 从O 点抛出,做平抛运动,水平方向有x =v 1t竖直方向有y =12gt 2又y =v y22g ,E k =12m (v 12+v y 2)联立解得PQ 的曲线方程为x 22y+2y =4μL (0≤x ≤2μL )(3)设A 初始位置到x 轴的高度为h ,A 滑到O 点的速度为v A 0,碰撞后的速度为v A 1,反弹后再次返回O 点时速度为v A ,A 、B 碰撞后B 的速度为v B ,A 、B 碰撞过程有mv A 0=mv A 1+λmv B12m v A02=12m v A12+12λm v B2解得v A 1=1-λ1+λv A 0,v B =21+λv A 0A 从倾斜轨道上滑到O 点的过程有mgh -μmgL =12m v A02碰后又运动到O 点过程有-μmg ·2L =12m v A 2-12m v A12又A 、B 均能落在弧形轨道上且A 落在B 点右侧应满足v B <v A ≤v 0联立求解得3λ-1λ-3μL <h ≤μL +3μL (λ+1)2(λ-1)24.[高考新题型/2023湖南]如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直.质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑.以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上.整个过程凹槽不翻转,重力加速度为g .(1)小球第一次运动到轨道最低点时,求凹槽的速度大小以及凹槽相对于初始时刻运动的距离;(2)在平面直角坐标系xOy 中,求出小球运动的轨迹方程;(3)若Mm =ba -b,求小球下降h =b2高度时,小球相对于地面的速度大小(结果用a 、b 及g表示).答案 (1)√2m 2gbM (m +M )ma M +m(2)[(M +m )x -ma ]2M 2a 2+y 2b2=1(y ≤0)(3)2b √ga+3b解析 (1)小球从静止到第一次运动到轨道最低点的过程,水平方向上小球和凹槽组成的系统动量守恒,有0=mv 1-Mv 2对小球与凹槽组成的系统,由机械能守恒定律有mgb =12m v 12+12M v 22 联立解得v 2=√2m 2gbM (m +M )根据人船模型规律,在水平方向上有mx 1=Mx 2又由位移关系知x 1+x 2=a解得凹槽相对于初始时刻运动的距离x 2=maM +m(2)小球向左运动过程中,凹槽向右运动,当小球的坐标为(x ,y )时,小球向左运动的位移x'1=a -x ,则凹槽水平向右运动的位移为x'2=mM (a -x )小球在凹槽所在的椭圆上运动,根据数学知识可知小球的运动轨迹满足(x -x '2)2a 2+y 2b2=1整理得小球运动的轨迹方程为[(M +m )x -ma ]2M 2a 2+y 2b 2=1(y ≤0)(3)若Mm =b a -b,代入(2)问结果化简可得[x -(a -b )]2+y 2=b 2即小球的运动轨迹是半径为b 的圆小球下降h =b 2高度的过程,小球与凹槽组成的系统在水平方向动量守恒,有mv'1x =Mv'2对小球与凹槽组成的系统,由机械能守恒定律有mgh =12mv'12+12Mv'22由几何关系及速度的分解得v'1sin30°=v'1x联立解得v'1=2b √g a+3b.1.[2024四川成都蓉城名校联考/多选]一次台球练习中,某运动员用白球击中彩球,白球与静止的彩球发生正碰,碰撞时间极短,碰后两球在同一直线上运动,且台球运动时所受桌面阻力保持不变,两球质量均为m =0.2kg ,碰撞后两球的位移x 与速度的平方v 2的关系如图所示,重力加速度g 取10m/s2.则下列说法正确的是( BC )A.碰撞前白球的速度为1.64m/sB.碰撞过程中,白球对彩球的冲量大小为0.2kg·m/sC.碰撞过程中,系统有机械能转化为内能D.台球所受桌面阻力为0.5N解析 由题图可知,碰后白球速度v 1=0.8 m/s ,彩球速度v 2=1.0 m/s.设碰撞前白球 速度为v 0,由动量守恒得mv 0=mv 1+mv 2,解得v 0=1.8 m/s ,故A 错误;碰撞过程中,白球对彩球的冲量I =mv 2=0.2×1.0 kg·m/s =0.2 kg·m/s ,B 正确;由于12m v 02>12m v 12+12m v 22,故碰撞过程中,系统有机械能转化为内能,C 正确;由运动学知识可知a =v 122x 1=0.642×1.28 m/s 2=0.25 m/s 2,故阻力为f =ma =0.05 N ,故D 错误.2.[2024北京海淀区期中/多选]如图所示,质量m A =1kg 、长L =9m 的薄板A 放在水平地面上,在大小为4N 、水平向右的外力F 作用下由静止开始运动,薄板与地面间的动摩擦因数μ1=0.2,其速率达到v A =2m/s 时,质量m B =1kg 的物块B 以v B =4m/s 的速率由薄板A 右端向左滑上薄板,A 与B 间的动摩擦因数μ2=0.1,B 可视为质点,重力加速度g 取10m/s 2.下列说法正确的是( AD )A.当A 的速率减为0时,B 的速率为2m/sB.从B 滑上A 到B 掉下的过程中,A 、B 所组成的系统动量守恒C.从B 滑上A 到B 掉下的过程,A 、B 和地面所组成的系统因摩擦而产生的热量为9JD.从B 滑上A 到B 掉下的过程,A 、B 所组成的系统机械能减少9J解析 B 滑上A 后,B 开始做减速运动,此时对B 由牛顿第二定律有μ2m B g =m B a B ,解得a B =1 m/s 2,对A 由牛顿第二定律有μ1(m A +m B )g +μ2m B g -F =m A a A ,解得a A =1 m/s 2,A 也开始做减速运动,假设A 速率减为0时,B 未从A 上掉下,则A 的速率减为0的时间为t 1=v Aa A=2 s ,此时B 的速度大小为v B 1=v B -a B t 1=2 m /s ,此过程A 、B 的相对位移Δx =v A22a A+v B 2−v B122a B=8 m <L ,故假设成立,A 正确;在B 滑上A 到A 速度减到零的过程中,有μ1(m A +m B )g =F ,即A 、B 所组成的系统受到的合力为零,动量守恒,当A 速度减为零时,由于μ1(m A +m B )g +μ2m B g >F ,则A 此后处于静止状态,且由平衡条件可知A 与地面间的摩擦力f <F ,A 、B 所组成的系统受到的合力不为零,动量不守恒,B 错误;从B 滑上A 到A 速度减为零的过程,A 的位移为x A =v A22a A=2 m ,此过程B 的位移为x B =v B 2−v B122a B=6 m ,结合B 项分析可知,此后A 处于静止状态,B 继续向左做匀减速运动直至掉下,则对从B 滑上A 到B 掉下的整个运动过程,A 、B 和地面所组成的系统因摩擦而产生的热量为Q =μ1(m A +m B )gx A +μ2m B gL =17 J ,C 错误;从B 滑上A 到B 掉下的过程,A 、B 所组成的系统机械能的减少量为ΔE k =Q -Fx A =9 J ,D 正确.3.[设问创新/2024重庆南开中学校考/多选]如图所示,半径为R 、质量为3m 的14圆弧槽AB 静止放在光滑水平地面上,圆弧槽底端B 点切线水平,距离B 点为R 处有一质量为3m 的小球2,其左侧连有轻弹簧.现将质量为m 的小球1(可视为质点)从左侧圆弧槽上端的A 点由静止释放,重力加速度为g ,不计一切摩擦.则下列说法正确的是( BC )A.系统(三个物体)全程动量守恒B.小球1刚与弹簧接触时,与圆弧槽底端B 点相距53RC.弹簧弹性势能的最大值为916mgRD.小球1最终的速度大小为√6gR 4解析 小球1在圆弧槽上运动时,系统在竖直方向上动量不守恒,故A 错误.小球1从圆弧槽的A 点到B 点的过程中,设小球1滑到B 点时小球1的速度为v 0,圆弧槽的速度为v ,取水平向右为正方向,小球1与圆弧槽在水平方向动量守恒有0=mv 0-3mv ,由能量守恒有mgR =12m v 02+12·3mv 2,解得v 0=3v =√3gR 2.设小球1到B 点时,小球1水平向右移动的距离为x 1,圆弧槽向左运动的距离为x 2,两者的相对位移为R ,因此有mx 1-3mx 2=0,x 1+x 2=R ,联立解得x 1=34R ,x 2=14R . 此时圆弧槽的B 点与弹簧之间的距离L =x 2+R =54R .小球1从B 点向右以v 0匀速运动,圆弧槽向左以v03匀速运动,小球1刚与弹簧接触时,与圆弧槽底端B 点的距离L'=L +v03·Lv 0=43L =53R ,故B 正确.小球1与小球2共速时,弹簧弹性势能有最大值,从小球1刚与弹簧接触到两球共速,由动量守恒有mv 0=(m +3m )v 共,由能量守恒有12m v 02=12(m +3m )v 共2+E p ,联立解得E p =916mgR ,故C 正确.从小球1刚与弹簧接触到两球分开,由动量守恒有mv 0=mv 1+3mv 2,由能量守恒有12m v 02=12m v 12+12·3m v 22,解得v 1=-12v 0,v 2=12v 0.小球1之后向左以12v 0匀速运动,因为圆弧槽此时正向左以v03匀速运动,故会再次和圆弧槽碰撞,以向左为正,碰撞前、后动量守恒有m ·v02+3m ·v03=mv 3+3mv 4,由能量守恒有12m (v02)2+12·3m (v03)2=12m v 32+12·3m v 42,解得v 3=14v 0,v 4=512v 0,最终小球1以14v 0的速度向左运动,圆弧槽以512v 0的速度向左运动,小球2以12v 0的速度向右运动,小球1最终的速度为14v 0=√6gR 8,故D 错误.4.长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小;(2)碰撞前瞬间B 的动能E k 至少多大?答案 (1)m 1√5gl (2)5gl (2m 1+m 2)22m 2解析 (1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律有m 1g =m 1v 2l ①A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v A 2=12m 1v 2+2m 1gl ②由动量定理有I =m 1v A③联立①②③式,得I =m 1√5gl ④(2)设两球粘在一起后瞬间的速度大小为v',A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v'=v A ⑤要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律有m 2v B -m 1v A =(m 1+m 2)v' ⑥又E k =12m 2v B 2 ⑦联立①②⑤⑥⑦式,得碰撞前瞬间B 的动能E k 至少为 E k =5gl (2m 1+m 2)22m 2⑧.5.[三轨推拉门/2023江苏扬州三模]有一款三轨推拉门(如图甲),门框内部宽为2.4m ,三扇相同的门板的俯视图如图乙,每扇门板宽为d =0.8m ,质量为m =20kg ,与轨道间的动摩擦因数为μ=0.01.在门板边缘凸起部位贴有尼龙扣,两门板碰后可连在一起.现三扇门板静止在最左侧,用力F 水平向右拉3号门板,一段时间后撤去.取重力加速度g =10m/s 2.(1)若3号门板左侧凸起部位恰能与2号门板右侧凸起部位接触,求力F 做的功W .(2)若F =12N ,3号门板恰好到达门框最右侧,大门完整关闭.①求3号门板与2号门板碰撞前瞬间的速度大小v 0.②求拉力F 的作用时间t .答案 (1)1.6J (2)①0.8m/s②2√63s解析 (1)根据动能定理有W -μmgd =0,解得W =1.6J(2)①设3号门板与2号门板碰撞后速度大小为v 1,碰后两门板位移大小均为d =0.8m从3号门板与2号门板碰撞后到大门完整关闭,根据功能关系有-2μmgd =-12·2m v 12碰撞过程,根据动量守恒定律有mv 0=2mv 1,解得v 0=0.8m/s②根据牛顿第二定律有F -μmg =ma根据动能定理有 Fx -μmgd =12m v 02【易错辨析】在关门过程中,拉力F 作用时间与门受到的摩擦力作用时间不同,不推荐应用动量定理列方程解答.根据运动学公式有x =12at 2解得t =2√63s.6.[2024湖南湘潭一中校考]如图是一游戏装置的简易模型,它由光滑的水平轨道和竖直平面内的光滑圆轨道组成,竖直圆轨道的半径R =0.9m ,圆轨道内侧最高点E 点装有一力传感器,且竖直圆轨道的最低点D 、D'点相互靠近且错开.水平轨道左侧放置着两个用细绳连接的物体A 和B ,其间有一压缩的轻弹簧(物体与轻弹簧不粘连),烧断细绳,物体被弹出.轨道右侧M 端与水平传送带MN 等高,并能平滑对接,传送带总长度L =5m ,传送带速度大小和方向均可调.已知A 物体质量m A =1kg ,B 物体质量可变,A 、B 间被压缩的弹簧的弹性势能为30J ,取重力加速度g =10m/s 2.(1)求测得的力传感器能显示的力的最小值;(2)要使物体A 冲上传送带后,均能到达N 点,求传送带与物体A 之间的动摩擦因数的最大值;(3)要使物体A 在圆轨道上运动时不脱离轨道,求物体B 的质量范围.答案 (1)0 (2)0.45 (3)m B ≤37kg 或m B ≥3kg解析 (1)当由重力提供向心力时,对E 点压力为0,所以测得的力传感器能显示的力的最小值F min =0(2)当物体A 恰好通过圆轨道最高点后进入传送带时速度最小,此时若传送带静止或逆时针转动,则物体A 一直在传送带上做匀减速直线运动.当物体A 到达N 点的速度为0时,则动摩擦因数最大,即对物体A 分析有m A g =m A v E2Rm A g ·2R -μm A gL =0-12m A v E2得μ=0.45.(3)物体A 不脱离圆轨道有两种情况:①过最高点的速度v E ≥√gR对物体A 从被弹簧弹出开始到到达最高点,根据动能定理有-m A g ·2R =12m A v E 2-12m A v A2得v A ≥√5gR =3√5m/s②到达圆轨道的圆心等高处时速度恰好为0,对物体A 从被弹簧弹出开始到到达圆心等高处,根据动能定理有-m A gR =0-12m A v A2得v A ≤√2gR =3√2m/s因为物体A 是通过释放弹簧的弹性势能获得速度,且A 与B 反向弹开,由动量守恒有m A v A =m B v B由机械能守恒有E p =12m A v A 2+12m B v B2得m B =v A260-v A2kg代入数据得m B ≤37kg 或m B ≥3kg.7.[2024河北唐山摸底演练]如图所示,一圆弧轨道AB 与倾角为θ的斜面BC 在B 点相接.可视为质点的两个形状相同的小球a 、b ,将小球b 置于圆弧轨道的最低点,使小球a 从圆弧轨道A 点由静止释放,两小球在最低点发生弹性正碰,整个系统固定于竖直平面内.已知圆弧轨道半径R =1m ,圆弧过A 、B 两端点的半径与竖直方向间的夹角均为θ=37°,小球a 的质量m 1=4kg ,小球b 的质量m 2=1kg ,重力加速度g =10m/s 2,不计一切阻力,sin37°=0.6,cos37°=0.8.求:(1)与小球b 碰前瞬间,小球a 的速度大小v 0;(2)碰后瞬间小球b 对轨道的压力大小F ;(3)小球b 从B 点飞出圆弧轨道后,距离斜面BC 的最远距离h ,√6.24取2.5.答案 (1)2m/s (2)20.24N (3)0.36m解析 (1)对小球a 从静止释放到与小球b 碰撞前瞬间的过程,由动能定理有m 1gR (1-cos θ)=12m 1v 02代入数据解得v 0=2m/s(2)小球a 与小球b 发生弹性正碰,则有m 1v 0=m 1v 1+m 2v 212m 1v 02=12m 1v 12+12m 2v 22对碰撞后瞬间小球b ,由牛顿第二定律有F N -m 2g =m 2v 22R联立并代入数据解得F N =20.24N由牛顿第三定律可得小球b 对轨道的压力大小F =F N =20.24N(3)对小球b 从碰撞后到飞出圆弧轨道瞬间的过程,由动能定理有-m 2gR (1-cos θ)=12m 2v 32-12m 2v 22代入数据解得v 3=2.5m/s由几何关系可知,此时小球b 的速度与斜面的夹角为α=74°小球b 在垂直斜面方向做类竖直上抛运动,则有v'0=v 3sin α,a =g cos θ对小球b 从B 点运动到距离斜面最远的过程,由运动学规律有2ah =v '02代入数据解得h =0.36m.8.[板块模型+弹簧模型+新信息/2023辽宁]如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N/m 的轻弹簧,弹簧处于自然状态.质量m 2=4kg 的小物块以水平向右的速度v 0=54m/s 滑上木板左端,两者共速时木板恰好与弹簧接触.木板足够长,物块与木板间的动摩擦因数μ=0.1,最大静摩擦力等于滑动摩擦力.弹簧始终处在弹性限度内,弹簧的弹性势能E p 与形变量x 的关系为E p =12kx 2.取重力加速度g =10m/s 2,结果可用根式表示.(1)求木板刚接触弹簧时速度v 1的大小及木板运动前右端距弹簧左端的距离x 1.(2)求木板与弹簧接触以后,物块与木板之间即将相对滑动时弹簧的压缩量x 2及此时木板速度v 2的大小.(3)已知木板向右运动的速度从v 2减小到0所用时间为t 0.求木板从速度为v 2时到之后与物块加速度首次相同时的过程中,系统因摩擦转化的内能ΔU (用t 0表示).答案 (1)1m/s 0.125m (2)0.25m√32m/s (3)(4√3t 0-8t 02)J解析 (1)小物块从滑上木板到两者共速的过程,由动量守恒定律有m 2v 0=(m 1+m 2)v 1解得v 1=1m/s两者共速前,对木板,由牛顿第二定律有μm 2g =m 1a解得a =4m/s 2由运动学公式有2ax 1=v 12。
高考物理总复习 专题五 动力学、动量和能量观点的综合应用
专题五动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.考点一碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m.P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L.物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . 教你解决问题第一步:审条件 挖隐含①“与静止的P 2发生碰撞,碰撞时间极短”隐含→ P 的速度不变. ②“碰撞后P 1与P 2粘连在一起”隐含→ P 1、P 2获得共同速度. ③“P 压缩弹簧后被弹回并停在A 点”隐含→ P 1、P 2、P 三者有共同速度及整个碰撞过程中的弹性势能变化为零.第二步:审情景 建模型 ①P 1与P 2碰撞建模→ 碰撞模型.②P 与P 2之间的相互作用建模→ 滑块—滑板模型. 第三步:审过程 选规律 ①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x 及弹性势能E p .模型3“子弹打木块”模型 1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m+M)v,Q热=fL相对=12mv02-12(M+m)v2.(2)若子弹穿出木块,有mv0=mv1+Mv2,Q热=fL相对=1 2mv−0212mv−1212Mv22.例3.(多选)如图所示,一质量m2=0.25 kg的平顶小车,车顶右端放一质量m3=0.30 kg的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m1=0.05 kg 的子弹以水平速度v0=18 m/s射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g取10ms2.下列分析正确的是( )A.小物体在小车上相对小车滑行的时间为13sB.最后小物体与小车的共同速度为3 m/sC.小车的最小长度为1.0 mD.小车对小物体的摩擦力的冲量为0.45 N·s跟进训练1.[黑龙江哈尔滨模拟](多选)如图所示,两个小球A、B大小相等,质量分布均匀,分别为m1、m2,m1<m2,A、B与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A球心等高处水平快速向右敲击A,作用于A的冲量大小为I1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B球心等高处水平快速向左敲击B,作用于B的冲量大小为I2,I1=I2,则下列说法正确的是( )A.若两次锤子敲击完成瞬间,A、B两球获得的动量大小分别为p1和p2,则p1=p2B.若两次锤子敲击分别对A、B两球做的功为W1和W2,则W1=W2C.若两次弹簧压缩到最短时的长度分别为L1和L2,则L1<L2D.若两次弹簧压缩到最短时,A、弹簧、B的共同速度大小分别为v1和v2,则v1>v22.如图甲所示,质量为M=3.0 kg的平板小车C静止在光滑的水平面上,在t=0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4.如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D 端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用 关键能力·分层突破例1 解析:由题意可知,当b 的速度最小时,弹簧恰好恢复原长,设此时a 的速度最大为v ,由动量守恒定律和机械能守恒定律得:m b v 0=m b v 1+m a v ,12m b v 02=12m b v 12+12m a v 2,代入数据解得:m a =0.5 kg ,v =4m/s ,故A 错误,B 正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v 0=(m a +m b )v 2,E p =12m b v −0212(ma + mb)v 22,代入数据解得:E p =1.5 J ,故C 正确;在a 离开挡板前,a 、b 及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D 错误.答案:BC例2 解析:(1)P 1、P 2碰撞瞬间,P 的速度不受影响,根据动量守恒mv 0=2mv 1,解得v 1=v02最终三个物体具有共同速度,根据动量守恒: 3mv 0=4mv 2, 解得v 2=34v 0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:12×2mv +1212×2mv −0212×4mv 22=2mgμ(L+x)×2解得x =v 0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+答案:(1)v0234v0(2)v0232μg-L 116mv02例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p 22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v02=12(m1+m2)v2+E p,得E p=m1m22(m1+m2)v02,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:=3 m,=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2车的长度至少为l=x A+x B+例 4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+1212m2v22解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v ,距水平面的高度为h ,则有m 1v 1=(m 1+M )v ,12m 1v 12=12(m 1+M)v 2+m 1gh解得h =0.1 m由于h =R(1-cos 60°),所以物块P 恰好不能从滑块左侧冲出,假设成立,之后物块P 沿弧形槽从滑块上滑下,设物块P 返回到水平面时的速度为v 3、滑块的速度为v 4,由动量守恒定律和机械能守恒定律得m 1v 1=m 1v 3+Mv 4,12m 1v 12=12m 1v +3212Mv 42 解得v 3=0,v 4=2 m/s.(2)若Q 恰能经过d 点,则Q 在d 点的速度v d 满足m 2g =m 2v d2rQ 从b 点运动到半圆轨道最高点d 的过程,由动能定理有-μm 2gx bc -2m 2gr =12m 2v −d 212m2v 22解得Q 恰能经过半圆轨道最高点时μ=0.3若Q 恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm 2g 解得Q 恰能运动到与半圆轨道圆心等高点时μ=0.6 若Q 恰能到达c 点,则由动能定理得-μm 2g 解得Q 恰能运动到c 点时μ=0.8分析可知,要使Q 能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C 点时,有2mg +mg =m v C2R,解得v C =√3gR .小球从A 到C ,由机械能守恒定律得12mv 02=12mv C 2+mg·2R,联立解得v 0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12mv C2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR(2)R。
动量动能定理机械能守恒能量守恒综合运用
动量动能定理机械能守恒能量守恒综合运用假设我们有一个木箱,质量为m,放在一个水平的滑道上。
初始时,木箱以速度v0沿滑道向右运动。
滑道底部和末端的垂直高度分别为h1和h2,木箱在滑道上运动的过程中还受到了一个与速度方向相反的恒力F。
首先我们来分析初始时刻的动能和势能。
木箱的初始动能为:(1) K = 1/2 mv0^2木箱的初始势能为:(2) U = mgh1其中,g为重力加速度。
根据机械能守恒定律,系统的总机械能守恒,即初始机械能和末端机械能的和保持不变。
因为末端只有势能,所以有:(3) K + U = mg(h1 + h2)接下来我们来考虑木箱在滑道上受到的恒力F对动能的影响。
根据动量动能定理,恒力对物体的作用会改变物体的动能。
恒力对木箱的总功为:(4)W=Fx其中x为恒力F作用的距离。
假设木箱在滑道上受到恒力F作用的时间为t,速度增加的大小为△v。
根据动量动能定理,恒力对木箱的总功等于木箱速度的变化与质量的乘积:(5)W=△K=m△v因此,根据(4)式和(5)式,我们可以得到:(6)m△v=Fx接下来我们将初始动能、势能以及木箱在滑道上受到的恒力F对动能的影响结合起来,综合运用动量动能定理、机械能守恒和能量守恒。
根据能量守恒定律,初始机械能和末端机械能的和保持不变,即:(7) K + U + W = mg(h1 + h2)代入(1)式和(2)式,可以得到:(8) 1/2 mv0^2 + mgh1 + m△v = mg(h1 + h2)再由(6)式,即:m△v=Fx代入(8)式,得到:1/2 mv0^2 + mgh1 + Fx = mg(h1 + h2)通过以上运算我们可以发现,当木箱滑到末端时,速度变为v,并且速度、质量和滑道的高度之间存在关系。
同时可以通过给定的恒力F、质量m、初始速度v0和滑道的高度差h1和h2来求解滑道上的各个物理量。
这样我们就用到了动量动能定理、机械能守恒和能量守恒这三个定律进行综合运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5-3-1(P1--7) 动能、动量、机械能守恒 综合运用动能定理的理解1.动能定理的公式是标量式,v 为物体相对于同一参照系的瞬时速度.2.动能定理的研究对象是单一物体,或可看成单一物体的物体系.3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功. (3)选择初、末状态及参照系.(4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ.解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程: 子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……① 木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2,有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,ghv s 22=……③ 由①、②、③可得μ=0.50【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理.机械能(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.(2)说明①机械能是标量,单位为焦耳(J ).②机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能. 机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化. 一、应用机械能守恒定律解题的步骤: 1.根据题意选取研究对象(物体或系统);图5-3-2图5-3-32.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;4.根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m Rv m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A = 根据机械能守恒定律 A CE E = 列等式:R mg mgR mgh 221+=解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mgF Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.【例2】质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离. 物块从3x 0位置自由落下,与地球构成的系统机械能守恒.则有200213.mv x mg =(1) v 0为物块与钢板碰撞时的的速度.因为碰撞板短,内力远大于外力,钢板与物块间动量守恒.设v 1为两者碰撞后共同速m v 0=2m v 1 (2)图5-5-1 图5-5-8两者以v l 向下运动恰返回O 点,说明此位置速度为零。
运动过程中机械能守恒。
设接触位置弹性势能为E p ,则212)2(21mgx v m E p =+ (3) 同理2m 物块与m 物块有相同的物理过程碰撞中动量守恒2m v 0=3m v 2 (4) 所不同2m 与钢板碰撞返回O 点速度不为零,设为v 则2022')3(213)3(21v m mgx v m E p +=+ (5)因为两次碰撞时间极短,弹性形变未发生变化E p =E ’p(6)由于2m 物块与钢板过O 点时弹力为零.两者加速度相同为g ,之后钢板被弹簧牵制,则其加速度大于g ,所以与物块分离,物块以v 竖直上抛.上升距离为:gv h 22=(7)由(1)~(6)式解得v 代入(7)解得021x h =【点拨】本题考查了机械能守恒、动量守恒、能量转化的.守恒等多个知识点.是一个多运动过程的问题。
关键问题是分清楚每一个过程.建立过程的物理模型,找到相应解决问题的规律.弹簧类问题,画好位置草图至关重要.动量守恒定律1.动量:物体的质量和速度的乘积叫做动量。
动量是状态量,它与时刻相对应。
描述物体的运动状态。
⑵动量是矢量,它的方向和速度方向相同。
运算遵循平行四边形定则。
⑶动量具有相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系 2.动量守恒定律(1)定律内容及公式:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
即:22112211v m v m v m v m '+'=+ (2)动量守恒定律成立的条件①系统不受外力或者所受外力之和为零;②系统受外力,但外力远小于内力,可以忽略不计;③系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
④全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
(3)动量守恒定律的表达形式:除了22112211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/外,还有:Δp 1= -Δp 2【例1】如图11所示,C 是放在光滑的水平面上的一块木板,木板的质量为3m ,在木板的上面有两块质量均为m 的小木块A 和B ,它们与木板间的动摩擦因数均为μ。
最初木板静止,A 、B 两木块同时以方向水平向右的初速度V 0和2V 0在木板上滑动,木板足够长, A 、B 始终未滑离木板。
求:(1)木块B 从刚开始运动到与木板C 速度刚好相等的过程中,木块B 所发生的位移;(2)木块A 在整个过程中的最小速度。
解:(1)木块A 先做匀减速直线运动,后做匀加速直线运动;木块B 一直做匀减速直线运动;木板C 做两段加速度不同的匀加速直线运动,直到A 、B 、C 三者的速度相等为止,设为V 1。
对A 、B 、C 三者组成的系统,由动量守恒定律得:100)3(2V m m m mV mV ++=+解得:V 1=0.6V 0对木块B 运用动能定理,有:2021)2(2121V m mV mgs -=-μ 解得)50/(91:20g V s μ=(2)设木块A 在整个过程中的最小速度为V ′,所用时间为t ,由牛顿第二定律: 对木块A :g m mg a μμ==/1, 对木板C :3/23/22g m mg a μμ==,当木块A 与木板C 的速度相等时,木块A 的速度最小,因此有: t g gt V )3/2(0μμ=- 解得)5/(30g V t μ= 木块A 在整个过程中的最小速度为:.5/2010/V t a V V =-=能量守恒定律(1)内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变.(2)导致能量守恒定律最后确立的两类重要事实是:确认了永动机的不可能性和发现了各种自然现象之间的相互关系与转化.(3)建立能量转化与守恒定律工作最有成效的三位科学家是:迈尔、焦耳、亥姆霍兹. (4) 能量守恒定律的建立,是人类认识自然的一次重大飞跃,是哲学和自然科学长期发展和进步的结果.它是最普遍、最重要、最可靠的自然规律之一,而且是大自然普遍和谐性的表图11现形式.做功的过程是能量转化的过程,功是能的转化的量度.需要强调的是:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它个一个时刻相对应.两者的单位是相同的(都是J ),但不能说功就是能,也不能说“功变成了能”.⑴物体动能的增量由外力做的总功来量度:W 外=ΔE k ,这就是动能定理. ⑵物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理.【例1】如图5-6-2所示,一根轻弹簧下端固定,竖立在水平面上.其正上方A 位置有一只小球.小球从静止开始下落,在B 位置接触弹簧的上端,在C 位置小球所受弹力大小等于重力,在D 位置小球速度减小到零.小球下降阶段下列说法中正确的是( ) A.在B 位置小球动能最大 B.在C 位置小球动能最大 C.从A →C 位置小球重力势能的减少大于小球动能的增加 D.从A →D 位置小球重力势能的减少等于弹簧弹性势能的增加 【解析】小球动能的增加用合外力做功来量度,A →C 小球受的合力一直向下,对小球做正功,使动能增加;C →D 小球受的合力一直向上,对小球做负功,使动能减小,所以B 正确.从A →C 小球重力势能的减少等于小球动能的增加和弹性势能之和,所以C 正确.A 、D 两位置动能均为零,重力做的正功等于弹力做的负功,所以D 正确.选B 、C 、D .【答案】BCD【例2】如图5-6-4所示,质量为m 的长木板A 静止在光滑水平面上,另两个质量也是m 的铁块B 、C 同时从A 的左右两端滑上A 的上表面,初速度大小分别为v 和2v ,B 、C 与A 间的动摩擦因数均为μ.⑴试分析B 、C 滑上长木板A 后,A 的运动状态如何变化? (2)为使B 、C 不相撞,A 木板至少多长?【解析】(1)B 、C 都相对于A 滑动时,A 所受合力为零,保持静止.这段时间为gv t μ=∆1 B 刚好相对于A 静止时,C 的速度为v ,A 开向左做匀加速运动,由动量守恒可求出A 、B 、C 最终的共同速度为3v v =' 这段加速经历的时间为gv t μ322=∆ 最终A 将以3v v ='做匀速运动(2)全过程系统动能的损失都将转化为系统的内能,而摩擦生热为mgd fd Q μ== 由能量守恒定律列式:()222332122121⎪⎭⎫⎝⎛⋅-+=v m v m mv mgd μ图5-6-2 D A BC 图5-6-4图5-6-6解得:gv d μ372=这就是A 木板应该具有的最小长度.【例3】如图5-6-5所示,质量为M 的木块放在光滑水平面上,现有一质量为m 的子弹以速度v 0射入木块中.设子弹在木块中所受阻力不变,大小为f ,且子弹未射穿木块.若子弹射入木块的深度为D ,则木块向前移动距离是多少?系统损失的机械能是多少?解:以子弹、木块组成系统为研究对象.画出运算草图,如图5-6-6所示.系统水平方向不受外力,故水平方向动量守恒.据动量守恒定律有mv 0= (M+m)v (设v 0方向为正) 解得:mM mv v +=0 子弹打入木块到与木块有相同速度过程中摩擦力做功:对子弹 2022121mv mv fs -=-子① 对木块 221Mv fs =木 ② 由运动草图可S 木=S 子-D ③ 由①②③解得 mM mD s +=木①+②有)木子s s f mv v m M --=-+(21)(21202 fD mv v m M -=-+20221)(21 即220)(2121v m M mv fD +-=)(2)1(121)()(21212020220220m M v m M m mM m M mv m M v m m M mv E K +-+=+-+=++-=∆图5-6-5经典练习题 1. 如图所示, DO 是水平面,AB 是斜面,初速度为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零.如果斜面改为AC,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零.已知物体与路面之间的动摩擦因数处处相同且不为零,则物体具有的初速度 ( )A.大于v 0B.等于v 0C.小于v 0D.取决于斜面的倾斜角2. 如图所示,固定斜面倾角为θ,整个斜面分为AB 、BC 两段,AB=2BC 。