高一数学必修二直线与方程专题复习
人教版必修二:直线与方程复习讲义及巩固练习
直线与方程知识梳理:1.倾斜角的定义(1)当直线l 与x 轴相交时,取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.(2)当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. 2.倾斜角的范围直线的倾斜角α的取值范围为0°≤α<180°. 3.直线的斜率直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α. 4.斜率与倾斜角的对应关系α=0° 0°<α<90°α=90° 90°<α<180°5.直线的斜率公式已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),则其斜率k =y 2-y 1x 2-x 1(x 1≠x 2).6.两条直线平行与斜率之间的关系设两条不重合的直线l 1,l 2,倾斜角分别为α1,α2,斜率存在时斜率分别为k 1,k 2.则对应关系如下:7.8.直线方程的五种形式(1)直线的点斜式方程: y -y 0=k(x -x 0). 由直线上一定点P 0(x 0,y 0)及斜率k 确定. (2)直线的斜截式方程:y =kx +b. 由直线的斜率k 和它在y 轴上的截距b 确定. (3)直线的两点式方程:y -y 1y 2-y 1=x -x 1x 2-x 1. 由直线上两点P 1(x 1,y 1),P 2(x 2,y 2)确定. (4)直线的截距式方程:x a +yb=1 . 由直线分别在x ,y 轴上的截距a ,b 确定.(5)直线的一般式方程: Ax +By +C =0. 当B≠0时,其斜率是-A B ,在y 轴上的截距是-CB 当B =0时,这条直线垂直于x 轴. 9.两条直线的位置关系已知直线l 1:y =k 1x +b 1与直线l 2:y =k 2x +b 2.(1) l 1∥l 2⇔k 1=k 2且b 1≠b 2. (2) l 1⊥l 2⇔k 1·k 2=-1. 10.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1)、(x 2,y 2),设P(x ,y)是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y22.11.两条直线的交点已知两直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0.若两直线方程组成的方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0有惟一解⎩⎪⎨⎪⎧x =x 0,y =y 0,则两直线相交,交点坐标为(x 0,y 0).12.两点间的距离公式(1)已知平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)则它们的距离|P 1P 2|=x 2-x 12+y 2-y 12.(2)两点间距离的特殊情况①原点O(0,0)与任一点P(x ,y)的距离|OP|=x 2+y 2. ②当P 1P 2∥x 轴(y 1=y 2)时,|P 1P 2|=|x 2-x 1|. ③当P 1P 2∥y 轴(x 1=x 2)时,|P 1P 2|=|y 2-y 1|. 13.点到直线的距离公式点P(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C|A 2+B 2. 14.两条平行直线间的距离公式两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0之间的距离d =|C 1-C 2|A 2+B2.巩固练习:1.如图,直线l 的倾斜角为( )A .45°B .135°C .0°D .不存在2.已知直线l的倾斜角为30°,则直线l的斜率为__________.3.已知A(2,3)、B(-1,4),则直线AB的斜率是________.4.已知三点A(a,2),B(3,7),C(-2,-9a)在同一条直线上,则实数a的值为_______.5.已知直线l1∥l2,直线l1的斜率k1=2,则直线l2的斜率k2=________.6.已知直线l1⊥l2,若直线l1的倾斜角为30°,则直线l2的斜率为________.7.直线l1的斜率为2,直线l2上有三点M(3,5),N(x,7),P(-1,y),若l1⊥l2,则x=________,y =________.8.若直线l1,l2的倾斜角分别为α1,α2,且l1⊥l2,则( )A.α1-α2=90° B.α2-α1=90° C.|α1-α2|=90° D.α1+α2=180°9.直线l过点A(-1,2),斜率为3,则直线l的方程为___________________.10.已知直线l的点斜式方程为y-1=x-1,那么直线l的斜率为________,倾斜角为________,在y 轴上的截距为________.11.(1)斜率为2,在y轴上的截距是5的直线方程为____________________;(2)倾斜角为150°,在y轴上的截距是-2的直线方程为_____________________;12.(1)经过点(1,1)且与直线y=2x+7平行的直线方程为_____________________;(2)经过点(-1,1)且与直线y=-2x+7垂直的直线方程为_________________.13.过P1(2,0),P2(0,3)两点的直线方程是_________________.14.直线2x+3y+1=0的斜率为________;在x轴上的截距为________;在y轴上的截距为________.15.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A.4x+2y=5 B.4x-2y=5 C.x+2y=5 D.x-2y=516.若直线ax+by+c=0经过第一、二、三象限,则( )A.ab>0,bc>0 B.ab>0,bc<0 C.ab<0,bc>0 D.ab<0,bc<017.在下列各种情况下,直线Ax+By+C=0(A,B不同时为零)的系数A,B,C之间各有什么关系:(1)直线与x轴平行时:_____________; (2)直线与y轴平行时:_________________;(3)直线过原点时:_________________; (4)直线过点(1,-1)时:_______________.18.直线x+2y-2=0与直线2x+y-3=0的交点坐标是______________.19.已知M(2,1),N(-1,5),则|MN|=_____________. 20.直线x -2y +1=0与2x +y -1=0的位置关系是( )A .平行B .相交且垂直C .相交但不垂直D .重合 21.原点到直线x +2y -5=0的距离为___________.22.两条平行线l 1:3x +4y -7=0和l 2:3x +4y -12=0的距离为________________. 23.若点(1,a)到直线y =x +1的距离是322,则实数a 为___________.24.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是_________. 25.当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2 (1)平行; (2)垂直26.已知在△ABC 中,A ,B 的坐标分别为(-1,2),(4,3),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标; (2)求直线MN 的方程.。
高一数学必修2 直线与方程 精讲
一、直线的一般式方程【知识要点】1. 一般式:0A x B y C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A B -,y 轴上截距为CB-的直线. 2 与直线:0l Ax By C ++=平行的直线,可设所求方程为'0Ax By C ++=; 与直线0Ax By C ++=垂直的直线,可设所求方程为'0Bx Ay C -+=. 过点00(,)P x y 的直线可写为00()()0A x x B y y -+-=.经过点0M ,且平行于直线l 的直线方程是00()()0A x x B y y -+-=; 经过点0M ,且垂直于直线l 的直线方程是00()()0B x x A y y ---=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别: (1)1212120l l A A B B ⊥⇔+=;(2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时, 则11112222//A B C l l A B C ⇔=≠; 1l 与2l 重合111222A B C A B C ⇔==; 1l 与2l 相交1122A BA B ⇔≠. 【经典例题】例1、已知直线1l :220x my m +--=,2l :10mx y m +--=,问m 为何值时: (1)12l l ⊥; (2)12//l l .例2、(1)求经过点(3,2)A 且与直线420x y +-=平行的直线方程;(2)求经过点(3,0)B 且与直线250x y +-=垂直的直线方程.例3、已知直线l 的方程为3x +4y -12=0,求与直线l 平行且过点(-1,3)的直线的方程.例4、直线方程0Ax By C ++=的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交; (2)只与x 轴相交;(3)只与y 轴相交; (4)是x 轴所在直线; (5)是y 轴所在直线.【经典练习】1.如果直线0Ax By C ++=的倾斜角为45︒,则有关系式( ).A. A B =B. 0A B +=C. 1AB =D. 以上均不可能 2.若0a b c -+=,则直线0ax by c ++=必经过一个定点是( ). A. (1,1) B. (1,1)- C. (1,1)- D. (1,1)-- 3.直线1(0)ax by ab +=≠与两坐标轴围成的面积是( ). A .12ab B .1||2ab C .12ab D .12||ab 4. 直线(32-)x +y =3和直线x +(23-)y =2的位置关系是( ). A. 相交不垂直 B. 垂直 C. 平行D. 重合5.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n 的值分别为( ).A. 4和3B. -4和3C. -4和-3D. 4和-3 6.若直线x +a y+2=0和2x +3y +1=0互相垂直,则a = .7.过两点(5,7)和(1,3)的直线一般式方程为 ;若点(a ,12)在此直线上,则a = . 8.根据下列各条件写出直线的方程,并且化成一般式: (1)斜率是-12,经过点A (8,-2); (2)经过点B (4,2),平行于x 轴; (3)在x 轴和y 轴上的截距分别是32,-3; (4)经过两点1P (3,-2)、2P (5,-4).9.已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),且12120A A B B +=. 求证12l l ⊥.10.已知直线1:60l x my ++=,2:(2)320l m x y m -++=,求m 的值,使得:(1)l 1和l 2相交; (2)l 1⊥l 2; (3)l 1//l 2; (4)l 1和l 2重合.二、两条直线的交点坐标【知识要点】1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩.若方程组有惟一解,则两条直线相交,此解就是交点的坐标; 若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点, 其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.【经典例题】例1、判断下列各对直线的位置关系. 如果相交,求出交点坐标. (1)直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0; (2)直线l 1: 1nx y n -=-, l 2: 2ny x n -=.例2、求经过两条直线280x y +-=和210x y -+=的交点,且平行于直线4370x y --=的直线方程.例3、已知直线(2)(31)1a y a x -=--. 求证:无论a 为何值时直线总经过第一象限.例4、若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,求直线l 的倾斜角的取值范围.【经典练习】1.直线3510x y +-=与4350x y +-=的交点是( ). A. (2,1)- B. (3,2)- C. (2,1)- D. (3,2)-2.直线1:(21)2l x y -+=与直线2:(21)3l x y ++=的位置关系是( ). A. 平行 B. 相交 C. 垂直 D. 重合3.已知直线12,l l 的方程分别为 1111:0l A x B y C ++=,2222:0l A x B y C ++=,且12l l 与只有一个公共点,则( ).A. 11220A B A B -≠B. 12210A B A B -≠C.1122A B A B ≠D. 1212A AB B ≠ 4.经过直线240x y -+=与50x y -+=的交点,且垂直于直线20x y -=的直线的方程是( ).A. 280x y +-=B. 280x y --=C. 280x y ++=D. 280x y -+= 5.直线a x +2y +8=0,4x +3y =10和2x -y =10相交于一点,则a 的值为( ). A. 1 B. -1 C. 2 D. -26.直线1l :2x +3y =12与2l :x -2y =4的交点坐标为 .7.(07年上海卷.理2)若直线1210l x my ++=: 与直线231l y x =-:平行,则m = . 8.已知直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0. 求经过l 1和l 2的交点,且与直线l 3: 3x -2y +4=0垂直的直线l 的方程.9.试求直线1:l 20x y --=关于直线2l :330x y -+=对称的直线l 的方程.10.已知直线方程为(2+λ)x +(1-2λ)y +4-3λ=0. (1)求证不论λ取何实数值,此直线必过定点;(2)过这定点引一直线,使它夹在两坐标轴间的线段被这点平分,求这条直线方程.三、两点间的距离【知识要点】1. 平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:22121212||()()PP x x y y =-+-. 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-; 当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;当12,P P 在直线y kx b =+上时,21212||1||PPk x x =+-. 2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量; (2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.【经典例题】例1、在直线20x y -=上求一点P ,使它到点(5,8)M 的距离为5,并求直线PM 的方程.例2、直线2x -y -4=0上有一点P ,求它与两定点A (4,-1),B (3,4)的距离之差的最大值.例3、如图,已知函数2()1f x x =+,设,a b R ∈,且a b ≠,求证|()()|f a f b -<||a b -.oxA (1,a )B (1,b )y【经典练习】1.已知(2,1),(2,5)A B --,则|AB |等于( ). A. 4 B.10 C. 6 D. 2132.已知点(2,1),(,3)A B a --且||5AB =,则a 的值为( ). A. 1 B. -5 C. 1或-5 D. -1或53.点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标是(3,4),则||AB 的长为( ). A. 10 B. 5 C. 8 D. 64.已知(1,2),(0,4)A B -,点C 在x 轴上,且AC =BC ,则点C 的坐标为( ). A. 11(,0)2-B. 11(0,)2-C. 11(0,)2D. 11(,0)25.已知点(1,3),(5,1)M N -,点(,)P x y 到M 、N 的距离相等,则点(,)P x y 所满足的方程是( ).A. 380x y +-=B. 340x y --=C. 390x y -+=D. 380x y -+= 6.已知(7,8),(10,4),(2,4)A B C -,则BC 边上的中线AM 的长为 . 7.已知点P (2,-4)与Q (0,8)关于直线l 对称,则直线l 的方程为 . 8.已知点(1,2),(3,4),(5,0)A B C ,判断ABC ∆的类型.9.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.求22PM PN +的最小值,及取最小值时点P 的坐标.四、点到直线的距离及两平行线距离【知识要点】1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为0022||Ax By C d A B++=+.2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式1222||C C d A B-=+,推导过程:在直线2l 上任取一点00(,)P x y ,则0020Ax By C ++=,即002Ax By C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为001122222||||Ax By C C C d A BA B++-==++.【经典例题】例1、求过直线1110:33l y x =-+和2:30l x y -=的交点并且与原点相距为1的直线l 的方程.例2、在函数24y x =的图象上求一点P ,使P 到直线45y x =-的距离最短,并求这个最短的距离.例3、求证直线L :(2)(1)(64)0m x m y m +-+-+=与点(4,1)P -的距离不等于3.例4、求直线1:2310l x y +-=与2:4650l x y +-=的正中平行直线方程. .【经典练习】1.点(0,5)到直线y =2x 的距离是( ).A. 52B. 5C. 32D. 522.动点P 在直线40x y +-=上,O 为原点,则OP 的最小值为( ).A.10 B. 22 C. 6 D. 23.(03年全国卷)已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a =( ). A .2 B .-2C .21-D .21+4.两平行直线51230102450x y x y ++=++=与间的距离是( ).A.213 B. 113C. 126D. 5265.直线l 过点P (1,2),且M (2,3),N (4,-5)到l 的距离相等,则直线l 的方程是( ).A. 4x+y -6=0B. x +4y -6=0C. 2x +3y -7=0或x +4y -6=0D. 3x +2y -7=0或4x+y -6=0 6.两平行直线2y x =和25y x =+间的距离是 .7.与直线l :51260x y -+=平行且到l 的距离为2的直线的方程为 .8.(1)已知点A (a ,6)到直线3x -4y =2的距离d =4,求a 的值.(2)在直线30x y +=求一点P , 使它到原点的距离与到直线320x y +-=的距离相等.五、直线与方程复习【知识要点】理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;能根据两条直线的斜率判定平行或垂直;握直线方程的几种形式(点斜式、两点式及一般式);能用解方程组的方法求两直线的交点坐标;掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.【经典例题】例1、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线PA 的方程为10x y -+=,则直线PB 的方程是( ).A.240x y --=B. 210x y --= 2C.50x y +-=D.270x y +-=例2、一直线被两直线1l :460x y ++=,2l :3560x y --=截得的线段的中点恰好是坐标原点,求该直线方程.例3、光线从A (-3,4)点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点D (-1,6),求BC 所在直线的方程.【经典练习】1. 在x 轴和y 轴上的截距分别为-2、3的直线方程是( ). A. 2360x y --= B. 3260x y --=C. 3260x y -+=D. 2360x y -+=2.若直线0Ax By C ++=通过第二、三、四象限,则系数A 、B 、C 需满足条件( ). A. A 、B 、C 同号 B. AC <0,BC <0C. C =0,AB <0D. A =0,BC <03. 到两坐标轴距离相等的点的轨迹方程是( ). A. x -y =0B. x +y =0C. |x |-y =0D. |x |-|y |=04.下列四种说法中的正确的是( ).A. 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B. 经过任意两个不同点111222(,),(,)P x y P x y 的直线都可以用方程121121()()()()y y x x x x y y --=--表示C. 不经过原点的直线都可以用方程1x ya b+=表示 D. 经过定点A (0,b )的直线都可以用方程y =kx +b 表示5.已知点(0,1)P -,点Q 在直线x -y +1=0上,若直线PQ 垂直于直线x +2y -5=0,则点Q 的坐标是( ).A .(-2,1)B .(2,1)C .(2,3)D .(-2,-1) 6.已知两点A (1,-1)、B (3,3),点C (5,a )在直线AB 上,则实数a 的值是 . 7.点P 在直线x +y -4=0上,O 为原点,则|OP |的最小值是 . 8.求经过直线772400x y x y +-=-=和的交点,且与原点距离为125的直线方程.9.已知点A 的坐标为(4,4)-,直线l 的方程为3x +y -2=0,求:(1)点A 关于直线l 的对称点A ′的坐标; (2)直线l 关于点A 的对称直线l '的方程.第24讲 §3.2.3 直线的一般式方程¤学习目标:根据确定直线位置的几何要素,探索并掌握直线方程的一般式,体会一般式与直线其它方程形式之间的关系.¤知识要点:1. 一般式(general form ):0A x B y C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A B -,y 轴上截距为CB-的直线.2 与直线:0l Ax By C ++=平行的直线,可设所求方程为'0Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为'0Bx Ay C -+=. 过点00(,)P x y 的直线可写为00()()0A x x B y y -+-=.经过点0M ,且平行于直线l 的直线方程是00()()0A x x B y y -+-=; 经过点0M ,且垂直于直线l 的直线方程是00()()0B x x A y y ---=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别: (1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠. 如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B CA B C ⇔==;1l 与2l 相交1122A B A B ⇔≠. ¤例题精讲:【例1】已知直线1l :220x my m +--=,2l :10mx y m +--=,问m 为何值时: (1)12l l ⊥; (2)12//l l .解:(1)12l l ⊥时,12120A A B B +=,则110m m ⨯+⨯=,解得m =0.(2)12//l l 时,12211m m m m--=≠--, 解得m =1. 【例2】(1)求经过点(3,2)A 且与直线420x y +-=平行的直线方程; (2)求经过点(3,0)B 且与直线250x y +-=垂直的直线方程. 解:(1)由题意得所求平行直线方程4(3)(2)0x y -+-=,化为一般式4140x y +-=. (2) 由题意得所求垂直直线方程(3)2(0)0x y ---=,化为一般式230x y --=.【例3】已知直线l 的方程为3x +4y -12=0,求与直线l 平行且过点(-1,3)的直线的方程.分析:由两直线平行,所以斜率相等且为34-,再由点斜式求出所求直线的方程. 解:直线l:3x +4y -12=0的斜率为34-, ∵ 所求直线与已知直线平行, ∴所求直线的斜率为34-, 又由于所求直线过点(-1,3),所以,所求直线的方程为:33(1)4y x -=-+,即3490x y +-=.点评:根据两条直线平行或垂直的关系,得到斜率之间的关系,从而由已知直线的斜率及点斜式求出所求直线的方程. 此题也可根据直线方程的一种形式00()()0A x x B y y -+-=而直接写出方程,即3(1)4(3)0x y ++-=,再化简而得.【例4】直线方程0Ax By C ++=的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交;(2)只与x 轴相交;(3)只与y 轴相交;(4)是x 轴所在直线;(5)是y 轴所在直线.分析:由直线性质,考察相应图形,从斜率、截距等角度,分析系数的特征. 解:(1)当A ≠0,B ≠0,直线与两条坐标轴都相交. (2)当A ≠0,B =0时,直线只与x 轴相交. (3)当A =0,B ≠0时,直线只与y 轴相交.(4)当A =0,B ≠0,C =0,直线是x 轴所在直线. (5)当A ≠0,B =0,C =0时,直线是y 轴所在直线. 点评:结合图形的几何性质,转化为方程形式所满足的代数形式. 对于直线的一般式方程,需要特别注意以上几种特殊位置时的方程形式.第24练 §3.2.3 直线的一般式方程※基础达标1.如果直线0Ax By C ++=的倾斜角为45︒,则有关系式( ).A. A B =B. 0A B +=C. 1AB =D. 以上均不可能 2.若0a b c -+=,则直线0ax by c ++=必经过一个定点是( ). A. (1,1) B. (1,1)- C. (1,1)- D. (1,1)-- 3.直线1(0)ax by ab +=≠与两坐标轴围成的面积是( ). A .12ab B .1||2ab C .12abD .12||ab 4.(2000京皖春)直线(32-)x +y =3和直线x +(23-)y =2的位置关系是( ).A. 相交不垂直B. 垂直C. 平行D. 重合 5.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n 的值分别为( ).A. 4和3B. -4和3C. -4和-3D. 4和-3 6.若直线x +a y+2=0和2x +3y +1=0互相垂直,则a = .7.过两点(5,7)和(1,3)的直线一般式方程为 ;若点(a ,12)在此直线上,则a = .※能力提高8.根据下列各条件写出直线的方程,并且化成一般式:(1)斜率是-12,经过点A (8,-2); (2)经过点B (4,2),平行于x 轴;(3)在x 轴和y 轴上的截距分别是32,-3; (4)经过两点1P (3,-2)、2P (5,-4).9.已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),且12120A A B B +=. 求证12l l ⊥.※探究创新10.已知直线1:60l x my ++=,2:(2)320l m x y m -++=,求m 的值,使得: (1)l 1和l 2相交;(2)l 1⊥l 2;(3)l 1//l 2;(4)l 1和l 2重合.第25讲 §3.3.1 两条直线的交点坐标¤学习目标:进一步掌握两条直线的位置关系,能够根据方程判断两直线的位置关系,理解两直线的交点与方程的解之间的关系,能用解方程组的方法求两直线的交点坐标.¤知识要点:1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.¤例题精讲:【例1】判断下列各对直线的位置关系. 如果相交,求出交点坐标.(1)直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0; (2)直线l 1: 1nx y n -=-, l 2: 2ny x n -=.解:(1)解方程组231003420x y x y -+=⎧⎨+-=⎩, 得22x y =-⎧⎨=⎩.所以,l 1与l 2相交,交点是(-2,2).(2)解方程组12nx y n ny x n-=-⎧⎨-=⎩,消y 得 22(1)n x n n -=+.当1n =时,方程组无解,所以两直线无公共点,1l //2l .当1n =-时,方程组无数解,所以两直线有无数个公共点,l 1与l 2重合. 当1n ≠且1n ≠-,方程组有惟一解,得到1n x n =-,211n y n -=-, l 1与l 2相交. ∴当1n =时,1l //2l ;当1n =-时,l 1与l 2重合;当1n ≠且1n ≠-,l 1与l 2相交,交点是21(,)11n n n n ---. 【例2】求经过两条直线280x y +-=和210x y -+=的交点,且平行于直线4370x y --=的直线方程.解:设所求直线的方程为28(21x y x y λ+-+-+=,整理为(2)(12)x y λλλ++-+-=.∵ 平行于直线4370x y --=, ∴ (2)(3)(12)40λλ+⨯---⨯=,解得2λ=. 则所求直线方程为4360x y --=.【例3】已知直线(2)(31)1a y a x -=--. 求证:无论a 为何值时直线总经过第一象限. 解:应用过两直线交点的直线系方程,将方程整理为(3)(21)0a x y x y -+-+-=.对任意实数a 恒过直线30x y -=与210x y -+=的交点为(15,35),∴ 直线系恒过第一象限内的定点为(15,35).所以,无论a 为何值时直线总经过第一象限.点评:化为111222()()0A x B y C A x B y C λ+++++=后,解方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩所得到的解,为何就是直线恒过的定点坐标?实质就是方程组的解能使方程成立,即点在直线上.【例4】若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,求直线l 的倾斜角的取值范围.解:如图,直线2x +3y -6=0过点A (3,0),B (0,2),直线l :y =kx 3-必过点(0,-3).当直线l 过A 点时,两直线的交点在x 轴;当直线l 绕C 点逆时针(由位置AC 到位置BC )旋转时,交点在第一象限. 根据303033AC k --==-,得到直线l 的斜率k >33. ∴倾斜角范围为(30,90)︒︒. 点评:此解法利用数形结合的思想,结合平面解析几何中直线的斜率公式,抓住直线的变化情况,迅速、准确的求得结果. 也可以利用方程组的思想,由点在某个象限时坐标的符号特征,列出不等式而求.第25练 §3.3.1 两条直线的交点坐标※基础达标1.直线3510x y +-=与4350x y +-=的交点是( ). A. (2,1)- B. (3,2)- C. (2,1)- D. (3,2)-2.直线1:(21)2l x y -+=与直线2:(21)3l x y ++=的位置关系是( ).A. 平行B. 相交C. 垂直D. 重合3.已知直线12,l l 的方程分别为 1111:0l A x B y C ++=,2222:0l A x B y C ++=,且12l l 与只有一个公共点,则( ).A. 11220A B A B -≠B. 12210A B A B -≠C.1122A B A B ≠D. 1212A AB B ≠ 4.经过直线240x y -+=与50x y -+=的交点,且垂直于直线20x y -=的直线的方程是( ).A. 280x y +-=B. 280x y --=C. 280x y ++=D. 280x y -+= 5.直线a x +2y +8=0,4x +3y =10和2x -y =10相交于一点,则a 的值为( ).A. 1B. -1C. 2D. -26.直线1l :2x +3y =12与2l :x -2y =4的交点坐标为 .7.(07年上海卷.理2)若直线1210l x my ++=: 与直线231l y x =-:平行,则m = . ※能力提高8.已知直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0. 求经过l 1和l 2的交点,且与直线l 3: 3x -2y +4=0垂直的直线l 的方程.9.试求直线1:l 20x y --=关于直线2l :330x y -+=对称的直线l 的方程.※探究创新10.已知直线方程为(2+λ)x +(1-2λ)y +4-3λ=0. (1)求证不论λ取何实数值,此直线必过定点;(2)过这定点引一直线,使它夹在两坐标轴间的线段被这点平分,求这条直线方程.第26讲 §3.3.2 两点间的距离¤学习目标:探索并掌握两点间的距离公式. 初步了解解析法证明,初步了解由特殊到一般,再由一般到特殊的思想与“数”和“形”结合转化思想.¤知识要点:1. 平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:22121212||()()PP x x y y =-+-. 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;当12,P P 在直线y kx b =+上时,21212||1||PPk x x =+-. 2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量;(2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.¤例题精讲:【例1】在直线20x y -=上求一点P ,使它到点(5,8)M 的距离为5,并求直线PM 的方程.解:∵ 点P 在直线20x y -=上,∴ 可设(,2)P a a , 根据两点的距离公式得22222(5)(28)5,542640PM a a a a =-+-=-+=即,解得3225a a ==或,∴3264(2,4)(,)55P 或. ∴ 直线PM 的方程为8585643248258555y x y x ----==----或, 即4340247640x y x y -+=--=或.【例2】直线2x -y -4=0上有一点P ,求它与两定点A (4,-1),B (3,4)的距离之差的最大值.解:找A 关于l 的对称点A ′,A ′B 与直线l 的交点即为所求的P 点. 设'(,)A a b , 则12144124022b a a b +⎧⨯=-⎪⎪-⎨+-⎪⨯--=⎪⎩,解得01a b =⎧⎨=⎩, 所以线段22|'|(41)(30)32A B =-+-=. 【例3】已知AO 是△ABC 中BC 边的中线,证明|AB |2+|AC |2=2(|AO |2+|OC |2). 解:以O 为坐标原点,BC 为x 轴,BC 的中垂线为y 轴,建立如图所示坐标系xOy . 设点A (a ,b)、B (-c ,0)、C (c ,0),由两点间距离公式得:|AB |=22()a c b ++,|AC |=22()a c b -+,|AO |=22a b +, |OC |=c .∴ |AB |2+|AC |2=2222()a b c ++, |AO |2+|OC |2=222a b c ++.∴ |AB |2+|AC |2=2(|AO |2+|OC |2).点评:此解体现了解析法的思路. 先建立适当的直角坐标系,将△ABC 的顶点用坐标表示出来,再利用解析几何中的“平面内两点间的距离公式”计算四条线段长,即四个距离,从而完成证明. 还可以作如下推广:平行四边形的性质:平行四边形中,两条对角线的平方和,等于其四边的平方和.三角形的中线长公式:△ABC 的三边长为a 、b 、c ,则边c 上的中线长为2221222a b c +-. y xB (-c ,0) A (a ,b )C (c ,0) O【例4】已知函数2()1f x x =+,设,a b R ∈,且a b ≠,求证|()()|f a f b -<||a b -. 解:由|()()|f a f b -=22|11|a b +-+,在平面直角坐标系xoy 中,取两点(1,),(1,)A a B b ,则2||1,OA a =+ 2||1O B b =+, ||||AB a b =-.△O AB 中,||||||||OA OB AB -<,∴ 22|11|a b +-+<||a b -. 故原不等式成立.点评:此证法为数形结合法,由22a b +联想到平面内点到原点的距离公式,构造两点与三角形,将要证明的不等式转化为三角形中三边的不等关系.第26练 §3.3.2 两点间的距离※基础达标1.已知(2,1),(2,5)A B --,则|AB |等于( ).A. 4B. 10C. 6D. 2132.已知点(2,1),(,3)A B a --且||5AB =,则a 的值为( ).A. 1B. -5C. 1或-5D. -1或5 3.点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标是(3,4),则||AB 的长为( ). A. 10 B. 5 C. 8 D. 64.已知(1,2),(0,4)A B -,点C 在x 轴上,且AC =BC ,则点C 的坐标为( ).A. 11(,0)2-B. 11(0,)2-C. 11(0,)2D. 11(,0)25.已知点(1,3),(5,1)M N -,点(,)P x y 到M 、N 的距离相等,则点(,)P x y 所满足的方程是( ).A. 380x y +-=B. 340x y --=C. 390x y -+=D. 380x y -+=6.已知(7,8),(10,4),(2,4)A B C -,则BC 边上的中线AM 的长为 .7.已知点P (2,-4)与Q (0,8)关于直线l 对称,则直线l 的方程为 . ※能力提高8.已知点(1,2),(3,4),(5,0)A B C ,判断ABC ∆的类型.9.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.求22PM PN +的最小值,及取最小值时点P 的坐标.oxA (1,a )B (1,b )y※探究创新10.燕隼(sun )和红隼是同属于隼形目隼科的鸟类.它们的体形大小如鸽,形略似燕,身体的形态特征比较相似.红隼的体形比燕隼略大.通过抽样测量已知燕隼的平均体长约为31厘米,平均翅长约为27厘米;红隼的平均体长约为35厘米,平均翅长约为25厘米. 近日在某地发现了两只形似燕隼或红隼的鸟. 经测量,知道这两只鸟的体长和翅长分别为A (32.65厘米,25.2厘米),B (33.4厘米,26.9厘米). 你能否设计出一种近似的方法,利用这些数据判断这两只鸟是燕隼还是红隼?第27讲 §3.3.3 点到直线的距离及两平行线距离¤学习目标:探索并掌握点到直线的距离公式,会求两条平行直线间的距离. 体会数形结合、转化的数学思想,培养研究探索的能力.¤知识要点:1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为0022||Ax By C d A B++=+.2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式1222||C C d A B-=+,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020A x B y C ++=,即002A x B y C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为001122222||||Ax By C C C d A B A B++-==++. ¤例题精讲:【例1】求过直线1110:33l y x =-+和2:30l x y -=的交点并且与原点相距为1的直线l 的方程.解:设所求直线l 的方程为310(3)0y x x y λ+-+-=, 整理得(31)(3)100x y λλ++--=.由点到直线的距离公式可知,22101(31)(3)d λλ==++-, 解得3λ=±. 代入所设,得到直线l 的方程为14350x x y =-+=或.【例2】在函数24y x =的图象上求一点P ,使P 到直线45y x =-的距离最短,并求这个最短的距离.解:直线方程化为450x y --=. 设2(,4)P a a , 则点P 到直线的距离为22222|445||4(1/2)4|4(1/2)417174(1)a a a a d ------+===+-.高一数学21 当12a =时,点1(,1)2P 到直线的距离最短,最短距离为41717. 【例3】求证直线L :(2)(1)(64)0m x m y m +-+-+=与点(4,1)P -的距离不等于3. 解:由点线距离公式,得22|(2)4(1)(1)(64)|(2)(1)m m m d m m +-+--+=+++ =22|3|(2)(1)m m m ++++. 假设3d =,得到222(3)9[(2)(1)]m m m +=+++,整理得21748360m m ++=.∵ 248417361400∆=-⨯⨯=-<, ∴ 21748360m m ++=无实根.∴ 3d ≠,即直线L 与点(4,1)P -的距离不等于3.点评:此解妙在反证法思路的运用. 先由点线距离公式求出距离,然后从“距离不等于3”的反面出发,假设距离是3求m ,但求解的结果是m 无解. 从而假设不成立,即距离不等于3.另解:把直线L :(2)(1)(64)0m x m y m +-+-+=按参数m 整理,得(4)260x y m x y --+--=.由{40260x y x y --=--=,解得{22x y ==-. 所以直线L 恒过定点(2,2)Q -. 点P 到直线L 取最大距离时, PQ ⊥L ,即最大距离是PQ =22(24)(21)-+-+=5. ∵ 5<3, ∴直线L 与点(4,1)P -的距离不等于3.点评:此解妙在运用直线系111222()()0A x B y C A x B y C λ+++++=恒过一个定点的知识,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 由运动与变化观点,当直线PQ ⊥L 时,点线距离为最大.【例4】求直线1:2310l x y +-=与2:4650l x y +-=的正中平行直线方程.解:直线1l 的方程化为4620x y +-=. 设正中平行直线的方程为460x y C ++=, 则2222|2||5|4646C C ----=++,即|2||5|C C +=+,解得72C =-. 所以正中平行直线方程为74602x y +-=. 点评:先化一次项系数为相同,巧设正中平行直线方程,利用两组平行线间距离相等而求.结论:两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=的正中平行直线方程为12()/20Ax By C C +++=。
必修2第3章直线与方程单元复习课件人教新课标
l1
x
x
l1//l2 k1 k2
k1
k2
l1//l2 ,
或l1和l
重合
2
2.直线的点斜式、斜截式、两点式、截距式、 一般式的灵活应用.
点斜式:y - y0 k(x,x0 )
斜截式: y kx b 两点式:y y1 x x1
y2 y1 x2 x1
截距式: x y 1
ab
3.应用直线方程求两条直线的交点坐标.
3.1.1倾斜角与斜率
1、直线的倾斜角定义及其范围:0 180
2、直线的斜率定义: k tan a (a 90 )
3、斜率k与倾斜角α 之间的关系:
α 0 k tan0 0
0 α 90 k tanα 0
α
90
ta nαa n α(不
k不 不 存
90 α 180 k tanα 0
1.直线方程的两种情势: 点斜式:y y1 k(x x1) 斜截式:y kx b.
2.两种特殊情况:过点P(x0,y0)且与坐标轴平行的 直线的方程分别是:y=y0和x=x0.
3.1.2两条直线平行与垂直的判定
直线的两点式方程(x1≠x2 ,y1≠y2 )
y y1 x x1 y2 y1 x2 x1
3.3.1两条直线的交点坐标
用代数方法求两条直线的交点坐标,只需 写出这两条直线的方程,然后联立求解.
A1x B1y C10 A2x B2y C2 0
唯一解 无穷多解
无解
两直线相交 两直线重合 两直线平行
3.3.2两点间的距离
1、平面内两点P1(x1,y1), P2(x2,y2) 的距离公式是: | P1P2 | (x 2 x1 )2 (y 2 y1 )2y来自l1Al2
高中数学必修2第三章直线与方程知识点归纳及作业
第三章直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°.2、 倾斜角α的取值范围:0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在.4、 直线的斜率公式:给定两点P 1(x 1,y 1),P 2(x 2,y 2),x 1≠x 2,用两点的坐标来表示直线P 1P 2的斜率: 斜率公式: k=y 2-y 1/x 2-x 1 3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即(充要条件)注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有l 1∥l 22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即12121k k l l =-⇔⊥(充要条件) 3.2.1 直线的点斜式方程1、直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y +=3.2.2 直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠y-y 1/y-y 2=x-x 1/x-x 22、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
高中数学必修二直线与直线方程题型归纳总结
高中数学必修二直线与直线方程题型归纳总结知识点归纳概括:1.直线的倾斜角为0°≤α<180°,斜率为k=tanα(α≠90°)。
2.已知两点求斜率公式为k=(y2-y1)/(x2-x1)(x2≠x1)。
3.两直线平行时,它们的斜率相等;垂直时,它们的斜率之积为-1.4.直线的五种方程:点斜式、斜截式、两点式、截距式、一般式。
5.两直线的交点坐标可通过联立两直线方程求得,两点间距离可用距离公式计算。
题型归纳分析:1.直线的倾斜角与斜率的计算。
2.平行和垂直直线的判断及斜率之间的关系。
3.直线的方程及其应用。
4.两直线交点坐标和两点间距离的计算。
例1:过点M(-2,a)和N(a,4)的直线的斜率等于1,则a的值为()。
A。
1B。
4C。
1或3D。
1或4解析:由题意可得,直线MN的斜率为1,即(k=(4-a)/(a+2)=1),解得a=2,故选B。
变式1:已知点A(1,3)、B(-1,3),则直线AB的倾斜角是()。
A。
60°B。
30°C。
120°D。
150°解析:由斜率公式可得,k=(3-3)/(-1-1)=0,因为斜率为0,所以直线与x轴平行,倾斜角为0°,故选A。
变式2:已知两点A(3,2)、B(-4,1),求过点C(-1.)的直线l与线段AB有公共点,求直线l的斜率k的取值范围。
解析:首先求出AB的斜率k1=(1-2)/(-4-3)=-1/7,然后求出点C到直线AB的距离d,d=|(-1-3)×(-1)+(?-2)×(-4+3)|/√((-4+3)²+(1-2)²)=|4-2×(?-1)|/√5,因为直线l与AB有公共点,所以点C到直线l的距离也为d,根据距离公式可得,|k1×(-1)+1×(?-1)-d|/√(k1²+1²)=d,化简得,|k1×(-1)+1×(?-1)|=2d√(k1²+1²),即|k1+?(?-1)|=2d√(k1²+1²),因为直线l过点C,所以直线l的斜率为k2=(?-1)/(-1-3),代入得,|k1+k2|=2d√(k1²+1²),整理得,|?-1+7k2|=2d√(50),因为|?-1+7k2|≥0,所以d≥0,又因为√(50)>7,所以|?-1+7k2|≤2d×7,即|?-1+7k2|≤14d,代入得|?-1+7(?-1)/(-1-3)|≤14d,即|-2?-6/(-4)|≤14d,解得-1/2≤d≤1/2,因为d≥0,所以1/2≥d≥0,代入得-1/2≤?-1+7k2≤1/2,解得-3/14≤k2≤1/14,故k2的取值范围为[-3/14,1/14]。
《直线与方程》复习课件(17张ppt)
方程组:
A1x+B1y+C1=0
A2x+B2y+C2=0的解
一组 无数解
无解
两条直线L1,L2的公共点 一个 无数个 零个
直线L1,L2间的位置关系 相交 重合
平行
5、3种距离
(1).两点距离公式 | AB | (x1 x2)2 ( y1 y2)2
(2)点线距离公式 设点(x0,y0),直线Ax+By+C=0,
a=1或-3
求满足下列条件的直线方程: (1)经过点P(2,-1)且与直线2x+3y+12=0平行;
2x+3y-1=0
(2)经过点Q(-1,3)且与直线x+2y-1=0垂直; 2x-y+5=0
.
(3)经过点R(-2,3)且在两坐标轴上截距相等; x+y-1=0或3x+2y=0
直线的交点个数与直线位置的关系
6
D.
π
6
B
3、直线的5种方程
名 称 已知条件
标准方程 适用范围
点斜式 点P1(x1,y1)和斜率k y y1 k(x x1) 不垂直于x轴的直线
斜截式 斜率k和y轴上的截距 y kx b 不垂直于x轴的直线
两点式 点P1(x1,y1)和点P2(x2,y2) 截距式 在x轴上的截距a
在y轴上的截距b
d | Ax0 By0 C | A2 B2
(3)两平行线距离:l1:Ax+By+C1=0,l2:Ax+By+C2=0 d | C1 C2 | A2 B2
点(1,3)到直线3x 4 y 4 0的距离为
中点坐标公式
x0
y0
直线与方程知识总结及典型 例题(高一人教版必修二)
)
(A)2x-3y=0;
(B)x+y+5=0;
(C)2x-3y=0或x+y+5=0
(D)x+y+5或x-y+5=0
4.直线x=3的倾斜角是( )
A.0 B. C. D.不存在
5.圆x2+y2+4x=0的圆心坐标和半径分别是( )
A.(-2,0),2 B.(-2,0),4 C.(2,0),2 D.(2,0),4
相交 平行 重合
交点 夹角 平行线间的距离
表示平面区域
直线 与方程
直线与直线位置关系 倾斜角 五种形式 直线方程
二元一次不等式
线性规划 斜率
与
与方程 点 关于直线的方程,直线的斜率、倾斜角,两点间距离公式,点到直
线的距离公式,夹角与到角公式,两直线的垂直、平行关系等知识的试 题,都属于基本要求,既有选择题、填空题,也有解答题,所占的分值 为5~10分,一般涉及到两个以上的知识点,这些仍将是今后高考考查 的热点。
(A)-
(B)-3;
(C) (D)3
12.直线当变动时,所有直线都通过定点( )
(A)(0,0)
(B)(0,1)
(C)(3,1)
(D)(2,1)
二、填空题(每题4分,共16分)
13.直线过原点且倾角的正弦值是,则直线方程为
14.直线mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为
15.如果三条直线mx+y+3=0, xy2=0, 2xy+2=0不能成为一个三角形三边
7.点(2,1)到直线3x 4y + 2 = 0的距离是
(A) (B) (C) (D)
8.直线x y 3 = 0的倾斜角是( )
(A)30° (B)45° (C)60° (D)90°
高中数学必修二第三章直线与方程知识点与常考题(附解析)
必修二第三章直线与方程知识点与常考题(附解析)知识点:一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k tan k α=当[) 90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为 ()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
必修2第三章 直线与方程知识点归纳、习题汇总(精选)
3.1倾斜角和斜率1.直线的倾斜角的概念:当直线l 与x 轴相交, 取x 轴作为基准, x 轴正向与直线l 向上方向所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°.2.倾斜角α的取值范围:0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°.3.直线的斜率:直线的倾斜角α(α≠90°)的正切值叫做直线的斜率,常用k 表示,即 k = tan α.⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 注意:由此可知, 直线的倾斜角α一定存在,但是斜率k 不一定存在.4. 斜率公式:若直线过两点P 1(x 1,y 1),P 2(x 2,y 2),x 1≠x 2,斜率公式: k=y 2-y 1/x 2-x 1 . 【题型1】求直线斜率33-D. 33C. 3-B. 3.A 120.1的斜率为(),则直线的倾斜角为若直线l l ︒ 34D. 43C. 34B. 43A..,53sin .2±±=则此直线的斜率为(),若已知直线的倾斜角为αα21D.C.2 21-B. 2-A..52B 31A .3率为())两点,则此直线的斜,(),,(若直线过 31-D. 31C. 3-B. A.3.013.4的斜率是()直线=+-y x 【题型2】求直线倾斜角︒︒︒︒D.135C.60 B.45 A.30.1.1的倾斜角为(),则直线的斜率为若直线l l︒︒︒︒=+- D.90C.60 B.45 A.30.0122.2的倾斜角为():直线y x l,不存在,不存在,,()的倾斜角和斜率分别是直线︒︒︒︒-= D.180 C.90 1B .135 1A.45.1.3x不存在的倾斜角为()直线 D. C.90 B.45 A.0.1.4︒︒︒=y【题型3】直线斜率大小比较123321213231321321 D. C. B. A...1k k k k k k k k k k k k k k k l l l <<<<<<<<,则必有()、、的斜率分别为、、如图,直线【题型4】求直线斜率、倾斜角范围)2[ ]4D.[0 ]4[0 C. )43[ ]4[0 B. )[0 A..))(1(B )12(A 2.) [0,]1D. ]1 C. ) B.[-1, A.1350.12ππππππππαα,,,,,,()的倾斜角的取值范围为两点,那么直线,,,经过点直线,(,(),()的斜率的取值范围为(,则直线,且的倾斜角为已知直线⋃⋃∈∞+⋃-∞--∞-∞+∞+∞-≤≤︒︒l R m m l l l3.2.1 点斜式方程1.点斜式方程:(1)条件:直线l 经过点),(000y x P ,且斜率为k .(2)方程:2.斜截式方程:(1)条件:直线l 的斜率为k ,与y 轴的交点为),0(b .(2)方程:3.2.2 两点式方程1.两点式方程:(1)条件:两点),(),,(222111y x P y x P其中),(2121y y x x ≠≠.(2)方程:2.截距式方程:(1)条件:直线l 与x 、y 轴的交点分别为A )0,(a 、B ),0(b ,其中0,0≠≠b a . (2)方程:3.2.3 直线的一般方程1、直线的一般式方程:关于y x ,的二元一次方程 (A ,B 不同时为0)2、各种直线方程之间的互化。
(完整版)高中数学必修2直线与方程练习题及答案详解(最新整理)
这样的直线有 3 条: y 2x , x y 3 0 ,或 x y 1 0 。
4. 解:设直线为 y 4 k(x 5), 交 x 轴于点 ( 4 5, 0) ,交 y 轴于点 (0,5k 4) , k
S 1 4 5 5k 4 5, 40 16 25k 10
2k
2. l2 : y 2x 3,l3 : y 2x 3,l4 : x 2 y 3, 3. 2x y 5 0 k ' 1 0 1 , k 2, y (1) 2(x 2)
20 2 4. 8 x2 y2 可 看 成 原 点 到 直 线 上 的 点 的 距 离 的 平 方 , 垂 直 时 最 短 :
是
.
5.当 0 k 1 时,两条直线 kx y k 1、 ky x 2k 的交点在
象
2
限.
三、解答题
1.经过点 M (3, 5) 的所有直线中距离原点最远的直线方程是什么?
2.求经过点 P(1, 2) 的直线,且使 A(2, 3) , B(0, 5) 到它的距离相等的直线方程
3.已知点 A(1,1) , B(2, 2) ,点 P 在直线 y 1 x 上,求 PA 2 PB 2 取得 2
A. 2x y 1 0 B. 2x y 5 0
C. x 2 y 5 0 D. x 2 y 7 0
3.已知过点 A(2, m) 和 B(m, 4) 的直线与直线 2x y 1 0 平行,
则 m 的值为( )
A. 0
B. 8
C. 2
D.10
4.已知 ab 0,bc 0 ,则直线 ax by c 通过( )
k 2,
2
y 3 2(x 2), 4x 2 y 5 0 2
2.A
k AB
必修二-直线与方程知识点总结
直线与方程总结 【知识点一:倾斜角与斜率】 (1)直线的倾斜角①关于倾斜角的概念要抓住三点:1、与x 轴相交;2、x 轴正向;3、直线向上方向。
②直线与x 轴平行或重合时,规定它的倾斜角为00 ③倾斜角α的范围000180α≤< (2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在. 记作tan k α=0(90)α≠⑴当直线l 与x 轴平行或重合时, 00α=,0tan 00k ==⑵当直线l 与x 轴垂直时, 090α=,k 不存在.②经过两点1112212(,),(,)P x y P x y x x ≠()的直线的斜率公式是2121y y k x x -=-③每条直线都有倾斜角,但并不是每条直线都有斜率. (3)求斜率的一般方法:①已知直线上两点,根据斜率公式212121()y y k x x x x -=≠-求斜率;②已知直线的倾斜角α或α的某种三角函数根据tan k α=来求斜率; (4)利用斜率证明三点共线的方法:已知112233(,),(,),(,)A x y B x y C x y ,若123AB BC x x x k k ===或,则有A 、B 、C 三点共线。
【知识点二:直线平行与垂直】(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔ 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直. 【知识点三:直线的方程】(1)直线方程的几种形式问题:过两点111222(,),(,)P x y P x y 的直线是否一定可用两点式方程表示? 【不一定】 (1)若1212x x y y =≠且,直线垂直于x 轴,方程为1x x =; (2)若1212x x y y ≠=且,直线垂直于y 轴,方程为12y y =; (3)若1212x x y y ≠≠且,直线方程可用两点式表示直线的点斜式方程实际上就是我们熟知的一次函数的解析式; 利用斜截式求直线方程时,需要先判断斜率存在与否.用截距式方程表示直线时,要注意以下几点:方程的条件限制为0,0a b ≠≠,即两个截距均不能为零,因此截距式方程不能表示过原点的直线以及与坐标轴平行的直线;用截距式方程最便于作图,要注意截距是坐标而不是长度.截距与距离的区别:截距的值有正、负、零。
必修2《直线与方程___知识点_总结》及习题
直线与方程 知识点 总结一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②与x 轴垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合); ②斜率k 值与两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=∙k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可;②斜截式:b kx y += 将已知截距 k b 与斜率 直接带入即可; ③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可;⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 在距离公式当中会经常用到直线的“一般式方程”。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可(可简记为“方程组思想”)。
3、距离公式:①两点间距离:22122121)()(y y x x P P -+-=推导方法:构造直角三角形“勾股定理”; ②点到直线距离:2200B A C By Ax d +++=推导方法:构造直角三角形“面积相等”;③平行直线间距离:2221BA C C d +-=推导方法:在y 轴截距),0(1C 代入②式;4、中点坐标公式:已知两点),(),,(2211y x B y x A ①AB 中点),(00y x :)2,2(2121y y x x ++ 推导方法:构造直角“相似三角形”;一.选择题1.(安徽高考) 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y xB. 052=-+y xC. 052=-+y xD. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. 8- C. 2 D. 104.(安徽高考)直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( ) A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=05.设直线ax+by+c=0的倾斜角为θ,且sin cos 0θθ+=则a,b 满足 ( ) A. a+b=1 B. a-b=1 C. a+b=0 D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)9. (上海文,15)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或210、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( )A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211.(北京卷)“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( ) (A )充分必要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件 12、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 13. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <0 14.(北京文)“m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的 ( )A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件15. 如果直线 l 经过两直线2x - 3y + 1 = 0和3x - y - 2 = 0的交点,且与直线y = x 垂直,则原点到直线 l 的距离是( )A. 2B. 1C. 2 D 、22 16. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54 D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________.2.已知A(-4,-6),B(-3,-1),C(5,a)三点共线,则a 的值为( )3.经过两直线11x+3y -7=0和12x+y -19=0的交点,且与A (3,-2),B (-1,6)等距离的直线的方程是 。
必修2-直线与方程知识点归纳总结
第三章 直线与方程直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在。
②经过两点),(),,(222111y x P y x P (21x x ≠)的直线的斜率公式是1212x x y y k --=(21x x ≠) ③每条直线都有倾斜角,但并不是每条直线都有斜率。
2、两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
二、直线的方程1、直线方程的几种形式 名称方程的形式已知条件局限性点斜式 )(11x x k y y -=- ),(11y x 为直线上一定点,k 为斜率不包括垂直于x 轴的直线斜截式 b kx y +=k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式121121x x x x y y y y --=--),(2121y y x x ≠≠其中),(),,(2211y x y x 是直线上两定点不包括垂直于x 轴和y 轴的直线截距式 1=+by a xa 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线一般式 0=++C By Ax )不同时为其中0,(B A A ,B ,C 为系数无限制,可表示任何位置的直线注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示?(不一定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习 直线与方程
【基础知识回忆】
1.直线的倾斜角与斜率 (1)直线的倾斜角
①关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ②直线与x 轴平行或重合时,规定它的倾斜角为 ③倾斜角α的围 . (2)直线的斜率
①直线的倾斜角与斜率是反映直线倾斜程度的两个量,它们的关系是 ②经过两点))(,(),,(21222111x x y x P y x P ≠两点的斜率公式为:=k
③每条直线都有倾斜角,但并不是每条直线都有斜率。
倾斜角为 的直线斜率不存在。
2.两直线垂直与平行的判定
(1)对于不重合的两条直线21,l l ,其斜率分别为21,k k ,,则有:
⇔21//l l ⇔ ; ⇔⊥21l l ⇔ . (2)当不重合的两条直线的斜率都不存在时,这两条直线 ;当一条直线斜率为0,另一
条直线斜率不存在时,两条直线 . 3.直线方程的几种形式
注意:求直线方程时,要灵活选用多种形式.
4.三个距离公式
(1)两点),(),,(222111y x P y x P 之间的距离公式是:=||21P P . (2)点),(00y x P 到直线0:=++c By Ax l 的距离公式是:=d .
(3)两条平行线0:,0:21=++=++c By Ax l c By Ax l 间的距离公式是:=d . 【典型例题】
题型一:直线的倾斜角与斜率问题
例1、已知坐标平面三点)13,2(),1,1(),1,1(+-C B A .
(1)求直线AC BC AB 、、的斜率和倾斜角.
(2)若D 为ABC ∆的边AB 上一动点,求直线CD 斜率k 的变化围.
例2、图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则:
A .k 1<k 2<k 3
B .k 3<k 1<k 2
C .k 3<k 2<k 1
D .k 1<k 3<k 2
例3、利用斜率证明三点共线的方法:
若A(-2,3),B(3,-2),C(0,m)三点共线,则m的值为 .
总结:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。
例4、直线l 方程为02)1(=-+++a y x a ,直线l 不过第二象限,求a 的取值围。
变式:若0<AC ,且0<BC ,则直线0=++C By Ax 一定不经过( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
题型二:直线的平行与垂直问题
例1、 已知直线l 的方程为01243=-+y x ,求下列直线l '的方程, l '满足
(1)过点)3,1(-,且与l 平行;(2)过)3,1(-,且与l 垂直.
本题小结:平行直线系:与直线0=++C By Ax 平行的直线方程可设为01=++C By Ax
垂直直线系:与直线0=++C By Ax 垂直的直线方程可设为02=+-C Ay Bx
变式:(1)过点(1,0)且与直线x-2y-2=0平行的直线方程
(2)过点(1,0)且与直线x-2y-2=0垂直的直线方程
例2、1l :0)1(=+-+m y mx ,2l :02=-+m my x ,①若1l ∥2l ,求m 的值;②若1l ⊥2l ,求
m 的值。
变式:(1)已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )
A. 0
B. 8-
C. 2
D. 10
(2)如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a =( )
A . -3
B .-6
C .2
3- D .3
2
(3)若直线1:10
l mx y +-=与
2:250
l x y -+=垂直,则m 的值是 .
题型三:直线方程的求法
例1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。
例2、已知ABC ∆三个顶点是)4,1(A -,)1,2(B --,)3,2(C .
(1)求BC 边中线AD 所在直线方程;(2)求AC 边上的垂直平分线的直线方程 (3)求点A到BC边的距离.
变式:1.倾斜角为45°,在y 轴上的截距为1-的直线方程是( )
A .1y x =+
B .1y x =--
C .1y x =-+
D .1y x =- 2.求经过A (2,1),B (0,2)的直线方程
3. 直线方程为02)1(=-+++a y x a ,直线l 在两轴上的截距相等,求a 的方程;
4、过P (1,2)的直线l 在两轴上的截距的绝对值相等,求直线l 的方程
5、已知直线l 经过点(5,4)P --,且l 与两坐标轴围成的三角形的面积为5,求直线l 的方程.
题型四:直线的交点、距离问题
例1:点P (-1,2)到直线8x-6y+15=0的距离为( )
A .2
B .2
1 C .1 D .2
7
例2:已知点P (2,-1)。
(1)求过P 点且与原点距离为2的直线l 的方程;
(2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?
(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由。
例3:已知直线1:260l ax y ++=和直线22:(1)10l x a y a +-+-=,
(1)试判断1l 与2l 是否平行,如果平行就求出它们间的距离; (2)1l ⊥2l 时,求a 的值。
变式:求两直线:3x-4y+1=0与6x-8y-5=0间的距离 。
题型五:直线方程的应用
例1、已知直线0355:=+--a y ax l .
(1)求证:不论a 为何值,直线l 总经过第一象限;(2)为使直线不经过第二象限,求a 的取值围.
例2、直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( )
A .(-2,1)
B .(2,1)
C .(1,-2)
D .(1,2)
【检测反馈】
1.若直线过点),32,4(),2,1(+则此直线的倾斜角是( ). (A )030 (B )045(C )060 (D ) 090
2.过点)1,1(E 和)0,1(-F 的直线与过点)0,2(k M -
和点)4
,0(k
N 直线的位置关系是( ) (A )平行(B )重合(C )平行或重合(D )相交或重合
3.过点)3,1(-且垂直于直线032=+-y x 的直线方程为( ).
(A)012=-+y x (B) 052=-+y x (C) 052=-+y x (D) 072=+-y x 4.已知点),1,3(),2,1(B A 则到B A ,两点距离相等的点的坐标满足的条件是( ). (A )524=+y x (B )524=-y x (C )52=+y x (D )52=-y x
5.直线),0,0(0:,0:21b a b a a y bx l b y ax l ≠≠≠=+-=+-在同一直角坐标系中的图形大致是( ).
6.
直线l 被两直线
653:,064:2
1--=++y x l y x l O ,则直线l 的方程为 .
7.已知,0>a 若平面三点),3(),,2(),,1(3
2
a C a B a A -共线,则a = . 8.过点),4,1(A 且纵、横截距的绝对值相等的直线共有( ). (A )1条 (B) 2条 (C) 3条 (D) 4条
9.已知直线l 过点)1,1(P ,且被平行直线01343=--y x 与0743=+-y x 截得的线段长为
24,求直线l 的方程.
A
1
2。