1.2.4绝对值课件ppt

合集下载

七年级数学上册:1.2.4绝对值(共26张PPT)

七年级数学上册:1.2.4绝对值(共26张PPT)
绝对值
规定了原点、正方向、单位长度的直线叫做数轴.
只有符号不同的两个数互为相反数. 规定:0的相反数是0.
a
相反数
-a
知识回顾
1.正数,负数和0的大小关系怎样?
2. -(+2)= -2 . +(-2)= -2 .
-(-2)= 2 . +(+2)= 2 .
小狮距原 小鸡与小羊分别距 点多远? 原点多远?
做一做:
(1)在数轴上表示下列各数,并比较它 们的大小;
- 1.5 , - 3 , - 1 , - 5 ;
(2)求出(1)中各数的绝对值,并比 较它们的大小;
(3)你发现了什么?
解:(1)如图 -5 -4 -3 -2 -1 0 1 2 3
∴ - 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3;

7ห้องสมุดไป่ตู้8
<
6 7
1、比较下列每对数的大小,并说明理由: (1)1与- 10; (2)- 0.001与0 (3)- 9与-11
解: (1)1>-10(正数大于一切负数)
(2)-0.001<0 (负数都小于零)
(3)∵|-9|=9 ,|-11|=11 9 < 11
∴-9 > -11 (两个负数比较绝对值 大的反而小)
-3 -2 -1 0 1 2 3
在数轴上,一个数所对应的点 与原点的距离叫做该数的绝对值.
+2的绝对值是2,记作 |+2| = 2; -3的绝对值是3 ,记作 |-3| = 3.
│-5│=5
A
│4│=4
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

人教版七年级数学上册1.2.4《绝对值》课件 (13张PPT)

人教版七年级数学上册1.2.4《绝对值》课件  (13张PPT)
人民教育出版社七年级上册
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0

人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.

课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7


- 8 >- 3
21
7

(3)化简,得:-(-0.3)=0.3,-
1 3

1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__

3 8

-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.

数学七年级上册1.2.4绝对值(共16张PPT)

数学七年级上册1.2.4绝对值(共16张PPT)
两个负数,绝对值大的反而小 .
作业: 教科书习题1.2第5,6,7,8题.
总有 ≥a0
问题5:互为相反数的两个数的绝对值有什么关系?
学生观察讨论:一对相反数虽然分别 在原点两边,但它们到原点的距 的绝对值相等.
问题6:请同学们观察教科书第13页思考中的 图,回答下面问题.
1.题目中涉及到14个不同的气温,你能把这 14个数用数轴上的点表示出来吗?
结论:它们的行驶路线不同,行驶路程相同.
观察下面数轴上的点,表示-3的点到 原点的距离是多少?表示3的点呢?-2和2
呢?
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作 a .
例如上面的问题中在数轴上表示-3的点和表 示3的点到原点的距离都是3,所以3和-3的绝对 值都是3,即|-3|=| 3 |=3.你能说说-2和2吗?
2.最低气温是多少?最高气温是多少?
3.你觉得两个有理数可以比较大小吗 ?应怎 样比较两个数的大小呢?
数学中规定:在数轴上表示有理数,它们 从左到右的顺序,就是从小到大的顺序,即左 边的数小于右边的数.
问题7:对于正数、0和负数这三类数,它们 之间有什么大小关系?
请同学们小组讨论,利用数轴探究结论!
1.2 有理数(第4课时) 1.2.4 绝对值
课件说明
• 本节课学习绝对值的意义.
• 学习目标: 了解绝对值的表示方法,理解绝对值的意义,会计算 有理数的绝对值.
• 学习重点: 绝对值的代数意义和几何意义.
问题1:看图回答问题. 两辆汽车从同一处O出发,分别向东、
西方向行驶10 km,到达A,B两处,它们的 行驶路线相同吗?它们的行驶路程相同吗?
1.正数大于0,0大于负数,正数大于负数; 2.两个负数,绝对值大的反而小.

1.2.4 绝对值 课件 人教版七年级数学上册 (60)

1.2.4 绝对值 课件  人教版七年级数学上册 (60)

例2 下列绝对值符号中应填入什么数
(1)
(2)
(3)
(4)
(1)_______, (2)________,(3)________, (4)_____.
问题:怎样的不同的数绝对值相等?绝对值相等的数是怎样的数?
互为相反数的两个数绝对值相等; 绝对值相等的两个数互为相反数;
例3 正式排球比赛对所用的排球重量是有严格规定的,现
检查5个排球的重量,超过规定重量的克数记作正数,不足 规定重量的克数记作负数,检查结果如下:
指出哪个排球的质量好一些,并用绝对值的知识加以说明.
课堂练习
1.下列哪些数是正数?
2.在括号里填上适当的数:
课堂练习
3.计算下列各题 :
课堂练习
4.__0__的相反数是它本身,_非__负__数__的绝对值是它本 身,__非__正___数的绝对值是它的相反数.
距离5 5的绝对值
一、绝对值的定义:
数轴上表示数a的点与原点的距离叫做数a的绝对值.
二、绝对值的符号表示: 数a的绝对值记作:
+5 的绝对值记作
- 4 的绝对值记作
0 的绝对值记作
三、绝对值的性质:
正数的绝对值是它本身; 负数的绝对值是它的相反数; 零的绝对值是零
绝对值是非负数
课堂练习
例1 (P14 T5) 求下列各数的绝对值.
1.2.4 绝对值
问题1:下列各数中:
哪些是正数?哪些是负数?哪些是非负数?
正数和零统称为非负数
问题2: 什么叫数轴?画一条数轴,并在数轴上标出下列各数
问题3: 依次说出上题中各数的相反数. 怎样表示一个数的相反数? 在一个数前面加"-"就得到它的相大道向东行5km公里到火车站.周日,

1.2.4 绝对值 课件 人教版七年级数学上册 (47)

1.2.4 绝对值 课件  人教版七年级数学上册 (47)
6.若a>0,则 =
a
-8
.
;若a=0,则 = 0
;若a<0,则 = -a
.
7.写出以下各数的绝对值:


-21,+ ,0,-7.8,-3 .


21,


,,. , .


8.化简:(1) − =
π-3

(2) − =
π-3
.
9.表示有理数a,b,c的点在数轴上的位置如图所示,化简
因为0.05<0.1<0.2<0.3,所以D球直径最接近标准直径,所以选D球.
12.若有理数a,b满足 =2, − =1,且a>0,则a+b=
5或7
.
数,解题时不要遗漏负值.
-返回目录-
归纳总结: 几个非负数的和为0,则这几个数都为0.
-返回目录-
1.下列各数中,-1的相反数是( C )
A.-1
B.0
C.1
D.2
2.如图,数轴上有A,B,C,D 四个点,其中表示的数互为相反数的两
个点是( A )
A.点A与点D
B.点A与点C
C.点B与点D
D.点B与点C
A.非正数
B.非负数
C.0
D.负数
4.若数轴上的点A到原点的距离是8个单位长度,则点A表示的数是( A )
A.8或-8
B.8
C.-8
D.4或-4
5.在数轴上表示数 的点在( D
A.原点
B.原点或原点的左边
C.原点的左边
D.原点或原点的右边
)
6.下列说法中正确的是( A )
A.-a不一定是负数

(课件)1.2.4绝对值

(课件)1.2.4绝对值

; ;
(1)若a 0, 则 a a; (2)若a 0, 则 a -a; (3)若a 0, 则 a 0.
小组讨论下面3个问题: (1)有没有绝对值等于-2的数? (2)一个数的绝对值会是负数吗?为什么? (3)不论有理数a取何值,它的绝对值总是什么 数?
不论有理数a取何值,它的绝对值总是正 数或0(非负数),即对任意有理数a, 总有 a ≥0
观察下面数轴上的点,表示-3的点到原点 的距离是多少?表示3的点呢?-2和2呢?
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作| a | 例如,上面的问题中在数轴上表示-3的点和 表示3的点到原点的距离都是3,所以3和-3的绝 对值都是3,即|-3|=| 3 |=3.你能说说-2和2吗?
1.互为相反数的两个数的绝对值有什么关系?
学生观察讨论:一对相反数虽然分别 在原点两边,但它们到原点的距离是 相等的.
学生归纳结论: 互为相反数的两个数的绝对值相等.
人生的价值,并不是用时间,而
是用深度去衡量的。
——列夫· 托尔斯泰
义务教育教科书七年级数学上册
第一课时
1.什么叫做相反数? 2.两辆汽车从同一处O出发,分别向东、西方 5 A,B两处,它们的行驶路 向行驶10 km,到达 4 线相同吗?它们的行驶路程相同吗?
结论:它们的行驶路线不同,行驶路程相同.
大象距原点
两只小狗分别 距原点多远?
多远?
-3 -2 -1 0 1 2 3 4
互为相反数的两个数的绝对 值有什么关系?
相等
例如 2 2 2 2
Hale Waihona Puke 1.-2的绝对值是__,说明数轴上表示 -2的点到____的距离是____个长度 单位. 2.-0.8的绝对值是____ . 3.计算:

1.2.4 绝对值 课件 人教版七年级数学上册 (16)

1.2.4 绝对值 课件  人教版七年级数学上册 (16)
所以 + =_____
1
01 方法展示
总结
02
实战演练
02 实战演练
例5 若 − + + + + = ,求、、的值
练5.1 若 − + + − = ,则 + =_____
8
THANK YOU
01 方法展示
【示例2】已知 − + + = ,则 + = _____
分析:
因为 − 和 + 都是非负的,
所以两个式子只能等于_____,才可以相加为0
0
则 − =_____,
+ =_____,
0
0
则 =_____,
=_____,
4
-3
做数的绝对值,记作
01 知识解读
单步训练
原点
− 在数轴上表示_______的点到_______的距离,
-12
且距离为_______,所以
− =_______
12
12


原点
− 在数轴上表示_______的点到_______的距离,
且距离为_______,所以 −


=_______
A、±
B、
C、−

2018
=_____
D、

绝对值比较大小
目录
CONTENTS
01
方法展示
02
实战演练
01
方法展示
01 方法展示
【示例1】数轴上A、B两点表示的数分别是−、−
−的绝对值是_____,−的绝对值是_____

1.2.4 绝对值 课件 人教版七年级数学上册 (11)

1.2.4 绝对值 课件  人教版七年级数学上册 (11)

2
这七天中每天的最低气温按从低到高排列为: -4,-3,-2,-1,0,1,2
规定:数轴上的数从左到右就是从小到大,即左边的数小于右边 越来越大
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
即-5<-4<-3<-2<-1<0<1<2<3<4<5<6
有理数大小的比较方法1
数轴比较法:
在数轴上表示的两个数,右边的数总比左边的数大


-5 -4 -3 -2 -1 0 1 2 3 4 5 6
思考:有没有最大的有理数?有没有最小的有理数? 为什么?
在我们学了有理数后,正数、0、负数的比较大小有哪些种类?
正数与正数 正数与0 正数与负数 0和负数 负数与负数
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
小学已经学会了正数与正数及正数与0,那么学习了数轴后 你能很容易的找到哪些类型的比较大小?
解:①当a>0时,|a|>0,-2a<0,所以|a|>-2a; ②当a=0时,|a|=0,-2a=0,所以|a|=-2a; ③当a<0时,-2a>0,|a|=-a, 因为-2a>-a,所以|a|<-2a.
比较有理数大小的方法. 方法①:数轴上表示的两个数,右边的总比 左边的大. 方法②:正数大于0,0大于负数,正数大 于负数;两个负数,绝对值大的反而1)=1,-(+2)=-2. 因为正数大于负数,所以1>-2,即
- (-1)>-(+2).
(2)- 和 - ;
解:两个负数做比较,先求它们的绝对值.
| |= ,|- |= = .
因为
<,

| |<|- |,

最新北师大版数学七年级上册《1.2.4 绝对值》精品教学课件

最新北师大版数学七年级上册《1.2.4  绝对值》精品教学课件
+5 -3.5 +0.7 -2.5 -0.6
指出哪个排球的质量好一些,并用绝对值的知识加以说明.
课堂小结
定义
一般地,数轴上表示数a的点与 原点的距离叫做数a的绝对值.
绝对值 性质
绝对值的性质
(1) |a|≥0; a (a 0)
(2) | a | a (a 0) 0 (a 0) .
课后研讨
1.说一说本节课的收获。 2.谈谈在解决实际问题中有哪些需要 注意或不太懂的地方。
探究新知
例如,下图所示:
-5到原点的距离是5, 所以-5的绝对值是5, 记作|-5|=5.
-6
-5
-4
-3
-2
0 1
|-5| = 5
-1
0到原点的距离是0,所以 0的绝对值是0,记作
|0|=0.
|+4| = 4
2
3
4
5
6
4到原点的距离是4,所 以4的绝对值是4,记作
|4|=4
探究新知
【试一试】利用数轴上点到原点的距离回答:
素养考点 2 已知绝对值求原数
例2 填一填: (1)绝对值等于0的数是_0__, (2)绝对值等于5.25的正数是_5_._2_5_, (3)绝对值等于5.25的负数是_-_5_._2_5_, (4)绝对值等于2的数是__2_或__-_2_.
探究新知
易错提醒:注意绝对值等于某个正数的数有两个,它们互为 相反数,解题时不要遗漏负值.
第一章 有理数
1.2 有理数及其大小比较 1.2.4 绝对值
学习目标
1.理解绝对值的概念及其几何意义. 2.会求一个数(不涉及字母)的绝对值. 3.会求绝对值已知的数. 4.了解绝对值的非负性,并能用其非负性解决相关问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.归纳:一般地,数轴上表示数a的点与原点的距离叫做数 a的绝对值, 记作。 a
例如,10和-10它们到原点的距离都是 10个单位长度,所以10和-10 的绝对值都是10,即
10 10 10
请说出下列各数的绝对值是多少?
0,2.5,2,-2,-2.6
活动1.请你思考一个正数的绝对值有什么特点?一个负数的绝对值有 什么特点?
5
7
个单位,记作 。
2.—2的绝对值表示它离开原点的距离是
3.例题讲解
例1 求出下列各数的绝对值
2
6,-8,-3.9,O,-11 .
解:
6 6
8 8
3.9 3.9
0 0
2 2 11 11
例2
分析: 8
已知 a =8,求a的值。
8, 8 8
,故a=8或a=-8
(3)如果a<0,那么
教学过程: 一、创设情景 导入新课
一只小狗和一只和一只小兔从同一处O出发,分别向东、西方向跑 10米,到达A、B两处,它们奔跑的路线相同吗?奔跑的路程相等吗?
A
0
B

10米 10米
A -10
O 0
Bபைடு நூலகம்10 ,—10到原点的距离也
1.由上面问题可以知道,10到原点的距离是

到原点的距离等于10的数有 对 . 个,它们的关系是一
思考:a 如果=2,那么a一定是人吗?如果 果a =-a那么a等于几?
a
=0那么a等于几?如
四、小结
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作 a 。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0的绝 对值是0。即
(1)如果a>0,那么
a =a a a
=0
=-a
(2)如果a=0,那么
0 0, 2.5 2.5, 2 2 2 2, 6 6
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0的绝对值是0。即 (1)如果a>0, 那么 a =a
(2)如果a=0,那么 a =0
(3)如果a<0, 那么 a =-a
活动2.练一练:
1.请说出下列各式的意义。
1.2.4绝对值(1)
教学目标:
知识与技能:1.了解绝对值的概念。
2.会求给定数的绝对值。
过程与方法:借助数轴给出绝对值的概念,经历由具体到抽象的过程。 初步体验分类讨论的数学思想。
情感、态度与价值观:通过师生合作,学生探究,让学生体会学习的 过程与乐趣。提升学生学习数学的兴趣。
教学重点:绝对值的概念 教学难点:1.已知绝对值求数。 2.利用分类讨论的思想解决问题。
相关文档
最新文档