生物可降解材料聚乳酸的制备改性及应用
生物降解型塑料-聚乳酸(PLA)
生物降解型塑料-聚乳酸(PLA)清华大学美术学院 贺书俊 学号2012013080摘要: 近年来世界各国都高度重视源于可再生资源的可降解高分子材料的研究开发,聚乳酸因可生物降解、性能优异、应用广泛而深受青睐。
本文主要介绍了聚乳酸的降解机理、作为可降解塑料的应用现状、改进方法以及未来的发展趋势。
1、 聚乳酸简介单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH 与别的分子的-COOH 脱水缩合,-COOH 与别的分子的-OH 脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸。
聚乳酸也称为聚丙交酯,属于聚酯家族。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
[1]2、 聚乳酸降解机理聚乳酸是典型的“绿色塑料”,因其良好的生物相容性、完全可降解性及生物可吸收性,是生物降解材料领域中最受重视的材料之一,下面就聚乳酸的降解机理进行介绍。
聚乳酸是一种合成的脂肪族聚酯,其降解可分为简单水解(酸碱催化)降解和酶催化水解降解。
从物理角度看,有均相和非均相降解。
非均相降解指降解反应发生在聚合物表面,而均相降解则是降解发生在聚合物内部。
从化学角度看,主要有三种方式降解:①主链降解生成低聚体和单体;②侧链水解生成可溶性主链高分子;③交链点裂解生成可溶性线性高分子。
本体侵蚀机理认为聚乳酸降解的主要方式为本体侵蚀,根本原因是聚乳酸分子链上酯键的水解。
聚乳酸类聚合物的端羧基(由聚合引入及降解产生)对其水解起催化作用,随着降解的进行,端羧基量增加,降解速率加快,从而产生自催化现象。
[2]因乳酸来源于可再生资源,经过聚合、改性、加工成制品,当制品废弃时,能完全被人体吸收或被环境生物所降解成二氧化碳和水,从而造福人类并无污染地回归自然,聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
《生物可降解聚乳酸-PBST-壳聚糖-银复合膜的制备及性能研究》范文
《生物可降解聚乳酸-PBST-壳聚糖-银复合膜的制备及性能研究》篇一生物可降解聚乳酸-PBST-壳聚糖-银复合膜的制备及性能研究一、引言随着人类对环保意识的提高,生物可降解材料逐渐成为研究的热点。
聚乳酸(PLA)、PBST(聚丁二酸丁二酯-对苯二甲酸丁二酯共聚物)、壳聚糖(Chitosan)以及银等材料因其良好的生物相容性和可降解性,在生物医学、包装材料等领域具有广泛的应用前景。
本文旨在研究生物可降解的聚乳酸/PBST/壳聚糖/银复合膜的制备工艺及其性能表现。
二、材料与方法1. 材料准备实验所需材料包括聚乳酸、PBST、壳聚糖、银盐以及其他助剂。
所有材料均需符合生物可降解及无毒无害的标准。
2. 制备工艺(1)将聚乳酸、PBST按照一定比例混合,并通过热熔融法制备混合基体;(2)将壳聚糖与银盐溶解于适当溶剂中,制备成壳聚糖/银溶液;(3)将壳聚糖/银溶液与混合基体进行共混,通过流延法制备复合膜;(4)对复合膜进行干燥、热处理等后处理。
3. 性能测试对制备的复合膜进行力学性能测试、透光性测试、吸水性测试、生物相容性测试及降解性能测试等。
三、结果与讨论1. 制备结果通过上述制备工艺,成功制备出生物可降解的聚乳酸/PBST/壳聚糖/银复合膜。
该复合膜具有良好的柔韧性,且表面光滑,无明显的缺陷。
2. 性能分析(1)力学性能:该复合膜具有较高的拉伸强度和撕裂强度,显示出良好的力学性能。
(2)透光性:复合膜在可见光范围内具有较好的透光性,满足包装材料的要求。
(3)吸水性:复合膜的吸水性较低,具有良好的防潮性能。
(4)生物相容性:该复合膜对细胞无毒性,具有良好的生物相容性,适用于生物医学领域。
(5)降解性能:该复合膜在一定的环境条件下能实现快速降解,且降解产物无毒无害,符合环保要求。
3. 影响因素讨论(1)材料配比:聚乳酸、PBST、壳聚糖及银的比例对复合膜的性能具有重要影响。
通过调整各组分的比例,可以优化复合膜的性能。
聚乳酸材料制备及性能研究
聚乳酸材料制备及性能研究在人工合成可降解高分子材料中,聚乳酸是近年来最受研究者们关注的一种。
它是一种生物可降解的热塑性脂肪族聚酯,是一种无毒、无刺激性,具有良好生物相容性、强度高、可塑性加工成型的生物降解高分子材料。
合成聚乳酸的原料可以通过发酵玉米等粮食作物获得,因此它的合成是一个低能耗的过程。
废弃的聚乳酸可以自行降解成二氧化碳和水,而且降解产物经光合作用后可再形成淀粉等物质,可以再次成为合成聚乳酸的原料,从而实现碳循环[3]。
因此,聚乳酸是一种完全具备可持续发展特性的高分子材料,在生物可降解高分子材料中占有重要地位。
迄今为止,学者们对聚乳酸的合成、性质、改性等方面进行了深入的研究。
2.1聚乳酸的合成聚乳酸以微生物发酵产物-乳酸为单体进行化学合成的,由于乳酸是手性分子,所以有两种立体结构。
聚乳酸的合成方法有两种;一种是通过乳酸直接缩合;另一种是先将乳酸单体脱水环化合成丙交酯,然后丙交酯开环聚合得到聚乳酸[4]。
2.1.1直接缩合[4]直接合成法采用高效脱水剂和催化剂使乳酸低聚物分子间脱水缩合成聚乳酸,是直接合成过程,但是缩聚反应是可逆反应,很难保证反应正向进行,因此不易得到高分子量的聚乳酸。
但是工艺简单,与开环聚合物相比具有成本优势。
因此目前仍然有大量围绕直接合成法生产工艺的研究工作,而研究重点集中在高效催化剂的开发和催化工艺的优化上。
目前通过直接聚合法已经可以制备具有较高分子量的聚乳酸,但与开环聚合相比,得到的聚乳酸分子量仍然偏低,而且分子量和分子量分布控制较难。
2.1.2丙交酯开环缩合[4]丙交酯的开环聚合是迄今为止研究较多的一种聚乳酸合成方法。
这种聚合方法很容易实现,并且制得的聚乳酸分子量很大。
根据其所用的催化剂不同,有阳离子开环聚合、阴离子开环聚合和配位聚合三种形式。
(1)阳离子开环聚合只有在少数极强或是碳鎓离子供体时才能够引发,并且阳离子开环聚合多为本体聚合体系,反应温度高,引发剂用量大,因此这种聚合方法吸引力不高;(2)阴离子开环聚合的引发剂主要为碱金属化合物。
生物医用材料聚乳酸的合成及其改性研究进展
化工进展CHEMICAL INDUSTRY AND ENGINEERING PROGRESS2020年第39卷第1期开放科学(资源服务)标识码(OSID ):生物医用材料聚乳酸的合成及其改性研究进展詹世平1,2,万泽韬1,2,王景昌1,2,阜金秋1,2,赵启成1,2(1大连大学环境与化学工程学院,辽宁大连116622;2辽宁省化工环保工程技术研究中心,辽宁大连116622)摘要:聚乳酸是一种具有良好生物相容性的可降解生物材料,被广泛应用于医药、医疗和食品包装等领域。
随着科学技术的进步,对聚乳酸材料的性能提出了新的要求和用途,研究者在合成方法和改性研究方面也取得了新的成果。
本文阐述了聚乳酸的化学结构和基本特性,常用合成方法,包括阳离子聚合、阴离子聚合和配位聚合的基本概念和应用实例,介绍了近年来发展的酶催化聚合、超临界二氧化碳中聚合等绿色合成方法,着重介绍了聚乳酸亲水改性、pH 响应改性和分支结构改性等几种用于医用方面的改性方法,最后对聚乳酸材料研究发展方向进行了展望,提出在聚乳酸基体中添加极低含量的无机纳米粒子填充物,可显著改善复合材料的性能,指出生物纳米复合包装材料的技术开发是未来几年着重研究的方向。
关键词:聚乳酸;合成方法;改性;生物相容性中图分类号:TB34文献标志码:A文章编号:1000-6613(2020)01-0199-07Synthesis and modification of biomedical material polylactic acidZHAN Shiping 1,2,WAN Zetao 1,2,WANG Jingchang 1,2,FU Jinqiu 1,2,ZHAO Qicheng 1,2(1College of Environmental and Chemical Engineering,Dalian University,Dalian 116622,Liaoning,China;2Chemical andEnvironmental Protection Engineering Research Technology Center,Dalian 116622,Liaoning,China)Abstract:Due to its good biocompatibility and biodegradability,polylactic acid is widely used in thefields of the drug,medicine and food packing and so on.With the progress of science and technology,some new requirements and purposes have been put forward for the properties of polylactic acid materials.Researchers have also made some new achievements in the synthesis methods and the modification research.The chemical constitution and basic properties of polylactic acid were described and the common synthetic methods of polylactic acid were discussed,including the basic concepts and application examples on cationic polymerization,anionic polymerization and coordination polymerization.The green synthetic methods such as enzymatic catalytic polymerization and polymerization in supercritical carbon dioxide developed in recent years were introduced.The hydrophilic modification,pH response modification and branch structure modification of polylactic acid were also emphatically introduced.Finally,the development directions of polylactic acid material research were prospected.It was proposed that adding very low content of inorganic nanoparticles filler into polylactic acid matrix can significantly improve the properties of composite materials.It was pointed out that the development of bio-nanocomposite packaging materials was a development direction of emphasis on research in the next few years.Keywords:polylactic acid;synthetic method;modification;biocompatibility综述与专论DOI :10.16085/j.issn.1000-6613.2019-0656收稿日期:2019-04-24;修改稿日期:2019-06-16。
生物可降解材料聚乳酸的制备改性及应用
生物可降解材料聚乳酸的制备改性及应用摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。
本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。
关键词:聚乳酸;生物降解;合成;应用随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。
处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。
而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。
聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。
此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。
它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。
利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。
1 生物降解机理[3,4]生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。
高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。
微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。
材料的结构是决定其是否可生物降解的根本因素。
合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。
生物基聚乳酸材料
生物基聚乳酸材料引言:生物基聚乳酸材料是一类以可再生资源为原料制备的聚合物材料,具有良好的生物可降解性和生物相容性。
它在环境保护和可持续发展方面具有重要意义。
本文将从生物基聚乳酸材料的特性、制备方法以及应用领域等方面进行探讨。
一、特性生物基聚乳酸材料具有以下特性:1. 生物可降解性:生物基聚乳酸材料是由可再生资源制备而成,其分子结构中含有可被微生物分解的化学键。
经过一定时间的自然降解,可以分解为二氧化碳和水,不会对环境造成污染。
2. 生物相容性:生物基聚乳酸材料具有良好的生物相容性,不会引起明显的免疫反应和毒性反应。
因此,在医学领域可以广泛应用于缝合线、骨内固定材料等。
3. 物理性能优良:生物基聚乳酸材料具有较高的强度和刚度,具备一定的热稳定性和耐化学品性。
二、制备方法生物基聚乳酸材料的制备方法多种多样,以下为常见的两种方法:1. 乳酸聚合法:将乳酸和催化剂加热反应,经过聚合反应形成聚乳酸。
这种方法简单易行,适合大规模生产。
2. 微生物发酵法:利用乳酸菌等微生物通过发酵作用,将可再生资源转化为乳酸,再通过聚合反应形成聚乳酸。
这种方法对环境友好,但生产成本较高。
三、应用领域生物基聚乳酸材料在各个领域都有广泛的应用,以下列举几个主要领域:1. 医疗领域:生物基聚乳酸材料具有良好的生物相容性,可用于制备缝合线、骨内固定材料等。
其生物降解性能可以避免二次手术取出材料,减少患者的痛苦和感染风险。
2. 包装领域:生物基聚乳酸材料可以制备成薄膜、泡沫等形式,用于食品包装和保鲜。
它具有良好的透明度和耐热性,可以满足食品包装的要求。
3. 纺织领域:生物基聚乳酸材料可以制备成纤维,用于纺织品的制作。
它具有良好的柔软性和透气性,可以制作出舒适的服装和家居用品。
4. 农业领域:生物基聚乳酸材料可以制备成农膜,用于土壤覆盖和保温。
它具有良好的生物降解性,不会对土壤造成污染。
结论:生物基聚乳酸材料具有良好的生物可降解性和生物相容性,是一种具有广泛应用前景的聚合物材料。
聚乳酸的性能、合成方法及应用
聚乳酸的性能、合成方法及应用一、本文概述聚乳酸(Polylactic Acid,简称PLA)是一种由可再生植物资源(例如玉米)提取淀粉原料制成的生物降解材料,具有良好的生物相容性和生物降解性。
随着全球环保意识的日益增强和可持续发展理念的深入人心,聚乳酸作为一种环保型高分子材料,其研究和应用受到了广泛的关注。
本文将全面介绍聚乳酸的性能特点、合成方法以及在实际应用中的广泛用途,旨在为读者提供关于聚乳酸的深入理解,推动其在各个领域的应用和发展。
本文首先将对聚乳酸的基本性能进行概述,包括其物理性能、化学性能以及生物相容性和降解性等方面的特点。
接着,将详细介绍聚乳酸的合成方法,包括开环聚合和缩聚法等,并分析不同合成方法的优缺点。
在此基础上,文章还将深入探讨聚乳酸在各个领域的应用情况,如包装材料、医疗领域、汽车制造、农业等。
文章还将对聚乳酸的未来发展趋势进行展望,以期为读者提供全面的聚乳酸知识,并为其在实际应用中的创新和发展提供参考。
二、聚乳酸的性能聚乳酸(PLA)作为一种生物降解塑料,具有一系列独特的性能,使其在众多领域中具有广泛的应用前景。
聚乳酸具有良好的生物相容性和生物降解性。
由于其来源于可再生生物质,聚乳酸在自然界中能够被微生物分解为二氧化碳和水,不会对环境造成污染。
这使得聚乳酸在医疗、包装、农业等领域具有广阔的应用空间。
聚乳酸具有较高的机械性能。
通过调整合成方法和工艺条件,可以得到具有优异拉伸强度、模量和断裂伸长率的聚乳酸材料。
这些特性使得聚乳酸在制造包装材料、纤维、薄膜等方面具有显著优势。
聚乳酸还具有良好的加工性能。
它可以在熔融状态下进行热塑性加工,如挤出、注塑、吹塑等,从而制成各种形状和尺寸的制品。
同时,聚乳酸的表面光泽度高,易于印刷和染色,为其在装饰、包装等领域的应用提供了便利。
另外,聚乳酸还具有较好的阻隔性能。
它可以有效地阻止氧气、水分和其他气体的渗透,从而保护包装物品免受外界环境的影响。
绿色可降解生物高分子聚乳酸改性及应用研究进展
Abstract :The latest research progress of poly(lactic acid) (PLA) modification in recent years was mainly introduced. The modification methods of PLA were described from the following aspects :blending modification,copolymerization modification, branching and crosslinking modification,nanocomposite modification and stereocomposite modification. The applications of PLA in the fields of packaging materials,tissue engineering scaffold materials and drug carrier materials were also reviewed. Eventually,the possible development directions of modification and application of PLA were summarized and prospected.
Keywords :poly(lactic acid) ;modification ;application
21 世纪,建设可持续发展的资源循环型社会已成为我 国的基本国策,大力发展可再生、环境友好型生物降解高分 子材料是发展的必然趋势。特别是基于淀粉、秸秆、甘蔗渣 等可再生生物质资源的生物质基高分子材料,由于具有良好 的生物降解性,并且原料丰富易得,得到了快速的发展 。 [1–2] 与传统高分子材料相比,生物质基高分子材料不仅减少了对 石化资源的消耗,而且在生产过程中经历的光合作用消耗了 二氧化碳和水,减少了二氧化碳的释放;同时生物质基高分 子材料由于其优异的生物降解性使其具有环境友好的可堆 肥性 [3]。因此,“源于自然,归于自然”的生物质基高分子材 料满足可持续发展的需要,具有巨大的发展潜力,未来将有 广阔的应用市场。在众多的生物质基高分子材料中,聚乳酸 (PLA) 因其植物来源性和良好的生物降解性、生物相容性以 及高的强度等性能优势,未来在取代传统石化基高分子材料 方面具有巨大的潜力 [4]。PLA 是由淀粉或马铃薯、蔗糖、玉
聚乳酸(PLA)合成与改性的研究进展
聚乳酸(PLA)合成与改性的研究进展范兆乾【摘要】在无数种类的可降解聚合物中,聚乳酸(PLA)塑料是一种脂肪族聚酯,是具有生物相容性的热塑性塑料,它是目前最具有发展前景的环境友好型塑料材料。
这篇综述提供了目前的PLA市场信息,并介绍了近年来PLA合成和PLA改性方面的研究进展。
%In myriad types of biodegradable polymer, polylactic acid plastic is a kind of aliphatic polyester, it have the biocompatibility of thermoplastic, it is currently the most potential environment - friendly plastic material. The market information are provides in this paper, the advances in the research of PLA synthesis and PLA modification in recent years are introduced.【期刊名称】《河南化工》【年(卷),期】2011(000)015【总页数】4页(P21-24)【关键词】聚乳酸;PLA;塑料;合成;改性【作者】范兆乾【作者单位】青岛科技大学化工学院,山东青岛266042【正文语种】中文【中图分类】TQ325目前,全世界塑料年产量已经超过2亿t,相应的,塑料废弃物也逐年增加,严重污染环境,减少废塑料污染的方法之一是使用在自然界无论生物体内外都可以自然降解,不会造成环境污染的生物降解材料。
聚乳酸(Poly Lactic Acid,PLA)就是一种可生物降解材料。
PLA有三种立体化学存在形式,聚L-乳酸(PLLA)、聚D-乳酸(PDLA)和聚DL-乳酸(PDLLA)。
(完整)聚乳酸综述
聚乳酸(PLA)的合成及改性研究摘要介绍聚乳酸(PLA)的基本性质、合成方法及应用范围.综述了国内外PLA的改性研究及目前有关PLA性能改进的方法。
概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。
关键词:聚乳酸合成改性前言聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。
聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。
此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等.近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道.PLA的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。
1、聚乳酸的研究背景在石油基高分子材料广泛应用的今天,生物基高分子材料因其具有来源不依耐石油、生物相容性好、可生物降解等突出特点越来越受到关注。
聚乳酸( PLA)作为一种可从淀粉分解、发酵制备原料乳酸,再经聚合获得高分子产物的生物基来源、可生物降解高分子材料,具有良好的应用前景。
但因聚乳酸性能上存在不足( 韧性差,降解不可控,亲水性差,功能性单一等) ,限制了其更为广泛的应用.因此,研究人员在其结构及性能的基础上进行了大量的改性研究,采用化学合成、物理共混、材料复合等方法,试图在物理机械性能、生物降解性能、表面润湿性能以及多功能化等方面有所改善或加强,从而扩展聚乳酸的应用领域。
聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。
早在20 世纪初,法国人首先用缩聚的方法合成了PLA【1】;在50 年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60 年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70 年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展.作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。
聚乳酸生物降解的研究进展
聚乳酸生物降解的研究进展一、本文概述随着全球环境问题的日益严峻,特别是塑料废弃物对环境的污染问题,生物降解材料的研究与应用越来越受到人们的关注。
聚乳酸(PLA)作为一种重要的生物降解材料,因其良好的生物相容性、可加工性和环保性,在包装、医疗、农业等领域具有广泛的应用前景。
本文旨在综述聚乳酸生物降解的研究进展,包括其生物降解机制、影响因素、改性方法以及应用现状,以期为聚乳酸的进一步研究和应用提供参考。
本文首先介绍了聚乳酸的基本性质,包括其分子结构、合成方法以及主要性能。
接着,重点分析了聚乳酸的生物降解机制,包括酶解、微生物降解和动物体降解等过程,并探讨了影响聚乳酸生物降解的主要因素,如结晶度、分子量、添加剂等。
在此基础上,本文综述了聚乳酸的改性方法,包括共聚、共混、填充和表面改性等,以提高其生物降解性能和机械性能。
本文总结了聚乳酸在包装、医疗、农业等领域的应用现状,并展望了其未来的发展趋势。
通过本文的综述,旨在为聚乳酸生物降解的研究与应用提供有益的参考,同时为推动生物降解材料的发展贡献一份力量。
二、聚乳酸的生物降解机理聚乳酸(PLA)的生物降解主要依赖于微生物的作用,这些微生物包括细菌和真菌,它们能够分泌特定的酶来降解PLA。
生物降解过程通常包括两个主要步骤:首先是微生物对PLA表面的附着和酶的产生,然后是酶对PLA的催化水解。
在降解过程中,微生物首先通过其细胞壁上的特定受体识别并附着在PLA表面。
随后,微生物开始分泌能够降解PLA的酶,这些酶主要包括聚乳酸解聚酶和酯酶。
聚乳酸解聚酶能够直接作用于PLA的酯键,将其水解为乳酸单体;而酯酶则能够水解PLA链末端的乳酸单体。
水解产生的乳酸单体可以被微生物进一步利用,通过三羧酸循环等途径转化为二氧化碳和水,或者用于微生物自身的生长和代谢。
这个过程中,微生物扮演了关键的角色,它们不仅能够降解PLA,还能够将降解产生的乳酸完全矿化为无害的物质。
值得注意的是,PLA的生物降解速率受到多种因素的影响,包括PLA的分子量、结晶度、形态、微生物的种类和活性、环境温度和湿度等。
医用级聚乳酸研究报告
医用级聚乳酸研究报告随着医疗技术的不断发展,医用材料的研究也越来越受到重视。
其中,聚乳酸作为一种生物可降解的高分子材料,逐渐被广泛应用于医疗领域。
本文将从聚乳酸材料的性质、制备方法、应用领域等方面进行探讨。
一、聚乳酸的性质聚乳酸是一种由乳酸分子重复连接而成的高分子材料。
乳酸分子是一种天然存在于人体内的有机酸,具有良好的生物相容性和生物可降解性。
聚乳酸的主要特点包括以下几个方面:1. 生物可降解性聚乳酸是一种生物可降解的高分子材料,可以在人体内被分解成二氧化碳和水,不会对环境造成污染。
2. 生物相容性聚乳酸具有良好的生物相容性,不会引起免疫反应和组织排斥反应。
3. 可塑性聚乳酸可以通过改变其分子结构和加工工艺来调节其可塑性,可以制备出不同形状和性能的材料。
4. 机械性能聚乳酸的机械性能与其分子结构、分子量和晶化度等因素有关,可以通过调节这些因素来改变其机械性能,以适应不同的应用需求。
二、聚乳酸的制备方法聚乳酸的制备方法主要包括两种:化学合成和生物合成。
1. 化学合成聚乳酸的化学合成方法主要是通过乳酸的缩合反应制备。
乳酸可以通过化学合成和生物发酵两种方法来获得。
化学合成方法包括乳酸的酯化反应、缩合聚合反应等。
2. 生物合成生物合成方法是通过利用微生物发酵生产聚乳酸。
目前广泛应用的微生物包括乳酸菌、放线菌等。
三、聚乳酸的应用领域聚乳酸具有生物可降解、生物相容性和可塑性等优良性质,因此在医疗领域有着广泛的应用。
1. 医疗器械聚乳酸可以制备出各种形状和性能的医疗器械,如缝合线、手术用具、植入物等。
这些器械在使用后可以被人体分解吸收,不会对人体造成损害。
2. 药物控释聚乳酸可以作为药物控释材料,可以将药物包裹在聚乳酸微球中,通过控制聚乳酸微球的降解速度来实现药物缓慢释放,从而达到长效治疗的效果。
3. 组织工程聚乳酸可以作为组织工程材料,可以制备出与人体组织相似的材料,如骨替代材料、软骨替代材料等。
这些材料可以用于治疗组织损伤、修复组织缺陷等。
聚乳酸的改性及应用研究进展
近年来,随着技术的不断发展,聚乳酸在各个领域的应用也在不断拓展。例如, 通过共聚改性等方法,聚乳酸在高性能纤维和医用材料等领域取得了重要进展。 此外,聚乳酸在3D打印技术中也表现出良好的应用前景,为个性化医疗和产品 定制提供了新的可能。
环境保护及其挑战聚乳酸作为一种生物降解材料,具有较好的环境友好性。然 而,在聚乳酸的制备和使用过程中,仍存在一些环境保护问题。首先,聚乳酸 的制备需要大量的有机溶剂,这些溶剂在使用后往往会产生大量废液,对环境 造成一定压力。其次,聚乳酸的降解过程中可能会产生一些有污染性的降解产 物,如何有效控制这些产物对环境的影响是一个重要问题。
1、改进生产工艺,降低聚乳酸的生产成本,提高产量和质量。 2、深入探讨聚乳酸的改性技术,以便更好地满足不同领域的应用需求。
3、在应用研究方面,应聚乳酸在生物医学、纺织、包装和建筑材料等领域的 新应用模式的探索和现有应用问题的优化。
总之,聚乳酸作为一种环保材料,其改性和应用研究具有重要的理论和实践意 义。随着技术的不断进步和应用领域的拓展,我们有理由相信聚酸将在未来 的可持续发展中发挥更加重要的作用。
研究PLA阻燃改性后的生物相容性和降解性能;4)优化加工过程中的阻燃保护 措施。随着聚乳酸阻燃改性研究的深入,有望为拓宽PLA的应用领域提供重要 支持。
聚乳酸(PLA)是一种由可再生资源——乳酸合成的生物降解材料,被广泛应 用于包装、医疗、纤维等领域。由于其良好的生物相容性和可降解性,聚乳酸 在现代社会中具有广泛的应用前景。本次演示将重点探讨聚乳酸的制备方法、 应用领域、环境保护问题以及研究进展。
聚乳酸纤维的应用领域与优势聚乳酸纤维具有许多优点,如环保可降解、良好 的力学性能和化学稳定性等,使得它在许多领域都有广泛的应用。首先,在服 装领域,聚乳酸纤维具有优异的透气性、吸湿性和保暖性,适合制作各种服装, 如运动服、户外服装和内衣等。其次,在建筑领域,聚乳酸纤维可以用于制作 建筑保温材料、装饰材料和土工布等。此外,在农业领域,聚乳酸纤维可用于 制作农用膜、包装材料和生物降解的农用无人机等。
生物可降解材料聚乳酸的制备及应用
生物可降解材料聚乳酸的制备及应用聚乳酸是由微生物发酵所产生乳酸单体聚合而成的高分子聚合物,它的特点是无毒、无刺激气味、可降解、生物相容性良好,所以广泛应用到了医学、食品包装和汽车电子等领域。
聚乳酸在自然界中通过土壤、水或微生物的作用下都能实现无污染的分解,可降解的特性既推动了各个领域的发展,也满足了我国构建绿色环保型社会的要求。
因此,对于聚乳酸的研究规模随之扩大,通过对聚乳酸合成、改性以及应用,促进聚乳酸的价值发挥,进而为社会进步奠定坚实基础。
1 聚乳酸具备的生物性质1.1 生物可降解性乳酸主要由植物发酵而来,主要成分包括玉米、小麦等可再生资源,所以聚乳酸有着良好的可降解性质。
废弃的聚乳酸产物在土壤中微生物或水的作用下会完全分解成水和二氧化碳,对空气和土壤都没有任何污染,同时还有利于促进植物的光合作用。
1.2 生物相容性据相关研究显示,聚乳酸可以在人体中实现完全无害的分解,分解后的主要产物即是二氧化碳和水,并且在人体新陈代谢的过程中即可完成分解,所以其生物相容性良好。
在不断实践应用的过程中,证实了聚乳酸和人体的相容性,如将其作为植入人体的生物材料,后续没有任何的不良反应发生,逐渐取代了金属材料的地位。
1.3 优越的物理性质聚乳酸优越的物理性质主要体现在柔韧性良好、透明度充足、机械强度足够和良好的热稳定性,这些物理性质无疑满足了各行各业的具体要求,相较于不可降解材料和其他可讲解材料的优势都较为明显。
1.4 可加工性聚乳酸本身的可加工性良好,实际加工起来只需要充分结合其热塑性即可,能够以各种不同的方式进行热塑成型,满足了各种形态的要求,赋予了其良好的加工性能。
2 聚乳酸的合成制备方式2.1 间接聚合制备间接聚合法指的是开环聚合。
首先,将乳酸作为原材料,并通过缩聚和解聚的方式得到环形丙交酯。
其次,将丙交酯进行开环聚合从而得到聚乳酸。
开环聚合的方式主要通过对反应时间、反应温度和选择不同催化剂种类来实现对聚乳酸分子量合成的过程,这一方法的优势在于反应原理简单、反应过程可控,缺点是聚乳酸的后续提纯过程较为复杂且需要的成本偏高。
聚乳酸(PLA)的合成及应用进展
用 该 法 很 难 得 到 高 分 子 量 的 P A。 L Yo h h r s i au等 b 采 用 质 子 酸 活 化 S (/ n I)催 化 剂 ,用 熔 融 缩 聚 的 方 法 在 较 短 时 间 内合 成 了分 子 量 超过 1 0万 的 P A。合 成路 线 如下 : L
I
H o c
。=
一. 。 = 十 一 b
CH 3
I
ct a
O H
OH —
o CH —
I I
1 0℃ 5
…
O
u
1 乳 酸 均 聚 物
1 1 单 体 . 乳 酸 分 子 中一 个 手 性 碳 原 子 ,即 有 两 个 光 学 异
H+oc H— c Fra bibliotek 选 择 。丙 交 酯 的 纯 化 主 要 采 用 重 结 晶 的方 法 m 所 , 用 的 溶 剂 一 般 为 乙 酸 乙 酯 等 。张贞 裕 等 “ 改 进 了丙 叫
【 者 简 介 】 芳 莲 ( 9 4一) 女 , 教 授 , 事 生 物 降 解 材 料 的 研 作 姚 16 , 副 从
维普资讯
姚 芳 莲 等 : 乳 酸 ( A) 合 成 及 应 用 进 展 聚 PL 的
聚 乳 酸 ( LA) 合 成 及 应 用 进 展 P 的
姚芳 莲, 刘 畅 , 白 云 , 继 红 孟
( 津 大学 化工学 院 , 津 天 天 30 7 ) 0 0 2
一
o
±! 垒 兰
1 0℃ . 5 h 8 1
Ki r mn a等 …用 熔 融 缩 聚 的方 法 , 用 二 水 合 氯 采
聚乳酸(PLA)生物可降解材料
良好的透明性和光泽度
PLA具有与传统的石油基塑料相似的 透明性和光泽度,可用于制造需要透 明度的产品。
PLA材料的用途
包装材料
PLA可制成一次性餐具、塑料袋等包装材料, 替代传统的石油基塑料。
3D打印材料
PLA是3D打印领域常用的材料之一,可用于 制造各种定制产品。
医疗领域
PLA可用于制造医疗用品,如手术缝合线、 药物载体等。
水解反应使PLA分子链断裂成较小的分子片段, 氧化反应则使PLA分子链上的碳碳键断裂。
随后,微生物如细菌、真菌等开始利用这些小 分子片段进行生长和繁殖,进一步降解PLA材 料。
影响PLA材料生物降解的因素
环境温度和湿度
较高的温度和湿度有利于PLA材料的生物降 解。
PLA材料的结构和性质
PLA材料的分子量、结晶度、添加剂等都会 影响其生物降解性能。
PLA是一种热塑性聚合物,具有与传 统的石油基塑料相似的加工性能和物 理性质。
PLA材料的特性
可完全生物降解
PLA在自然环境中可被微生物分解为 水和二氧化碳,具有良好的环保特性。
良好的加工性能
PLA具有良好的热塑性,可采用传统 的塑料加工技术进行成型加工,如注 塑、吹塑、挤出等。
良好的机械性能
PLA具有较高的拉伸强度、弯曲模量 和冲击强度,可满足各种应用需求。
PLA的降解速度过快,导致其性能不稳定,容易在正常使 用过程中出现损坏。
01
降解速度过慢
PLA的降解速度过慢,导致其难以在短 时间内完全分解,对环境造成一定的负 担。
02
03
降解条件控制
需要控制PLA的降解条件,以确保其在 适当的条件下进行分解,同时保持良 好的性能和稳定性。
生物降解材料聚乳酸的合成及应用研究
d s r o eal . ial , e f ls o y t ei , p f a o c r n tt e eo me t e ep o p ce e c b i d ti F n l t ed sn ss a p c t n,u r t ae o d v lp n r r s e td. id n s yh i f h i i e s f w Ke r s bo e rd b e ma r ; llc c a i ;y te i ; p f a o y wo d : i ga a l ti p ya t cd s h s a p c f n d ea o l i n s i i
2 K yL b r o i —poes i s yo E u a o , e i nvr t o eh o g , e i 3 0 1 C ia . e ao t yo Bo r s n t d cS n H f i esy f c n l y H f 0 0 , h ) a r f c M ir f eU i T o e2 n
摘要 : 聚乳酸 ( ) HA 是具有 良好生物相容性 和生物 可降解性 的高分子材 料 , 正受到人们 越来 越多 的关 注 , 近年来 被广 泛应 用。 综述 了 PA的两种合成方法——乳酸直接缩聚和丙 交酯的开环聚合法 , L 论述了 P A L 在药物控制释放 、 固定 、 骨科 手术缝合线及 日常
维普资讯
生 物 降解 材 料 聚 乳 酸 的合 成 及 应 用研 究
盛敏刚 , 张金花 , , 一 李延红
(. 1池州学院 工程材料实验 中心 , 安徽 池州 27 02合肥 工业大学 农 产品生物化工教育部重点实验室 , 40 ;. 0 安徽 合肥 200 ) 301
聚乳酸综述范文
聚乳酸综述范文聚乳酸(polylactic acid,PLA)是一种生物可降解塑料,具有良好的环境友好性和可塑性,广泛应用于包装材料、医疗器械、纤维制品等领域。
本文将对聚乳酸的制备方法、性质及其应用领域进行综述。
聚乳酸的制备方法主要可以分为两种:通过乳酸的直接聚合和通过乳酸的环化缩聚。
乳酸的直接聚合方法包括原位聚合法和间歇聚合法。
原位聚合法是将乳酸和催化剂直接加入反应器中,在高温下发生聚合反应,得到聚乳酸。
间歇聚合法则是在乳酸和溶剂中加入催化剂,通过升温反应,使乳酸发生聚合。
乳酸的环化缩聚方法包括环己酮溶剂法、脱水缩聚法和溶剂蒸发法。
这些方法制备的聚乳酸材料具有不同的分子量和结构,从而影响其物理性能和降解性能。
聚乳酸具有许多优异的性质,包括良好的生物相容性、可降解性和可塑性。
生物相容性是指聚乳酸与细胞和组织之间的相互作用良好,不会引起显著的炎症反应和毒性反应。
可降解性是指聚乳酸可以在自然环境中被微生物分解,最终产生二氧化碳和水。
可塑性是指聚乳酸可以通过热加工、拉伸和注塑等方法加工成不同形状的制品。
聚乳酸在包装材料领域有广泛的应用。
由于其良好的可降解性和可塑性,聚乳酸可以用于制备一次性食品容器、餐具和购物袋等产品。
与传统的塑料制品相比,聚乳酸制品可以减少对环境的污染,并降低资源消耗。
此外,聚乳酸还可以用于生物医用材料的制备。
由于其生物相容性和可降解性,聚乳酸可以用于制备缝合线、骨板和修复材料等产品,促进组织修复和再生。
尽管聚乳酸具有许多优点,但它也存在一些不足之处。
首先,聚乳酸的生产成本相对较高,限制了其在一些领域的应用。
其次,聚乳酸的机械性能相对较差,强度和耐热性较低,限制了其在一些高强度和高温环境下的应用。
此外,聚乳酸的降解速度较慢,需要数年甚至几十年才能完全降解,限制了其在一些应用中的可行性。
为了改善聚乳酸材料的性能,研究者进行了许多改性研究。
例如,通过共聚反应、添加剂和混合物的方式,可以改善聚乳酸的机械性能、热稳定性和降解性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物可降解材料聚乳酸的制备改性及应用摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。
本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。
关键词:聚乳酸;生物降解;合成;应用随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。
处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。
而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。
聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。
此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。
它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。
利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。
1 生物降解机理[3,4]生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。
高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。
微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。
材料的结构是决定其是否可生物降解的根本因素。
合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。
含有亲水性基团的高分子可保持一定的湿度,宜生物降解,同时含有亲水和憎水基的聚合物生物降解性好。
一般分子量大的材料较分子量小的更难生物降解;脂肪族聚合物比相应的芳香族聚合物容易生物降解;支化和交联会降低材料的生物降解性。
另外,材料表面的特性对生物降解也有影响,粗糙表面材料比光滑表面材料更易降解。
影响可生物降解性的化学因素主要有高分子的亲水性、构型、形态结构、链段的活动性、分子量、高聚物的组成以及上述因素之间的相互关系等。
高分子的亲水性越强越易水解,水解酶对酯键、酰胺键和氨基甲酸酯都有较强的作用;无定型态的高聚物比结晶状态容易水解;分子链段越柔顺,玻璃化温度越低,越有利于降解;链段活动性越大,自由体积越大,越容易受到酶的进攻,也就越容易降解;可降解性随着分子量增大而降低;高聚物的组成,如共混、共聚等也影响着高分子的可降解性。
一般情况下只有极性高分子才能与酶相吸附并能很好亲和,因此高分子具有极性是生物降解的必要条件。
具有生物降解性(包括水解)的分子化学结构有:脂肪族酯键、酞键、脂肪族醚键、亚甲基、氨基、酰氨基、烯氨基、芳香族偶氮基、脲基、氨基甲酸乙酯等。
2 聚乳酸的基本性质聚乳酸是以微生物的发酵产物L-乳酸为单体聚合成的一类聚合物,可以分为聚左旋乳酸(PLLA)、聚右旋乳酸(PDLA)和聚消旋乳酸(PDLLA)三种。
具体性能[5]见表1。
其中,常用易得的是PLLA和PDLLA。
PLLA是半结晶性相当硬的材料。
PLLA和PDLA的外消旋体是结晶性的,相反PDLLA是无定形的透明的材料[6]。
聚乳酸的熔点较高,其物理性质介于PET (聚对苯二甲酸类塑料)和PA-6(尼龙塑料)之间,结晶度大、透明度极好,有良好的抗溶剂性、防潮、耐油脂、透气性,还具有一定的耐菌性、阻燃性和抗紫外性。
聚乳酸的热稳定性好,适用于吹塑、吸塑、挤出纺丝、注塑和发泡等多种加工方法,可加工成薄膜、包装袋、包装盒、一次性快餐盒、饮料用瓶以及医用材料,使得其在服装、包装、玩具和医疗卫生等领域拥有广泛的应用前景。
3 聚乳酸的合成方法PLA 一般可以通过乳酸的直接缩聚也可以由丙交酯经阴离子型阳离子型和配位型的开环聚合制得。
一般来说乳酸直接聚合或丙交酯(lactide 简称LA) 的阴离子开环聚合所得到的PLA 分子量较低因此要合成高分子量高转化率的PLA 需要采用阳离子型或配位型开环聚合。
3.1 乳酸直接缩聚乳酸的直接缩聚由于存在着乳酸、水、聚酯及丙交酯的平衡,不易得到高分子量的聚合物。
在脱水剂的存在下,乳酸分子中的羟基和羧基受热脱水,直接缩聚合成低聚物,加入催化剂,继续升温,低相对分子质量的聚乳酸聚合成更高相对分子量的聚乳酸。
它主要有溶液缩聚法、熔融缩聚(本体聚合)法、熔融-固相缩聚法和反应挤出聚合法等。
直接缩聚法生产工艺简单但一般只能得到分子量小于 1 万的PLA 当缩聚温度低于120 时加入脱水剂ZnO 可以加快缩聚速度Ajioka 等[7]利用一步法制备出重均分子量达30 万的PLA 但难于进一步提高分子量且分子量分布较宽其性能不能满足生物医学上的某些需要。
3.2 丙交酯的开环聚合目前研究合成聚乳酸的最多方法是丙交酯的开环聚合,其开环聚合的机理有阳离子聚合、阴离子聚合、配位聚合3种[8]。
3.2.1 阴离子开环聚合1990年Kricheldorf H. R.[9]以BzOKPhOK tBuOK 和BuLi 为催化剂对L-LA 实施开环聚合。
发现只有当引发剂的碱性较大时如tBuOK 和BuLi 才可能使L-LA 发生开环聚合,得到的聚合物分子量也较低,并且在聚合过程中发生聚合物部分消旋化的现象。
Kricheldorf 等[10]报道了BuMgCl Bu2Mg Mg(Oet)2等对内酯的开环聚合,Mg 有一定的络合能力,反应活性有所提高,但缺点是反应时间过长。
他使用格氏试剂BuMgCl催化LA 聚合发现有部分消旋现象得到产物的分子量低。
推断该引发过程伴随有部分阴离子聚合机理,出现离域阴离子。
3.2.2 阳离子型开环聚合阴离子开环聚合反应是以催化剂亲核进攻丙交酯的羰基,酰氧键断裂后生成的。
这类反应一般以强碱为催化剂,如Na2CO3、KOH、ROLi、ROK 等。
现以ROLi 为例,反应为[11]:L-丙交酯阴离子开环聚合经常伴有消旋现象,这是由于丙交酯环上的叔碳原子脱质子所致。
这类催化剂反应速度快、活性高,可进行本体或溶液聚合,但副反应极为明显,不利于制备高分子量的聚合物。
3.2.3 配位插入开环聚合配位插入开环聚合反应一般认为是单体上的氧原子与催化剂金属的空轨道配位络合,单体再在金属-碳或金属-烷氧链上进行插入和增长[12]。
催化剂主要为过渡金属有机化合物和氧化物。
这类反应的催化剂种类很多如烷基金属和烷基金属化合物。
如AL(Oi2Pr)3,Sn(Oct)2、烷基稀土配位化合物、BuSnOMe、卟啉铝等。
其中Sn(Oct)2已成为最常用、最有效的催化剂,其催化剂机理为:卟啉铝作为配位开环聚合的一种催化剂,其引发聚合得到的聚合物的分子量分布非常窄。
而且这种催化剂有很好的立构选择性。
但是这类催化剂的活性不高。
Kricheldorf 等用MgBu2和格氏试剂作为引发体系,发现在有冠醚作溶剂时它们能非常有效地催化L-丙交酯开环聚合得到分子量高达100 万的聚合物,但这类催化剂对实验条件要求非常高。
由此可以看出配位插入开环聚合在合成聚乳酸中发挥的重要作用。
4 聚乳酸的改性4.1化学改性4.1.1共聚改性共聚改性是通过调节LA与其他单体的比例来改变聚合物的性能,或由其他单体向PLA 提供特殊功能基团,以此来改善PLA的亲水性、结晶性等性能。
宋谋道等[13]采用PEG与丙交醋共聚,制得高分子质量的PLA一PEG一PLA嵌段共聚物。
当PEG含量达到一定程度(如质量分数达到7.7%)后,共聚物出现了屈服拉伸,克服了PLA的脆性。
这种脆性向韧性的转变说明,用PEG改性的PLA是一种综合性能可调控的生物降解材料。
Yoshikuni Teramoto 等[14]用几种方法合成了纤维素双乙酸醋与PLA接枝共聚物。
DSC(差示扫描量热仪)测试结果表明,改性后的共聚物均只具有单一的玻璃化转变温度,而且玻璃化转变温度有很大程度的降低,共聚物的摩尔乳酸基取代系数(MS)变大。
当MS升高到14以上时,PLA侧链具有可结晶性。
且共聚物的可拉伸性随着PLA含量提高有很大的提高,当MS》14时,最大断裂伸长达到2000%。
4.1.2表面改性Ainingzhu等[15]通过壳聚糖上的自由氨基与4一叠氮苯甲酸上的梭基进行反应,将4-叠氮苯甲酸固定在壳聚糖上。
利用4-叠氮苯甲酸的光敏性,采用紫外光照射涂抹在PLA薄膜表面的壳聚糖,叠氮基团光解,从而将PLA和壳聚糖共价连接起来。
改性后壳聚糖上的轻基和氨基又可以引人其他的官能团,从而可以对PLA进行进一步的改性,如肝磷脂进一步改性后可在PLA表面形成聚合(高分子)电解质,能防止血小板附着在聚合物表面上,同时还加强了细胞的附着力。
4.2物理改性4.2.1共混改性共混改性是将两种或两种以上的聚合物进行混合,通过聚合物各组分性能的复合来达到改性的目的。
共混物除具有各组分固有的优良性能外,还由于组分间某种协同效应而呈现新的效应。
淀粉是一种可自然降解的亲水性材料,它与PLA的共混物可完全生物降解。
在淀粉与PLA共混物中PLA作为连续母相存在,而淀粉则作为填充剂。
当淀粉含量超过60%,PLA 相变的不连续。
PLA与淀粉之间的界面粘合力随着共混物的老化而降低,MDI可以改善这种界面粘合力,从而延缓PLA/淀粉共混物的老化,延缓机械性能的降低。
Kelly S.Anderson 等[16],则研究了PLA与LL-DPE熔融共混物,发现半结晶的PIA不用增塑剂,通过共混即可改善其韧性,而无定形的PLA,则需要用PLLA、PE嵌段共聚物作增塑剂,才可以通过共混来改善其韧性。
4.2.2增塑改性增塑改性就是在高聚物中混溶一定量的高沸点、低挥发性的低分子量物质,从而改善其机械性能与加工性能。
4.2.3复合改性纤维复合改性主要是为了提高材料的机械性能。
碳纤维因为其高强度和优良的生物相容性成为很好的PLA增强材料。
无机填料掺人PLA中熔融共混制备复合材料,填料的种类影响复合物的机械性能。
掺入子和晶须类填料后复合材料的拉伸模量分别可达 3.1-3.7GPa和3.7-4.5GPa,弯曲模量为4.1-4.8GPa和4.8-6.1GPa。
掺人晶须类填料时复合材料的拉伸模量、拉伸强度以及弯曲模量与填料的体积分数成比例地增长。
PLA与无机填料间的表面粘合力比较差,因而无机填料的增强效果也比较差[17]。