完整简易方程知识点梳理

合集下载

简易方程公式知识点总结

简易方程公式知识点总结

简易方程公式知识点总结一、一元一次方程1. 一元一次方程的定义:一元一次方程是指只含有一个未知数的一次方程。

一般地,一元一次方程可以用ax+b=0(a≠0)来表示,其中a和b是已知数,x是未知数。

2. 方程的解:方程ax+b=0的解即为x=-b/a。

其中,如果a=0且b≠0,那么方程无解;如果a=0且b=0,那么方程有无数解。

3. 解方程的方法:解一元一次方程可以通过如下几种方法:a. 移项法:将未知数的项移到等式的一边,其他项移到另一边。

b. 相消法:通过相等的两边增加或减少同一个量,使得方程两边的某个项相消掉。

c. 等价变形法:通过等式的加减乘除变形,使得方程的解变得更明显。

4. 例题:解方程3x+5=2x-7解:将未知数项移到左边去,得到3x-2x=-7-5,即x=-12。

二、一元二次方程1. 一元二次方程的定义:一元二次方程是指含有一个未知数的二次方程。

一般地,一元二次方程可以用ax^2+bx+c=0(a≠0)来表示,其中a、b和c是已知数,x是未知数。

2. 方程的解:一元二次方程的解可以用求根公式来表示,即x=[-b±√(b^2-4ac)]/(2a)。

其中,当Δ=b^2-4ac>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程没有实根。

3. 方程的图像:一元二次方程的图像是一个开口朝上或开口朝下的抛物线,其顶点坐标为(-b/2a,-Δ/4a)。

4. 例题:解方程x^2-5x+6=0解:根据求根公式,Δ=5^2-4*1*6=1,因此方程有两个不相等的实根,即x=[5±√1]/2=3或2。

三、一元三次方程1. 一元三次方程的定义:一元三次方程是指含有一个未知数的三次方程。

一般地,一元三次方程可以用ax^3+bx^2+cx+d=0(a≠0)来表示,其中a、b、c和d是已知数,x是未知数。

2. 方程的解:一般地,一元三次方程没有通用的求解公式,而是需要通过因式分解、配方法、换元等多种方法来求解。

《简易方程》单元小结

《简易方程》单元小结

《简易方程》单元知识梳理一、简易方程(一)简单方程(4个):x+a=b; x-a=b; ax=b; x÷a=b.解:x+a-a=b-a 解:x-a+a=b+a 解:ax÷a=b÷a 解:x÷a×a=b×a x=b-a x=b+a x=b÷a x=ba (二)稍复杂方程(5个):1、a-x=b 如:20-x=92、a÷x=b 如:2.1÷x=3 解:a-x+x=b+x 解:a÷x×x=b×xa=b+x a=b×xx+b=a bx=a3、ax+b=c 如:6x+3=9 4x- 2.8=10 3x+12×6=6 解:ax+b-b=c-bax=c-b4、a(x+b)=c 如:7(x+2.8)=35 (x-3)÷2=7.5 解:a(x+b)÷a=c÷a 或解:ax+ab=cx+b=c÷a ax+ab-ab=c-abax=c-ab5、ax±bx=c 如:2x+1.5x=17.5 8x-3x=105 3x+x-6=26解:(a±b)x=c(三)其他方程如: 1.2x÷3= 4.8 (5x-12)×8=24 (100-3x)÷2=8二、列方程解决实际问题-----典型例题解析列方程解决实际问题的步骤:1、找出未知数,用字母x表示;2、找出等量关系,列方程;3、解方程并检验作答。

(一)方程模型---x+a=b; x-a=b; ax=b ; x÷a=b甲数是b,甲数比乙数多(少)a,求乙数?或甲数是b,甲数是乙数的a倍,求乙数?等量关系式:乙数+a=甲数(乙数-a=甲数)或乙数×a=甲数典型例题:1、一件衣服现价178元钱,比原来降低了121元,这件衣服原价多少钱?2、黄豆长成豆芽后的质量是原来质量的8.5倍,现需要豆芽493千克,需要黄豆多少千克?(二)方程模型----ax+b=c或ax-b=c甲数是c,甲数比乙数的a倍多(少)b,乙数是多少?(设乙数为x.)等量关系式:乙数×a+b=甲数或乙数×a-b=甲数典型例题:1、一张桌子售价97元,比一把椅子售价的3倍多4元,一把椅子多少元?2、一只大象的体重是5吨,大象的体重比奶牛的8倍少200千克,奶牛的体重是多少千克?(三)方程模型-----ax+b×c=d已知甲乙两种商品的总价d与甲商品的单价b和数量c,求乙商品的单价或数量。

简易方程知识点梳理复习进程

简易方程知识点梳理复习进程

简易方程知识点梳理精品文档简易方程知识点梳理一、字母表示数1、在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

2、 a X a可以写作a a(或a2), a2读作a的平方,表示两个a相乘。

2a表示a + a3、数字和字母相乘,省略乘号时要把数字写在前面。

(如b X4写作4b )4、用字母表示运算律加法交换律:a+ b= b+ a 加法结合律:(a+ b) + c = a+(b+ c)乘法交换律:axb= b X a 乘法结合律:(axb)X c = a X(b X c)乘法分配律:(a+ b)X c = a X c + b X c5、用字母表示正方形、长方形的面积和周长对应练习1. 排球队共有队员a人,女队员有7人,男队员有()人。

2.1千克大米的价钱是1.50元,买x千克大米应付()元。

3. 省略乘号,写出下面的式子。

3 X a 9 X x a X4 y X5 a X3x4. ________________________________________________________________________________ 服装店的阿姨们加工了50件衣服,每件衣服用布bm当b=1.38时,用布的总数是_________________ 米5. a与b的和的5倍是()6 —辆9路公共汽车上原有22名乘客,在新华大街站下去a人,又上去b人。

现在车上有―名乘客,当a=8, b=12时,车上有_____ 名乘客。

7. 比m的3倍多9的数是______ ,比n除以5的商少7的数是________8. 当a=2,b=5 时,那么8a—2b=()。

精品文档9. 正方形的边长为x厘米,4x表示(),x2表示()。

10. 有x吨水泥,运走10车,每车a吨。

仓库还剩水泥()吨。

11、施工队修一条长4.5千米的路,平均每天修0.24千米。

修了y天后,还剩________ 米,当y=5时,还剩—千米。

简易方程知识点归纳

简易方程知识点归纳

简易方程知识点归纳一、字母表示数字母既可以表示数,也可以表示运算定律和公式1、表示数时,注意规范书写①字母和字母相乘,乘号可以简写为“·”或省略不写。

如a×b=a.b 或a×b=ab。

相同字母相乘可以简写为平方;如:a×a=a²②数字和字母相乘,可以省略乘号不写,数字必须写在前边。

如3×m=3m③含有加减除法的代数式,如果要带单位名称,代数式必须加上小括号。

2、字母表示运算定律加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)减法的性质:a-b-c=a-(b+c) a-b-c=a-c-b乘法交换律:ab=ba乘法结合律:abc=a(cb)乘法分配律:a(b+c)=ab+ac除法的性质:a÷b÷c=a÷(bc) a÷b÷c=a÷c÷b3、字母表示公式:①长方形周长:C=2(a+b) 长方形面积:S=ab②正方形周长:C=4a 正方形面积:S=a²③行程问题路程=速度×时间:s=vt速度=路程÷时间:v=s÷t时间=路程÷速度:t=s÷v④工程问题工作总量=工作效率×工作时间c=at工作效率=工作总量÷工作时间a=c÷t工作时间=工作总量÷工作效率t=c÷a⑤总价单价和数量问题总价=单价×数量:c=ax单价=总价÷数量:a=c÷x数量=总价÷单价:x=c÷a二:解简易方程1、等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。

2、等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

3、含有未知数的等式叫做方程。

4、使方程左右两边相等的未知数的值,叫做方程的解。

5、求方程的解的过程叫做解方程。

第五单元简易方程知识点

第五单元简易方程知识点

第五单元简易方程知识点1、在含有字母的式子里,乘号可以记做"·",也可以省略不写。

(1)数字和字母相乘时,省略乘号后,一律要将数字写在字母的前面。

(2)字母与字母相乘,直接省略乘号。

(3)括号与数字相乘,要将数字写在括号的前面,再省略乘号。

(4)加号、减号除号以及数与数之间的乘号不能省略。

2、a2读作a的平方,表示a×a,2a读作2a ,表示2×a或者a+a。

特别地1a=a3、含有未知数的等式叫做方程(注意:方程必须满足:①必须是等式,②必须含有未知数。

两个条件缺一不可)。

4、方程一定是等式,而等式不一定是方程。

5、等式的左右两边同时加上(或者减去)相同的数,等式的左右两边依然相等。

等式的左右两边同时乘以(或除以)相同的数("0"除外),等式的左右两边依然相等。

6、1)使方程左右两边相等的未知数的值叫做方程的解。

2)求方程的解的过程,叫做解方程。

3)"方程的解"是一个数,"解方程"是计算过程。

4)解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

7、解方程时常用的关系式:10个数量关系式:加法:和=加数+加数一个加数=和-另一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商8、方程的检验过程:方程左边=……=方程右边所以,X=…是方程的解。

9、列方程解决问题的一般步骤:(1)找出未知数,用字母X表示。

(2)分析实际问题中的数量关系,找出等量关系,列方程。

(3)解方程并检验作答。

第5讲-简易方程(学生版)(知识梳理+典例分析+举一反三+巩固提升)人教版

第5讲-简易方程(学生版)(知识梳理+典例分析+举一反三+巩固提升)人教版

第5讲 简易方程用字母表示数量关系用字母表示运算定律和计算公式用字母表示数借助字母解决实际问题并代入求值方程的意义解方程解简易方程实际问题与方程解不同类的方程解方程等式的性质方程和等式(1)等式的意义:表示等号两边是相等关系的式子叫等式。

(2)方程的意义:含有未知数的等式叫方程。

(3)方程与等式的关系:等式的范围比方程的范围大。

方程都是等式,但等式不一定是方程。

方程的意义使方程左右两边相等的未知数的值,叫做方程的解。

方程的解实际上是一个数。

求方程的解的过程叫做解方程。

解方程实际上是一个过程。

知识点一:用字母表示数1. 用字母表示数量关系(1)可以用字母或含有字母的式子来表示一个数或表示数量关系;(2)字母与数字相乘时,把乘号省略。

省略乘号时,一般把数字写在字母前面。

含有字母的式子中的加、减、除号不能省略。

2. 用字母表示运算定律和计算公式(1)在含有字母的式子里,只有字母与字母、数字与字母之间的“×”才能简写成“.”或者省略不写。

注意:省略乘号后,数字必须写在字母的前边。

(2)应用公式求值解决问题的步骤:第一步:写出字母公式第二步:把字母表示的数值代入公式第三步:计算出结果,记住写单位3. 用字母表示复杂的数量关系(1)不同的式子可以表示相同的数量关系。

(2)将字母的具体数值代入含有字母的式子中,即可求得相应式子的值。

4. 化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行化简,再求值。

知识点二:解简易方程1.方程的意义(1)方程的意义:含有未知数的等式是方程。

(2)方程必须具备的两个条件:一是等式;二含有未知数。

2.方程一定是等式;但等式不一定是方程。

3. 所有的方程都是等式,但等式不一定都是方程。

4.等式的性质等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

新人教版小学数学五年级上册 《简易方程》知识点梳理 复习资料

新人教版小学数学五年级上册 《简易方程》知识点梳理 复习资料

第五单元《简易方程》知识点梳理一、用字母表示数1.在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写,字母和数字相乘一般要把数字写在前面。

加号、减号、除号以及数与数之间的乘号不能省略。

2.a2读作a的平方,表示2个a相乘或a×a。

2a表示2个a相加或a+a 或2×a 。

3.用字母表运算定律。

加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法交换律:ab=ba 乘法结合律:abc=a(bc)乘法分配律:(a+b)c=ac+bc4.用字母表示计算公式。

长方形的周长公式:c=2(a+b) 长方形的面积公式:s=ab正方形的周长公式:c=4a 正方形的面积公式:s= a2二、等式和方程1.等式:表示相等关系的式子叫等式。

2.等式的性质1:等式两边加上(或减去)同一个数,左右两边仍然相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

3.方程:(1)方程:含有未知数的等式叫做方程。

(2)使方程左右两边相等的未知数的值,叫做方程的解。

(3)求方程的解的过程叫做解方程。

(4)所有的方程都是等式,但等式不一定都是方程。

(5)方程的解是一个数,解方程是一个计算过程。

4.四则运算的10个关系式:加法:和=加数+加数一个加数=和-另一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商8、方程的检验过程:方程左边=……=……=方程右边所以,X=……是方程的解。

9.方程与实际问题中常用的等量关系式。

路程=速度X 时间速度=路程÷时间时间=路程÷速度总价=单价X 数量单价=总价÷数量数量=总价÷单价工作总量=工作效率X 工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率总产量=单产量X 数量单产量=总产量÷数量数量=总产量÷单产量大数-小数=相差数大数-相差数=小数小数+相差数=大数一倍量X倍数=几倍量几倍量÷倍数=一倍量几倍量÷一倍量=倍数评价测试样例一、填空题。

简易方程所有的知识点总结

简易方程所有的知识点总结

简易方程所有的知识点总结1. 方程的定义方程是含有未知数的数学关系,它可以表示为两个表达式之间的相等关系。

方程通常用字母表示未知数,通过代数方法可以求解出未知数的取值。

2. 未知数在方程中,未知数通常用字母表示,表示未知的数量或者大小。

在求解方程时,我们通过代数运算来确定未知数的值。

3. 方程的解解方程就是要找出使方程成立的未知数值,使得方程左边的表达式等于右边的表达式。

解方程的过程就是求出这些未知数的取值。

二、一元一次方程1. 一元一次方程的定义一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。

2. 一元一次方程的一般形式一元一次方程的一般形式可以表示为ax+b=0,其中a和b为已知常数,x为未知数。

3. 解一元一次方程的方法解一元一次方程的方法包括加减消去法、配方法、代入法等。

在解方程的过程中,我们通常通过变换方程的形式来求得未知数的值。

4. 一元一次方程的应用一元一次方程的应用十分广泛,可以用来解决各种实际问题,如物品的购买和销售、工程问题、金融问题等。

三、一元二次方程1. 一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的最高次数为二的方程。

2. 一元二次方程的一般形式一元二次方程的一般形式可以表示为ax^2+bx+c=0,其中a、b和c为已知常数,x为未知数。

3. 一元二次方程的求解方法解一元二次方程可以通过配方法、公式法、因式分解法等多种方法。

其中,一元二次方程的解法与因子分解和二次函数有着密切的联系。

4. 一元二次方程的应用一元二次方程在生活中也有很多应用,如物体自由落体运动、抛物线运动、建筑中的拱形结构设计等都可以用一元二次方程进行建模和解决。

四、一元三次方程1. 一元三次方程的定义一元三次方程是指只含有一个未知数,并且未知数的最高次数为三的方程。

2. 一元三次方程的一般形式一元三次方程的一般形式可以表示为ax^3+bx^2+cx+d=0,其中a、b、c和d为已知常数,x为未知数。

完整简易方程知识点梳理

完整简易方程知识点梳理

完整简易方程知识点梳理简易方程知识点梳理一、字母表示数1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

22读作的平方,表示两个相乘。

2 (或表示) ,+ 2、×可以写作·aaaaaaaaaaa3、数字和字母相乘,省略乘号时要把数字写在前面。

(如b×4写作4b )4、用字母表示运算律加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c5、用字母表示正方形、长方形的面积和周长对应练习1.排球队共有队员a人,女队员有7人,男队员有( )人。

2.1千克大米的价钱是1.50元,买x千克大米应付( )元。

3.省略乘号,写出下面的式子。

3×a 9×x a×4 y×5 a×3x4、服装店的阿姨们加工了50件衣服,每件衣服用布bm,当b=1.38时,用布的总数是______米⒌a与b的和的5倍是()6、一辆9路公共汽车上原有22名乘客,在新华大街站下去a人,又上去b人。

现在车上有____名乘客,当a=8,b=12时,车上有____名乘客。

7、比m的3倍多9的数是______,比n除以5的商少7的数是______⒏当a=2,b=5时,那么8a-2b=()。

2表示()。

表示(),x厘米,⒐正方形的边长为x4x10.有x吨水泥,运走10车,每车a吨。

仓库还剩水泥()吨。

11、施工队修一条长4.5千米的路,平均每天修0.24千米。

修了y天后,还剩____千米,当y=5时,还剩___千米。

二、方程的定义及解方程1、方程:含有未知数的等式称为方程。

2、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。

简易方程知识要点

简易方程知识要点

简易方程知识要点信息窗一:三个知识点:1,等式的含义——用等号(=)来表示相等的式子,叫等式。

3+6=9 2,方程的意义——含有未知数的等式叫做方程。

x+3=93,等式与方程的关系——是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分。

信息窗二:四个知识点:1,等式的性质1——方程两边同时加上或减去一个数,左右两边仍然相等。

2,方程的解——使方程左右两边相对的未知数的值,叫做方程的解。

例如:x=3是15-x=12的解。

3,解方程——求方程的解的过程叫做解方程。

(方程的解是一个数,解方程是一个过程。

)4,检验方程——把算出来的方程解代入原方程(等号左边),如果方程的左、右两边相等式子成立,说明是原方程的解,是正确的,如果不成立,那么就应该再算算,可能是计算方面出现错误。

信息窗三:三个知识点:1,等式的性质2:方程两边同时乘以或除以一个不为0的数,左右两边仍然相等。

(1,等式两边同时乘同一个数,等式仍然成立。

2,等式两边同时除以同一个数“0除外”等式仍然成立。

)2,解方程:解方程就是求出方程中所有未知数的值。

3,用方程解答应用题:(1)弄清题意,找出未知数,用x表示。

(2)分析,找出数量之间的相等关系,列方程。

例如:梨树比苹果树的3倍少15棵。

可以表示成“苹果树的棵树×3—15=梨树的棵数”.也可以表示成“梨树的棵数十15=苹果树的棵数×3”。

(3)解方程。

(4)检验方程,写出答案。

信息窗四:两个知识点:1,和倍应用题:题中告诉我们两个数的和以及这两个数的倍数关系,让我们求这两个数个是多少。

这种题称和倍问题。

和÷(倍数+1)=一倍数(即较小数)较小数×倍数=较大数例如:两人共有32本书,哥哥的书是妹妹的三倍,两人各有多少本书?解:设妹妹有x本,哥哥有3x本。

3x+x=322,差倍应用题解:题中告诉我们两个数的差与这两个数的倍数关系,求这两个数各是多少,这类问题称为差倍问题。

简易方程整理和复习经典实用

简易方程整理和复习经典实用

解:设梨树有X棵。
x+30=15
(2)桔树有150棵,是梨树的3倍,0梨树有几棵?
解:设梨树有X棵。
3X=15
(3)桔树有150棵,比梨树的3倍还0多30棵,梨树有几棵?
解:设梨树有X棵。
3X+30=1
(4)果园运来25捆桔树和梨树,共15500棵,已知每捆桔
树4棵,每捆梨树有几棵? 解:设梨树有X棵。
(×) (×)
(√ ) ( ×)
1. a2表示2个a相加.( ) 2. b×4=4b. ( ) 3. 当a=5时,a2 +3 =13( ) 4. 当b=1时,2×b=2( )
•简易方程整理和复习
复习:小轿车的速度是a千米/小时,它从广州开往惠州,行了1.5小时后距离 惠州还有32千米。 (1)1.5a表示( 1.5小时行的路程 );广州距离惠州有( 1.5a+32 )千米。
②当字母与字母相乘时,省略乘号,用点表示或直接去掉乘号, 如:a×b写成a·b或ab;(通常按字母的先后顺序写)
③字母与1相乘省略1不写,只写字母本身,如:1×a写成a。
④两个一样的字母相乘就写一个字母,再在字母的右上角写上 2,如:a×a通常写成a·a或a2,读作:a的平方。
•简易方程整理和复习
用含有字母的式子表示数、数量关系、公式和定律等。
25×4+25X=15
(5)桔树和梨树共有150棵,桔树棵0数是梨树的2倍,
桔树和梨树各有几棵? 解:设梨树有X棵,那么桔树有2X棵。
•简易方程整理和复习
2X+X= 150
有两个书架,第一个书架书的本数是第二个的1.5倍。 如果从第一个书架取出50本放入第二个中,则两个 书架的数就一样多。原来两个书架各有几本书?

简易方程知识点梳理

简易方程知识点梳理

简易方程知识点梳理简易方程知识点梳理首先,在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

加号、减号、除号以及数与数之间的乘号不能省略。

例如,a×a可以写作a·a(或a2),a2读作a 的平方,表示两个a相乘。

2a表示a+a,即数字和字母相乘,省略乘号时要把数字写在前面。

比如b×4写作4b。

其次,我们可以用字母表示运算律。

例如,加法交换律:a+b=b+a,加法结合律:(a+b)+c=a+(b+c),乘法交换律:a×b=b×a,乘法结合律:(a×b)×c=a×(b×c),乘法分配律:(a+b)×c=a×c+b×c。

我们还可以用字母表示正方形、长方形的面积和周长。

例如,正方形的边长为x厘米,4x表示正方形的周长,x2表示正方形的面积。

解方程需要我们掌握一些基本的知识。

方程是含有未知数的等式,方程的解是使方程左右两边相等的未知数的值。

解方程的过程叫做解方程,解方程原理是等式的性质。

等式左右两边同时加、减、乘、除相同的数(除外),等式依然成立。

方程两边同时加、减、乘、除一个不等于的数,左右两边仍然相等。

在解方程时,我们需要注意等号要对齐,两边乘除相同数的时候,这个数不要为0.最后,我们来做一些练。

假设排球队共有队员a人,女队员有7人,男队员有a-7人。

如果1千克大米的价钱是1.50元,买x千克大米应付1.50x元。

省略乘号,3×a表示3a,9×x表示9x,a×4表示4a,y×5表示5y,a×XXX表示3ax。

如果服装店的阿姨们加工了50件衣服,每件衣服用布bm,当b=1.38时,用布的总数是50bm。

如果一辆9路公共汽车上原有22名乘客,在新华大街站下去a人,又上去b人。

现在车上有22-a+b名乘客。

如果比m的3倍多9的数是3m+9,比n除以5的商少7的数是n/5-7,那么当a=2,b=5时,8a-2b=14.如果正方形的边长为x厘米,4x表示正方形的周长,x2表示正方形的面积。

初中简易方程知识点总结

初中简易方程知识点总结

初中简易方程知识点总结一、方程的基本概念1. 方程方程是指含有未知数和常数之间的相等关系的式子。

一般形式为:a₁x + a₂y +… + aₙz = b其中,a₁,a₂,…,aₙ为系数;b为已知数;x,y,z为未知数;a₁x + a₂y +… + aₙz称为方程的左式;b称为方程的右式。

2. 未知数方程中并不是所有的字母都代表未知数。

未知数是指在方程中所要求解的数。

在方程a +b = 10中,a和b为未知数。

3. 解解是指使方程成立的数或者数的集合。

对于方程a + b = 10,当a = 3,b = 7时,方程成立,此时a=3,b=7就是方程的解。

二、方程的解法1. 移项法移项法是简单方程解法的一个基本方法。

其基本思想是为了使方程两边相等,当方程左边有负数时,把它移至右边转化为正数;当方程右边有负数时,把它移至左边转化为正数。

举例:2x + 5 = 10移项得:2x = 10 - 52x = 5x = 5 / 2x = 2.52. 相消法相消法是简单方程解法的常用方法。

当方程中存在相同的项,且这些相同项可以相互抵消时,可以利用相消法来求解方程。

举例:3x + 2x - 5 = 12合并同类项得:5x - 5 = 12移项得:5x = 12 + 55x = 17x = 17 / 5x = 3.43. 同除法同除法是通过将等式的两边同时除以相同的非零数来消去方程中的分母。

举例:3x / 2 = 6同除得:3x = 6 * 23x = 12x = 12 / 3x = 44. 合并同类项法合并同类项法是在一个等式中将相同的变量或者常数合并在一起,从而简化方程,找到其解。

举例:2x + 3x - 5 = 10合并同类项得:5x - 5 = 10移项得:5x = 10 + 55x = 15x = 15 / 5x = 35. 因式分解法因式分解法是将一个多项式拆解成若干个因式的乘积的方法。

举例:2x(x + 3) = 20因式分解得:2x² + 6x - 20 = 0求根得:x = -5 或 x = 26. 代数法代数法是通过代数运算来求解方程的一种方法。

五年级上册数学简易方程的知识点

五年级上册数学简易方程的知识点

小学简易方程复习1、方程定义:含有未知数的等式叫方程。

使方程左右两边相等的未知数的值叫方程的解,求方程解的过程叫解方程。

2、等式的性质:①方程两边同时减去(加上)同一个数,左右两边仍然相等。

②方程两边同时乘以(除以)同一个数(零除外)左右两边仍然相等。

3、移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质①。

4、列方程解应用题的一般步骤:(1)弄清题意,找出未知数,并用X 表示;(2)列出代数式;(3)找出应用题中数量之间的等量关系;(4)列方程;(5)解方程:去括号——去分母——移项/合并同类项——系数化成1。

(6)检验、写出答案。

例题一:χ×(1-83)=132χ-83χ=132-------------【去括号】24χ-9χ=40---------------【去分母】15χ=40---------------【合并同类项】2-------------【系数化成1】χ=23例题二:甲乙两地相距345千米,一辆客车和一辆货车同时从两地相对开出,3小时相遇。

客车每小时行55千米,货车每小时行多少千米?解:设货车每小时行x千米。

——————【设未知数】则货车3小时行驶的路程为3x————————-【列代数式】客车与货车共同行驶的路程为3x+55×3————【列代数式】由题意知客车与货车共同行驶的路程为345km——【等量关系】因此,3x+55×3=345——————————————【列方程】求解:3x+55×3=3453x=345-55×3——————————————【合并同类项】3x=180X=60———————————————————【系数化为1】。

简易方程有几个知识点总结

简易方程有几个知识点总结

简易方程有几个知识点总结一、简易方程的定义简易方程是指含有一个未知数的等式,这个未知数称为方程的未知数。

简易方程的基本形式为:ax+b=0,其中a和b是已知数,x是未知数。

在解简易方程时,我们要找到一个值,代入未知数x,使得等式成立。

这个值就是方程的解。

二、简易方程的性质1. 解的唯一性:简易方程的解是唯一的。

即使方程的系数a和b不同,方程的解也是唯一的。

这是因为方程的解是由系数a和b决定的。

2. 方程的变形:简易方程可以通过变形,将其转化为等价的方程。

这样可以使得其解更易于求得。

例如,将方程ax+b=0两边同时减去b,得到ax=-b,然后除以a,得到x=-b/a,这就是方程的解。

又如,将方程ax+b=0两边同时乘以一个常数k,得到k(ax+b)=0,这也是方程的解。

3. 方程的两边加减:简易方程的两边都可以加上或减去同一个数,得到等价的方程。

例如,将方程ax+b=0两边都减去b,得到ax=-b,这也是方程的解。

4. 方程两边同时乘除:简易方程的两边都可以乘以或除以同一个数,得到等价的方程。

例如,将方程ax+b=0两边都乘以一个常数k,得到k(ax+b)=0,这也是方程的解。

5. 方程的根与系数的关系:简易方程的解与系数之间有着一定的关系。

例如,当a=0时,方程的解是-x/b;当b=0时,方程的解是 0;当a和b都等于0时,方程的解是任何数。

三、简易方程的解题步骤解简易方程的基本步骤如下:1. 观察并判断方程的类型:首先要观察方程的类型,确定是一元一次方程、一元二次方程还是一元高次方程。

然后根据方程的类型采取相应的解题方法。

2. 移项整理方程:将方程中的常数项移到一边,将含有未知数的项移到另一边,使得方程化为标准形式。

3. 化简方程:将方程进行化简,将系数约去,使得方程更易于求解。

4. 解方程:找到方程的解,并检验是否符合原方程。

5. 给出结论:根据方程的解,给出相应的结论。

以上就是对简易方程的定义、性质和解题步骤的总结。

简易方程知识点整理

简易方程知识点整理

简易方程知识点整理一、用字母表示数。

1. 字母表示数的意义。

- 可以简明地表示数和数量关系、运算定律和计算公式等。

例如,用a表示单价,b表示数量,c表示总价,那么c = ab。

2. 字母表示数的规则。

- 在含有字母的式子里,数字和字母、字母和字母相乘时,乘号可以记作“·”,或者省略不写。

例如a× b = ab。

- 当数字和字母相乘时,数字要写在字母前面。

例如3× a = 3a。

- 1和任何字母相乘时,1省略不写。

例如1× a=a。

3. 用字母表示运算定律。

- 加法交换律:a + b=b + a。

- 加法结合律:(a + b)+c=a+(b + c)。

- 乘法交换律:ab = ba。

- 乘法结合律:(ab)c=a(bc)。

- 乘法分配律:(a + b)c = ac+bc。

4. 用字母表示计算公式。

- 长方形的长用a表示,宽用b表示,周长C = 2(a + b),面积S=ab。

- 正方形的边长用a表示,周长C = 4a,面积S=a^2。

- 平行四边形的底用a表示,高用h表示,面积S = ah。

- 三角形的底用a表示,高用h表示,面积S=(1)/(2)ah。

- 梯形的上底用a表示,下底用b表示,高用h表示,面积S=(1)/(2)(a + b)h。

- 圆的半径用r表示,周长C = 2π r,面积S=π r^2。

二、简易方程。

1. 方程的意义。

- 含有未知数的等式叫做方程。

例如2x+3 = 7,其中x是未知数,这个式子是等式,所以它是方程。

2. 方程与等式的关系。

- 方程一定是等式,但等式不一定是方程。

例如3 + 5=8是等式,但不是方程,因为它不含有未知数。

3. 等式的性质。

- 等式的性质1:等式两边同时加上(或减去)同一个数,等式仍然成立。

例如,如果a=b,那么a + c=b + c,a - c=b - c。

- 等式的性质2:等式两边同时乘(或除以)同一个不为0的数,等式仍然成立。

简易方程整理和复习

简易方程整理和复习
工作总量(c)、工作时间(t)、工作 效率(a)的数量关系:
c=at a=c÷t t=c÷a
a+b=b+a (a+b)+c=a+(b+c)
ab=ba
(ab)c=a(bc)
(a+b) c=ac+bc
判断题:
1、因为22=2×2,所以a2=2a(× )
2、b÷2可以写成2b。
(× )
3、x÷2=x2
4、a×5=a5
2.一个长方形的长是48分米,宽是b分米,它的周长是(96+)2b分米。
C = 2(a+b ) =2(48+b) =96+2b
3.小英重n千克,比小华轻3千克,小华体重是( 3+)n千克。
巩固练习---在括号里填上含有字母的式子。
4.汽车平均每小时行m千米,6小时能行(6m)千米,行450千米
要( 450÷)m小时。
复习三:果园里一共种了340棵桃树和杏树,其
中桃树的棵数比杏数的3倍多20棵。两种树各种
了多少棵?
X
杏树的棵数: X
X
X 多20 340
桃树的棵数:
3X+2 X+3X+20=340
0
4X+20-20=340-20X=80
3X+20=3×80+20
解:设杏树有X棵。那 么桃树有3X+20棵
被减数 =___________________
一个因数 =___________________
除数
=___________________
被除数 =___________________
列方程解应用题

总结简易方程知识点高中

总结简易方程知识点高中

总结简易方程知识点高中一、基本概念1.1、什么是方程方程是含有未知数的等式,通常用字母表示未知数。

一般的形式为“含有未知数的数学式等于另一数学式”。

1.2、方程中的元素方程中一般包括未知数、已知数、运算符(+、-、×、÷)和等号。

1.3、方程的解方程的解就是使方程成立的数。

1.4、方程的种类一元一次方程、一元二次方程、一元高次方程等。

二、一元一次方程2.1、方程的概念形如ax+b=0(a≠0)的方程叫一元一次方程。

2.2、方程的解法⑴、加减法解法用两边加上或减去相同的数,使一边的系数为1,从而得到解。

⑵、乘除法解法用两边乘除相同的数,使未知数系数消去,再进行计算求解。

2.3、一元一次方程的应用一元一次方程的应用十分广泛,可以解决很多实际问题,如求两个数的和为某一数值、某人的年龄等。

三、一元二次方程3.1、方程的概念形如ax²+bx+c=0(a≠0)的方程叫一元二次方程。

3.2、求解一元二次方程一元二次方程的求解可以分为以下几种情况:⑴、用配方法若方程左端可以写成两个完全平方的形式,便可以通过配方法进行求解。

⑵、用公式法利用一元二次方程的求根公式 x = (-b±√(b²-4ac))/2a 可以求解方程。

⑶、用因式分解法通过对一元二次方程进行因式分解,可以快速求解方程。

3.3、一元二次方程的应用一元二次方程在几何问题、物理问题等方面有着广泛的应用,如抛物线的求解、物体自由下落的问题等。

四、方程的常见误区4.1、方程解的唯一性在求解方程的过程中,有时候方程可能有多个解,也可能没有解。

因此,要注意方程解的唯一性。

4.2、方程的变形误区在求解方程的过程中,有时可能需要对方程进行变形,这时需要注意变形的正确性和严密性,避免出现错误。

五、解方程的一般步骤5.1、分析问题首先要对问题进行分析,确定方程的形式,并确定未知数的含义。

5.2、列方程通过分析问题,列出方程的表达式,常常包括许多已知数和未知数。

简易方程知识梳理

简易方程知识梳理

知识梳理
1.等式性质:
方程两边同时加(或减)一个相同的数,等式成立。

方程两边同时乘一个相同的数,等式成立。

方程两边同时除以一个相同的数(0除外),等式成立。

2.方程的意义
(1)方程的意义:含有未知数的等式叫做方程。

方程是等式,但等式不一定是方程。

(2)天平保持平衡的道理:两边同时加上或减去相同的数,左右两边仍然相等;两边同时乘或除以相同的数(0除外),左右两边仍然相等。

3.解方程
(1)方程的解与解方程:使方程左右两边相等的未知数的值叫做方程的解,它是一个数值;求方程的解的过程叫做解方程,它是一个演算过程。

(2)解方程的原理:依据天平平衡的道理来解方程。

解方程时必须先写“解”字,每一步得到的都是等式,而不是递等式,并且等号要对齐。

(3)验算:把未知数的值代入原方程,看方程左边的值是否等于方程右边的值。

4.找等量关系式
(1)抓住表示关系的句子找等量关系。

(2)根据常见的数量关系找等量关系。

(3)根据常用的计算公式找等量关系。

(4)抓住“不变量”确定等量关系。

5.用方程解决实际问题
(1)方程解决实际问题的一般步骤:弄清题意,找出未知数,用表示;分析、找出数量之间的相等关系,列方程;解方程;检验,写出答案。

(2)方程解决实际问题的关键:找题中数量之间的相等关系。

方法有:依据题中情节发展顺序找;利用几何图形计算公式找;根据常见数量关系找;抓住反映题中数量之间关系的重点句找;借助线段图找;通过两个未知数的关系找等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易方程知识点梳理
一、字母表示数
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

22读作的平方,表示两个相乘。

2 (或表示) ,+ 2、×可以写作·aaaaaaaaaaa3、数字和字母相乘,省略乘号时要把数字写在前面。

(如b×4写作4b )
4、用字母表示运算律
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
5、用字母表示正方形、长方形的面积和周长
对应练习
1.排球队共有队员a人,女队员有7人,男队员有( )人。

2.1千克大米的价钱是1.50元,买x千克大米应付( )元。

3.省略乘号,写出下面的式子。

3×a 9×x a×4 y×5 a×3x
4、服装店的阿姨们加工了50件衣服,每件衣服用布bm,当b=1.38时,用布的总数是______米
⒌a与b的和的5倍是()
6、一辆9路公共汽车上原有22名乘客,在新华大街站下去a人,又上去b人。

现在车上有____名乘客,当a=8,b=12时,车上有____名乘客。

7、比m的3倍多9的数是______,比n除以5的商少7的数是______
⒏当a=2,b=5时,那么8a-2b=()。

2表示()。

表示(),x厘米,⒐正方形的边长为x4x10.有x吨水泥,运走10车,每车a吨。

仓库还剩水泥()吨。

11、施工队修一条长4.5千米的路,平均每天修0.24千米。

修了y天后,还剩____千米,当y=5时,还剩___千米。

二、方程的定义及解方程
1、方程:含有未知数的等式称为方程。

2、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。

3、解方程:求方程的解的过程叫做解方程。

4、解方程原理:等式的性质
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

5、方程两边同时加、减、乘、除一个不等于0的数,左右两边仍然相等。

6、解方程需要注意什么?
)两边乘除相同数的时候,这个数不要为3)等号要对齐(2)一定要写‘解'字(1(.
7、方程和等式的关系:
含有未知数的等式叫做方程,所有的方程都是等式,但等式不一定都是方程。

8、方程的检验过程:方程左边=…… =方程右边
所以,X=…是方程的解。

9、方程的解是一个数;解方程是一个计算过程。

对应练习
1.等式与方程:下列各式中是等式的打上“√”,是方程的打上“△”。

(1)12+x=13 (2)2.5-0.5=2 (3)5x>3 (4)14.6-7x=0.6 (5)x=0 (6)9=3x
(7)3+5X(9)1+2.7=3.7 (10)15<1十X
2.解方程
第一类、解简易方程
X + 32 = 76 X - 20 = 0 7X = 49
12 X = ÷ 6
第二类、解较复杂方程1(含乘加、或乘减的方程)解这类方程的时候,先仔细想一想把什么先看作一个整体。

16 + 8X = 40 3X + 6 = 18
5x-8= 12.5
100 65X - 5×6= 0 - 4X 4×5 =
2(含小括号的方程)第三类、解较复杂方程解这类方程的时候,先仔细想一想把什么先看作一个整体。

12 = 5X 15 10 )+ ( 2X 3= (- )45
- X (= )124
第四类、解较复杂方程3(方程左边的算式均含有未知数)
当方程左边的算式均含有未知数时,首先要运用乘法的分配律来进行计算,再解
方程。

42X + 28X = 140 19X + X = 40 2X + 8X - X = 27.9
第五类、解较复杂方程4(当除数或减数含有未知数)
当除数或减数含有未知数时,首先要交换位置,再解方程。

20-x=9 18.9÷x=2.1 3.25-x=1.2 6÷x=3
80 ÷ 5X = 100 25 - 5X = 15 7.5-2.5x=2.5 2 ÷ X
=0.5
三、列方程解决问题(设未知数,找等量关系,列方程,解方程)
类型一(简单的一步方程)
1、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。

六一班收集了
60个,六二班比六一班多收集15个,六二班收集了几个?
2、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。

六二班收集了
60个,六二班比六一班多收集15个,六一班收集了几个?
3、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。

六二班收集了60个,六二班收集的是六一班的2倍,六一班收集了几个?
4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。

其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法)
类型二(几倍多多少/少多少):
1、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克?
2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?
3、农场一共收获了1200棵大白菜,每22棵装一筐,装完后还剩12棵,共装了几筐?
类型三(求每份数):
1、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
2、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组几人?
3、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

平均每行梨树有多少棵?
类型四(买东西和卖东西):
1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?
2、我买了两套丛书,单价分别是:<<科学家>>2.5元/本,<<发明家>>3元/本,两套丛共花了28元。

其中《科学家》这本书买了4本,《发明家》买了多少本?
3、王奶奶拿了孙子们帮她收集的易拉罐和饮料瓶去废品收购站卖,共得到7元,易拉罐和饮料瓶每个都是0.15元,已知易拉罐有20个,那么饮料瓶有几个?
类型五(和倍问题 / 差倍问题):
1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?
2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?
倍,求乙车的速度是多少?1.2千米,甲车的速度是乙车的10、甲车每小时比乙车多行驶3.
类型六(相遇问题、追及问题、鸡兔同笼)
1、甲乙两辆车同时从A、B两地相向而行,甲车每小时走5km,乙车每小时走6km,已知A、B两地相距110千米,问甲车和乙车几小时后相遇?
2、小明和小东比赛骑自行车,他们约好同时从学校出发,看谁先到达终点的邮局,谁就赢。

4分钟后,小明到达终点,取得了胜利,这时小东落后了他400米。

经过计算发现,小明每分钟骑300m,那么小东每分钟骑多少米?
3、笼子里关了一些鸡和兔子,已知它们的腿加起来共有48条,并且鸡的只数和兔子的只数相同,那么鸡和兔子各有多少只?
类型七(和差问题):
1、甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?
2、两个相邻自然数的和是97,这两个自然分别是多少?
,这两个数分别是多少?153两个连续自然数的和是、3.。

相关文档
最新文档