七年级数学合并同类项同步练习(附答案)
人教版七年级数学上册《3-2 第1课时 合并同类项解一元一次方程》作业同步练习题及参考答案
![人教版七年级数学上册《3-2 第1课时 合并同类项解一元一次方程》作业同步练习题及参考答案](https://img.taocdn.com/s3/m/f9457f01770bf78a6429545e.png)
3.2 解一元一次方程(一)——合并同类项与移项第 1 课时合并同类项解一元一次方程1.方程�+x+2x=210 的解为( )2A.x=20B.x=40C.x=60D.x=802.解下列一元一次方程时,合并同类项正确的是( )A.已知x+7x-6x=2-5,则-2x=-3B.已知0.5x+0.9x+0.1=0.4+0.9x,则1.5x=1.3C.已知25x+4x=6-3,则29x=3D.已知5x+9x=4x+7,则18x=73.方程-3x-3x=5-1 的解为( )2 2A.x=-3B.x=-13C.x=3 D.x=134.如果x=m 是方程1x-m=1 的解,那么m 的值是( )2A.0B.2C.-2D.-65.某人有三种邮票共180 枚,它们的数量比为1∶2∶3,则这三种邮票的数量分别为.6.如果5x-6x=-9+11,那么1-x= .7.小明在做作业时,不小心把方程中的一个常数弄脏了看不清楚,被弄脏的方程为2y-1y=1-■,怎么办?2 2小明想了想,便翻看了书后的答案,此方程的解为y=-5,于是,他很快知道了这个常数,则这个常数3是.8.解下列方程:(1)8y-7y-12y=-5;(2)2.5z-7.5z+6z=32.9.(2018 安徽中考)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100 头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3 家共取一头,恰好取完.问:城中有多少户人家?请解答上述问题.10.解下列方程:(1)11x-2x=9; (2)-4+16=�.211.甲、乙、丙三辆卡车所运货物的吨数比为6∶7∶4.5,已知甲车比乙车少运货物12 t,则三辆卡车共运货物多少吨?12.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32 块皮,黑色皮块和白色皮块各有多少?★13.海宝在研究一元一次方程应用时,被这样一个问题难住了:神厨小福贵对另一个厨师说:“我做的面包不是100 个,我现在的面包加上和我现在的面包数目相等的面包,再加上现在面包数目一半的面包,再加上现在面包数目一半的一半的面包,另外再加上一个面包, 就恰好是100 个面包了.请你算算我做了多少个面包?”请你帮忙算一下小福贵做了多少个面包?★14.太阳下山晚霞红,我把鸭子赶回笼.一半在外闹哄哄,一半的一半进笼中,剩下十五围着我,请问共有多少只鸭子?你能列出方程来解决这个问题吗?3★15.已知 1 + 1 + 1 +…+ 1 =1-1 + 1 − 1 + 1 − 1+…+ 1 − 1 =1- 1 , 则 方 程 � + � + � + 1×2 2×3 3×499×100 2 2 3 3 4 99 100 100 1×2 2×3 3×4�+…+ � =2 017 的解是多少?4×5 2 017×2 018答案与解析夯基达标1.C2.C 选项 A 中,合并同类项,得 2x=-3;选项 B 中,0.1 与 0.5x+0.9x 不是同类项,不能合并;0.4 与 0.9x 不是同类项,不能合并;选项 D 中,5x+9x 与 4x 不在方程的同一边,不能直接合并,所以选项 A,B,D 错误,故选 C .3.B4.C5.30 枚、60 枚、90 枚 设三种邮票的数量分别为 x ,2x ,3x ,则x+2x+3x=180,(1+2+3)x=180,6x=180,x=30(枚),2x=60(枚),3x=90(枚). 6.3解方程 5x-6x=-9+11,得-x=2.所以 1-x=1+2=3.7.38.解 (1)合并同类项,得-11y=-5,系数化为 1,得 5y=11. (2)合并同类项,得 z=32.9. 解 设城中有 x 户人家,依题意得 x+�=100,解得 x=75. 答:城中有 75 户人家.培优促能10. 解 (1)合并同类项,得 9x=9,系数化为 1,得 x=1.2 4 x=99, × (2)合并同类项,得�=12, 系数化为 1,得 y=24. 11. 解 设甲、乙、丙三辆卡车所运货物的吨数分别为 6x ,7x ,4.5x ,则 7x-6x=12,解得 x=12.6x+7x+4.5x=17.5x=17.5×12=210(t).答:三辆卡车共运货物 210 t .12. 解 设黑色皮有 3x 块,白色皮有 5x 块. 根据“足球表面一共有 32 块皮”, 可得 3x+5x=32,解得 x=4.所以 3x=3×4=12,5x=5×4=20.答:黑色皮有 12 块,白色皮有 20 块.13. 解 设现在面包数为 x ,根据题意,得 1 1 x+x+2x+4x=100-1,合并同类项,得11系数化为 1,得 x=36.答:小福贵做了 36 个面包.14. 解 设共有 x 只鸭子,根据题意, 1 得 x+ 11x+15=x ,2 2 2解得 x=60.答:共有 60 只鸭子.创新应用 15. 解 原方程可变为 + 1 + 1 + 1 +…+ 12 017,2×3 3×4 4×5 2 017×2 0181- 1 + 1 − 1 + 1 − 1 + 1 − 1+…+ 1 − 1x=2 017, 2 2 3 3 4 4 5 2 017 2 018- 12 018 x=2 017,x=2 018.1 1×2 1。
人教版七年级数学上册合并同类项与移项同步测试(含答案)
![人教版七年级数学上册合并同类项与移项同步测试(含答案)](https://img.taocdn.com/s3/m/98bc693d91c69ec3d5bbfd0a79563c1ec5dad76b.png)
人教版七年级数学上册合并同类项与移项同步测试(含答案)一、单选题1.若x=3是关于x的方程2x+a=4的解,则a的值为()A.-10B.-2C.−12D.1 22.下列方程移项、系数化为1正确的是()A.由3+x=5,得x=5+3B.由2x+3=x+7,得2x+x=7+3C.由7x=﹣4,得x=﹣74D.由12y=2,得y=43.若规定□a□表示小于a的最大整数,例如□5□=4,□(-6.7)□=-7(则方程3□(-π)□-2x=5的解是()A.7B.-7C.D.4.如图,数轴的单位长度为1,若点B表示的数是3,则点A表示的数是()A.7B.-5C.-2D.-15.下列方程中,解为x=4的是()A.3x+2=4x+5B.x+3=2x+9C.3+x=3x+2D.4x-2=3x+26.方程2x+1=7与a-x−43=0的解相同,则a的值是()A.1B.13C.-13D.07.已知关于x的方程2x+a−9=0的解是x=3,则a的值为()A.2B.3C.4D.58.若关于x的方程x﹣2+3k= x+k3的解是正数,则k的取值范围是()A.k>34B.k≥ 34C.k<34D.k≤ 349.若x=2是关于x的一元二次方程ax2−bx−2018=0的一个解,则2035−2a+b的值是()A.17B.1026C.2018D.405310.关于x的方程2(x-1)-a=0的根是3,则a的值是()A.4B.-4C.5D.-5二、填空题11.方程2x+3=7的解是 .12.若方程 6x +2=0 的解与关于 y 的方程 3y +m =15 的解互为相反数,则 m = . 13.一个正数的两个平方根分别是2a-2和a-7,则这个正数是 。
14.单项式15a 2x+1b 3与−8a x+3b y 的差仍是单项式,则x −y = . 15.如果x +1是4的平方根,那么x = .三、解答题16.用等式性质解方程 43x −12=12x +1217.如果a 的相反数是-2,且2x+3a=4.求x 的值.18.解下列方程:(1)7x +5=7.5+4.5x(2)6(12x −4)+2x =7−(13x −1) 19.如果关于x 的方程 4x −(3a +1)=6x +2a −1 的解与方程 x−43−8=−x+22的解相同,求字母a 的值。
苏科版七年级数学上《合并同类项》同步练习含答案
![苏科版七年级数学上《合并同类项》同步练习含答案](https://img.taocdn.com/s3/m/e22c4b8e2e3f5727a5e962d9.png)
3.4 合并同类项一.选择题1.已知与5x m+1y是同类项,那么m,n的值分别是()A.m=2,n=﹣1B.m=﹣2,n=﹣1C.m=﹣2,n=1D.m=2,n=2 2.若代数式2x2+7kxy﹣y2中不含xy项,则k的值为()A.0B.﹣C.D.13.下列说法正确的是()A.单项式的系数是3B.多项式2x2﹣3y2+5xy2是三次三项式C.单项式﹣22m4n的次数是7D.单项式2a2b与ab2是同类项4.若单项式与的差仍然是单项式,则m+n等于()A.6B.5C.4D.35.下列说法正确的是()A.0是单项式B.﹣a的系数是1C.a3+是三次二项式D.3a2b与﹣ab2是同类项6.已知2a m b+4a2b n=6a2b,则﹣2m+n的值为()A.﹣1B.2C.﹣3D.47.如果关于x多项式3x3+k2x2﹣4x2+x﹣5中不含x2项,则k的值为()A.0B.2C.﹣2D.2或﹣28.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1二.填空题9.已知单项式﹣3x3y n与5x m+4y3是同类项,则m﹣n的值为.10.当k=时,代数式x2﹣kxy﹣8y2﹣xy+5中不含xy项.11.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.12.把(a﹣b)看作一个整体,合并同类项:3(a﹣b)+4(a﹣b)﹣2(a﹣b)=.13.化简xy2﹣3x2y﹣1+2xy2+5x2y=.14.计算:﹣5m2n+4mn2﹣2mn+6m2n+3mn=.15.若代数式2ax2y+3xy﹣4﹣5x2y﹣7x﹣7ax2y+m中,化简后不含x2y项,则a2019﹣4=.16.已知多项式4x2﹣3mx+2+m的值与m的大小无关,则x的值为.17.如果多项式x4﹣(a﹣1)x3+5x2+(b+3)x﹣1不含x3和x项,则a+b=.三.解答题18.合并同类项:(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)(2a2﹣1+2a)﹣3(a﹣1+a2)19.合并同类项:(1)5x+2y﹣3x﹣7y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7.20.化简下列各题:(1)2a﹣5b﹣3a+b(2)3(a﹣b)﹣4(a﹣b)﹣5(a﹣b)(3)4(x2+xy﹣1)﹣2(2x2﹣xy)(4)a2﹣3[a2﹣2(a2﹣a)+1]21.计算(1)8(a﹣b)﹣5(a﹣b)﹣7(a﹣b)(2)3a2b﹣2[ab2﹣2(a2b﹣2ab2)]22.化简:写出必要的计算步骤和解答过程.(1)3a2﹣2a+4a2﹣7a(2)2x2﹣3xy+y2﹣2xy﹣2x2+5xy﹣2y+123.已知代数式4x2+ax﹣y+5﹣2bx2+7x﹣6y﹣3的值与x的取值无关,求代数式a3﹣2b2+3b3的值.24.若关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,求m,n的值.25.学习指导:同学们,我们即将在“整式的加减”一章中学习同类项和合并同类项法则.同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项,例如a,3a和7a是同类项.合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的指数不变.例如﹣8ab+6ab﹣3ab=(﹣8+6﹣3)ab.请你解决下面问题,一定要化简哦.为了绿化校园,学校决定修建一块长方形草坪,长30米,宽20米,并在草坪上修建如图所示的等宽的十字路,小路宽为x米.(1)用代数式表示小路和草坪的面积是多少平方米?(2)当x=3米时,求草坪的面积.参考答案一.选择题1.解:由题意可知:m+1=3,n﹣1=1,∴m=2,n=2,故选:D.2.解:∵代数式2x2+7kxy﹣y2中不含xy项,∴7k=0.解得:k=0.故选:A.3.解:A、单项式的系数是,故原题说法错误;B、多项式2x2﹣3y2+5xy2是三次三项式,故原题说法正确;C、单项式﹣22m4n的次数是5,故原题说法错误;D、单项式2a2b与ab2不是同类项,故原题说法错误;故选:B.4.解:∵单项式与的差仍然是单项式,∴与是同类项,∴m=2,n+1=4.解得m=2,n=3,∴m+n=5.故选:B.5.解:A、0是单项式,故本选项正确,B、﹣a的系数是﹣1,故本选项错误,C、式子a3+是分式,不是多项式,故本选项错误,D、3a2b与﹣ab2不是同类项(相同字母的指数不同),故本选项错误.故选:A.6.解:因为2a m b+4a2b n=6a2b,所以2a m b与4a2b n是同类项.所以m=2,n=1,所以﹣2m+n=﹣2×2+1=﹣3,故选:C.7.解:3x3+k2x2﹣4x2+x﹣5=3x3+(k2﹣4)x2+x﹣5,由多项式不含x2,得k2﹣4=0,解得k=2或﹣2.故选:D.8.解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.二.填空题9.解:∵单项式﹣3x3y n与5x m+4y3是同类项,∴m+4=3,n=3,解得m=﹣1,n=3,∴m﹣n=﹣1﹣3=﹣4.故答案为:﹣4.10.解:x2﹣kxy﹣8y2﹣xy+5=x2﹣(k+1)xy﹣8y2+5.∵代数式不含xy项,∴﹣(k+1)=0.解得k=﹣1.故答案为:﹣1.11.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.12.解:3(a﹣b)+4(a﹣b)﹣2(a﹣b)=(3+4﹣2)(a﹣b)=5(a﹣b),故答案为:5(a﹣b).13.解:xy2﹣3x2y﹣1+2xy2+5x2y=(1+2)xy2+(5﹣3)x2y﹣1=3xy2+2x2y﹣1.故答案为:3xy2+2x2y﹣1.14.解:﹣5m2n+4mn2﹣2mn+6m2n+3mn=m2n+4mn2+mn.故答案为:m2n+4mn2+mn.15.解:∵代数式2ax2y+3xy﹣4﹣5x2y﹣7x﹣7ax2y+m中,化简后不含x2y项,∴2ax2y﹣5x2y﹣7ax2y=0,∴2a﹣5﹣7a=0,解得:a=﹣1,故a2019﹣4=﹣5.故答案为:﹣5.16.解:∵多项式4x2﹣3mx+2+m的值与m的大小无关,∴4x2﹣3mx+2+m=4x2+2+(﹣3x+1)m,则﹣3x+1=0,解得:x=.故答案为:.17.解:由题意得:a﹣1=0,b+3=0,解得a=1,b=﹣3,∴a+b=1﹣3=﹣2.故答案为:﹣2.三.解答题18.解:(1)原式=3x2﹣x2﹣2x+3x﹣1﹣5=2x2+x﹣6(2)原式=2a2﹣1+2a﹣3a+3﹣3a2=﹣a2﹣a+219.解:(1)5x+2y﹣3x﹣7y=(5x﹣3x)+(2y﹣7y)=2x﹣5y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7=(3a2﹣2a2)+(3ab﹣3ab)+(7﹣5)=a2+2.20.解:(1)原式=2a﹣3a﹣5b+b=﹣a﹣4b;(2)原式=(3﹣4﹣5)(a﹣b)=﹣6(a﹣b)=﹣6a+6b;(3)原式=4x2+4xy﹣4﹣4x2+2xy=6xy﹣4;(4)原式=a2﹣3(a2﹣2a2+2a+1)=a2﹣3(﹣a2+2a+1)=a2+3a2﹣6a﹣3=4a2﹣6a﹣3.21.解:(1)原式=(8﹣5﹣7)(a﹣b)=﹣4(a﹣b)=﹣4a+4b;(2)原式=3a2b﹣2(ab2﹣2a2b+4ab2)=3a2b﹣2ab2+4a2b﹣8ab2=7a2b﹣10ab2.22.解:(1)原式=(3+4)a2+(﹣2﹣7)a=7a2﹣9a;(2)原式=(2﹣2)x2+y2+(5﹣2﹣3)xy﹣2y+1=y2﹣2y+1.23.解:原式=4x2﹣2bx2+ax+7x﹣y﹣6y﹣3+5=(4﹣2b)x2+(a+7)x﹣7y+2由题意可知:4﹣2b=0,a+7=0,∴a=﹣7,b=2,∴原式=×(﹣7)3﹣2×4+3×8=﹣49﹣8+24=﹣33.24.解:∵关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4=(6m﹣1)x2+(4n+2)xy+2x+y+4不含二次项,∴6m﹣1=0,4n+2=0,∴m=,n=﹣.25.解:(1)小路的面积=30x+20x﹣x2.草坪的面积=20×30﹣(30x+20x﹣x2)=x2﹣50x+600.(2)把x=3代入,得到:草坪的面积=x2﹣50x+600=32﹣50×3+600=459(平方米).答:当x=3米时,求草坪的面积是459平方米.。
七年级数学合并同类项同步练习及答案
![七年级数学合并同类项同步练习及答案](https://img.taocdn.com/s3/m/ef1fbb89f01dc281e43af09a.png)
七年级数学合并同类项同步练习及答案篇一:七年级数学合并同类项同步练习1、下列代数式中,哪些是整式?-3x ,5xy +11121x , x-7, , x+. 2x332、写出下列单项式的系数和次数①-xy ② ab-0.5xy④-3.写出下列多项式是几次几项式?a)知识平台1.同类项的意义. 2.合并同类项的意义. 3.合并同类项的方法.思维点击1.判断同类项的标准有两条:①所含字母相同;②相同字母的指数也分别相等,?两条标准缺一不可.例如:3xy与3xy虽然所含字母相同,但在这两个单项式中,x的指数不相等,y的值数也不相等,所以不是同类项.-2xy与3yx两个项所含字母相同,字母x,y?的指数也相等,所以是同类项. 2.合并同类项的要点是:①字母和字母的指数不变;②同类项的系数相加(合并).例如:合并同类项3xy和5xy,字母x、y及x、y的指数都不变,?只要将它们的系数3和5相加,即3xy+5xy=(3+5)xy=8xy.考点浏览☆考点了解同类项的意义,会合并同类项.22222233222a211122222ab-5a-7b②-xy+3x+2xy- 2231k121k12xy与-xy是同类项,则k=______,xy+(-xy)=________. 33331k12 【解析】 xy与-xy是同类项,这两项中x的指数必须相等,所以k=2;?合并同类项,只需将它33111k12们的系数相加,因为与-互为相反数,它们的和为零,所以xy+(-xy)=0.是:2 0.3333例1 如果例2 合并下列多项式中的同类项.(1)4xy-8xy+7-4xy+10xy-4;(2)a-2ab+b+a+2ab+b.【解析】(1)初学时用不同记号标出各同类项,会减少运算的错误;(2)常数项都是同类项;(3)两个同类项的系数互为相反数,则合并后结果为0.答案是:(1)原式=(4xy-4xy)+(-8xy+10xy)+(7-4)mengchengxianxinjiaoyuzhongxin22222222222=(4-4)xy+(-8+10)xy+3=2xy+3;(2)原式=(a+a)+(-2ab+2ab)+(b+b)=2a+2b.在线检测1.将如图两个框中的同类项用线段连起来: 2.当m=________时,-xb与 k232m22222222213xb是同类项. 43.如果5ab与-4ab是同类项,那么5ab+(-4ab)=_______. 4.直接写出下列各式的结果:k21122xy+xy=_______;(2)7ab+2ab=________;(3)-x-3x+2x=_______;22 1212222(4)xy-xy-xy=_______;(5)3xy-7xy=________.(1)-5.选择题:(1)下列各组中两数相互为同类项的是() A.22122222xy与-xy; B.0.5ab与0.5ac; C.3b与3abc;D.-0.1mn与mn 32 (2)下列说法正确的是()A.字母相同的项是同类项 B.只有系数不同的项,才是同类项 C.-1与0.1是同类项D.-xy与xy是同类项 6.合并下列各式中的同类项: (1)-4xy-8xy+2xy-3xy;(2)3x-1-2x-5+3x-x;(3)-0.8ab-6ab-1.2ab+5ab+ab;(4)5yx-3xy-7xy+6xy-12xy+7xy+8xy. 7.求下列多项式的值: (1)(2)3xy+2xy-7xy-mengchengxianxinjiaoyuzhongxin2222222222222222222212211a-8a-+6a-a+,其中a=; 323423122xy+2+4xy,其中x=2,y=.243.4 合并同类项(答案) 1.略 2.略 3.ab4.(1)0 (2)9ab (3)-2x (4)5.(1)D (2)C6.(1)-2xy-11xy (2)2x+x-6 (3)-ab-ab (4)-xy+5xy7.(1)- mengchengxianxinjiaoyuzhongxin222222122xy (5)-4xy659 (2) 44篇二:数学《合并同类项》练习3.4合并同类项一、选择题1 .下列式子中正确的是()A.3a+2b=5abB.3x?5x?8xC.4x2y?5xy2??x2yD.5xy-5yx=0 2 .下列各组中,不是同类项的是A、3和0B、2?R与?RC、xy与2pxyD、?xn?1yn?1与3yn?1xn?1 3 .下列各对单项式中,不是同类项的是( )A.0与22257122B.?3xn?2ym与2ymxn?2 C.13x2y与25yx2 D.0.4ab与0.3ab 314 .如果xa?2y3与?3x3y2b?1是同类项,那么a、b的值分别是( )3?a?1?a?0?a?2?a?1A.? B.? C.? D.??b?1?b?2?b?2?b?15 .下列各组中的两项不属于同类项的是()A.3mn和?mnB.2323xy123和5xy C.-1和D.a和x456 .下列合并同类项正确的是 ( )235(A)8a?2a?6; (B)5x?2x?7x ;(C) 3ab?2ab?ab;(D)?5x2y?3x2y??8x2y 7 .已知代数式x?2y的值是3,则代数式2x?4y?1的值是A.1B.4C. 7D.不能确定2228 .x是一个两位数,y是一个一位数,如果把y放在x的左边,那么所成的三位数表示为A.yxB.y?xD.100y?xC.10y?x9 .某班共有x名学生,其中男生占51%,则女生人数为 ( )A、49%xB、51%xC、xx D、51%49%10.一个两位数是a,还有一个三位数是b,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是( )10a?b B.100a?bC.1000a?bD.a?b二、填空题11.写出?2xy的一个同类项_______________________.3212.单项式-x13a?bya?1与5x4y3是同类项,则a?b的值为_________?13.若?4xay?x2yb??3x2y,则a?b?__________. 14.合并同类项:3a2b?3ab?2a2b?2ab?_______________.115.已知2x6y2和?x3myn是同类项,则9m2?5mn?17的值是_____________.316.某公司员工,月工资由m元增长了10%后达到_______元? 三、解答题17.先化简,再求值:18.化简:7a2b?(?4a2b?5ab2)?(2a2b?3ab2).参考答案一、选择题1 .D2 .C3 .D4 .A5 .D6 .D7 .C8 .D9 .A10.C 二、填空题 11.2xy(答案不唯一)12.4; 13.314.5a2b?ab;15.?1 16.11.m 三、解答题 17.解:3235m?(m?1)?3(4?m),其中m??3. 223535m?(m?1)?3(4?m)=m?m?1?12?3m( )=?4m?132222当m??3时,?4m?13??4?(?3)?13?252222218.7ab?(?4ab?5ab)?(2ab?3ab)=7ab?4ab?5ab?2ab?3ab22=(7?4?2)ab?(5?3)ab( )=ab?8ab22222223.4合并同类项同步练习21:1. 判断下列各题中的两个项是不是同类项,是打√,错打? ⑴12xy与-3yx2 ( ) 322⑵ab与ab ( ) ⑶2abc与-2abc( ) (4)4xy与25yx ( ) (5)24 与-24 ( )(6) x与2 ( ) 2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打? (1)2x+5y=7y ( ) ( 2.)6ab-ab=6( ) (3)8xy?9xy?xy( )(4)3332222531m?2m3? ( ) 22325(5)5ab+4c=9abc ( ) (6)3x?2x?5x ( ) (7) 4x?x?5x ( ) (8) 3ab?7ab??4ab () 3. 与2222212xy不仅所含字母相同,而且相同字母的指数也相同的是() 212122A.xzB. xyC.?yxD. xy2222224.下列各组式子中,两个单项式是同类项的是()22A.2a与aB.5ab 与abC. xy与xyD. 0.3mn与0.3xy5.下列计算正确的是()A.2a+b=2abB.3x?x?2C. 7mn-7nm=0D.a+a=a6.代数式-4ab与3ab都含字母,并且因此-4ab 与3ab是7.所含相同,并且也相同的项叫同类项。
七年级数学整式加减合并同类项专项练习(附答案)
![七年级数学整式加减合并同类项专项练习(附答案)](https://img.taocdn.com/s3/m/5134ac1abc64783e0912a21614791711cc797998.png)
七年级数学整式加减合并同类项专项练习(附答案)七年级数学整式加减合并同类项专项练1.合并同类项1) 4x^32) 03) x(6y-5)+x(7-5y)-10x4) -14x5) a^2-2ab6) -15xy2.合并单项式1) -2y2) 12a^2b^5-3a^2b-ab^23) -m^2n^3+m^3n^23.合并同类项1) 2m^2+2mn^22) -6a^2-ab-b^24.去括号并合并同类项1) -7a-5b2) -2x+105.化简3x^2+11x-36.化简1) -xy2) a-1/27.计算1) -x^2-11xy+4y^22) 4a^3b-13a^2b^2-10b^33) 6a8.计算3a+29.化简求值1) -10xy^32) -610.化简求值5a^2+8ab-6ab^211.先化简再求值2a^2b+11ab^21.答案:(1) 原式 = 4x2) 原式 = 03) 原式 = xy - 3x^2 + 5x4) 原式 = -14x5) 原式 = a^2 - 2ab6) 原式 = -13x^2y - 2xy^2解析:对每个题目进行代数计算,得出结果。
2.答案:(1) 解:原式 = x^22) 解:原式 = 6a^2b^5 - 3a^2b - ab^26a^2b^5 - 3a^2b - ab^23) 解:原式 = -m^2n^3 - m^3n^2m^2n^3 - m^3n^2解析:对每个题目进行代数计算,得出结果。
3.答案:(1) 原式 = m^2 + 2mn^22) 原式 = -3ab解析:对每个题目进行代数计算,得出结果。
4.答案:(1) 6a - (7a + 5b) = -a - 5b2) (3x + 4) - (5x - 6) = -2x + 10解析:对每个题目进行代数计算,得出结果。
5.答案:5x^3 - 3x解析:对原式进行合并同类项,得出结果。
6.答案:(1) x^2 - xy2) -a^2 + a - 1/23) -14) 6a + 4b解析:对每个题目进行代数计算,得出结果。
冀教版数学七年级上册第四章4.2合并同类项同步测试(含答案)
![冀教版数学七年级上册第四章4.2合并同类项同步测试(含答案)](https://img.taocdn.com/s3/m/28b27fd96c85ec3a86c2c55d.png)
4.2 合并同类项一.选择题1.下列合并同类项正确的是( )A .437a a +=B .222358m n mn mn +=C .3343m m -=D .22265x x x -+= 2.计算a ·a 5 - (2a 3)2 的结果为( )A .a 6-2a 5B .-a 6C .a 6-4a 5D .-3a 6 3.下列计算正确的是( )A .()325b b =B .()2362a ba b -=- C .325a b a +=D .()32628a a = 4.下列算式中,正确的是( )A .770xy yx -=B .33523x x -+=-C .347x y xy +=D .22440x y xy -= 5.若322m a b 与238n a b -的和仍是一个单项式,则m 与n 的值分别是( ) A .1,2 B .2,1 C .1,1 D .4,3 6.给出下列合并同类项的运算:①55541a a -=;②336x y xy +=;③0ax ax -+=;④347a a a +=;⑤2221233m n nm m n -+=-;⑥22223xy x y xy +=.其正确的有( ) A .2个 B .3个C .4个D .5个 7.下列各组中的两项不是同类项的是( )A .与B .与C .与D .与 8.下列各式运算正确的是( )A .B .C .D . 9.在①23x y -与22xy ,②4xy 与-5yx ,③3xy 与-yxz ,④32与23中,是同类项的组数是( )A .1组B .2组C .3组D .4组 10.当整式21072x a b +.和116x y a b--是同类项时,则y 值是( ) A .4 B .3 C .2 D .111.若,则m 与n 的值为( ) A ., B ., C ., D ., 12.下面关于同类项的说法,正确的是( )A .所含字母相同B .所含字母相同,且字母的指数相等C .所含字母完全相同的项D .所含字母相同,且相同字母的指数分别相同13.下列说法正确的是( )A .单项式233x y π-的系数是-3;B .多项式2231a bc ab -+的次数是3;C .23和32是同类项;D .合并同类项2a +3b =5ab .14.若多项式x 2﹣2kxy ﹣y 2+xy ﹣8化简后不含x 、y 的乘积项,则k 的值为( ) A .0 B .12 C .﹣12 D .1315.已知2a 6b 2和13a 3m b n 是同类项,则代数式9m 2-mn -36的值为( ) A .-1B .-2C .-3D .-4二.填空题 16.若32mx y 与23n x y 是同类项,则m n -=________. 17.如果两个单项式7m x y -与33nx y -的和是一个单项式,那么m =_________,n =________.18.370.1250.2548x x -+-合并同类项后是________. 19.下列各组单项式中:①237m n 与2332m n -;②32-与23;③24a b 与2ba ;④2x 与2x ,不是同类项的是________(填序号).20.当k=________时,多项式21383x kxy xy -++中不含xy 项. 21.在多项式2246532a a a a -+-+-中,同类项分别___________________.三.解答题22.合并同类项:(1)2232231x x x x -+-+-+;(2)222213134222x y xy xy x y xy xy -++--; 23.如果2a mx y 与235a nxy --是关于x ,y 的单项式,且它们是同类项. (1)求2018(413)a -的值; (2)若23250a a mx y nx y -+=,且0xy ≠,求()201825m n +的值.24.若36x y ax y ++-合并同类项后不含x 项,则a 的值为多少?25.已知223m n +=,1mn =-,求多项式22225371275m mn n mn m n --+-+的值.26.已知单项式33m x y 与1312n x y --的差是单项式. (1)试求m 、n 的值;(2)求这两个单项式的和.参考答案1-5.DDDAD6-10.ACDBA11-15.BDCBD16.1-17.3 118.x-119.④ 20.1921.24a 与2a -,6a -,与3a ,5与-222.(1)21x -(2)22322x y xy xy --23.(1)1(2)024.-325.-1526.(1)3m =,4n =;(2) 3352x y .。
七年级数学(上)《合并并同类项》同步练习题含答案
![七年级数学(上)《合并并同类项》同步练习题含答案](https://img.taocdn.com/s3/m/0cae87ec6037ee06eff9aef8941ea76e58fa4a9d.png)
七年级数学(上)《合并并同类项》同步练习题同步练习21:1. 判断下列各题中的两个项是不是同类项,是打√,错打⨯ ⑴y x 231与-3y 2x ( ) ⑵2ab 与b a 2( ) ⑶bc a 22与-2c ab 2( ) (4)4xy 与25yx ( ) (5)24 与-24 ( ) (6) 2x 与22 ( ) 2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打⨯ (1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( ) (3)8x y x xy y 3339=-( ) (4)2122533=-m m ( ) (5)5ab+4c=9abc ( ) (6)523523x x x =+ ( ) (7) 22254x x x =+ ( ) (8) ab ab b a 47322-=- ( ) 3. 与y x 221不仅所含字母相同,而且相同字母的指数也相同的是( ) A.z x 221 B. xy 21 C.2yx - D. x 2y 4.下列各组式子中,两个单项式是同类项的是( )A.2a 与2aB.5b a 2 与b a 2C. xy 与y x 2D. 0.3m 2n 与0.3x 2y5.下列计算正确的是( )A.2a+b=2abB.3222=-x xC. 7mn-7nm=0D.a+a=2a6.代数式-4a 2b 与32ab 都含字母 ,并且 都是一次, 都是二次,因此-4a 2b 与32ab 是7.所含 相同,并且 也相同的项叫同类项。
8.在代数式222276513844x x x y xy x -+-+--+中,24x 的同类项是 ,6的同类项是 。
9.在9)62(22++-+b ab k a 中,不含ab 项,则k= 10.若22+k kyx 与n y x 23的和未5ny x 2,则k= ,n=11. 若-3x m-1y 4与2n 2y x 31+是同类项,求m,n.12.合并同类项:⑴3x 2-1-2x-5+3x-x 2 ⑵-0.8a 2b-6ab-1.2a 2b+5ab+a 2b ⑶222b ab a 43ab 21a 32-++- ⑷6x 2y+2xy-3x 2y 2-7x-5yx-4y 2x 2-6x 2y(5)4x 2y-8x y 2+7-4x 2y+12xy 2-4; (6)a 2-2ab +b 2+2a 2+2ab - b 2.答案:1. ⑴√⑵ⅹ⑶ⅹ⑷√⑸√⑹ⅹ2. ⑴ⅹ⑵ⅹ⑶ⅹ⑷ⅹ⑸ⅹ⑹ⅹ⑺√⑻ⅹ3. C4.B5.C6. a b a b 同类项7.字母 相同字母的次数 -5x 2, -7x 2 1 9. k=3 10.2,4 11 m=3 n=2 12. ⑴2x 2+x-6 ⑵-a 2b-ab ⑶22b ab 21a 1217-+ ⑷-7x 2y 2-3xy-7x。
3.4 合并同类项(练习)七年级数学上册同步精品课堂(苏教版)(解析版)
![3.4 合并同类项(练习)七年级数学上册同步精品课堂(苏教版)(解析版)](https://img.taocdn.com/s3/m/7e411f544b7302768e9951e79b89680202d86b5e.png)
第三章代数式3.4合并同类项一、单选题1.下列整式与2ab 为同类项的是()A .2a bB .22ab -C .abD .2ab c【详解】解:由同类项的定义可知,a 的指数是1,b 的指数是2.A 、a 的指数是2,b 的指数是1,与2ab 不是同类项,故选项不符合题意;B 、a 的指数是1,b 的指数是2,与2ab 是同类项,故选项符合题意;C 、a 的指数是1,b 的指数是1,与2ab 不是同类项,故选项不符合题意;D 、a 的指数是1,b 的指数是2,c 的指数是1,与2ab 不是同类项,故选项不符合题意.故选:B .2.下列各组中的两个项不属于...同类项的是()A .23x y 和22x y-B .xy -和2yxC .-1和114D .2a 和23A .2B .0C .﹣1D .1【详解】解:由题意可知:﹣ambn 与5a 2b 是同类项,∴m =2,n =1,∴m ﹣n =2﹣1=1,故选:D4.如果313n ab ﹣与1n ab +是同类项,则n 的值为()A .2B .1C .﹣1D .0【详解】解:∵313n ab ﹣与1n ab +是同类项,∴3n ﹣1=n +1,解得:n =1.故选:B .5.如果2xay 与x 2yb 是同类项,那么a +b 的值是()A .12B .32C .2D .3【详解】解:由同类项的定义可得:a =2,b =1,所以a +b =2+1=3.故选D .6.若单项式xym +3与xn -1y 2的和仍然是一个单项式,则m 、n 的值是()A .m =-1,n =1B .m =-1,n =2C .m =-2,n =2D .m =-2,n =1【详解】解:由题意知3m xy +与12n x y -是同类项∴1132n m =-⎧⎨+=⎩解得21n m =⎧⎨=-⎩故选B .7.若代数式743x a b +与代数式42y a b -是同类项,则y x 的值是()A .9B .-9C .4D .-4【详解】解:∵代数式3ax +7b 4与代数式﹣a 4b 2y 是同类项,∴x +7=4,2y =4,∴x =﹣3,y =2;∴xy =(﹣3)2=9.故选:A .8.下列叙述正确的是()A .2xy 2与3yx 2是同类项B .9与﹣9不是同类项C .14x 与4x 不是同类项D .﹣3x 2y 与3yx 2是同类项9.若x 1+2my 4与﹣2x 3yn +1是同类项,则m ﹣n =__.【详解】解:由题意得:2m +1=3,n +1=4,∴m =1,n =3,∴m ﹣n =1﹣3=﹣2,故答案为:﹣2.10.若关于x 、y 的单项式xa +7y 5与﹣2x 3y 3b ﹣1的和仍是单项式,则ab 的值是______.【详解】解:∵关于x 、y 的单项式xa +7y 5与﹣2x 3y 3b ﹣1的和仍是单项式,∴xa +7y 5与﹣2x 3y 3b ﹣1是同类项,∴a +7=3,5=3b ﹣1,∴a =﹣4,b =2,∴ab =(﹣4)2=16.故答案为:16.11.若23m a b 与﹣2a 3bn 是同类项,则m +n =___.【详解】解:23m a b 与32n a b -是同类项,3m ∴=,2n =,325m n ∴+=+=.故答案为:5.12.若单项式223n x y 与32m x y -是同类项,则m n -=________.13.已知单项式﹣2x 2my 7与单项式﹣5x 6yn +8是同类项,求﹣m 2﹣n 2021的值.【详解】解:因为单项式﹣2x 2my 7与单项式﹣5x 6yn +8是同类项,所以2m =6,n +8=7,所以m =3,n =﹣1,所以﹣m 2﹣n 2021=﹣32﹣(﹣1)2021=﹣8.14.已知单项式43x x y -与单项式313b a x y +的和仍为单项式,求()2021a b +的值.(1)3x 3+x 3;(2)xy2-xy2;(3)6xy-10x2-5yx+7x2+5x;(4)3x-8x-9x;(5)5a2+2ab-4a2-4ab;(6)2x-7y-5x+11y-1【详解】解:(1)原式=(3+1)x3=4x3;(2)原式=(1-1)xy2=0;(3)原式=(6xy2-5yx)+(7x2-10x2)+5x=xy-3x2+5x;(4)原式=(3-8-9)x=-14x;(5)原式=(5a2-4a2)+(2ab-4ab)=a2-2ab;(6)原式=(2x-5x)+(11y-7y)-1=-3x+4y-1.16.合并同类项:(1)11323a b a b--+;(2)222143ab ab ab---;(3)2x2y-3xy2-5x2y+xy+4y2x;(4)3m3-2m2+18m-13m3+2m-2m2+5.。
2022-2023学年七年级数学合并同类项综合同步习题精练(含答案)
![2022-2023学年七年级数学合并同类项综合同步习题精练(含答案)](https://img.taocdn.com/s3/m/ef183603a31614791711cc7931b765ce05087a66.png)
合并同类项综合同步习题精练(时间30分钟,满分60分)一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算正确的是A .325a b ab +=B .22330a b ba -=C .235325x x x +=D .44321m m -=2.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3 C .4 D .53.下列计算正确的是( )A .5a ﹣4a =1B .3x+4x =7x2C .4x2y+yx2=5x2yD .a+2b =3ab 4.已知单项式3amb2与﹣23a3b1﹣n 的和是单项式,那么nm 的值是( )A .1B .3C .﹣3D .﹣15.化简:-6ab+ba+8ab 的结果是 ( )A .2abB .3C .-3abD .3ab6.下列判断正确的是( )A .23a bc 与2bca 不是同类项B .235m n 的系数是3 C .单项式32x y -的次数是3 D .22351x xy x ++-是三次四项式7.已知m ,n 为常数,代数式2x4y +mx|5-n|y +xy 化简之后为单项式,则mn 的值共有( )A .1个B .2个C .3个D .4个8.有理数m ,n 在数轴上的位置如图所示,则化简│n │-│m-n │的结果是( )A .mB .2n-mC .-mD .m-2n二、填空题(本大题共6小题,每空2分,共12分)9.已知多项式mx nx +合并后结果为0,则m n 、的关系是____________________.10.已知12223x n m a b a b --(m 为整数)的结果为单项式,那么(2)x m n -=___________.11.关于x ,y 的代数式2232axy x xy bx y -+++中不含二次项,则()2020a b +=____________.12.若代数式mx2+5y2﹣2x2+3的值与字母x 的取值无关,则m 的值是__. 13.370.1250.2548x x -+-合并同类项后是________.14.若2x2ya+3xby3=5x2y3,则ab =_____.三、解答题(本大题共5小题.共24分)15.(4分)合并同类项:(1)226293x x x x +-+- (2)()22223456x xy y xy y --+-16.(4分)若单项式2513132a b x y x y ---与是同类项,求下面代数式的值:22225ab 63(2)a b ab a b ⎡⎤--+⎣⎦17.(4分)定义新运算:2a b a b c d cd =-+-,化简:22232235xy x xy x x xy------+.18.(6分)已知有理数 a 、b 、c 满足:|a|=5,b2=81,c3=-125,且|a +b|≠a +b(1) 分别求出 a 、b 、c 的值(2) 求 5(3ab2-a2b)-3(a2b +5ab2)的值(3) 请直接写出满足等式|x +b|-|x +c|=b -c 的 x 的取值范围.19.(6分)(1)一个两位数,十位上的数字为a ,个位上的数字为b ,把这个两位数的十位上的数字与个数上的数字对调后得到一个新的两位数。
人教版数学七年级上册:3.2 解一元一次方程(一)——合并同类项与移项 同步练习(附答案)
![人教版数学七年级上册:3.2 解一元一次方程(一)——合并同类项与移项 同步练习(附答案)](https://img.taocdn.com/s3/m/d2b82b329e31433238689388.png)
3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.对于方程8x +6x -10x =8,合并同类项正确的是( )A.3x =8B.4x =8C.-4x =8D.2x =82.方程x +2x =-6的解是( )A.x =0B.x=1 C.x =2 D.x=-2 3.方程2x +x +x 2=210的解是( )A.x =20B.x=40 C.x =60 D.x=804.下列各方程中,合并正确的是( )A.由3x -x =-1+3,得2x =4B.由23x +x =-7-4,得53x =-3C.由52-13=-x +23x ,得136=13xD.由6x -4x =-1+1,得2x =05.解下列方程:(1)6x -5x =3; (2)-x +3x =7-1;(3)x 2+5x 2=9; (4)6y +12y -9y =10+2+6.6.解方程:-23x +x =3.7.若式子3x -7和6x +13互为相反数,则x 的值为( )A.23B.32C.-32D.-238.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y -12y =12-■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y =-53,于是,他很快知道了这个常数,这个常数是 .9.解下列方程:(1)0.3x -0.4x =0.6; (2)5x -2.5x +3.5x =-10;(3)x -25x =3+6; (4)16x -3.5x -6.5x =7-(-5).第2课时 利用合并同类项解一元一次方程的实际问题1.某数的3倍与这个数的2倍的和是30,这个数为( )A.4B.5C.6D.72.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有 个.3.已知3个连续偶数的和为36,则这三个偶数分别是 .4.一条长1 210 m 的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m ,乙队每天挖90 m ,则挖好水渠需要几天?5.麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?6.我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?7.有这样一列数,按一定规律排列成1,2,4,8,16,…,其中某三个相邻数的和是448,则这三个数是 .8.某人把360 cm长的铁丝分成两段,每段分别做成一个正方形,已知两个正方形的边长之比是4∶5,则这两个正方形的边长分别是 .9.在排成每行七天的日历表中取下一个3×3方块.若所有日期数之和为189,则n的值为 .10.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?11.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,求此人第六天走的路程.第3课时 利用移项解一元一次方程1.解方程2x -5=3x -9时,移项正确的是( )A.2x +3x =9+5B.2x -3x =-9+5C.2x -3x =9+5D.2x -3x =9-52.若式子x +2的值为1,则x 等于( )A.1B.-1C.3D.-33.解方程4x -2=3-x 的步骤是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A.①②③B.③②①C.②①③D.③①②4.下列四组变形属于移项的是( )A.由x -24=3,得x -2=12 B.由9x -3=x +5,得9x -3=5+xC.由5x =15,得x =3D.由1-7x =2-6x ,得-7x +6x =2-15.若3x +6=4,则3x =4-6,这个过程是 .6.解下列方程:(1)4-35m =7; (2)2x -3=3x +4.7.解方程:x -3=-12x -4.8.已知x =1是关于x 的方程a(x -2)=a +3x 的解,则a 的值等于( )A.32B.-32C.34D.-349.下列方程中与2x -4=x +2的解相同的方程为( )A.3x +4=xB.x -2=3C.3x +6=0D.x +1=2x -510.某同学在解方程5x -1=■x+3时,把■处的数字看错了,解得x =-43,则该同学把■看成了( )A.3B.-1289C.-8D.8 11.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x = .12.解下列方程:(1)3x +6=31-2x ; (2)x -2=13x +43.13.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?第4课时利用移项解一元一次方程的实际问题1.天平的左边放2个硬币和10克砝码,右边放6个硬币和5克砝码,天平恰好平衡.已知所有硬币的质量都相同,如果设一个硬币的质量为x克,可列出方程为( )A.2x+10=6x+5B.2x-10=6x-5C.2x +10=6x -5D.2x -10=6x +52.甲厂库存钢材100吨,每月用去15吨;乙厂库存钢材82吨,每月用去9吨.经过m 个月,两厂剩余钢材相等,则m 的值应为( )A.2B.3C.4D.53.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是 ,调往乙队的人数是 .4.七年级某班小组活动中,如果每组5人则余3人,每组6人则缺5人,则该班的学生人数为 人.5.小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.6.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A.x +1=2(x -2)B.x +3=2(x -1)C.x +1=2(x -3)D.x -1=x +12+17.“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x棵,通过分析题意,鸦的只数不变,则可列方程:.8.甲、乙两人同时从A地出发去B地,甲骑自行车,骑行速度为10 km/h,乙步行,行走速度为6 km/h.当甲到达B地时,乙距B地还有8 km.甲走了多长时间?A,B两地的路程是多少?9.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?10.我市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,那么树苗缺21棵;如果每隔6米栽1棵,那么树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是( )A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x参考答案:3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.B2.D3.C4.D5.(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9;解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.6.解方程:-23x +x =3.解:合并同类项,得13x =3.系数化为1,得x =9.7.D8. 3.9.(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53. (3)x -25x =3+6; 解:合并同类项,得35x =9. 系数化为1,得x =15.(4)16x -3.5x -6.5x =7-(-5).解:合并同类项,得6x =12.系数化为1,得x =2.第2课时 利用合并同类项解一元一次方程的实际问题1.C2. 24 .3. 10,12,14.4.解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x=5.5.答:挖好水渠需要5.5天.5.解:设麻商集团第二季度销售冰箱x台,则第一季度销售量为2x台,第三季度销售量为4x台.根据总量等于各分量的和,得x+2x+4x=2 800.解得x=400.答:麻商集团第二季度销售冰箱400台.6.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为5x m3,根据题意,得x+5x=13 800.解得x=2 300.则5x=11 500.答:中、美两国人均淡水资源占有量各为2 300 m3,11 500 m3.7.64,128,256.8.40__cm,50__cm.9.21.10.解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x +5x =32.解得x =4.所以3x =3×4=12,5x =5×4=20.答:黑色皮有12块,白色皮有20块.11.解:设第一天走的路程为x 里,则后面5天走得路程分别为:12x 里,14x 里,18x 里,116x 里,132x 里.根据题意,得 则x +12x +14x +18x +116x +132x =378. 解得x =192.则132x =132×192=6. 答:此人第六天走的路程为6里.第3课时 利用移项解一元一次方程1.B2.B3.C4.D5. 移项.6.(1)4-35m =7;解:移项,得-35m =7-4.合并同类项,得-35m =3.系数化为1,得m =-5.(2)2x -3=3x +4.解:移项,得2x -3x =3+4.合并同类项,得-x =7.系数化为1,得x =-7.7.解:移项,得x +12x =-4+3.合并同类项,得32x =-1.系数化为1,得x =-23.8.B9.D10.D11. 13.12.(1)3x +6=31-2x ;解:移项,得3x +2x =31-6.合并同类项,得5x =25.系数化为1,得x =5.(2)x -2=13x +43. 解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.13.解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x 的方程4x -2m =3x +1的解是x =6m.将x =6m 代入4x -2m =3x +1,得24m -2m =18m +1.移项、合并同类项,得4m =1.所以m =14.第4课时 利用移项解一元一次方程的实际问题1.A2.B3. 10, 18.4. 43 .5.解:设小华现在的年龄为x 岁,则妈妈现在的年龄为(x +25)岁.根据题意,得 x +25=3x +5.解得x =10.答:小华现在的年龄为10岁.6.C7. 3x+5=5(x-1).8.解:设甲走了x h,则A,B两地的路程是10x km.根据题意,得10x=6x+8.解得x=2.则10x=20.答:甲走了2 h,A,B两地的路程是20 km.9.解:(1)设小明在买x元的书的情况下办会员卡与不办会员卡一样.则x=20+80%x.解得x=100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱. 10.A。
沪教版(上海)七年级上册数学 9.5 合并同类项 同步练习(含答案)
![沪教版(上海)七年级上册数学 9.5 合并同类项 同步练习(含答案)](https://img.taocdn.com/s3/m/6a7cbf7f482fb4daa58d4b87.png)
9.5 合并同类项 同步练习一、单选题1.下列去括号中,正确的是 ( )A .-(1-3m)=-1-3mB .3x-(2y-1)=3x-2y+1C .-(a+b)-2c=-a-b+2cD .m 2+(-1-2m)=m 2-1+2m 2.下列各式计算正确的是( )A .3a-a=3B .2a+b=2abC .2a+a=22aD .–ab+2ab=ab 3.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8 4.下列计算正确的是( )A 3=±B 1-C .||0a a -=D .43a a -= 5.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6 C .7 D .8 6.下列计算正确的是( )A .224x x x +=B .2352x x x +=C .3x ﹣2x=1D .2222x y x y x y -=- 7.若-2x 2m+1y 6与3x 3m-1y 10+4n 是同类项,则m 、n 的值分别为( ) A .2,-1 B .-2,1 C .-1,2 D .-2,-1 8.下列计算中,结果是a 7的是( )A .a 3﹣a 4B .a 3•a 4C .a 3+a 4D .a 3÷a 4 9.下列各式正确的是( )A .()223232a a b c a a b c --+=--+B .()222121x x x x --=-+C .()232232m n a m n a -++-=-++-D .()22624624a k m a k m +-++=-++ 10.合并同类项m-3m 5m-7m -2019m ++⋅⋅⋅的结果为( )A .0B .-1009mC .-1010mD .以上答案都不对二、填空题11.若312a x y 与22b x y -的和仍为单项式,则-a b 的值为__________. 12.若25m n a b 与569a b -是同类项,则m n +的值是____.13.若33a x y 和2b x y -是同类项,则这两个同类项之和为_________ 14.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________. 15.如果ax m -1y 3+bx 2n y n =0,那么mn =__.三、解答题16.已知单项式2a b a b x y +-与43x y 是同类项,求2a b +的值.17.先合并同类项,再求值.(1)222243245x y xy x y ++--,其中2x =,1y =-.(2)22289726x x x x -+-+-,其中1x =-.18.张老师给学生出了一道题:当20192020a b ==-,时,求: 3323323(763)(363103)a a b a b a a b a b a -+---++-的值.题目出完后,小明说:“老师给的条件20192020a b ==-,是多余的.” 小红说:“不给这两个条件,就不能求出结果,所以不是多余的.” 你认为他们谁说的有道理?为什么?参考答案1.B2.D3.D4.B5.B6.D7.A8.B9.D10.C11.-112.813.232x y14.315.2116.517.(1)222y xy -+,-6;(2 ) 21x x -+,318.因为代数式与a 、b 的取值无关,故小明说得对。
七年级数学合并同类项同步练习(附答案)
![七年级数学合并同类项同步练习(附答案)](https://img.taocdn.com/s3/m/25cfe27a55270722182ef73d.png)
七年级数学合并同类项同步练习(附答案)15.先化简,后求值.(1)化简:()()2222+--+-a b ab ab a b2212(2)当()221320-++=时,求上式的值.b a16.先化简,再求值:x2 + (-x2 +3xy +2y2)-(x2-xy +2y2),其中x=1,y=3.17.计算:(1)()()32223232y xy y x xy y ---+-;(2)5(m-n)+2(m-n)-4(m-n)。18.先化简,再求值:)52338()5333(3122222y xy x y xy x x +++-+-,其中21-=x ,2=y .19.化简求值: )3()3(52222b a ab ab b a +--,其中31,21==b a .20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y +;请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x x xy ---+,其中1,22x y =-=.24.先化简,再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=125.化简求值(-3x2-4y)-(2x2-5y+6)+(x2-5y-1) 其中x=-3 ,y=-126.先化简再求值:(ab-3a2)-2b2-5ab-(a2-2ab),其中a=1,b=-2。27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的,请你通过计算说明为什么?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。3.4合并同类项参考答案一、选择题 1 .B 2 .B; 3 .C ; 4 .A 5 .D6 .C7 .B8 .D 二、填空题9 .3a ; 10.-2x 11.3x 2-2xy 三、解答题12.粘贴有误,原因可能为题目为公式编辑器内容,而没有其它字符13.解:原式=4a 2+18b-15a 2-12b =-11a 2+6b 14.解:原式=)44()32()33(2222y y xy xy x x -+-+- =-xy 15.原式=21a b -=1.16.x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2)= x 2-x 2 +3xy +2y 2-x 2+xy-2y 2 = 4xy-x 2当x=1,y=3时 4xy-x 2=4×1×3-1=11。 17.(1) ()()yx xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+-(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n)=-2(m-n) =-2m+2n 。18.解:原式=2222252338533331y xy x y xy x x ++++-- =)5253()33()38331(22222y y xy xy x x x ++-++- =2y当21-=x ,y =2时,原式=4 . 19.解:原式=32 20.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a ;-2;22.(1) (212x x +)+(2132xy+)=23xx y++ (去括号2分)当1,2x y =-=,原式=2(1)(1)326-+-+⨯=(2)(212x x +)-(2132x y +) =3x y - (去括号2分) 当1,2x y =-=,原式=(1)327--⨯=-(212x x +)+(2113x +)=255166x x ++= (212x x+)-(2113x+)=2111166xx +-=-(2132x y +)+(2113x+)=25473166x y ++= (2132x y+)-(2113x+)=21313166x y +-=23.解:原式2258124xy x x xy =-+- ()()2254128xy xy xx =-+-24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=0 24.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2 =-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26. -827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+- 3223(211)(33)(22)(11)x x y xy y =--+-++-++-- 32y =-∴此题的结果与x 的取值无关。 28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+-- =22(22)(21)(32)xy x y -+-+-=21x y +∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y =∴原式=21(2)1-⨯+=32。
七年级数学上册合并同类项检测题及答案
![七年级数学上册合并同类项检测题及答案](https://img.taocdn.com/s3/m/155047a7f9c75fbfc77da26925c52cc58bd690c4.png)
七年级数学上册合并同类项检测题及答案本文对七年级数学上册中涉及到合并同类项的部分进行检测,为了更好的学习效果,我们将提供题目和答案,希望能帮助同学们更好地理解并掌握这一概念。
单项选择题1.下列各式中,能够合并同类项的是()。
A. 3a+5b B. 2a-3ab C. 4abc-2a-3b D. 6a+5bc答案:A,D2.(2x+3y)+(4x+5y)=()。
A. 5x+8y B. 6x+7y C. 6x+8y D. 7x+8y答案:C3.()可写成2a+5b的形式。
A. 3a+5b-a B. 2a+5b+b C. 3ab-b-2a D.2ab+ab-a答案:A4.()等于5ax+2by。
A. 3ax+by+2ax B. 5ax+2by+3ax C. 5ax+by+3ax D.2by+3ax+5ax答案:B5.(a+2b-3c)+(7c+4a-b)=( )。
A.5a+6b+4c B.5a-2b+4c C. 5a+6b-4cD.5a+6b-2c答案:D填空题1.(2x-3y)+(4x-5y)= ___________。
答案:6x-8y2.(3a+2b)-(5a-b)= __________。
答案:-2a+3b3.(6x-2y)+(-2x+3y)= __________。
答案:4x+y4.(4ab-2a-6b)+(a+3b+2a)= __________。
答案:6ab-a-b5.(2x-3y)+(5y-x)= __________。
答案:x-2y解决问题1.如果两个同类项各自的系数不同该怎么办?这种情况下,我们需要通过化简先将各自的系数相同,例如:2x+3y+4x-5y = (2x+4x) + (3y-5y) = 6x-2y2.合并同类项要注意什么?在合并同类项的时候,我们需要注意变量部分相同,同时系数也要相同。
3.为什么要合并同类项?合并同类项的目的在于简化表达式,使其更加简单明了,从而更便于计算。
七年级数学 上 合并同类项91题(含答案)
![七年级数学 上 合并同类项91题(含答案)](https://img.taocdn.com/s3/m/c5bd91aa581b6bd97f19eafe.png)
1.4a2+3b2﹣2ab﹣4a2﹣4b2+2ba
9.4x2y﹣8xy2+7﹣4x2y+10xy2﹣4.
2.﹣4x2y+8xy2﹣9x2y﹣21xy2.
10. 15x+4x﹣10x
3.5xy2+2x2y﹣3xy2﹣x2y
11. ﹣p2﹣p2﹣p2
4.a2+3ab+6﹣8a2+ab
13.
=
a2b=
a2b
14. 原式=2x2﹣3x2﹣3x+5x+1+7=﹣x2+2x+8; 15. 原式=﹣x2+2x2﹣3x2+7xy﹣5xy=﹣2x2+2xy. 16. 15x+4x﹣10x=19x﹣10x=9x; 17. ﹣p2﹣p2﹣p2=﹣3p2; 18. x2y﹣3xy2+2yx2﹣y2x=3x2y﹣4xy2. 19. 2x+(x﹣4)﹣(5x﹣4)=2x+x﹣4﹣5x+4=﹣2x; 20. 原式=3a2﹣6a﹣9+25a2+10=28a2﹣6a+1. 21. ﹣3y+0.75y﹣0.25y=(﹣3+0.75﹣0.25)y=﹣2.5y. 22. 5a﹣1.5a+2.4a=(5﹣1.5+2.4)a=5.9a
33. 3a+2a﹣7a 34. ﹣4x2y+8xy2﹣9x2y﹣21xy2. 35.3a2﹣2a﹣4a2﹣7a. 36.12x2y﹣xy﹣3﹣10x2y+6xy+3. 37. 3ab+2mn﹣3ab+4mn 38. ﹣5yx2+4xy2﹣2xy+6x2y+2xy+5. 39.3x﹣2y+1+3y﹣2x﹣5. 40.ax2+2a2x+a3.
合并同类项练习题 (答案)
![合并同类项练习题 (答案)](https://img.taocdn.com/s3/m/8c2db9e05a8102d277a22f1b.png)
合并同类项练习题①已知-2x2m 1y3与5x7y n-1是同类项,那么m+n= 。
答案:7解析:根据同类项定义,相同字母的指数相同,2m+1=7,3=n-1,得出m=3,n=4所以m+n=7②已知n是个正整数,如果2axⁿ + 3x²+1是一个单项式,那么aⁿ= 。
答案:2.25解析:根据单项式定义2axⁿ + 3x²不能存在,即这个单项式是1。
所以n=2,2a=-3,即a=-1.5。
所以aⁿ=(-1.5)ⁿ=2.25③多项式ax³-7x²+ax²-7x+7+bx²-x³ 是一个一次多项式,那么a²b=。
答案:6解析:合并同类项得(a-1)x³+(a+b-7)x²-7x+7根据最高项的次数是1,所以三次项(a-1)x³不存在,a-1=0,即a=1二次项(a+b-7)x²也不存在,所以a+b-7=0,b=6。
所以a²b=6④已知x=-1234,计算x²+2x³-x(1+2x²)+10的值。
但是计算时漏掉了负号把-1234当成1234,算出的结果是1521532。
那么正确的结果是。
答案:1524000解析:先合并同类项x²+2x³-x(1+2x²)+10=x²-x+10由于x²的值不变,正确的应该比错误答案多1234×2=2468所以答案是1521532+2468=1524000⑤已知|a-2|与|b+1|互为相反数,求3b³+3ab²+3b²-ab²-2a²b-2ab²-b³的值。
答案:9解析:根据|a-2|+|b+1|=0 可知a=2,b=-1先合并同类项3b³+3ab²+3b²-ab²-2a²b-2ab²-b³=2b³+3b²-2a²b把a=2,b=-1代入,2b³+3b²-2a²b=-2+3+8=9⑥已知x+2y=5,求(-2x-4y+8)³+(x-3)²-x²-12y+7的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.化简求值: ,其中 .
20.先化简,后求值: ,其中
21.化简求值: ,其中
22.给出三个多项式: , , ;
请你选择其中两个进行加法或减法运算,并化简后求值:其中 .
23.先化简,再求值: ,其中 .
24.先化简,再求值。
(5a2-3b2)+(a2+b2)-(5a2+3b2)其中a=-1 b=1
合并同类项
一、选择题
1 .计算 的结果是( )
A. B. C. D.
2 .下面运算正确的是( ).
A. B. C. D.
3 .下列计算中,正确的是( )
A、2a+3b=5ab;B、a3-a2=a;C、a2+2a2=3a2;D、(a-1)0=1.
4 .已知一个多项式与 的和等于 ,则这个多项式是( )
当 时,原式= =0
24.解:原式=5a2-3b2+a2+b2-5a2-3b2=-5b2+a2
当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4
25.33.26.-8
27.解:∵原式=
∴此题的结果与 的取值无关。
28.解:原式= = = =
∵ , 又∵ ∴ ,
∴原式= =3
25.化简求值
(-3x2-4y)-(2x2-5y+6)+(x2-5y-1) 其中x=-3 ,y=-1
26.先化简再求值:(ab-3a2)-2b2-5ab-(a2-2ab),其中a=1,b=-2。
27.有这样一道题:“计算 的值,其中 , 。”甲同学把“ ”错抄成了“ ”但他计算的结果也是正确的,请你通过计算说明为什么?
8 .当 时, 的值为( )
A. 5050B. 100C. 50D. -50
二、填空题
9 .化简: _________.10.计算: _________。
11.一个多项式与2x2-3xy的差是x2+xy,则这个多项式是_______________.
三、解答题
12.求多项式:10X3-6X2+5X-4与多项式-9X3+2X2+4X-2的差。
13.化简:2(2a2+9b)+3(-5a2-4b)
14.化简: .
15.先化简,后求值.
(1)化简:
(2)当 时,求上式的+3xy +2y2)-(x2-xy +2y2),其中x=1,y=3.
17.计算:(1) ;
(2)5(m-n)+2(m-n)-4(m-n)。
28.已知: ,求 的值。
3.4合并同类项参考答案
一、选择题
1 .B2 .B;3 .C;4 .A5 .D6 .C7 .B8 .D
二、填空题
9 . ;10.-2x11.3x2-2xy
三、解答题
12.粘贴有误,原因可能为题目为公式编辑器内容,而没有其它字符
13.解:原式=4a2+18b-15a2-12b=-11a2+6b
18.解:原式=
= =
当 ,y=2时,原式=4 .
19.解:
原式=
20.原式 ,当 时,原式 ;
21.原式= ;-2;
22.(1) ( )+( )= (去括号2分)
当 ,原式=
(2)( )-( )= (去括号2分)
当 ,原式=
( )+( )=
( )-( )=
( )+( )=
( )-( )=
23.解:原式
A. B. C. D.
5 .下列合并同类项正确的是
A. B. C. D.
6 .下列计算正确的是( )
(A)3a+2b=5ab (B)5y2-2y2=3 (C)-p2-p2=-2p2(D)7m-m=7
7 .加上-2a-7等于3a2+a的多项式是 ( )
A、3a2+3a-7 B、3a2+3a+7C、3a2-a-7 D、-4a2-3a-7
14.解:原式= =-xy
15.原式= = .
16.x2+ (-x2+3xy +2y2)-(x2-xy +2y2)
= x2-x2+3xy +2y2-x2+xy-2y2= 4xy-x2
当x=1,y=3时 4xy-x2=4×1×3-1=11。
17.(1)
(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n。