《一元二次方程的实根分布问题》

合集下载

一元二次方程根的分布例题

一元二次方程根的分布例题

例6.2.已知抛物线y = 2x2-mx+m与直角坐标平面上两点(0,0), (1,1)为端点 的线段(除去两个端点)有公共点,求m的取值范围. 解:以(0,0), (1,1)为端点的线段所在直线为y=x,代入抛物线方程得:
x = 2x2-mx+m 即 2x2-(m+1)x+m=0, ① 由题意,方程①在区间(0, 1)上有实根,令f(x) = 2x2-(m+1)x+m,则 当且仅当 f(0)·f(1)<0或 m<0或 m≤3-2且m≠0. 故m的取值范围为 (-, 0)∪(0, 3-2]. 例6.3.设关于的方程R), (1)若方程有实数解,求实数b的取值范围; (2)当方程有实数解时,讨论方程实根的个数,并求出方程的 解。 分析:可用换元法,设,原方程化为二次方程,但要注意,故原方程有 解并不等价于方程有解,而等价于方程在内有解.另外,方程有解的问 题也可以通过参变分离转化为求值域的问题,它的原理是:若关于的方 程有解,则的值域. 解:(1)原方程为, , 时方程有实数解; (2)①当时,,∴方程有唯一解; ②当时,. 的解为; 令 的解为; 综合①、②,得 1)当时原方程有两解:; 2)当时,原方程有唯一解; 3)当时,原方程无解。 变式:已知方程在上有两个根,求的取值范围. 解:令,当时,. 由于是一一映射的函数,所以在上有两个值,则在上有两个对应的 值.因而方程在(0,2)上有两个不等实根,其充要条件为
例6.2.已知抛物线y = 2x2-mx+m与直角坐Байду номын сангаас平面上两点(0,0), (1,1)为端点 的线段(除去两个端点)有公共点,求m的取值范围.
例6.3.设关于的方程R), (1)若方程有实数解,求实数b的取值范围; (2)当方程有实数解时,讨论方程实根的个数,并求出方程的

一元二次方程根的分布【公开课教学PPT课件】

一元二次方程根的分布【公开课教学PPT课件】

充要条件是:
a f (m) 0 a f (n) 0
(4)一元二次方程两个实根分别在(m, n)同一侧的
充要条件是: 分两类:

b2 4ac 0
()在(m, n)右侧 a f (n) 0
n
b
2a
注:前提 m,n不是 方程(1)的根.

b2 4ac 0
解:(1)令f(x)=2kx2 2x 3k 2, k 0
由题 kf (1) 0, k(2k 2 3k 2) 0,
(k k 4)>0即 k 0或k 4.
(2) 已知二次方程 (m 2)x2 mx (2m 1) 0 的两根 分别属于(1,0)和(1,2)求 m 的取值范围.
实根分布问题.
(1)一元二次方程有且仅有一个实根属于(m, n)的
充要条件是: f (m) f (n) 0.
(2) 一元二次方程两个实根都属于(m, n)的充要条件是:
b2 4ac 0
a f (m) 0
a f (n) 0
m


b 2a

n
(3) 一元二次方程两个实根分别在(m, n)两侧的
(2)判别式 b2b 4ac
(3)对称轴
x 2a
(4)端点值 f (m) 的符号。
0
k1
பைடு நூலகம்
f (k1 ) f (k2 ) 0
k2
k1


b
k2
k1 2a k2
k1
k2


f
(k1
)
0 b
k1 2a

微专题11 二次函数根的分布问题(解析版)

微专题11 二次函数根的分布问题(解析版)

微专题11二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=<2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.根的分布图像限定条件12m x x <<02()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩12x m x <<()0f m <12x x m<<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩在区间(,)m n 内没有实根∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩在区间(,)m n 内有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f mf n<⎧⎨>⎩在区间(,)m n内有两个不等实根2()0()0bm naf mf n∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】题型一:正负根问题题型二:根在区间的分布问题题型三:整数根问题题型四:范围问题【典型例题】题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m为实数,命题甲:关于x的不等式240mx mx+-<的解集为R;命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m的取值范围为_______.【答案】(20,0]-【解析】由命题甲:关于x的不等式240mx mx+-<的解集为R,当0m=时,不等式40-<恒成立;当0m≠时,则满足2160mm m<⎧⎨∆=+<⎩,解得160m-<<,综上可得160m-<≤.由命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根,则满足2121244(20)020200m m x x m x x m ⎧∆=-+>⎪+=<⎨⎪=+>⎩,整理得2200020m m m m ⎧-->⎪<⎨⎪>-⎩,所以45020m m m m <->⎧⎪<⎨⎪>-⎩或,解得204m -<<-.所以甲、乙至少有一个为真命题时,有160m -<≤或204m -<<-,可得200m -<≤,即实数m 的取值范围为(20,0]-.故答案为:(20,0]-.例2.(2022·全国·高一单元测试)关于x 的方程2210ax x ++=的实数根中有且只有一个负实数根的充要条件为____________.【答案】0a ≤或1a =【解析】若方程2210ax x ++=有且仅有一个负实数根,则当0a =时,12x =-,符合题意.当0a ≠时,方程2210ax x ++=有实数根,则440a ∆=-≥,解得1a ≤,当1a =时,方程有且仅有一个负实数根1x =-,当1a <且0a ≠时,若方程有且仅有一个负实数根,则10a<,即0a <.所以当0a ≤或1a =时,关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根.综上,“关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根”的充要条件为“0a ≤或1a =”.故答案为:0a ≤或1a =.例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________.【答案】125k ≤-或3k >【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则12121200,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k kkk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-或3k >.故答案为:125k ≤-或3k >.例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____.【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根,得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.故答案为:112m -<<例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113x x ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值;(2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围.【解析】(1)由题意可得1-和13是方程210+-=ax bx 的两个实根,则11,31113b a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得3,2a b ==.(2)因为31b a =--,所以()23110ax a x -+-=,由题可知Δ0>,则1a <-或19a >-,由题意,方程有两个负根,即310,10,a a a +⎧<⎪⎪⎨-⎪>⎪⎩解得103-<<a .综上,实数a 的取值范围是109aa ⎧⎫-<<⎨⎬⎩⎭∣.例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.【解析】(1)由题意,一元二次方程有两个正根1x 、2x 故20,(4)16(+1)0k k k k ≠∆=-≥,即0k ≤,且121210104x x k x x k +=>⎧⎪+⎨=>⎪⎩,解得:1k <-.(2)由题意,当0∆≥,即0k ≤时,有121211,4k x x x x k++==()()2221212121212129(1)93222+252()92442k k x x x x x x x x x x x x k k ++--=-=+-=-=-=-解得:95k =,与0k ≤矛盾.故不存在实数k ,使得()()12123222x x x x --=-成立题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________.【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.故答案为:5(,2)2--.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=.(1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3?(3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1,则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩,解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤.例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内.【解析】令2()22f x x ax a =-++,因为方程2220x ax a -++=有不同的两根且两根在(1,3)内,所以213Δ44(2)0(1)30(3)1150a a a f a f a <<⎧⎪=-+>⎪⎨=->⎪⎪=->⎩,解得1125<<a ,故答案为:112,5⎛⎫⎪⎝⎭例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围.【解析】(1)设二次函数()2221y x tx t t =-+-∈R 的两个零点分别为1x ,2x ,由已知得120x x +=,而122x x t +=,所以20t =,故0=t ,不等式22210x tx t -+-≥即210x -≥,解得1≥x 或1x ≤-,故不等式的解集为{1x x ≥或}1≤-x .(2)因为方程22210x tx t -+-=的两个实根均大于2-且小于4,所以()()()()222222Δ2t 4t 102t 422t 2t 1042t 4t 10⎧=---≥⎪⎪-<<⎨⎪--⨯-+->⎪-⨯+->⎩,即2240244308150t t t t t ≥⎧⎪-<<⎪⎨++>⎪⎪-+>⎩,解得:13t -<<,即实数t 的取值范围为{}13t t -<<.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221 260.x m x m +-++=(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根 αβ,,且满足014αβ<<<<;(3)至少有一个正根.【答案】(1)1m <-(2)7554m -<<-(3)1m ≤-【分析】设()()22126y f x x m x m ==+-++,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定.(1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-.(2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-.③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________.【答案】()()2,13,4--【解析】令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<,所以实数a 的取值范围为()()2,13,4--.故答案为:()()2,13,4--.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ⎧=-->⎪-⎪<<⎪⎨⎪=-≥⎪=-≥⎪⎩,解得1653a <≤,所以实数a 的取值范围是16(5,]3.故答案为:16(5,]3例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数 a 的取值范围是_____.【答案】54a -<≤-【解析】由题意,方程()2250x a x a +=---的两根都大于 2,令()()225f x x a x a =+---,可得()020222f a⎧⎪≥⎪>⎨⎪-⎪>⎩,即2165024a a a ⎧≥⎪+>⎨⎪->⎩,解得54a <≤--.故答案为:54a -<≤-.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____.【答案】()3,0-【解析】显然0a ≠,关于x 的方程220ax x ++=对应的二次函数()22f x ax x =++当0a >时,二次函数()22f x ax x =++的图象开口向上,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧<⎪⎨<⎪⎩,即2030a <⎧⎨+<⎩,解得a ∈∅;②当0a <时,二次函数()22f x ax x =++的图象开口向下,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧>⎪⎨>⎪⎩,即2030a >⎧⎨+>⎩,解得30a -<<.;综上所述,实数a 的范围是()3,0-.故答案为:()3,0-.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.【答案】()0,1.【解析】方程()()()()2211010x a x a a x a x a ⎡⎤+++=⇒--+=⎣⎦-∴方程两根为12,1x a x a ==+,若要满足题意,则01113a a <<⎧⎨<+<⎩,解得01a <<,故答案为:()0,1.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,2故答案为:5[2,)2例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,那么a 的取值范围是()A .2275a -<<B .25a >C .27a <-D .2011a -<<【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a<-,故2011a -<<,故选:D例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是()A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D.{12,623⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足:①()()010f f ⋅<,()()21320m m --<,解得:1223m <<;②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =,此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =,此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意;③函数与x 轴只有一个交点,横坐标属于(0,1),()2(2)4210m m ∆=---=,解得6m =±当6m =+2(2)210x m x m +-+-=的根为2-若6m =-2(2)210x m x m +-+-=2,符合题意综上:实数m的取值范围为{12,623⎛⎤⋃- ⎥⎝⎦故选:D题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值.【解析】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求),由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-,95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-==-=-=-++,∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,,0k <,235k ∴=---,,.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是()A .13B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线,根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21.故选:C例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是()A .5B .6C .7D .9【答案】BC【解析】设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数时,需满足()()2010f f ⎧≤⎪⎨>⎪⎩,即2226201610a a ⎧-⨯+≤⎨-⨯+>⎩,解得58a <≤,又因为a ∈Z ,所以6a =或7或8,故选:BC.例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______.【答案】1【解析】方程化为()221860k x x --+=,由()Δ6424210k =-->,12k ≠解得116k <,所以k 最大整数值是1.故答案为:1.题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.【答案】3-【解析】a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,∴可得2a b +=,10ab t =-≥,1t ∴≥,又()4410t ∆=--≥,可得2t ≤,12t ∴≤≤,又()()()()()()222222211121a b ab a b ab a b ab --=-++=-+++()()()()2221114211a b t t ∴--=--+-+,24t =-,又12t ≤≤,2340t ∴-≤-≤,故答案为:3-.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x .(1)当1m =时,求1211+x x 的值;(2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.【解析】(1)当1m =时,方程为2410x x -+=,2(4)4120∆=--=>,所以12124,1x x x x +=⋅=,122112114x x x x x x ∴+⋅+==.(2)因为240x mx m -+=两根120,0x x >>,所以21212Δ1640400m m x x m x x m ⎧=-≥⎪+=>⎨⎪⋅=>⎩,解得14m ≥.因为12124x x x x +=,120,0x x >>,所以12114x x +=,所以211212121241111194(4)()(5)54444x x x x x x x x x x ⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭,当且仅当21124x x x x =,即1233,48x x ==时等号成立,此时91324m =>符合题意,124x x ∴+的最小值为94.例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是()A .4B .2C .1D .12【答案】B【解析】因为函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=,所以1012200288b c b c +=++-,解得4b =-,所以()224f x x x c -+=,因为方程()0f x =有两个正实数根1x ,2x ,所以()Δ168000c f c =-≥⎧⎨=>⎩,解得02c <≤,所以121212112422x x c x x x x c =++==≥,当c =2时,等号成立,所以其最小值是2,故选:B例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是()A .-2B .23C .89D .1【答案】B【解析】由题意可得∆2()4(3)0k k =--+ ,解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >,综上知,6k .故两个根的倒数和为12121211x x x x x x ++=1331k k k==++,6k ,∴1106k < ,3102k < ,故33112k <+,∴12331k+,故两个根的倒数和的最小值是23.故选:B例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是()A .12a x x b <<<B .12x a b x <<<C .12a x b x <<<D .12x a x b<<<【答案】A【解析】由题可得:12x x a b +=+,121x x ab =+.由a b <,12x x <,设1x a m =+,则2x b m =-.所以212()()()1a m b m ab m b a m ab x x =+-=+--=+,所以2()1m b a m --=,21m m b a+=-.又a b <,所以0b a ->,所以0m >.故1x a >,2x b <.又12x x <,故12a x x b <<<.故选:A.例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈.(1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围.【解析】(1)当0a =时,原不等式可化为()120x x -⋅-<…①.(ⅰ)当0x ≥时,①式化为220x x --<,解得12x -<<,所以02x ≤<;(ⅱ)当0x <时,①式化为220x x -+>,解得x ∈R ,所以0x <.综上,原不等式的解集为(),2-∞.(2)依题意,()()()2211,11,x a x a x af x x a x a x a ⎧-++--<⎪=⎨-++-≥⎪⎩.因为()10f a =-<,且二次函数()211y x a x a =-++-开口向上,所以当x a ≥时,函数()f x 有且仅有一个零点.所以x a <时,函数()f x 恰有两个零点.所以()()()21,21410,10.a a a a f a +⎧<⎪⎪⎪=+-+>⎨⎪=-<⎪⎪⎩解得3a >.不妨设123x x x <<,所以1x ,2x 是方程()2110x a x a -++--=的两相异实根,则12121,1x x a x x a +=+⎧⎨=+⎩,所以121212111x x x x x x ++==.因为3x 是方程()2110x a x a -++-=的根,且312a x +>,由求根公式得3x =因为函数()g a ()3,+∞上单调递增,所以()332x g >=31012x <<-.所以123111x x x ++.所以a 的取值范围是21,22⎛- ⎝⎭.【过关测试】一、单选题1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为()A .1B .0C .1-D .2【答案】C【解析】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <.因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C2.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是()A .(5,4)(4,)--+∞B .(5,)-+∞C .(5,4)--D .(4,2)(4,)--+∞【答案】C【解析】令()2(2)5mf x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或则54m -<<-,即(5,4)m ∈--故选:C3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=()A .3B .6C.D.【答案】D【解析】2610x x -+=,364320∆=-=>,故121261x x x x +=⎧⎨=⎩,12||x x -===.故选:D.4.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是().A .(,0)(1,)-∞⋃+∞B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】令2()2g x x ax a =-+,由方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解可得244011(1)0(1)0a a a g g ⎧∆=->⎪-<<⎪⎨->⎪⎪>⎩,即011131a a a a <⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩或111131a a a a >⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩,解得103-<<a ,故选:C5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是()A .0a <B .0a >C .1a <-D .2a <【答案】C【解析】由题意,不妨设2()21f x ax x =++,因为(0)10=>f ,且()22100ax x a ++=≠有一个正实数根和一个负实数根,所以2()21f x ax x =++的图像开口向下,即0a <,故对于选项ABCD ,只有C 选项:1a <-是0a <的充分不必要条件.故选:C.6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是()A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞【答案】B【解析】由题意,{}2320{|12}A x x x x x =-+<=<<若AB ⋂≠∅,即方程2210ax x --=存在根在区间(1,2)(1)若102102a x x =∴--=∴=-,不成立;(2)若0a ≠,由于0x =不为方程的根,故0x ≠,则222221211210(1)1x ax x a x x x x+--=⇔==+=+-由于21115(1,2)(,1)(1)1(,3)24x x x ∈∴∈∴+-∈综上,实数a 的取值范围是5,34⎛⎫⎪⎝⎭故选:B7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是()A .{}12a a -<<B .{}21a a -<<C .{}2a a <-D .{}1a a >【答案】B【解析】由题意可得()2211220a a a a +-+-=+-<,解得21a -<<.故选:B.8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为()A .4-B .5-C .6-D .7-【答案】A【解析】因为元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)1f x x m x =+++,则由题意可得(0)0(1)0(3)0f f f >⎧⎪<⎨⎪>⎩,即10,30,1330,m m >⎧⎪+<⎨⎪+>⎩解得1333m -<<-,又m Z ∈,可得4m =-.故选:A 二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是().A .24a b=B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c ++<的解集为12(,)x x ,且12||4x x -=,则4c =【答案】ABD【解析】由题意,不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,所以240a b ∆=-=,24a b ∴=,所以A 正确;对于B :2+x ax b c +<变形为2+0x ax b c +-<,其解集为(3,1)-,所以231 314 a b c a b -+=-⎧⎪-⨯=-⎨⎪=⎩,得214a b c =⎧⎪=⎨⎪=⎩,故7a b c ++=成立,所以B 正确;对于C :若不等式20x ax b +-<的解集为12(,)x x ,由韦达定理知:21204a x xb =-=-<,所以C 错误;对于D :若不等式2x ax bc ++<的解集为12(,)x x ,即20x ax b c ++-<的解集为12(,)x x ,由韦达定理知:21212,4a x x a x x b c c +=-=-=,则12||4x x -==,解得4c =,所以D 正确.故选:D.10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是()A .4m =B .5m =C .1m =D .12=-m 【答案】ACD【解析】设()24f x x x m =-+,则二次函数()f x 的图象的对称轴为2x =.当4m =时,方程即()224420x x x -+=-=,求得2x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故4m =是方程240x x m -+=有正数根的充分不必要条件,故A 满足条件;当5m =时,方程即()224521x x x -+=-=-,求得x ∈∅,不满足方程有正实数根,故5m =不是方程240x x m -+=有正数根的充分条件,故排除B .当1m =时,方程即()224123x x x -+=-=,求得2=±x 但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故1m =方程240x x m -+=有正数根的充分不必要条件,故C 满足条件;当12=-m 时,方程即24120x x --=,求得2x =-,或6x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故12=-m 方程240x x m -+=有正数根的充分不必要条件,故D 满足条件,故选:ACD .11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是()A .3-B .18C .14D .1【答案】BC【解析】由题意22x x λ=--在(1,0)-上有解.∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈,故选:BC .12.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是()A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈<B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈>D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0【答案】AB【解析】对A ,当0x =时,函数2(3)y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}|0m m m ∈<,故A 正确;对B ,若方程()230x m x m +-+=有两个正实数根1x ,2x ,即()2121234030,0,m m x x m x x m ⎧∆=--≥⎪+=->⎨⎪=>⎩解得:01m <≤,故B 正确;对C ,方程()230x m x m +-+=无实数根,即()2340m m ∆=--<,解得:19m <<,方程()230x m x m +-+=无实数根的充要条件是{}19m m m ∈<<,故C 错误;对D ,当3m =时,方程为230x +=,无实数根,故D 错误.故答案为:AB.13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为()A .-2B .-3C .-4D .-5【答案】BC 【解析】设()()2112f x x m x =+++,由12013x x <<<<,可得()()()()10200110110230193102f f m f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩,解得:25562m -<<-,又因为m Z ∈,得3m =-或4m =-,故选:BC.三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.【答案】a <-2【解析】∵关于x 的方程210x ax ++=的一根大于1,另一根小于1,令2()1=++f x x ax ,则(1)20f a =+<,求得2a <-,故答案为:2a <-15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.【答案】(52,+∞)【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-,所以实数k 的取值范围为(),3-∞-.故答案为:(),3-∞-.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________.【答案】[]1,1-【解析】由()()2320x x x -+-≤,得23020x x x ⎧-≥⎪⎨+-≤⎪⎩或23020x x x ⎧-≤⎪⎨+-≥⎪⎩,解得13x ≤≤,所以集合{|31A x x =-≤≤-或}13x ≤≤,因为A B ⊆,令()212f x x ax =--,则()()3030f f ⎧-≤⎪⎨≤⎪⎩,即9312093120a a +-≤⎧⎨--≤⎩,解得11a -≤≤,所以实数a 的取值范围是[]1,1-故答案为:[]1,1-四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.【解析】(1)若命题q 为假命题,则对()0,x ∀∈+∞,2390x mx -+≥为真命题;239mx x ∴≤+,即93m x x ≤+;96x x +≥(当且仅当9x x =,即3x =时取等号),36m ∴≤,解得:2m ≤,∴实数m 的取值范围为(],2-∞.(2)由(1)知:若命题q为真命题,则2m >;若命题p 为真命题,则Δ1400m m =->⎧⎨>⎩,解得:104m <<;若p 真q 假,则104m <<;若p 假q 真,则2m >;综上所述:实数m 的取值范围为()10,2,4⎛⎫+∞ ⎪⎝⎭.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.【解析】令2()57f x x x a =--,则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-⇒⎪⎨<⇒--⇒-⎪⎪>⇒-->⇒<⎩,∴06a <<.故实数a 的取值范围(0,6).20.(2021·辽宁·昌图县第一高级中学高一期中)1.已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围;(2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.【解析】(1)()()2213f x x a x =+-+的对称轴为1x a=-要想方程()0f x =在()0,3有两个根,需要满足()()()100001330f a f a f ⎧-<⎪>⎪⎨<-<⎪⎪>⎩解得:(1,1a ∈--(2)[]1,2x ∃∈,()22130x a x +-+>成立,即3122x a x ⎛⎫->-+ ⎪⎝⎭在[]1,2x ∈上有解,只需1a -大于()322x g x x ⎛⎫=-+ ⎪⎝⎭的最小值,其中()322x g x x ⎛⎫=-+ ⎪⎝⎭为对勾函数,在x ⎡∈⎣上单调递增,在)x ∈上单调递减,又()131222g ⎛⎫=-+=- ⎪⎝⎭,()2372244g ⎛⎫=-+=- ⎪⎝⎭,所以最小值为()12g =-故12a ->-,解得:1a >-,实数a 的取值范围为()1,-+∞21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围;(2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【解析】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <-综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭.(2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k <-则k 的取值范围为(),2∞--.。

《一元二次方程的实根分布问题》

《一元二次方程的实根分布问题》

5
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。
条件7:若方程的一个根小于2,另一个根大于4。
y
分析 设f(x)=x²+(m–3)x+m
如右图知
O 24 x
f f
(2) (4)
3m 5m
2 4
0 0
m
4 5
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。
设二次方程 ax2 bx c 0(a 0)的二实根为 x1, x2 (x1 x2 ) b2 4ac 方程对应的二次函数为 f (x) ax2 bx c(a 0)
小结:一般地,一元二次方程ax²+bx+c=0(a>0)的实根分布
两个根均小于k
y
两个根均大于k
y
一个根小于k, 一个根大于k。
f (m) f (n) 0 或 f (m) 0且m b m n
2a 2
或 f (n) 0且 m n b n
2
2a
注意:
由函数图象与x轴交点的位置写出相应的充要条件,一般 考虑以下三个方面:
①判式 b2 4ac 的符号; ②对称轴 x bk 的位置分布;
2a
③二次函数在实根分布界点处函数值的符号。
y
如右图知
O1
x
f (1) 2m 2 0 m 1
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。
条件4:若方程的两个根均在( 0,2)内。
分析 设f(x)=x²+(m–3)x+m
y
如右图知
(m 3)24m 0
0
m

《一元二次方程的实根分布问题》(课堂PPT)

《一元二次方程的实根分布问题》(课堂PPT)
( 2 , 1 ) (3 ,4 )
2.若方程2x²–(m–2)x–2m²–m=0的两根在区间[0,1] 之外两旁,求实数m的取值范围。
(, 2 ) (1 ,)
15
课堂练习:
3.关于x的方程2kx2-2x-3k-2=0的二根,一个小于1, 另一个大于1,则求实数k的取值范围。
(, 4 ) (0 ,)
2x
5
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。
条件5:若方程的两个根有且仅有一个在( 0,2)内。
分析 设f(x)=x²+(m–3)x+m
y
如右图知
1、f(0)0且 03m1
2
2、f(2)0且 13m2m
2
O
2 x
2
3
3、f(0 )f(2 ) m (3 m 2 ) 0 32 m 1
2 2a
13
注意:
由函数图象与x轴交点的位置写出相应的充要条件,一般 考虑以下三个方面:
①判别式 b24ac的符号; ②对称轴 x bk 的位置分布;
2a
③二次函数在实根分布界点处函数值的符号。
14
课堂练习:
1.若方程7x²–(m+13)x+m²–m–2=0在区间(0,1)、 (1,2)上各有一个实根,求实数m的取值范围。
条件2:若方程的两个根均小于1。
y
分析 设f(x)=x²+(m–3)x+m
如右图知
(m 3)2 4m 0
O
m 2
3
1
m9
f (1) 2m 2 0
1x
3
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。

一元二次方程的实根分布问题

一元二次方程的实根分布问题

一元二次方程的实根分布问题问题1. 试讨论方程02=++c bx x 的根的情况.(1) 根的个数:b 、c 满足什么条件时,方程有两个不等的实根?相等实根?无实根?(2) 根的大小:b 、c 满足什么条件时,方程有两个正根?两个负根?一正根、一负根?一根为0?(3) 根的范围:b 、c 满足什么条件时,方程两根都大于1?都小于1?一根小于1,一根大于1?说明 对于一元二次方程)0(02≠=++a c bx ax 的根的研究,主要分为四个方面(A )有没有实数根;(B )有实数根时,两根相等还是不等;(C )根的正负;(D )根的分布范围。

利用根的判别式,可以解决(A ),(B ),结合运用韦达定理,可以解决(C )。

而要解决(D ),需综合运用判别式、韦达定理及不等式的知识.思路1 (方程思想)设c bx x x f ++=2)((1) 方程0)(=x f 有两个大于1的实根的充要条件是: ⎪⎩⎪⎨⎧->+-<≥-⇒⎪⎩⎪⎨⎧>-->+≥∆12040)1)(1(2022121c b b c b x x x x (2) 方程0)(=x f 有两个小于1的实根的充要条件是:⎪⎩⎪⎨⎧->+->≥-⇒⎪⎩⎪⎨⎧>--<+≥∆12040)1)(1(2022121c b b c b x x x x (3) 方程0)(=x f 有一根大于1,一根小于1的充要条件是.1,0)(-<+<c b x f 即思路2 (函数思想)设c bx x x f ++=2)(,结合图形,则(1) 方程0)(=x f 有两根都大于1的条件是: ⎪⎩⎪⎨⎧->+≥--<⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧>++=≥-=∆>-.104201)1(041222c b c b b c b f c b b (2) 方程0)(=x f 有两根都小于1的条件是:⎪⎩⎪⎨⎧->+≥-->⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧>++=≥-=∆<-.104201)1(041222c b c b b c b f c b b (3) 方程0)(=x f 有两根一个大于1,小于1的条件是:.101)1(-<+⇒<++=c b c b f令n c n b 2,1=+=,导出下题。

初中数学一元二次方程的实根分布

初中数学一元二次方程的实根分布

第六讲 一元二次方程的实根分布22.注意:(1)利用相应二次函数图象与x 轴交点位置写出相应的等价条件,一般考虑一下三个方面:①判别式Δ=b 2-4ac 的符号;②对称轴x =-b2a的位置分布;③二次函数在实根分布界点处函数值的符号.(2)对于一元二次方程根和解是有区别的.一、一点同侧两根【例1】若关于x的方程x2-(k+2)x+4=0有两个不等的负根,求实数k的取值范围.【练】若关于x的方程x2+(m+2)x+m+5=0有两个正数根,求实数m的取值范围.【例2】若关于x的方程kx2-2kx+(k-1)=0有两个正实数根,求实数k的取值范围.【练】若关于x的方程2(k+1)x2+4kx+3k-2=0有两个负实根,求实数k的取值范围.【例3】若关于x的方程x2-mx+(3+m)=0有两个大于1的根,求实数m的取值范围.【练】若关于x的方程mx2+(2m-1)x-m+2=0有两个小于1的根,求实数m的取值范围.二、一点异侧两根【例4】若关于x的方程4x2+(m-2)x+m-5=0的一正根和一负根,求实数m的取值范围.【练】若关于x的方程(2m+1)x2-2mx+m-1=0有一正根和一个负根,求实数m的取值范围.【例5】若关于x的方程mx2+(m+2)x+9m=0有两个实数根x1和x2,且x1<1<x2,求m的取值范围.【练】若关于x的二次方程2mx2-2x-3m-2=0的一个根大于1,另一个根小于1,求实数m的取值范围.三、一点一侧有根【例6】若关于x的方程x2-ax+4=0有正实根,则实数a的取值范围是【练】若方程x2+x+a=0至少有一根为非负实数,求实数a的取值范围.【例7】若关于x的方程ax2+2x+1=0至少有一个负实根,求实数a的取值范围.【练】若关于x的一元二次方程mx2+(m-3)x+1=0至少有一个正根,求m的取值范围.四、两点中间两根【例8】若关于x的方程x2-ax+2=0在区间(0,3)内有两个根,求实数a的取值范围.【练】若关于x的方程x2-2ax+a2-1=0的两个不等根在区间(-2,4)上,求实数a 的取值范围.【变】若关于x的二次方程(m-1)x2+(3m+4)x+m+1=0的两个根属于(-1,1),求实数m的取值范围.【例9】当实数a和b满足何条件时,关于x的方程x2+ax+b=0在区间[-2,2]上有两个实根?【练】若关于x的方程x2+(m-1)x+1=0有两个相异的实根,且两根均在区间[0,2]上,求实数m的取值范围.【变】若抛物线y=x2+ax+2与连接两点M(0,1)、N(2,3)的线段有两个相异的交点,求a的取值范围.五、两点中间一根【例10】已知关于x的二次方程(2m+1)x2-2mx+m-1=0有且只有一个实根属于(1,2),且x=1,x=2都不是方程的根,求实数m的取值范围.【练】若关于x的二次方程(3m-1)x2+(2m+3)x-m+4=0有且只有一个实根属于(-1,1),求实数m的取值范围.【变】已知点A、B的坐标分别为(1,0)、(2,0),若二次函数f(x)=x2+(a-3)x+3的图象与线段AB恰有一个交点,求实数a的取值范围.【例11】若关于x的方程ax2+x+a-3=0在(-2,0)上有且只有一个实根,求实数a 的取值范围.【练】若关于x的方程mx2+(2m-3)x+4=0有且只有一个小于1的正根,求实数m的取值范围.六、两点中间有根【例12】若方程x2-2mx+m-1=0在区间(-2,4)上有根,求实数m的取值范围.【练】若关于x的二次方程x2+2mx+2m+1=0在区间(0,2)内至少存在一根,求实数m的范围.【变】已知关于x的方程2ax2+2x-a-3=0在区间[-1,1]上有根,求实数a的取值范围.【例13】集合A={(x,y) | y=x2+mx+2},B={(x,y) | x-y+1,且0≤x≤2},若A∩B≠∅,求实数m的取值范围.【练】已知抛物线y=2x2-mx+m与以点(0,0)和(1,1)为端点的线段(除去两个端点)有公共点,求实数m的取值范围.七、两点隔两根【例14】关于x的方程4x2+(m-2)x+m-5=0的一根小于1,另一根大于2,求实数m的取值范围.【练】若关于x的方程x2+(2m-1)x+m-6=0的一个根不大于-1,另一个根不小于1,求实数m的取值范围.【变1】已知方程(a-1)x2+(2a-6)x-4a+1=0的两根为x1,x2,且-1<x1<1<x2,求实数a的取值范围.【变2】若关于x的方程2x2-(m-2)x-2m2-m=0的两根在区间[0,1]之外,求实数m 的取值范围.八、多点隔两根【例15】若关于x方程x2-mx-m+3=0的一根在区间(0,1)内,另一根在区间(1,2)内,求实数m的取值范围.【练】已知关于x的方程x2+2mx+2m+1.若方程有两个根,其中一个在区间(-1,0),另一根在区间(1,2)内,求m的范围.【变】若mx2-(m-1)x+m2-m+2=0的两根分别在0<x<1和1<x<2的范围内,求实数m的取值范围.【作业】1、已知关于x的方程x2+(m-3)x+m=0,分别在下列条件下,求实数m的取值范围.(1)方程有两个正根;(2)方程两个根均小于1;(3)方程的一个根大于1,另一个根小于1;(4)方程的两个根均在(0,2)内;(5)方程的一个根小于2,另一个根大于4.(6)方程的一个根在(-2,0)内,另一个根在(0,4)内;(7)方程有一个正根,一个负根且正根的绝对值较大;(8)方程的两个根有且仅有一个在(0,2)内;2、若方程x2-4|x|+5=m有四个互不相等的实数根,求实数m的取值范围.3、设|a|=1,b为整数,关于x的方程ax2-2x-b+5=0有两个负实数根,求b的值.4、已知二次函数f(x)=(m+2)x2-(2m+4)x+3m+3与x轴有两个交点,分别在点(1,0)左右两边,求实数m的取值范围.5、求实数m的取值范围,使关于x的方程x2+2(m-1)x+2m+6=0至少有一个正根.6、如果二次函数y=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的取值范围.7、已知关于x的方程x2+2mx+2m+1=0.若方程两根均在区间(0,1)内,求实数m的取值范围.8、若关于x的方程7x2-(m+13)x+m2-m-2=0在区间(0,1)、(1,2)上各有一个实根,求实数m的取值范围.9、已知关于x的方程x2+(3m-1)x+3m-2=0的两根都属于(-3,3),且其中至少有一个根小于1,求实数m的取值范围.10、求证:关于x的方程3ax2+2bx-(a+b)=0在(0,1)内至少有一个实根.。

沪教版(上海)数学高一上册-2.2 一元二次方程的两实根分布问题 课件

沪教版(上海)数学高一上册-2.2 一元二次方程的两实根分布问题 课件

0
x1
x2
0
x1 x2 0
沪教版(上海)数学高一上册-2.2 一元二次方程的两实根分布问题 课件
3、(课前预习) 已知方程 x2 (m 3)x m 0 ,
请在下列条件下求实数 m的取值范围。
(3)若方程有一个正实根,一个负实根
x1 0且x2 0
0
x1
x2
0
沪教版(上海)数学高一上册-2.2 一元二次方程的两实根分布问题 课件
交流: 1、方法 2、易错点 3、第二种方法
沪教版(上海)数学高一上册-2.2 一元二次方程的两实根分布问题 课件
x1
x2
0 x1
x2
x2 (m 3)x m 0 的根 f ( x) x2 (m 3)x m 与x轴的交点的横坐标
x1>0且x2>0
沪教版(上海)数学高一上册-2.2 一元二次方程的两实根分布问题 课件
2. 关于x的方程 2kx2 2x 3k 2 0的两实根,一
个小于1,另一个大于1,求实数m的取值范围。
沪教版(上海)数学高一上册-2.2 一元二次方程的两实根分布问题 课件
数无形时少直觉, 形少数时难入微. 数形结合百般好, 隔离分家万事休。
----华罗庚
沪教版(上海)数学高一上册-2.2 一元二次方程的两实根分布问题 课件
沪教版(上海)数学高一上册-2.2 一元二次方程的两实根分布问题 课件
思考:
已知方程 m x2 (m 3)x m 0 ,
若 x1 1且x2 1, 求实数 m 的取值范围
沪教版(上海)数学高一上册-2.2 一元二次方程的两实根分布问题 课件
x1
x2
x1
0 x2
沪教版(上海)数学高一上册-2.2 一元二次方程的两实根分布问题 课件

5.1一元二次方程实根的分布

5.1一元二次方程实根的分布

实系数一元二次方程实根分布1:当m 为何值时,方程03524222=--++m m mx x的两根异号?答案:(321<<-m )2:已知方程02322=-+-k kx x 的两个根都大于1,求k 的取值范围。

答案:(2≥k )3:已知集合A ={045|2≤+-x x x },B ={022|2≤++-a ax x x },且B ⊆A ,求实数a 的取值范围。

答案:(7181≤<-a )4、关于x 的方程0122=++x ax 至少有一个负的实根,则a_____________ (1≤a )5、01032=+-k x x 有两个同号且不相等的实根,则k__________- (3250<<k )6、要使关于x 的方程0322=+-kx x 的两个实根一个小于1,另一个大于1,则实数k 的取值范围是__( 5>k )7、已知抛物线m x m x y +-+=)3(2与x 轴的正半轴交于两点,则实数m 的取值范围是____。

(10<<m )8、设A ={01|2=-x x },B ={012|22=-+-a ax x x },若A ∩B =B ,则a 等于___。

(0=a )9、已知A ={01)2(|2=+++x p x x ,R x ∈},若A ∩R +=φ,则p 的范围是_____。

(4->p )10、已知方程0222=++-a ax x 的两根都在区间(1,4)内, 求a 的取值范围。

(7182<≤a )11、若关于x 的方程0532=+-a x x 的一个根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围。

12、已知方程01222=+-+m mx x 的两个实根都大于2,求实数m 的取值范围。

(4316-≤<-m )13已知A ={023|2≤+-x x x },B ={02|2≤+-a ax x x ,R a ∈},且A ∩B =B ,求a 的取值范围。

一元二次方程实根分布问题

一元二次方程实根分布问题

一元二次方程实根分布问题
一元二次方程实根分布问题是数学中的重要议题,主要探讨一元二次方程实数根的分布情况。

这类问题具有深厚的理论基础,同时在实际应用中也具有广泛的意义。

一元二次方程的形式为ax²+bx+c=0(a≠0),其根的判别式为Δ=b²-4ac。

根据判别式的值,我们可以判断一元二次方程的实数根的分布情况。

当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根。

在探讨实根分布问题时,我们还需要考虑方程系数的影响。

系数a、b、c的取值会直接影响判别式Δ的值,从而改变实数根的分布。

同时,系数a、b、c的符号和大小关系也会影响到方程的解的性质,比如是否存在正实根、负实根等。

在实际应用中,一元二次方程实根分布问题经常出现在各种物理、工程问题中。

通过研究这些问题,我们可以更深入地理解和掌握一元二次方程的性质,提高解决问题的能力。

总的来说,一元二次方程实根分布问题是一元二次方程理论的重要组成部分,也是数学和实际应用领域中的一个重要问题。

只有充分理解和掌握实根分布的理论,我们才能更好地应用它来解决实际问题,进一步推动数学和其他领域的发展。

《一元二次方程的实根分布问题》

《一元二次方程的实根分布问题》

一元二次方程的实根分布问题引言一元二次方程是高中数学中重要的内容之一,也是解决实际问题中常见的一种数学模型。

解一元二次方程可以得到方程的实根,实根的个数和分布与方程的系数有密切关系。

本文将探讨一元二次方程的实根分布问题,并给出相应的和解题方法。

一元二次方程的一般形式一元二次方程的一般形式为:ax2+bx+c=0,其中a、b和c分别为方程的系数,且a eq0。

实根、虚根和重根一个一元二次方程可能有三种情况:实根、虚根和重根。

- 当判别式D=b2−4ac大于 0 时,方程有两个不相等的实根; - 当判别式小于 0 时,方程没有实根,但有两个虚根; - 当判别式等于 0 时,方程有两个相等的实根(重根)。

实根分布问题实根分布问题即研究实根的个数和分布。

首先,我们考虑a>0的情况。

1. 当a>0时对于一元二次方程ax2+bx+c=0,当a>0时,判别式D=b2−4ac的符号关系决定了实根的个数和分布。

a) 当D>0时当判别式D=b2−4ac>0时,方程有两个不相等的实根。

实根的分布取决于方程的系数a、b和c。

根据配方法,我们可以将一元二次方程写成完全平方形式(x−p)2=q,其中p和q可以通过系数a、b和c表示出来。

b) 当D<0时当判别式D=b2−4ac<0时,方程没有实根,但有两个虚根。

c) 当D=0时当判别式D=b2−4ac=0时,方程有两个相等的实根(重根)。

2. 当a<0时对于一元二次方程ax2+bx+c=0,当a<0时,判别式D=b2−4ac的符号关系同样决定了实根的个数和分布。

a) 当D>0时当判别式D=b2−4ac>0时,方程有两个不相等的实根。

b) 当D<0时当判别式D=b2−4ac<0时,方程没有实根,但有两个虚根。

c) 当D=0时当判别式D=b2−4ac=0时,方程有两个相等的实根(重根)。

根据以上讨论,我们可以出一元二次方程的实根分布问题的: 1. 当判别式D= b2−4ac>0时,方程有两个不相等的实根; 2. 当判别式D=b2−4ac<0时,方程没有实根,但有两个虚根; 3. 当判别式D=b2−4ac=0时,方程有两个相等的实根(重根)。

广东省广州二中奥数培训讲义第4讲《一元二次方程根的分布》

广东省广州二中奥数培训讲义第4讲《一元二次方程根的分布》

第4讲一元二次方程根的分布一、内容提要二次方程问题其实质就是其相应二次函数的零点(图象与x轴的交点)问题,因此,二次方程的实根分布问题,即二次方程的实根在什么区间内的问题,借助于二次函数及其图象利用形数结合的方法来研究是非常有益的。

设f(x)=ax2+bx+c(a≠0)的二实根为x1,x2,(x1<x2),Δ=b2-4ac,且α、β(α<β)是预先给定的两个实数。

1.当两根都在区间(α,β)内,方程系数所满足的充要条件:∵α<x1<x2<β,对应的二次函数f (x)的图象有下列两种情形(图1)当a>0时的充要条件是:Δ>0,α<-b/2a<β,f(α)>0,f (β)>0当a<0时的充要条件是:Δ>0,α<-b/2a<β,f(α)<0,f (β)<0两种情形合并后的充要条件是:Δ>0,α<-b/2a<β,af(α)>0,af (β)>0 ①2.当两根中有且仅有一根在区间(α,β)内,方程系数所满足的充要条件:∵α<x1<β或α<x2<β,对应的函数f(x)的图象有下列四种情形(图2)从四种情形得充要条件是:f (α)·f (β)<0 ②3.当两根都不在区间[α,β]内方程系数所满足的充要条件:(1)两根分别在区间[α,β]之外的两旁时:∵x1<α<β<x2,对应的函数f (x)的图象有下列两种情形(图3):当a>0时的充要条件是:f (α)<0,f (β)<0当a>0时的充要条件是:f (α)>0,f (β)>0两种情形合并后的充要条件是:af (α)<0,af (β)<0 ③(2)两根分别在区间[α,β]之外的同旁时:∵x1<x2<α<β或α<β<x1<x2,对应函数f(x)的图象有下列四种情形(图4):当x1<x2<α时的充要条件是:Δ>0,-b/2a<α,af (α)>0 ④当β<x1<x2时的充要条件是:Δ>0,-b/2a>β,af (β)>0 ⑤二次函数与二次不等式前面提到,一元二次不等式的解集相应于一元二次函数的正值、负值区间。

一元二次方程根的分布

一元二次方程根的分布

一元二次方程根的分布一.知识要点二次方程ax2bx c 0的根从几何意义上来说就是抛物线y ax2bx c与x轴交点的横坐标,所以研究方程ax2bx c 0的实根的情况,可从y ax2bx c的图象上进行研究.若在(,)内研究方程ax2bx c 0的实根情况,只需考察函数y ax2bx c与x轴交点个数及交点横坐标的符号,根据判别式以及韦达定理,由y ax2bx c的系数可判断出,捲x2, x1 x2的符号,从而判断出实根的情况.若在区间(m, n)内研究二次方程ax2bx c 0,则需由二次函数图象与区间关系来确定.表一:(两根与0的大小比较即根的正负情况))表二:(两根与k的大小比较)表三:(根在区间上的分布)分布情况内n内一n了m,画只在,根况一怖咖(ffl和在根q一P另, n内n m m,,在小根,q「PO 大致图象— > a得出的结论f m 0f n Off m f n 0或f p 0 f p f q 0 f q 0O 大致图象— > a得出的结论f m 0f n 0 f m f n 0或f p 0 f p f q 0f q 0综合结论—不讨论根在区间上的分布还有一种情况:两根分别在区间m,n夕卜,即在区间两侧x i m,X2 n,(图形分别如下)需满足的条件是(2) a 0时,(1) a 0 时,对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在m,n内有以下特殊情况:1 若f m 0或f n 0,则此时f m gf n 0不成立,但对于这种情况是知道了方程有一根为m或n,可以求出另外一根,然后可以根据另一根在区间m,n内,从而可以求出参数的值。

如方程mx2m 2 x 2 0在区间1,3上有一根,因为f 1 0,所以2 2 2 2mx m 2 x 2 x 1 mx 2,另一根为一,由1 — 3得一 m 2即为所求;m m 32 方程有且只有一根,且这个根在区间m,n内,即0,此时由0可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。

一元二次方程实根分布的推广及应用

一元二次方程实根分布的推广及应用

解得 ≤一昔或一昔< ≤一1所以 的范围 ,
为 ( ×, 1 . 一C 一 J 3 2用于求值域或最值 .
。 ●
f J
_ - ● ● - _ _ ● 一
\ /
V o :
图 2
3 3
D .

【 2 求 函数 y= 一 + J2 2 的值 例 】 x +2 +1
维普资讯
解 题 方法 与技 巧★

元二次方程实根分布的推广及应用
浙 江安 吉高级 中学( 1 3 O 姚 文建 3 3O )
情 况 . , 是 实 系数 一 元 二 次方 程 n +6 +r 设 z . — r On O 的 两 实 根 , 设 - ) + 6 + c则 有 : (> ) 并 厂 一n ( . , r 3 1 m< x < z 4 5
2 , 1 x < < z
- , 有 且仅 有 一 个 r z l E( l ) , 2 , 2 在 ( 1’ 2 )

| m


.一 y /
D x / k : m, D

J :

. . .. 一
元 二次 方 程 实 根 分 布 问 题 不 仅 是 高 中 数 学 的 重 点 , 且 还 是 难 点 , 时 在 高 考 试 题 中也 经 常 出现 . 而 同 下 面 先 列 出 一 元 二 次 方 程 实 根 分 布 的 五 种 基 本


类 型 根 的 分 布
1 1 x < z<


m lO %7 /2 互 \ n , 2

\-. .| I1 . I ;

一元二次方程实数根的分布

一元二次方程实数根的分布

第一课时:一元二次方程实数根的分布教学目标:使学生掌握一元二次方程实根分布问题的处理,加强求解一元二次不等式及不等式组,初步训练学生的数形结合能力。

教学重点:利用二次函数的图象,把一元二次方程根的分布−−→−转化图形问题−−→−转化代数表达式(不等式组)−−→−计算参数取值范围。

教学难点:图形问题转化成代数表达式(不等式组)并求解。

一、问题的提出若方程0)5()2(2=++++m x m x 的两根均为正数,求实数m 的取值范围.变式1:两根一正一负时情况怎样?变式2:两实根均大于5时情况又怎样?变式3:一根大于2,另一根小于-1时情况又怎样?问题:能否从二次函数图形角度去观察理解?若能试比较两种方法的优劣.方程)0(02≠=++a c bx ax 的实根,如若从二次函数图形角度去观察理解,其实质就是对应的二次函数2()0(0)f x ax bx c a =++=≠ 的抛物线与x 轴交点的横坐标.一元二次方程实根分布,实质上就是方程的根与某些确定的常数大小关系比较.二、一元二次方程实根分布仿上完成下表一元二次方程)0(02≠=++a c bx ax 实根分布图解三、练习1.m 为何实数时,方程02)1(2=+++m x m x 的两根都在-1与1之间.2、若方程0)3()1(2=-++-a x a x 的两根中,一根小于0,另一根大于2,求a 的取值范围.四、小结基本类型与相应方法:设 )0()(2≠++=a c bx ax x f ,则方程0)(=x f 的实根分布的基本类型及相应方法如下表:五作业:1.关于x 的一元二次方程222320ax x a ---=的一根大于1,另一根小于1.则a 的值是 ( )(A )0a >或4a <- (B )4a <- (C )0a > (D )40a -<<2.方程227(13)20(x k x k k k -++--=为常数)有两实根,αβ,且01α<<,12β<<,那么k 的取值范围是 ( )(A )34k << (B )21k -<<- (C )21a -<<-或34k << (D )无解3.设m 是整数,且方程2320x mx +-=的两根都大于95-而小于37,则m = .4.若关于x 的方程22(1)210m x mx -+-=的所有根都是比1小的正实数,则实数m 的取值范围是m =5. 方程2(21)(6)0x m x m +-+-=的一根不大于-1,另一根不小于1.试求:(1)参数m 的取值范围;(2)方程两根的平方和的最大值和最小值. 第二课时 一元二次方程实数根分布的应用一复习二、例子例1 已知实数a 、b 、c 满足22211a b c a b c a b c ⎧>>⎪++=⎨⎪++=⎩,求a b +的取值范围.解 由已知得1a b c +=-且222222()()(1)(1)22a b a b c c ab c c +-+---===-.所以,a b 是一元二次方程22(1)()0x c x c c --+-=的两根. 由a b c>>问题可转化为方程22(1)()0x c x c c --+-=的二根都大于c .令()f x =22(1)()x c x c c --+-,有2212()0(1)4()0c cf c c c c -⎧>⎪⎪>⎨⎪∆=--->⎪⎩ 即22123203210c c c c c c ->⎧⎪->⎨⎪--<⎩, 求得103c -<<,因此4(1,)3a b +∈.例2已知点(0,4)A 、(4,0)B .若抛物线21y x mx m =-++与线段AB (不包括端点A 及B )有两个不同的交点,则m 的取值范围是 . (1997年上海市高中数学竞赛)解: 显然直线AB 的方程为1(04)44x y x +=<<即4y x =-,代入抛物线方程并整理得2(1)(3)0x m x m +-+-=.设2()(1)(3)f x x m x m =+-+-,问题转化函数()y f x =的图象和x 轴在0到4之间有两个不同的交点,即方程2(1)(3)0x m x m +-+-=在(0,4)上有两个不相等的实根. 所以2(1)4(3)0(0)30(4)164(1)30104.2m m f m f m m m ⎧∆=--->⎪=->⎪⎪⎨=--+->⎪-⎪<<⎪⎩ 解得m 的取值范围是1733m <<. 例3关于x 的实系数二次方程20x ax b ++=的两个实数根为,αβ,证明:①如果||2,||2αβ<<,那么2||4a b <+且||4b <;②如果 2||4a b <+且||4b <,那么||2,||2αβ<<.(1993年全国高考题)证明 ①设2()f x x ax b =++,由已知,函数()y f x =的图象与x 轴在2-到2之间有两个不同的交点. 所以240,(1)22,(2)2(2)420,(3)(2)420.(4)a b a f a b f a b ⎧∆=->⎪⎪-<-<⎪⎨⎪-=-+>⎪=++>⎪⎩由(3)、(4)得(4)24b a b -+<<+,所以2||4a b <+.由(2),得||4a <,结合(1)得2416b a <<,所以4b <. 将(3)+(4)得4b >-,因此44b -<<,即||4b <.②由于2||4a b <+且||4b <,可得4,2||448b a <<+=,所以||4a <,222a -<-<. 即函数()f x 的图象的对称轴2a x =-位于两条直线2x =-,2x =之间.因为(2)(2)(42)(42)2(4)0f f a b a b b -+=+++-+=+>,22(2)(2)(42)(42)(4)40f f a b a b b a -⋅=++-+=+-> .所以(2)0,(2)0f f ->>. 因此函数()f x 的图象与x 轴的交点位于-2和2之间,即||2,||2αβ<<.作业1.已知抛物线2(4)2(6),y x m x m m =++-+为实数.m 为何值时,抛物线与x 轴的两个交点都位于点(1,0)的右侧?2.已知,,a b c 都是正整数,且抛物线2()f x ax bx c =++与x 轴有两个不同的交点A 、B. 若A 、B 到原点的距离都小于1,求a b c ++的最小值.第三课时 应用提高例1若方程k x x =-232在[]1,1-上有实根,求实数k 的取值范围. 解法一:方程k x x =-232在[]1,1-上有实根,即方程0232=--k x x 在[]1,1-上有实根,设k x x x f --=23)(2,则根据函数)(x f y =的图象与x 轴的交点的横坐标等价于方程0)(=x f 的根. (1)两个实根都在[]1,1-上,如图:可得⎪⎪⎩⎪⎪⎨⎧≤-≤-≥≥-≥∆1210)1(0)1(0a b f f ,解得2169-≤≤-k ; (2)只有一个实根在[]1,1-上,如图:可得0)1()1(≤⋅-f f ,解得 2521≤≤-k ,综合(1)与(2)可得 实数k 的取值范围为⎥⎦⎤⎢⎣⎡-25,169 解法二:方程k x x =-232在[]1,1-上有实根,即存在[]1,1-∈x ,使得等式x x k 232-=成立,要求k 的取值范围,也即要求函数[]1,1,232-∈-=x x x k 的值域. 设[]1,1,1694323)(22-∈-⎪⎭⎫ ⎝⎛-=-==x x x x x f k 又因,则)1(169-≤≤-f k , 可得25169≤≤-k . 解法三:令,232x x y -=则k y =,则方程k x x =-232在[]1,1-上有实根,等价于方程组⎪⎩⎪⎨⎧=-=k y x x y 232在[]1,1-上有实数解,也即等价于抛物线,232x x y -=与直线k y =在[]1,1-上有公共点,如图所示直观可得:25169≤≤-k .解法四:根据解法三的转化思想,也可将原方 程k x x =-232化成k x x +=232,然后令 k x y x y +==23,2,从而将原问题等价转化为 抛物线2x y =与直线k x y +=23在[]1,1-点时,“数形结合法”下去求参数k 的取值范围.根据图形直观可得:当直线k x y +=23过点)1,1(-, 截距k 最大;当直线k x y +=23与抛物线k x y +=23相切时,截距k 最小. 且169,25-==最小最大k k .故参数的取值范围为25169≤≤-k . 2已知实数a 、b 、c 满足021a b c m m m++=++,其中m 为正数.对于2()f x ax bx c =++. (1)若0a ≠,求证:()01m af m <+; (2) 若0a ≠,证明方程()0f x =在(0,1)内有实根.证明 (1)由021a b c m m m ++=++,求得()21am bm c m m =-+++,所以 222222211()[()()][()][]11112(1)2m m m m m af a a b c a a m m m m m m m m m=++=-=-+++++++ 又由22(1)20m m m +>+>,因此22110(1)2m m m -<++,故()01m af m <+. (2)要证明方程()0f x =在(0,1)内有实根,只须证明(0)(1)0f f ⋅< 或 (0)0,(1)0,0,0 1.2af af b a >⎧⎪>⎪⎪∆≥⎨⎪⎪<-<⎪⎩但两者都不易证明. 由01(0)1m m m <<>+,结合第(1)题()01m af m <+,对a 进行讨论: 当0a >时,有()01m f m <+. 只要证明(0)f c =和(1)f a b c =++中有一个大于零即可. 若0c >,则(0)0f >成立,问题得证;若0c ≤,由021a b c m m m ++=++求得(1)(1)2a m c m b m m++=--+,所以 (1)(1)(1)22a m c m a c f a b c a c m m m m ++=++=--+=-++. 由0,0,0a m c >>≤,知(1)0f >,命题得证. 故当0a >时,方程()0f x =在(0,1)内有实根. 同理可证,当0a <时,方程()0f x =在(0,1)内也有根.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f (m) f (n) 0 或 f (m) 0且m b m n
2a 2
或 f (n) 0且 m n b n
2
2a
注意:
由函数图象与x轴交点的位置写出相应的充要条件,一般 考虑以下三个方面:
①判别式 b2 4ac 的符号; ②对称轴 x bk 的位置分布;
2a
③二次函数在实根分布界点处函数值的符号。
一元二次方程的实根分布问题
问题 已知方程x²+(m–3)x+m=0,求实数m的
取值范围。
条件1:若方程有两个正根。
y
分析 设f(x)=x²+(m–3)x+m
如右图知
O
x
(m 3)24m 0
m 2
3
0
0 m1
f (0) m 0
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。

6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月10 日星期 四上午 3时0分 13秒03 :00:132 0.12.10

7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月上午 3时0分 20.12.1 003:00 December 10, 2020

3、越是没有本领的就越加自命不凡。 20.12.1 003:00: 1303:0 0Dec-20 10-Dec-20

4、越是无能的人,越喜欢挑剔别人的 错儿。 03:00:1 303:00: 1303:0 0Thursday, December 10, 2020

5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 020.12. 1003:0 0:1303: 00:13D ecembe r 10, 2020
5
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。
条件7:若方程的一个根小于2,另一个根大于4。
y
分析 设f(x)=x²+(m–3)x+m
如右图知
O 24 x
f (2) 3m 2 0
f
(4)
5m
4
0
m4 5
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。
条件8:若方程有一个正根,一个负根且正根 的绝对值较大。
y
分析 设f(x)=x²+(m–3)x+m
如右图知
O
x
f (0) m 0
m 2
3
0
m0
小结
一元二次方程的根,其实质就是其相应二次函数的图象 与x轴交点的横坐标,因此,可以借助于二次函数及其图象, 利用数形结合的方法来研究一元二次方程的实根分布问题, 下面通过例题具体情况来说明。
y
m O
n x
f (m 0)
f
(n)
0
X1∈(m,n) , X2∈(p,q) 。
y
np
mO
qx
f (m) 0
f (n) 0
f
(
p)
0
f (q) 0
小结:一般地,一元二次方程ax²+bx+c=0(a>0)的实根分布
两个根有且仅有一个在(m,n)内
y
y
y
Om
n x
O m nx
O m nx
课堂练习:
1.若方程7x²–(m+13)x+m²–m–2=0在区间(0,1)、 (1,2)上各有一个实根,求实数m的取值范围。
(2,1) (3,4)
2.若方程2x²–(m–2)x–2m²–m=0的两根在区间[0,1] 之外两旁,求实数m的取值范围。
(,2) (1,)
课堂练习:
3.关于x的方程2kx2-2x-3k-2=0的二根,一个小于1, 另一个大于1,则求实数k的取值范围。
3
由于1,2,3知m的取值范围是 2 m 1
3
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。
条件6:若方程的一个根在(–2 ,0),另一个根
在(0 ,4)。
y
分析 设f(x)=x²+(m–3)x+m
如右图知
2 O
4x
f (2) m 10 0
f
(0)
m
0
4m0
f (4) 5m 4 0
(,4) (0,)
4.若方程x²–2mx+m–1=0在区间(–2,4)上有两根, 求实数m的取值范围。
(1,3)

1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1020. 12.10Thursday, December 10, 2020

2、阅读一切好书如同和过去最杰出的 人谈话 。03:0 0:1303: 00:1303 :0012/ 10/2020 3:00:13 AM
O
2 m1 3
2x
问题 已知方程x²+(m–3)x+m=0,求实数m的
取值范围。 条件5:若方程的两个根有且仅有一个在( 0,2)内。
分析 设f(x)=x²+(m–3)x+m
y
如右图知
1、f (0) 0且0 3 m 1
2 2、f (2) 0且1 3 m 2
m
2
O
2 x
2
3
3、f (0) f (2) m(3m 2) 0 2 m 1
条件2:若方程的两个根均小于1。
y
分析 设f(x)=x²+(m–3)x+m
如右图知
(m 3)24m 0
O
m 2
3
1
m9
f (1) 2m 2 0
1x
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。
条件3:若方程的一个根大于1,一个根小于1。
分析 设f(x)=x²+(m–3)x+m
y
O
kx
0
b 2a
Hale Waihona Puke kf (k ) 0
Ok
x
0
b 2a
k
f (k ) 0
O
k
x
f (k) 0
小结:一般地,一元二次方程ax²+bx+c=0(a>0)的实根分布
两个根均在 (m,n)内
y
Om
nx
0
m
b
n
2a
f (m) 0 f (n) 0
两根均在[m,n] 外两旁
设二次方程 ax 2 bx c 0(a 0)的二实根为 x1, x2 (x1 x2 ) b2 4ac 方程对应的二次函数为 f (x) ax2 bx c(a 0)
小结:一般地,一元二次方程ax²+bx+c=0(a>0)的实根分布
两个根均小于k
y
两个根均大于k
y
一个根小于k, 一个根大于k。
y
如右图知
O1
x
f (1) 2m 2 0 m 1
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。
条件4:若方程的两个根均在( 0,2)内。
分析 设f(x)=x²+(m–3)x+m
y
如右图知
(m 3)24m 0
0
m
3
2
2
f
(0)
m
0
f (2) 3m 2 0
相关文档
最新文档