纳米材料研究进展
纳米材料应用技术的新进展
纳米材料应用技术的新进展
纳米材料应用技术是指将纳米材料应用于各个领域的技术。
近年来,随着纳米技术的不断发展,纳米材料的应用领域也在不断扩大,以下是一些纳米材料应用技术的新进展:
1. 生物医学领域:纳米材料在生物医学领域的应用已经取得了很大的进展。
例如,纳米材料可以用于药物传递、基因治疗、生物传感器等方面。
通过将药物包裹在纳米材料中,可以提高药物的溶解度和生物利用度,减少药物的毒副作用。
2. 能源领域:纳米材料在能源领域的应用也备受关注。
例如,纳米材料可以用于太阳能电池、锂离子电池、超级电容器等方面。
通过使用纳米材料,可以提高电池的能量密度和循环寿命,从而提高能源的利用效率。
3. 环境保护领域:纳米材料在环境保护领域的应用也有很大的潜力。
例如,纳米材料可以用于水处理、空气净化、土壤修复等方面。
通过使用纳米材料,可以去除水中的有害物质、空气中的污染物和土壤中的有毒物质,从而保护环境和人类健康。
4. 电子信息领域:纳米材料在电子信息领域的应用也在不断拓展。
例如,纳米材料可以用于制造电子元件、传感器、显示器等方面。
通过使用纳米材料,可以提高电子元件的性能和可靠性,减小电子产品的尺寸和重量。
总之,纳米材料应用技术的新进展为各个领域的发展带来了新的机遇和挑战。
随着研究的不断深入,相信纳米材料的应用将会更加广泛和深入。
1。
纳米材料在电子器件领域的研究进展
纳米材料在电子器件领域的研究进展一、引言随着科技的不断发展和进步,纳米材料在各个领域的应用得到了广泛关注和研究。
在电子器件领域,纳米材料的应用正在改变传统器件的性能和功能。
本文将回顾纳米材料在电子器件领域的研究进展,并探讨其未来的发展方向。
二、纳米材料的定义与特征纳米材料是指材料的尺寸在纳米级别(10-9米)上具有特殊性质和效应的材料。
与传统材料相比,纳米材料具有较高的比表面积、较小的颗粒尺寸和量子效应等特征。
这些特征使纳米材料具有优异的电学、光学和磁学等性能,适用于电子器件的制造和应用。
三、纳米材料在晶体管领域的应用晶体管是电子器件的核心组成部分,纳米材料在晶体管领域的应用已取得了重要进展。
首先,纳米材料能够制备出更小尺寸的晶体管,提高集成度和工作频率。
其次,纳米材料能够改善晶体管的电子迁移率和开关特性,提高器件的性能和可靠性。
最后,纳米材料还可以用于制造新型晶体管结构,如纳米线、纳米片等,实现新功能的发现和应用。
四、纳米材料在存储器件领域的应用存储器件是电子器件中另一个重要的组成部分,纳米材料在存储器件领域也有广泛的应用。
首先,纳米材料能够制备出更高密度的存储器件,提高存储容量和速度。
其次,纳米材料能够改善存储器的抗氧化性和稳定性,延长器件的寿命。
最后,纳米材料还可以用于制造非易失性存储器件,如闪存、磁性存储器等,实现高速、低功耗的数据存储和传输。
五、纳米材料在传感器领域的应用传感器是电子器件中用于感知和检测环境信息的重要部件,纳米材料在传感器领域的应用也备受关注。
首先,纳米材料能够提高传感器的灵敏度和选择性,实现更精确的信号检测和分析。
其次,纳米材料能够制备出更小尺寸的传感器,实现更小型化和集成化的器件设计。
最后,纳米材料还可以用于制造多功能的传感器,如柔性传感器、生物传感器等,实现更广泛的应用场景和功能需求。
六、纳米材料在能量器件领域的应用能量器件是电子器件中用于能量转换和存储的重要组成部分,纳米材料在能量器件领域的应用也具有巨大潜力。
纳米技术在材料领域中前沿进展
纳米技术在材料领域中前沿进展纳米技术是在纳米尺度上对物质进行研究、控制和改造的一门学科。
纳米尺度指的是物质尺寸在1到100纳米之间。
随着科技的不断进步,纳米技术在各个领域都展现出了巨大的潜力,特别是在材料领域中,纳米技术的应用已经引起了广泛的关注。
一、纳米材料的合成与制备技术纳米技术的快速发展与纳米材料的合成与制备技术密不可分。
传统的材料制备方法无法精确控制材料的尺寸和形貌,但纳米技术的发展使得这一问题得到了解决。
现代纳米材料的合成和制备技术包括溶剂热法、熔融法、溶胶凝胶法、氧化还原法等多种方法。
这些方法可以合成出具有特殊功能和性质的材料,如纳米粒子、纳米薄膜、纳米线和纳米结构等。
二、纳米材料在能源领域中的应用纳米材料在能源领域的应用是当前研究的热点之一。
由于纳米材料具有特殊的物理和化学性质,可以提高能量的转换效率和储存密度。
例如,纳米材料在太阳能电池、燃料电池和储能设备中的应用已经取得了显著的进展。
使用纳米材料可以提高光电转换效率,延长电池的寿命,减小储能设备的体积和重量,为可持续发展提供了新的解决方案。
三、纳米材料在传感器领域中的应用纳米材料在传感器领域中也有着广泛的应用。
由于纳米材料具有大比表面积、高灵敏度和优异的电化学性能,可以用于制备高灵敏的传感器。
例如,一些纳米材料可以用来制作生物传感器,可以实现对生物分子的高灵敏检测,广泛应用于生物医学和环境监测中。
此外,纳米材料还可以用于制备传感器阵列,实现多参数的同时检测,提高传感器的性能。
四、纳米材料在医疗领域中的应用纳米材料在医疗领域的应用也备受关注。
纳米材料具有较小的尺寸和较大的比表面积,可以实现药物的精确传递和靶向治疗。
这些特性为靶向药物输送系统的设计提供了可能。
例如,纳米颗粒可以携带药物并将其精确释放到病变组织中,减少药物的毒副作用,提高治疗效果。
此外,纳米材料还可以用于制备生物成像剂,实现对疾病的早期诊断和治疗监测。
五、纳米材料在环境保护中的应用纳米材料在环境保护领域中的应用也显示出了巨大的潜力。
纳米材料的仿生学设计与应用研究进展
纳米材料的仿生学设计与应用研究进展近年来,纳米科技的飞速发展,为各个领域带来了极大的创新和进步。
仿生学是一门研究借鉴自然界生物体结构和功能,设计和制造具有相似或类似功能的人工材料和系统的学科。
纳米材料的仿生学设计与应用结合,为科学家和工程师提供了许多创新的思路和方法。
纳米材料是在尺寸为纳米级别的范围内制造的材料,具有独特的物理、化学和生物特性。
通过仿生学的设计原则,科学家和工程师可以基于生物体的结构和功能,设计和制造出具有高度特异性和效率的纳米材料。
以下是纳米材料的仿生学设计与应用研究的一些进展:1. 生物仿真:科学家通过仿生学的方法,研究和制造可用于仿真生物体功能的纳米材料。
例如,通过模拟植物叶片的微纹理,可以设计出具有自洁功能的纳米材料。
这种纳米材料能够在水滴接触到表面时排除污垢和液体,使其具有自洁能力。
2. 智能传感:纳米材料的仿生学设计在智能传感领域也有广泛的应用。
科学家们利用仿生学的原理,设计纳米材料用于检测和感知环境中的各种物质和条件。
例如,将仿生学设计的纳米材料与生物分子结合,可以制造出高灵敏度的生化传感器,用于检测疾病标志物或环境中的污染物。
3. 能量收集与转换:纳米材料的仿生学设计在能源领域也有广泛的应用前景。
科学家们通过仿生学的方法,设计和制造出高效的光伏材料和催化剂,用于太阳能的收集和转换。
此外,仿生学设计的纳米材料还可以模拟光合作用等生物过程,实现高效能源的转化。
4. 药物传输和治疗:纳米材料的仿生学设计在医学领域也有广泛的应用前景。
科学家们通过仿生学的设计原理,制造出具有控释功能的纳米药物载体。
这些纳米材料可以通过调整其表面性质和纳米结构,实现药物的精确控制释放和靶向传递,提高药物的疗效和减轻副作用。
5. 其他应用领域:纳米材料的仿生学设计还有许多其他应用领域。
例如,科学家们利用仿生学的原理,设计出具有高效吸附和分离功能的纳米材料,用于环境污染治理和水处理。
此外,在材料领域,纳米材料的仿生学设计也可以用于制造高强度和轻质的结构材料。
纳米材料在光催化领域的应用研究进展
纳米材料在光催化领域的应用研究进展引言:光催化技术是一种将光能转化为化学能的方法,具有环境友好、高效能和可持续发展等特点。
随着纳米材料技术的快速发展,纳米材料在光催化领域的应用引起了广泛的关注。
本文将回顾近年来纳米材料在光催化领域的应用研究进展,总结其优点和挑战,并展望未来的发展方向。
一、纳米材料的种类及其应用纳米材料是指具有在纳米尺度(一般认为小于100纳米)上特殊性质的材料。
在光催化领域中,常用的纳米材料包括金属纳米颗粒、二氧化钛纳米颗粒和复合纳米材料等。
1. 金属纳米颗粒金属纳米颗粒由于其表面等离子共振现象以及局域表面等离子体共振效应,具有优异的光催化性能。
例如,纳米银颗粒在可见光下表现出良好的光催化活性,可用于有机污染物降解、水分解产氢等方面的应用。
2. 二氧化钛纳米颗粒二氧化钛是一种重要的半导体材料,其纳米颗粒具有高比表面积和光吸收性能,因此在光催化领域具有广泛的应用。
研究表明,二氧化钛纳米颗粒在紫外光照射下可以光解水制氢,还可以用于有机污染物的光催化降解、空气净化和自清洁材料等方面。
3. 复合纳米材料复合纳米材料由两种或多种不同的纳米材料通过特定的方法组装而成,将各种纳米材料的特点相结合,以实现更好的光催化性能。
例如,将金属纳米颗粒与二氧化钛纳米颗粒复合可有效提高光催化活性,广泛用于有机污染物降解等领域。
二、纳米材料在光催化领域的优点纳米材料在光催化领域具有许多优点,这些优点使其成为理想的光催化剂。
1. 高比表面积纳米材料的特点之一是其比表面积大大增加。
由于其纳米尺度的特殊结构,纳米材料具有更多的表面活性位点,使光催化反应更易进行。
2. 增加光吸收能力纳米材料由于其小粒径的特性,能够表现出更好的光吸收能力。
这使得纳米材料在可见光下具有较高的光催化活性,相对于传统的光催化材料具有更广泛的应用前景。
3. 提高光催化效率由于纳米材料的特殊性质,比如电子和能量传输的方便性,纳米材料能够提高光催化反应的效率。
纳米材料与纳米技术研究进展
纳米材料与纳米技术研究进展近年来,随着科学技术的不断进步,纳米材料与纳米技术已成为热门话题,各国科学家也在纳米技术研究方面投入了大量的精力。
本文将介绍一些目前纳米材料与纳米技术研究的进展。
一、纳米材料研究进展1.金属纳米粒子金属纳米粒子是目前应用最广泛的纳米材料之一。
它的独特性质在医学、光电和材料科学等方面得到了广泛的应用。
近年来,科学家们发现,通过控制金属纳米粒子的形状和尺寸,可以进一步改善其性质。
例如,长轴为50纳米的椭球形金属纳米粒子比球形金属纳米粒子具有更好的光学特性。
因此,在未来的应用中,控制纳米粒子形状和尺寸将成为一项重要的研究方向。
2.化学合成纳米材料化学合成纳米材料是基于化学反应合成的新型材料。
其制备方法简单,成本低廉。
同时,科学家们也发现,通过控制反应条件,可以控制纳米材料的形状和尺寸。
因此,化学合成纳米材料发展前景非常广阔。
3.碳基纳米材料碳基纳米材料是一类以碳为主要成分的纳米材料。
它的制备方法多样,包括碳纳米管、石墨烯和类石墨烯材料。
在纳米材料领域,碳基纳米材料具有许多独特的性质,例如高强度、高导电性和高导热性。
因此,碳基纳米材料的应用范围非常广泛,包括能源存储、生物医学和电子器件等领域。
二、纳米技术研究进展1.纳米电子学纳米电子学是以纳米技术为基础的电子学。
在这个领域,科学家们研究如何使用纳米器件来替代传统电子器件,从而提高计算机的运行速度和存储容量。
同时,纳米电子学还可以应用于生物传感器、纳米机械和量子计算等领域。
2.纳米材料在能源存储中的应用随着可再生能源的发展,能源存储技术已变得越来越重要。
纳米材料在能量存储和转换中起着重要作用。
例如,纳米结构的锂离子电池具有更高的能量密度和更长的寿命,因此成为了研究热点之一。
同时,科学家们也在探索使用纳米结构的太阳能电池、燃料电池和超级电容器等能源存储装置。
3.纳米药物学纳米药物学是利用纳米技术制备药物纳米粒子,从而提高药物在体内的分布和靶向性。
纳米材料在催化领域中的应用研究进展
纳米材料在催化领域中的应用研究进展引言:纳米材料具有独特的物理和化学性质,因此在各个领域的应用中表现出巨大的潜力。
催化领域作为其中之一,其对纳米材料的应用研究得到了广泛关注。
本文将介绍纳米材料在催化领域中的应用研究进展,并重点讨论纳米材料在催化剂设计、催化反应增效和环境保护方面的应用。
一、纳米材料在催化剂设计中的应用纳米材料在催化剂设计中的应用主要体现在以下几个方面:1.1 表面活性位点设计纳米材料具有较大的比表面积和更多的表面活性位点,这为催化反应提供了更多的反应中心。
通过精确控制纳米材料的形貌和尺寸,可以调控表面活性位点的分布,从而实现催化剂的选择性设计。
1.2 掺杂和修饰通过掺杂和修饰纳米材料,可以改变其电子结构和表面化学性质,从而调控催化剂的活性和选择性。
例如,通过掺杂金属氧化物纳米材料,可以增强其催化剂对氧还原反应的活性。
1.3 纳米材料的结构调控纳米材料的结构调控是催化剂设计的关键环节。
通过调控纳米材料的晶体结构、孔隙结构和形貌等因素,可以提高催化剂的稳定性和反应活性。
例如,将纳米金属团簇负载在多孔材料上,可以提高催化剂的稳定性和选择性。
二、纳米材料在催化反应增效中的应用纳米材料在催化反应增效中的应用主要体现在以下几个方面:2.1 催化剂载体的改进纳米材料作为催化剂的载体,具有较大的比表面积和更多的孔隙结构,可以提供更多的活性位点和表面反应中心,从而增强催化剂的反应活性。
通过改进载体的结构和形貌,可以进一步增加纳米材料的催化效率。
2.2 纳米材料与催化剂的协同作用纳米材料和催化剂之间存在协同作用,通过纳米材料与催化剂之间的相互作用,可以增强催化剂的催化活性和选择性。
例如,利用纳米材料作为催化剂的辅助剂,可以提高催化剂对某些困难反应的活性。
2.3 纳米催化剂的自组装纳米材料的自组装是一种有效的催化剂设计策略。
通过纳米材料本身的自组装过程,可以形成具有特定结构和性质的催化剂。
这种自组装催化剂不仅具有较大的比表面积和更多的活性位点,还具有较好的物理和化学稳定性。
纳米材料的性能研究进展
( h eerhC ne f hn i it ho—lai h m cl o t. Y l 1 0,S ax, 1T eR sac etr ax J a C l a lC e ia C .Ld , ui 7 0 oS n i r k n 1 8 hn i
C ia h n i it ho-la hmi l o t. Y l 1 10 S ax,C i ) h ;2 S ax J a C l akl C e c .Ld , ui 7 8 O , h n i h a n n i r i aC n n
a p iai n fed ss mma z d i h spa e . p lc t ls wa u o i i r e n ti p r Ke wo d y r s: n n me e mae as na o ma nei mae as; n n — e a c a o tr tr l ; i n — g tc tr l i a o c rmi ma e a s mi rwa e bs r i g tr l ; i c o v a o b n na o ma ei l n — tra s
纳米 材料 又称为 超微颗 粒材料 ,纳米 粒子也 叫 超微颗粒 ,是 指 尺寸 在 1—10 m 间 的粒子 ,是 处 0n
体 积 ) 与 直径 成 反 比。随 着 颗 粒 直 径 的变小 比表 面 积将会 显著地增 加 。例 如粒 径 为 ln 时 , 比表 Om
纳米技术研究的现状和进展
纳米技术研究的现状和进展随着现代科技的不断发展,纳米技术正在成为人们关注的热点。
纳米技术是一种能够制造、处理和使用尺寸为1纳米(纳米是十亿分之一米)的材料和器件的技术。
它有着广泛的应用前景,可以用于制造微型芯片、纳米电子器件、纳米粉末等,也可以应用于生物医学、环境保护、食品工业等方面。
本文将介绍纳米技术的研究现状和进展。
一、纳米技术的发展历史纳米技术的发展可以追溯到1959年,当时美国科学家Richard Feynman在一次演讲中提出了“控制和操纵单个原子和分子”的概念,这就是纳米技术的雏形。
20世纪80年代,随着扫描电子显微镜和原子力显微镜的发明,科学家们开始能够观察和操纵单个原子和分子。
随着计算机和软件技术的进步,科学家们开始能够设计和模拟纳米材料的性质和行为。
在20世纪90年代,随着纳米技术的进一步发展,人们逐渐认识到纳米技术的重要性。
目前,纳米技术已经成为一个全球性的研究领域,涉及化学、物理、材料科学等多个学科。
二、纳米材料的制备和应用纳米材料是纳米技术的核心之一。
纳米材料具有尺寸小、比表面积大、性能优良等特点,可以应用于多个领域。
1.纳米金属材料纳米金属材料是一种具有特殊物理和化学性质的材料。
由于具有高比表面积、量子尺寸效应等特点,纳米金属材料在催化、储能等方面表现出优异的性能。
比如纳米银材料可以作为高效的抗菌材料,纳米铁材料可以应用于废水处理等。
2.纳米生物材料纳米生物材料是生物医学领域中应用的重要材料。
纳米生物材料可以用于治疗癌症、糖尿病等疾病,也可以用于疫苗制备、细胞成像等方面。
比如纳米载药系统可以将药物精确地送到病变部位,减少药物的毒副作用,纳米生物传感器可以快速、准确地检测病原体等物质。
3.纳米电子材料纳米电子材料在微电子和纳米电子器件中有着广泛的应用。
比如石墨烯、碳纳米管等纳米材料具有高导电性和优异的电学性能,可以应用于高频电子器件、传感器等方面。
三、纳米技术的发展现状和前景当前,纳米技术已经进入到一个快速发展的阶段。
纳米材料的研究进展以及应用前景研究
纳米材料的研究进展以及应用现状1.绪论从概念来说,纳米材料是由无数个晶体组成的,它的大小尺寸在1~100纳米范围内的一种固体材料。
主要包括晶态、非晶态的金属、陶瓷等材料组成。
因为它的大小尺寸已经接近电子的相干长度,它有着特殊的性质。
这些特殊性质所表现出来的有导电、导热、光学、磁性等。
目前国内、国际的科学家都在研究纳米材料,试图打造一种全新的新技术材料,将来为人类创造更大的价值。
纳米科学技术也引起了科学家的重视,在当代的科学界有着举足轻重的地位。
纳米技术的范围包括纳米加工技术、纳米测量技术,纳米材料技术等。
其中纳米材料技术主要应用于材料的生产,主要包括航天材料、生物技术材料,超声波材料等等。
从1861年开始,因为胶体化学的建立,人们开始了对直径为1~100纳米粒子的研究工作。
然而真正意义上的研究工作可以追溯到20世纪30年代的日本为了战争的胜利进行了“沉烟实验”,由于当时科技水平落后研究失败。
2.纳米材料的应用现状研究表明在纺织和化纤制品中添加纳米微粒,不仅可以除去异味和消毒。
还使得衣服不易出现折叠的痕迹。
很多衣服都是纤维材料制成的,通常衣服上都会出现静电现象,在衣服中加入金属纳米微粒就可消除静电现象。
利用纳米材料,冰箱可以消毒。
利用纳米材料做的无菌餐具、无菌食品包装用品已经可以在商场买到了。
另外利用纳米粉末,可以快速使废水彻底变清水,完全达到饮用标准。
这个技术可以提高水的重复使用率,可以运用到化学工业中。
比如污水处理厂、化肥厂等,一方面使得水资源可以再次利用,另一方面节约资源。
纳米技术还可以应用到食品加工领域,有益健康。
纳米技术运用到建筑的装修领域,可以使墙面涂料的耐洗刷性可提高11倍。
玻璃和瓷砖表面涂上纳米材料,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。
这样就可以节约成本,提高装修公司的经济效益。
使用纳米微粒的建筑材料,可以高效快速吸收对人体有害的紫外线。
纳米材料可以提高汽车、轮船,飞机性能指标。
纳米技术与纳米材料的研究进展
纳米技术与纳米材料的研究进展近年来,纳米技术和纳米材料研究受到广泛关注。
纳米技术是指研究和应用尺寸在纳米级别的物质,主要包括制备、测量和应用三个方面。
而纳米材料是指尺寸在纳米级别的物质,具有优良的物理、化学、生物等性质,在材料科学、纳米医学、环境保护等领域有着广泛的应用。
本文将对纳米技术和纳米材料的研究进展进行探讨。
一、制备技术纳米材料的制备技术主要包括化学合成、物理法、生物合成等。
其中,化学合成技术是最常用的一种方法。
通过控制反应温度、pH值、溶液浓度等条件,可以制备出各种形态、大小、结构不同的纳米材料。
比如,利用水热法,可以制备出具有形貌多样性和同步多级组织结构的纳米材料。
而物理法则主要包括机械法、光化学法、电化学法等,相对于化学合成法,物理法制备的纳米材料具有更大的比表面积和更好的物理化学性能。
生物合成法则利用微生物在生长过程中分泌的蛋白质、多糖等物质,使纳米尺度的矿物物质在生物体内形成。
通过改变反应条件和微生物类型,可以制备出不同形状、大小、结构的生物纳米材料。
二、应用领域纳米材料在材料科学、纳米医学、环境保护等领域有着广泛的应用。
在材料科学领域,纳米材料已成为目前最活跃和最前沿的科学领域之一。
通过改变纳米材料的形态、结构和表面性质等,可以生产出具有特殊功能的材料。
比如,纳米材料的表面活性能使其在催化反应、储能材料等领域有着广泛的应用。
同时,纳米材料还被广泛应用于磁性材料、催化剂、半导体器件等领域。
在纳米医学领域,纳米材料的应用也备受关注。
纳米医学是指应用纳米技术和纳米材料进行医学诊断和治疗。
通过改变纳米材料的表面性质和设计功能,可以实现给药、生物成像、免疫诊断等多种医学应用。
利用纳米材料还可以制备出具有肿瘤特异性的药物载体,提高药物疗效并减少毒副作用。
在环境保护领域,纳米材料的应用也日益广泛。
纳米材料具有极高的比表面积和化学反应活性,可以用于处理洁净水、净化空气、除臭等多种应用场合。
比如,纳米颗粒可以利用其对不同物质的选择性吸附性来进行水污染和空气治理。
纳米材料在锂离子电池中的应用研究进展
纳米材料在锂离子电池中的应用研究进展锂离子电池是目前最有前途的电化学储能设备之一,具有高能量密度、长寿命、无记忆效应等优点。
然而,锂离子电池存在的问题也不容忽视,其中最主要的就是其储能密度不足,导致电池容量有限。
为了克服这一难题,纳米材料被引入到锂离子电池中,作为各种电化学活性物质的载体,以期提高电池容量和循环性能。
近年来,围绕纳米材料在锂离子电池中的应用展开了大量的研究工作,并取得了一系列的研究进展。
1. 纳米二氧化钛纳米二氧化钛具有高比表面积和可调控的表面化学特性,可以提供丰富的反应位点,因此被广泛应用于锂离子电池中。
其中,最常见的应用是在锂离子电池的负极上作为锂离子的储存载体。
实验结果表明,由于纳米二氧化钛的高比表面积和可调控的表面化学特性,可以显著提高电池的循环性能和容量,将纳米二氧化钛引入锂离子电池,克服了传统的负极材料在储锂和释放锂过程中面临的种种困难,大大提高了电池的使用寿命和品质。
2. 纳米二氧化硅与纳米二氧化钛不同的是,纳米二氧化硅是一种典型的锂离子电池正极材料,其具有良好的电导率和较高的放电比容量。
实验表明,纳米二氧化硅可以在锂离子电池中形成细小的颗粒,并通过与锂离子的交换和嵌入来储存和释放锂离子。
纳米二氧化硅能够确保锂离子电池正极材料的高效储锂和释锂,提高了锂离子电池的电化学性能,阳极材料的循环性能和容量得到了极大的提高。
3. 纳米硅纳米硅是一种优秀的锂离子电池负极材料,其利用纳米材料带来的高比表面积和抗氧化能力,大大提高了负极材料的储能密度和循环性能。
纳米硅不仅能够激发锂离子在其表面区域的相变反应,还可以确保锂离子在与负极材料的反应中保持稳定,不会发生剧烈的化学反应。
由于纳米硅具有亲水性和亲疏水性的表面特性,可以根据电池的使用条件进行控制,从而实现良好的循环性能和容量。
4. 纳米石墨烯纳米石墨烯是一种新兴的锂离子电池电极材料,在其表面的氧基团、羟基和羰基等团簇可以作为锂离子和电子交换的反应位点,从而提高电池的放电容量和循环性能。
原位合成纳米材料的研究进展
原位合成纳米材料的研究进展纳米材料是近年来备受关注的热门研究领域,其广泛应用于生物医学、能源、环境等方面,成为各国科学家所关注的热点领域之一。
其中,原位合成纳米材料作为一种新型制备技术,引起了科学家们的广泛关注。
本文将对原位合成纳米材料的研究进展进行介绍。
一、原位合成纳米材料的定义及优势原位合成纳米材料指在反应过程中通过控制反应条件和反应中物质的分子构型等因素,直接在体系中制备纳米材料。
此技术的制备过程将采用底部-上部反应器的管道反应器,在体系中制备高品质、可定制的纳米材料。
和传统的纳米材料制备方法相比较,原位合成纳米材料有诸多优势:1、原位合成纳米材料制备方法具有分散性和均匀性好的特点;2、原位合成纳米材料制备方法适应性强,对反应中物质的种类、反应条件和反应体系有很高的容忍度;3、原位合成纳米材料制备方法体系简单、操作方便,能够大规模生产。
二、原位合成纳米材料的应用领域1、生物医学领域:纳米药物输送、生物探针等采用了大量的纳米材料,而原位合成纳米材料将自然成为这个应用领域的研究热点。
2、能源领域:针对太阳能电池、燃料电池等应用领域,需制备高性能的纳米材料,原位合成纳米材料能够满足材料设计的要求,为其实现实际应用奠定基础。
3、环境领域:在改善环境的研究方面,纳米材料作为一种表面活性剂的应用是提高除染效率的关键因素之一,而原位合成纳米材料能够提供新的思路和方法结局环境问题。
三、原位合成纳米材料研究进展1、原位合成孔壳材料的研究孔壳材料在化学反应过程中具有重要的应用效果,其结构及性质的改变能够使反应过程发生明显变化。
材料研究学者通过原位合成的研究发现如何通过孔壳材料的结构调控来达到材料应用的最优状态,给生物医疗和环境领域的应用提供了新的思路。
2、原位合成纳米材料的表面修饰技术对于纳米粒子的表面修饰,在原位合成反应中预先加入表面修饰剂,能够控制粒子的尺寸分布、形状、表面化学性质等一系列特性,实现制备定制化的纳米材料,并大大拓宽了原位合成纳米材料的应用范畴。
纳米抗菌材料的研究进展
纳米抗菌材料的研究进展纳米抗菌材料的研究进展纳米抗菌材料是一种应用于医疗、环保和食品安全等领域的新型材料,具有杀菌效果强、持久性好、安全无毒等优点。
随着纳米技术的发展和应用,纳米抗菌材料的研究也取得了许多进展。
首先,研究人员通过纳米技术制备了各种纳米抗菌材料。
例如,纳米银颗粒具有较高的抗菌活性,可以通过溶液法、电沉积法等方法制备得到。
此外,纳米氧化锌、纳米二氧化钛等材料也被广泛研究和应用。
其次,研究人员探索了纳米抗菌材料的抗菌机制。
纳米材料具有较大的比表面积和高活性,可以与细菌表面的蛋白质和细胞膜发生相互作用,破坏其结构和功能,从而达到杀菌的效果。
此外,纳米抗菌材料还可以通过释放金属离子或产生活性氧等方式抑制菌落的生长。
然后,研究人员对纳米抗菌材料的性能进行了优化。
通过调整纳米颗粒的形貌、尺寸和表面修饰等手段,可以改变纳米材料的抗菌活性和稳定性。
例如,纳米银颗粒的表面修饰可以增强其抗菌性能,并减少对人体细胞的毒性。
此外,研究人员还开展了纳米抗菌材料在实际应用中的评价和验证。
通过实验室模拟和临床试验等手段,研究人员评估了纳米抗菌材料对不同细菌的抑制效果、生物相容性和持久性等性能。
这些研究结果为纳米抗菌材料的进一步应用提供了依据和参考。
最后,纳米抗菌材料的应用已经取得了一些成功。
在医疗领域,纳米抗菌材料被用于制备医疗器械、敷料和药物等,可以有效地预防和治疗感染。
在环保领域,纳米抗菌材料可以应用于水处理、空气净化和食品保鲜等方面,具有重要的应用前景。
综上所述,纳米抗菌材料的研究进展包括纳米材料的制备、抗菌机制的探索、性能的优化、应用的评价和验证等方面。
这些研究为纳米抗菌材料的应用提供了科学依据,也为解决医疗、环保和食品安全等问题提供了新的思路和方法。
相信随着技术的不断进步,纳米抗菌材料将在更多领域发挥重要作用。
纳米技术的研究进展与应用
纳米技术的研究进展与应用纳米技术是指在纳米尺度下对材料进行构造和操作的技术,其研究范围涉及到化学、物理、材料、生物等多个学科领域。
随着科技的飞速发展,纳米技术的研究和应用也在不断拓展。
本文将从纳米技术的研究进展、应用前景和安全性几个方面进行探讨。
一、纳米技术的研究进展纳米技术最早产生于20世纪80年代,由于其尺度极小,因此只是处于初步研究阶段。
近些年来,随着工具和技术的不断提升,纳米技术的研究已经取得了显著的进展。
在材料领域,研究人员通过纳米技术设计出了具有特殊性质的材料,如超硬材料、超疏水材料等,这些材料在航空、汽车和电子等领域的应用具有广泛的前景。
在生命科学领域,纳米技术也为生物体内某些重要分子的探索提供了新的途径。
纳米粒子被用于药物传递、生物传感、癌症诊疗等方面的研究,标志着纳米技术进入生命科学领域的新时代。
二、纳米技术的应用前景由于纳米技术的研究范围广泛,其应用前景也是十分广阔的。
以下将从医疗、环保、能源等方面进行介绍。
1.医疗领域纳米技术在医疗领域的应用主要体现在药物传递和癌症治疗两个方面。
通过纳米技术可制备出具有特殊性质的微粒子,在治疗上具有显著的优势。
例如,在传统癌症治疗中,药物会破坏健康细胞并影响人体的器官功能,但是,纳米技术可以将药物精确地投送到癌细胞旁边,减少对健康细胞的影响,并提高药物的疗效。
2.环保领域纳米技术在环保领域的应用主要体现在对水处理、空气净化、废弃物处理等方面。
在水处理方面,纳米过滤器通过其特殊的结构和作用机理,可以清除水中的病毒、细菌和重金属等污染物,提高水资源的利用效率;在空气净化方面,纳米技术可以制备出颗粒物可以捕捉抗菌和吸氧能力强的纳米空气滤清器,清除空气中的有害气体和颗粒物。
3.能源领域纳米技术在能源方面主要体现在太阳能电池、锂离子电池等领域。
通过调节纳米电极的结构和性质,实现更高效、更稳定的电池储能,推动经济的可持续发展。
三、纳米技术的安全性随着纳米技术的深入研究与应用,纳米材料对环境和人类健康的安全性越来越引起人们的关注。
纳米材料发展现状
纳米材料发展现状
纳米材料是指尺寸在纳米级别的材料,通常具有独特的物理、化学和生物学特性,因此在材料科学、物理学、化学、生物学等领域得到了广泛应用。
以下是当前纳米材料发展的一些主要趋势和进展:
合成技术的进步:随着化学合成技术的不断发展,制备高品质、高纯度、多功能的纳米材料变得更加容易。
例如,溶胶凝胶法、热分解法、水热合成法等先进的纳米材料合成技术,使得制备具有复杂形貌、多种结构和多种性能的纳米材料成为可能。
多功能化的研究:在纳米材料研究领域,研究者越来越关注如何赋予纳米材料多种功能。
例如,将金属纳米材料与有机分子相结合,可以制备具有光学、电学、磁学和生物学多种性质的复合纳米材料,这些材料有望应用于光电传感、信息存储和医疗等领域。
纳米材料在生物医学领域的应用:纳米材料在生物医学领域的应用潜力巨大,如在药物传递、癌症诊断和治疗、细胞成像和治疗等方面的应用。
例如,通过将药物包裹在纳米粒子中,可以增加药物在体内的稳定性和生物可利用性,减少药物副作用。
纳米材料在能源领域的应用:纳米材料在能源领域的应用也备受关注。
例如,利用纳米材料的特殊性质可以制备高效的太阳能电池、光催化剂和锂离子电池等。
总之,纳米材料的研究和应用前景非常广阔。
未来,随着技术的不断进步和新型材料的发现,纳米材料有望成为更多领域的重要技术和应用。
同时,我们也需要关注纳米材料的安全性和环境影响,加强相关研究和监管。
新型纳米材料的研究进展与应用前景
新型纳米材料的研究进展与应用前景近年来,随着科技的不断发展,人类对各种新型材料的研究也在不断深入。
其中,新型纳米材料的出现带来了许多新的发展机遇,引起了科学界的广泛关注。
本文将就新型纳米材料的研究进展和应用前景进行具体分析,旨在探讨该领域的未来发展趋势。
一、新型纳米材料的概念和原理首先,我们来了解一下什么是纳米材料。
纳米材料是一种尺寸处于10nm到100nm之间的材料。
相比于普通材料,纳米材料具有更高的比表面积和更小的粒径,拥有极高的化学活性、机械性能、电学性能和光学性能等优异特性。
其原理在于,支配纳米材料性质的表面效应和量子效应。
一般情况下,当粒径足够小到一定程度时,原本在宏观层面上相对稳定的物质可能会产生全新的物理和化学特性。
这一现象可以归结为量子力学对材料的调控。
二、新型纳米材料的研究进展新型纳米材料的种类繁多,主要包括纳米晶体、纳米线、纳米管、纳米薄膜和纳米多孔材料等。
这些材料各自具有不同的特性和应用领域。
(一)纳米晶体纳米晶体又称量子点,是一种在三维空间上尺寸小于10nm的晶体颗粒。
其物理、化学性质随着其粒径的变小而发生显著变化。
由于具有半导体材料所具有的优异电学性质,被广泛应用于电子器件、显示技术等领域。
(二)纳米线纳米线是一种在三维空间上尺寸在1nm至100nm之间的材料,其长径比高达数百甚至上千倍。
由于具有高比表面积、高导电性和优异的力学特性,纳米线作为一种新型功能材料,在能源、催化、生物医学等多个领域都具有广泛应用前景。
(三)纳米管纳米管是一种空心柱状物,其壁厚度只有纳米级别,通常分为单壁和多壁纳米管两类。
由于具有大小可调、具有独特小孔效应、大比表面积和优异的导电性等特点,纳米管在电子学、能源储存、生物医学等应用领域也被广泛研究和应用。
(四)纳米多孔材料纳米多孔材料是一种由纳米粒子集合而成的材料,其具有非常高的比表面积、内部特殊孔道结构和形态上的多样性等优异特性。
在化学催化、吸附分离、能源储存等领域,纳米多孔材料都具有潜在的应用价值。
纳米材料的性能及其应用研究进展
纳米材料的性能及其应用研究进展近年来,纳米科技发展迅速,纳米材料被广泛应用于生物医学、环保、新能源、信息技术等领域,得到了研究人员的广泛关注。
本文将从纳米材料的性能入手,阐述其应用研究进展。
一、纳米材料的性能纳米材料指尺寸小于100纳米的物质,由于纳米尺度下的量子大小效应、表面效应等物理、化学特性,与宏观物质相比,其性能具有明显的差异。
1、物理性能纳米材料的光学、磁学、电学等物理性质迥异于宏观材料。
例如,金属纳米颗粒在可见光范围内具有显著的表面等离子共振吸收现象,与尺寸和形状有关,可应用于传感器、光学器件等领域;磁性纳米粒子在外加磁场下表现出不同的磁性,可应用于医学成像、存储介质等领域;碳纳米管的导电性和导热性特别好,在新能源领域有广泛应用。
2、化学性质纳米材料的表面积相比宏观物质大幅提高,其表面能、化学活性、滞留作用都具有显著特点。
例如,银纳米颗粒的表面具有广谱抗菌性,可应用于医疗用品、水处理等领域;纳米氧化锌的表面具有光催化降解有机污染物的作用,可应用于水处理、空气净化等领域。
3、机械性能纳米材料比宏观物质的强度、硬度、塑性等力学性能更具优越性。
例如,纳米硬度大于单晶体硬度的1/3,石墨烯比钢的强度高200倍,且弹性模量高,可应用于强度要求高的工业领域。
二、纳米材料的应用研究进展1、生物医学领域纳米材料在生物医学领域有广泛应用,包括药物送递、分子诊断、组织工程、生物成像、抗菌等方面。
例如,通过化学修饰,纳米材料可选择性地靶向癌细胞,并释放药物;同时,纳米颗粒的表面还可与生物分子相互作用,形成生物传感器,应用于分子诊断和成像。
2、环保领域纳米材料在环保领域的应用包括空气净化、水处理和废物处理等方面。
例如,纳米TiO2、纳米铁等材料具有光催化降解作用,可应用于水处理和空气净化;纳米材料与污染物结合后可通过热解、燃烧等方式进行处理。
3、新能源领域纳米材料在新能源领域的应用主要集中在太阳能电池、储能材料和催化剂等方面。
纳米材料在催化剂中的应用研究进展
纳米材料在催化剂中的应用研究进展随着化学和材料科学的不断发展,纳米材料作为一种新型材料,正逐渐被广泛应用于各个领域,其中催化剂领域是其重要应用之一。
纳米材料具有高比表面积、优异的化学和物理性质,这使它们成为催化剂领域的很好选择。
本文将介绍纳米材料在催化剂中的应用研究进展。
一、纳米材料在催化剂中的优势纳米材料作为一种新型材料,具有很多优势。
首先,它们具有高比表面积,这是由于其较小的尺寸和高表面积-体积比率导致的。
这种高比表面积使纳米材料能够提供更多的活性位点,这是催化反应所需要的。
其次,纳米材料具有优异的物理和化学性质。
这些性质可以被控制和调控,以实现所需的催化反应。
此外,纳米材料还可通过控制粒子大小、形态和晶体结构等参数,实现催化反应选择性和反应速率调控等目的。
二、纳米材料在不同催化剂领域的应用1.金属纳米材料在催化剂领域的应用金属纳米材料具有高比表面积和独特的电子性质,从而成为催化剂领域的研究热点之一。
例如,纳米铜、纳米铁等金属材料在催化反应中都具有优异的催化性能。
纳米铜在醇类氧化反应中表现出高催化活性和选择性。
纳米铁在有机污染物再生中也有广泛的应用。
此外,金属纳米材料还可制备成对氢和氧的催化剂来用于燃料电池等领域。
2.纳米氧化物应用于催化剂领域纳米氧化物具有高比表面积和特殊的表面活性位点,可用于氧化反应、酯化反应等催化反应。
例如,二氧化钛、氧化锌、氧化铝等氧化物催化剂都有着广泛的应用。
其中,二氧化钛纳米材料在污染物的催化降解、环境净化等领域的研究也得到了广泛关注。
3.法国叔叔纳米材料在催化剂领域的应用法国叔叔纳米材料由于高比表面积、强大蓄电能力和天然的催化性能等优势,可以用于电催化剂和能源转换等应用。
如,有研究表明,法国叔叔纳米线可以优化锂离子电池的储能性能,并通过制备铂包覆的法国叔叔纳米线来制备白金基的电催化剂,用于燃料电池的氧还原反应。
三、纳米材料在催化剂领域的未来发展随着催化科学和技术的不断发展,在催化剂领域中,纳米材料将受到更广泛的应用。
纳米材料的制备方法及其应用研究进展
纳米材料的制备方法及其应用研究进展纳米材料是一种具有特殊物性和应用潜力的材料,其制备方法多种多样。
本文将介绍几种常见的纳米材料制备方法,并概述其在各个领域的应用研究进展。
一种常见的纳米材料制备方法是溶剂热法。
该方法通过在有机溶剂中加热混合物来控制反应速率,从而合成纳米材料。
溶剂热法可以用于合成各种纳米材料,如金属纳米粒子、金属氧化物纳米粒子和功能性纳米材料等。
例如,金属纳米粒子在催化、传感和生物医学领域具有重要应用。
另一种常见的制备方法是气相沉积法,其中包括化学气相沉积(CVD)和物理气相沉积(PVD)等方法。
化学气相沉积法是通过气体化学反应在固体表面上合成纳米材料的一种方法。
例如,碳纳米管和二维石墨烯就可以通过化学气相沉积法合成。
物理气相沉积法则主要是通过物质的凝聚在固体表面形成纳米材料。
溶胶凝胶法是一种常见的溶液制备纳米材料的方法。
该方法主要通过将溶解在溶剂中的金属离子或有机物与沉淀剂反应,形成胶体溶胶,并通过热处理产生凝胶材料。
该方法的优点是简单、制备周期短,且可以制备多种纳米材料。
该方法常用于制备氧化物基材料、过渡金属化合物纳米粒子等。
此外,还有电化学法、凝胶法、溶胶法、机械合金法、磁控溅射法等多种制备纳米材料的方法。
纳米材料具有较大的比表面积和特殊的物理、化学、力学等特性,因此在各个领域有广泛的应用研究。
在材料科学领域,纳米材料被用于制备高性能电池、储能材料、高性能催化剂等。
在电子学领域,纳米材料被用于制备高密度存储器、导电纳米墨等。
在医学领域,纳米材料被用于制备载药纳米粒子、仿生材料等。
在环境科学和能源领域,纳米材料被用于制备高效光催化剂、污水处理材料等。
尽管纳米材料在各个领域存在着广泛的应用前景,但其制备方法和应用研究仍然面临着诸多挑战。
例如,在大规模生产纳米材料过程中存在的成本和环境问题;纳米材料的生物相容性和毒性问题等。
因此,未来的研究还需要对纳米材料的制备方法和应用性能进行更深入的研究和探索,以推动纳米材料的应用进一步发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年第4期甘肃石油和化工2011年12月纳米材料研究进展李彦菊1,高飞2(1.河北科技大学化学与制药工程学院,河北石家庄050018;2.中核第四研究设计工程有限公司,河北石家庄050000)摘要:纳米材料具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。
纳米材料的应用前景十分广阔。
综述了纳米材料的分类、特性以及应用领域。
关键词:纳米材料;功能材料;复合材料1前言纳米(nm)是一个极小的长度单位,1nm=10-9m。
当物质到纳米尺度以后,大约是在1~100nm 这个范围空间,物质的性能就会发生突变,呈现出特殊性能。
这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。
如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。
纳米技术正是利用纳米粒子这些特性实现其在各行各业中的特殊应用[1,2]。
纳米技术和纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是21世纪的三大科技之一。
目前世界各国都对纳米材料和纳米科技高度重视,纷纷在基础研究和应用研究领域对其进行前瞻性的部署,旨在占领战略制高点,提升未来10~20年在国际上的竞争地位。
我国政府对纳米科技十分重视,先进的纳米产业正在蓬勃发展[3,4]。
2纳米材料的分类以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm[5]。
在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。
广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。
如果按维数[6],纳米材料的基本单元可以分为3类:①0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等;③2维,指在3维空间中有1维在纳米尺度,如超薄膜、多层膜、超晶格等。
按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料[7,8]。
按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。
按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。
纳米材料大部分都是人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。
例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的[9,10]。
3纳米材料的特性[11,12]3.1表面效应球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面体收稿日期:2011-07-05作者简介:李彦菊(1981-),女,河北廊坊人,硕士,已发表论文10余篇,其中SCI2篇。
主要从事纳米材料的研究工作。
82011年第4期李彦菊等:纳米材料研究进展发展动态积)与直径成反比。
随着颗粒直径的变小比表面积将会显著地增加。
例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。
粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。
这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。
表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很高的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。
这种表面原子的活性不但引起纳米粒子表面原子输运和构型变化,同时也引起表面电子自旋构像和电子能谱的变化。
3.2小尺寸效应随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。
由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。
对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质:①特殊的光学性质;②特殊的热学性质;③特殊的磁学性质;④特殊的力学性质。
超微颗粒的小尺寸效应还表现在超导电性、介电性能、声学特性以及化学性能等方面。
3.3量子尺寸效应微粒尺寸下降到一定值时,费米能级附近的电子能级由准连续能级变为分立能级,吸收光谱阙值向短波方向移动,这种现象称为量子尺寸效应。
3.4宏观量子隧道效应隧道效应是基本的量子现象之一,即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。
近年来,人们发现一些宏观量如微颗粒的磁化强度、量子相干器件中的磁通量及电荷也具有隧道效应,它们可以穿越宏观系统的势阱而产生变化,故称之为宏观量子隧道效应。
纳米材料的物理性质和化学性质既不同于宏观物体,也不同于微观的原子和分子。
当组成材料的尺寸达到纳米量级时,纳米材料表现出的性质与体材料有很大的不同。
在纳米尺度范围内原子及分子的相互作用,强烈地影响物质的宏观性质。
物质的机械、电学、光学等性质的改变,出现了构筑它们的基石达到纳米尺度[15]。
例如铜的纳米晶体硬度是微米尺度的5倍,脆性的陶瓷成为易变形的纳米材料,半导体量子阱、量子线和量子点器件的性能要比体材料的性能好得多;当晶体小到纳米尺寸时,由于位错的滑移受到边界的限制而表现出比体材料高很多的硬度;纳米光学材料会有异常的吸收;体表面积的变化使得纳米材料的灵敏度比体材料要高得多;当多层膜的单层厚度达到纳米尺寸时会有巨磁阻效应等。
纳米材料之所以能具备独到的特性,是当组成物质中的某一相的某一维的尺度缩小至纳米级,物质的物理性能将出现根本不是它的任一组分所能比拟的改变。
4纳米材料的应用4.1在催化方面的应用用作高效催化剂是纳米颗粒材料的重要应用领域之一,纳米颗粒具有很高的比表面积,表面的键态和电子态与颗粒内部不同,表面原子配位不全等特点,导致表面的活性位置增加[13,14],使得纳米颗粒具备了作为催化剂的先决条件。
有人预计纳米颗粒催化剂将成为本世纪催化剂的主角。
光催化剂是一种具有应用潜力的特殊催化剂,纳米TiO2所具有的量子尺寸效应使其导电和介电能级变成分立的能级,能隙变宽,导电电位变得负移,而介电电位变得正移,这使其获得了更强的氧化还原能力。
4.2在浆料方面的应用纳米材料用作导电浆料,导电浆料是电子工业的原材料,由于纳米材料可使块体材料的熔点大9发展动态甘肃石油和化工2011年第4期大降低,因此用超银粉制成的导电浆料可以在低温下烧结,此时基片可以不用耐高温陶瓷,甚至可采用塑料等低温材料。
4.3在精细化工方面的应用精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。
纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特魅力。
在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。
如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。
将纳米Al2O3和SiO2加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。
塑料中添加一定量的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。
5结束语纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。
2l世纪将是纳米技术的时代,为此,国家科委、中科院将纳米技术定位为“21世纪最重要、最前沿的科学”。
纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。
纳米材料现已广泛应用于宇航、国防工业、计算机工程、环保、化工、建材、医药、生物工程和核工业等方面。
它不仅在高科技领域有着不可替代的作用,同时也给传统产业带来生机和活力。
参考文献:[1]袁哲俊.纳米科学与技术.哈尔滨:哈尔滨工业大学出版社,2005.1~5.[2]张莉莉,蒋惠亮,陈明清,等.纳米技术与纳米材料.日用化学工业,2004,34(2):123~126.[3]李凤生.超细粉体技术.北京:国防工业出版社,2000.[4]白春礼.纳米科学与技术.昆明:云南科技出版社,1995.1~5.[5]李淑娥,唐润清,李汉忠.纳米材料的分类及其物理性能.济宁师范专科学校学报,2007,28(3):10~11.[6]POKROPIVNY V V,SKOROKHOD V V.Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science.Materials Science and Engineering:2007,27(5-8):990~993.[7]李嘉,尹衍升,张金升,等.纳米材料的分类及基本结构效应.现代技术陶瓷,2003,96(2):26~30.[8]ROCO M C.Nanoparticles and nanotechnology research.Journal of Nanoparticle Research,1999,1(1):1~7.[9]王宏志,高濂,郭景坤.纳米结构材料.硅酸盐通报,1999,1(1):31~38.[10]卢柯,卢磊.金属纳米材料力学性能的研究进展.金属学报,2000,36(8):785~791.[11]康永,柴秀娟.纳米材料的性能及研究进展.西部皮革,2010,32(15):33~39.[12]卫英慧,胡兰青,许并社.纳米材料和技术应用进展.机械管理开发,2002,66(2):26~27.[13]林晨.纳米材料在化工行业中的应用.化学工程与装备,2010,(7):120~121.[14]李国庆,卢广丈,林意群.纳米技术及其在生物工程和医药学上的应用.Medical Equipment,2002,15(3):8~11. 10。