2013年重庆市高考数学真题(理科)及答案
2013年四川省高考数学试卷及答案 word版(理)
2013年普通高等学校招生全国统一考试(四川卷)数学(理工类)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)。
第I 卷1至2页,第Ⅱ卷3至4页,共4页。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
满分150分,考试时间120分钟。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)注意事项;必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出四个选项中,只有一个是符合题目要求的。
1、设集合}02|{=+=x x A ,集合}04|{2=-=x x B ,则=⋂B A(A )}2{- (B){ 2 } (C) {-2,2} (D )φ2、如图在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是(A ) A (B ) B (C) C (D ) D3、一个几何体的三视图如图所示,则该几何体的直观图可以是4、设则:是偶数集,若命题是奇数集,集合集合,2,p B A ,B x A x Z x ∈∈∀∈(A )B x A x p ∉∈∀⌝2,: (B )B x A x p ∉∉∀⌝2:,(C) B x A x p ∈∉∀⌝2:,(D )B x A x p ∉∈∀⌝2:,5、函数)220)(sin(2)(πϕπωϕω<<->+=,x x f 的部分图像如图所示,则ϕω、的值分别是(A ) 2,3-π (B ) 2,6-π(C) 4,6-π (D )4,3π6、抛物线x y42=的焦点到双曲线1322=-yx的渐近线的距离是(A )21 (B )23(C) 1 (D )37、函数133-=x xy 的图像大致是8、从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a 、b ,共可得到b a lg lg -的不同值的个数是(A ) 9 (B ) 10 (C) 18 (D ) 209、节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是(A )41 (B )21 (C)43 (D )8710、设函数为自然对数的底数),e R a a x x f x∈-+=(e)(若曲线x y sin =上存在点)(00y x ,使得00))((y y f f =,则a 的取值范围是(A ) ]e ,1[ (B )]11e[1,-- (C) [] (D ) [1-]第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答。
2013年高考重庆卷理科数学试题及答案
2013年普通高等学校招生全国统一考试理科数学(重庆卷)一、选择题1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )等于( ) A .{1,3,4} B .{3,4} C .{3}D .{4}答案 D解析 因为A ∪B ={1,2,3},全集U ={1,2,3,4},所以∁U (A ∪B )={4},故选D. 2.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 20≥0 D .存在x 0∈R ,使得x 20<0 答案 D解析 由于“对任意x ∈R ”的否定为“存在x 0∈R ”,对“x 2≥0”的否定为“x 2<0”,因此选D.3.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9B.92C .3D.322答案 B 解析 因为(3-a )(a +6)=18-3a -a 2=-⎝⎛⎭⎫a +322+814, 所以当a =-32时,(3-a )(a +6)的值最大,最大值为92.4.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5C .5,8D .8,8答案 C解析 由于甲组中有5个数,比中位数小的有两个数为9,12,比中位数大的也有两个数24,27,所以10+x =15,x =5.又因9+15+10+y +18+245=16.8,所以y =8,故选C.5.某几何体的三视图如图所示,则该几何体的体积为( )A.5603B.5803 C .200 D .240 答案 C解析 由三视图还原的几何体为两底面为梯形的直棱柱,梯形的面积为12(2+8)×4=20,所以棱柱的体积为20×10=200.6.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案 A解析 由于a <b <c ,所以f (a )=0+(a -b )(a -c )+0>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.因此有f (a )·f (b )<0,f (b )·f (c )<0,又因f (x )是关于x 的二次函数,函数的图象是连续不断的曲线,因此函数f(x)的两零点分别位于区间(a,b)和(b,c)内,故选A. 7.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.52-4 B.17-1C.6-2 2 D.17答案 A解析两圆心坐标分别为C1(2,3),C2(3,4).C1关于x轴对称的点C1′的坐标为(2,-3),连接C2C1′,线段C2C1′与x轴的交点即为P点.(|PM|+|PN|)min=|C2C1′|-R1-R2(R1,R2分别为两圆的半径)=(3-2)2+(4+3)2-1-3=50-4=52-4.故选A.8.执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7C.k≤8 D.k≤9答案 B解析当k=2时,s=log23,当k=3时,s=log23·log34,当k=4时,s=log23·log34·log45.由s=3,得lg 3lg 2×lg 4lg 3×lg 5lg 4×…×lg(k+1)lg k=3,即lg(k+1)=3lg 2,所以k=7.再循环时,k=7+1=8,此时输出s,因此判断框内应填入“k≤7”.故选B. 9.4cos 50°-tan 40°等于()A. 2B.2+32C. 3 D .22-1答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3.10.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( ) A.⎝⎛⎦⎤0,52 B.⎝⎛⎦⎤52,72 C.⎝⎛⎦⎤52,2D.⎝⎛⎦⎤72,2 答案 D解析 设B 1(cos α,sin α),B 2(cos β,sin β),A (x ,y ),O (0,0).由AB 1→⊥AB 2→,得cos(α-β)-x (cos α+cos β)-y (sin α+sin β)+x 2+y 2=0① OP →=OA →+AP →=OA →+AB 1→+AB 2→=(cos α+cos β-x ,sin α+sin β-y ). 而|OP →|<12,则0≤|OP →|2<14,整理得0≤x 2+y 2+2+2cos(α-β)-2x (cos α+cos β)-2y (sin α+sin β)<14,②将①代入②,得0≤x 2+y 2+2-2(x 2+y 2)<14,即0≤2-(x 2+y 2)<14,整理得74<x 2+y 2≤2.所以|OA →|2∈⎝⎛⎦⎤74,2,即|OA →|∈⎝⎛⎦⎤72,2. 二、填空题11.已知复数z =5i1+2i (i 是虚数单位),则|z |=________.答案5解析 |z |=⎪⎪⎪⎪⎪⎪5i 1+2i =|5i||1+2i|=55= 5.12.已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________. 答案 64解析 因为a 1,a 2,a 5成等比数列,则a 22=a 1·a 5,即(1+d )2=1×(1+4d ),d =2.所以a n =1+(n -1)×2=2n -1,S 8=(a 1+a 8)×82=4×(1+15)=64. 13.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________.(用数字作答) 答案 590解析 利用直接法分类求解.一脑一内三骨的选法有C 14C 15C 33=20种,一脑二内二骨的选法有C 14C 25C 23=120种,一脑三内一骨的选法有C 14C 35C 13=120种,二脑一内二骨的选法有C 24C 15C 23=90种,二脑二内一骨的选法有C 24C 25C 13=180种,三脑一内一骨的选法有C 34C 15C 13=60种,满足题意的选法共20+120+120+90+180+60=590(种).14.如图,在△ABC 中,∠C =90°,∠A =60°,AB =20,过C 作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,则DE 的长为______. 答案 5解析 由题意,得弦切角∠BCD =∠A =60°,∠C =∠D =90°,所以△ABC ∽△CBD .所以AB CB =ACCD ,CD =CB ×AC AB =20sin 60°×20cos 60°20=5 3.又因CD 与圆相切,所以CD 2=DE ×DB ,则DE =CD 2DB =(53)2CB sin 60°=25×320×sin 60°×sin 60°=5.15.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.答案 16解析 将极坐标方程ρcos θ=4化为直角坐标方程得x =4,将x =4代入⎩⎪⎨⎪⎧x =t 2,y =t 3得t=±2,从而y =±8.所以A (4,8),B (4,-8).所以|AB |=|8-(-8)|=16.16.若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________. 答案 (-∞,8]解析 因为|x -5|+|x +3|表示数轴上的动点x 到数轴上的点-3,5的距离之和,而(|x -5|+|x +3|)min =8,所以当a ≤8时,|x -5|+|x +3|<a 无解,故实数a 的取值范围为(-∞,8]. 三、解答题17.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间与极值. 解 (1)因f (x )=a (x -5)2+6ln x , 故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为 y -16a =(6-8a )(x -1),由点(0,6)在切线上可得6-16a =8a -6,故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x 1=2,x 2=3. 当0<x <2或x >3时,f ′(x )>0, 故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.18.某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级 摸出红、蓝球个数获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖2红1蓝10元(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X 的分布列与期望E (X ).解 设A i 表示摸到i 个红球,B j 表示摸到j 个蓝球,则A i (i =0,1,2,3)与B j (j =0,1)独立.(1)恰好摸到1个红球的概率为P (A 1)=C 13C 24C 37=1835.(2)X 的所有可能值为:0,10,50,200,且 P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=C 33C 37·13=1105,P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=C 33C 37·23=2105,P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=C 23C 14C 37·13=12105=435,P (X =0)=1-1105-2105-435=67.综上知X 的分布列为X 0 10 50 200 P6743521051105从而有E (X )=0×67+10×435+50×2105+200×1105=4(元).19.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB .(1)求P A 的长;(2)求二面角B -AF -D 的正弦值. 解 (1)如图,连接BD 交AC 于点O ,因为BC =CD ,即△BCD 为等腰三角形, 又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz , 则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3, 又OD =CD sin π3= 3.故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0). 因P A ⊥底面ABCD ,可设P (0,-3,z ), 因为F 为PC 的中点,所以F ⎝⎛⎭⎫0,-1,z2. 又AF →=⎝⎛⎭⎫0,2,z 2,PB →=(3,3,-z ), 因AF ⊥PB ,故AF →·PB →=0, 即6-z 22=0,z =23(舍去-23),所以|P A →|=2 3.(2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2). 由n 1·AD →=0,n 1·AF →=0得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2). 由n 2·AB →=0,n 2·AF →=0得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.20.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2. (1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos α=25,求tan α的值.解 (1)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.又0<C <π,故C =3π4.(2)由题意得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos α=25.因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25, tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.① 因为C =3π4,A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22,解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0, 解得tan α=1或tan α=4.21.如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A ,A ′两点,|AA ′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P ′,过P ,P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P ′Q ,求圆Q 的标准方程. 解 (1)由题意知点A (-c,2)在椭圆上, 则(-c )2a 2+22b 2=1.从而e 2+4b2=1.由e =22得b 2=41-e 2=8,从而a 2=b 21-e 2=16.故该椭圆的标准方程为x 216+y 28=1.(2)由椭圆的对称性,可设Q (x 0,0). 又设M (x ,y )是椭圆上任意一点,则|QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝⎛⎭⎫1-x 216=12(x-2x 0)2-x 20+8 (x ∈[-4,4]).设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点.因此,上式当x =x 1时取最小值,又因x 1∈(-4,4),所以上式当x =2x 0时取最小值,从而x 1=2x 0,且|QP |2=8-x 20.因为PQ ⊥P ′Q ,且P ′(x 1,-y 1),所以QP →·QP ′→=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=0,即(x 1-x 0)2-y 21=0.由椭圆方程及x 1=2x 0得14x 21-8⎝⎛⎭⎫1-x 2116=0, 解得x 1=±463,x 0=x 12=±263. 从而|QP |2=8-x 20=163. 故这样的圆有两个,其标准方程分别为⎝⎛⎭⎫x +2632+y 2=163,⎝⎛⎭⎫x -2632+y 2=163. 22.对正整数n ,记I n ={1,2,3,…,n },P n =⎩⎨⎧⎭⎬⎫m k |m ∈I n ,k ∈I n . (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是整数的平方,则称A 为“稀疏集”.求n 的最大值,使P n 能分成两个不相交的稀疏集的并.解 (1)当k =4时,⎩⎨⎧⎭⎬⎫m k |m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n ⊇I n .不妨设I ∈A ,则因1+3=22,故3∉A ,即3∈B .同理6∈A,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求.当k =1时,⎩⎨⎧⎭⎬⎫m k |m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14. 当k =4时,集⎩⎨⎧⎭⎬⎫m k |m ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集⎩⎨⎧⎭⎬⎫m k |m ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143.可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集C =⎩⎨⎧⎭⎬⎫m k |m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3.则A 和B是不相交的稀疏集,且A∪B=P14. 综上,所求n的最大值为14. (注:对P14的分拆方法不是唯一的)。
2013年重庆高考数学试题理科10题
磕. 若I — O P l < , 则 I l 的 取 值
由
上A B 2 得 一[ ( c o s 0 1 +c 0 s 2 ) c o s 0+
( s i n 0 1 +s i n 0 2 ) s i n 0 ] R十C O S ( 0 l 一0 2 ) =0 ①.
2 0 1 3 年 重庆 高考数学试题理科 1 O 题
重庆 市 第八 中学校 4 0 0 0 3 0 郑军委 陶兴模
题目 在平面 上, 上 磕, I — O B 1 I = l — O B 2 I
: 1, :A — BI +
A B 2 =( C O S 0 2一R e o s 0 , s i n 0 2一R s i n 0 ) .
代入 ② 得 ,
O — — B ・ O — — B , =O —} A・ ( O — — P +O — — A)一o — — a
=O — — — A — ■ ・ 0 — — — p③. 即O — — — B 0 ・ O — — — B — + ,=O — — — A・ — }O — — — P — - } .
将 ① 式平方得
—— — —— ——’ ————
+
+2 一 0 P. =
解法 3 不等式法
根 据条件 知 , B , P, B :
构成一个 矩形 A B 。 P B : ,以
口2 — P
+ OB. +2 DB ・D B,
即
+
=2 , 由 0≤I
.
( , ) , 则 点 P的坐标 为 ( 口 , 6 ) , 由J O — B I = I
1得
解i n 0 ) , P ( r c o s , r s i n ) , B t ( C O S 0 1 , s i n 0 1 ) , B 2 ( C O S 0 2 , s i n 0 2 ) . 由题 意 可 知 : 0
2013年重庆高考数学理科试卷(带详解)
2013年普通高等学校夏季招生全国统一考试数学理工农医类(重庆卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则()U A B = ð ( )A.{1,3,4}B.{3,4}C.{3}D.{4} 【测量目标】集合的并集与补集运算.【考查方式】先求出两个集合的并集,再结合补集概念求解. 【难易程度】容易 【参考答案】D【试题解析】∵A B ={1,2,3},而U ={1,2,3,4},故()U A B = ð={4},故选D . 2.命题“对任意x ∈R ,都有20x …”的否定为( )A.对任意x ∈R ,都有20x < B.不存在x ∈R ,使得20x <C.存在0x ∈R ,使得200x …D.存在0x ∈R ,使得200x <【测量目标】含有一个量词的命题的否定.【考查方式】根据含有一个量词的命题的否定的方法直接求解. 【难易程度】容易 【参考答案】D【试题解析】全称命题的否定是一个特称命题(存在性命题),故选D .()63a-剟的最大值为( )A.9B.92 C.3 D.3【测量目标】函数的最值.【考查方式】利用配方法结合函数的定义域求解. 【难易程度】容易 【参考答案】B=63a-剟,所以当32a =-92=,故选B. 4.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分) .已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为 ( )A.2,5B.5,5C.5,8D.8,8第4题图【测量目标】茎叶图.【考查方式】结合茎叶图上的数据,根据中位数和平均数的概念求解. 【难易程度】容易 【参考答案】C【试题解析】由甲组数据中位数为15,可得x =5;而乙组数据的平均数91510182416.85y ++(+)++=,可解得y =8.故选C .5.某几何体的三视图如图所示,则该几何体的体积为 ( )第5题图A.5603 B.5803C.200D.240 【测量目标】由三视图求几何体的体积.【考查方式】先将三视图还原为空间几何体,在根据体积公式求解. 【难易程度】容易 【参考答案】C【试题解析】由几何体的三视图可得,该几何体是一个横放的直棱柱,棱柱底面为梯形,梯形两底长分别为2和8,高为4,棱柱的高为10,故该几何体体积V =12×(2+8)×4×10=200,故选C . 6.若a <b <c ,则函数f (x )=(x -a ) (x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间 ( )A. (a ,b )和(b ,c )内B. (-∞,a )和(a ,b )内C. (b ,c )和(c ,+∞)内D. (-∞,a )和(c ,+∞)内 【测量目标】函数零点的求解与判断.【考查方式】利用函数在区间端点处的函数值并判断符号. 【难易程度】容易 【参考答案】A【试题解析】由题意a <b <c ,可得f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.显然f (a ) f (b )<0,f (b ) f (c )<0,所以该函数在(a ,b )和(b ,c )上均有零点,故选A .7.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为 ( )A.4 1 C.6- 【测量目标】圆与圆的位置关系.【考查方式】利用圆心坐标和半径,在结合对称性求解. 【难易程度】中等 【参考答案】A【试题解析】圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM |…|PC 1|-1,|PN |…|PC 2|-3, ∴|PM |+|PN |…|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值.(步骤1 ) 又C 1关于x 轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-4=44=,故选A.(步骤2)8.执行如图所示的程序框图,如果输出s =3,那么判断框内应填入的条件是( )A.6k …B.7k …C.8k …D.9k …第8题图【测量目标】循环结构的程序框图.【考查方式】利用循环结构运算并结合输出结果求解.【难易程度】中等 【参考答案】B【试题解析】由程序框图可知,输出的结果为s =log 23×log 34× ×log k (k +1)=log 2(k +1) .由s =3,即log 2(k +1)=3,解得k =7.又因为不满足判断框内的条件时才能输出s ,所以条件应为k …7.故选B. 9.4cos50tan 40-=( )D.1 【测量目标】同角三角函数的基本关系,诱导公式.【考查方式】利用商数关系,三角恒等及角度拆分求解. 【难易程度】较难 【参考答案】C【试题解析】4cos50tan 40-=4sin40cos40sin40cos40︒︒-=2sin80sin 402sin100sin 40cos 40cos 40︒︒︒︒︒︒--=(步骤1 )=2sin(6040)sin40cos40︒︒︒︒+-=122sin40sin4022cos40︒︒︒︒+⨯-=故选C. (步骤2 ) 10.在平面上,1AB ⊥2AB ,|1OB |=|2OB |=1,AP =1AB +2AB.若|OP |<12,则|OA |的取值范围是( )A.0,2⎛ ⎝⎦B.22⎛ ⎝⎦C.2⎛ ⎝D.2⎛ ⎝【测量目标】平面向量的数量积运算.【考查方式】利用所给条件转化为以O 为起点的向量表示,再利用所给关系列出不等式求解. 【难易程度】较难 【参考答案】D【试题解析】因为1AB ⊥2AB ,所以可以A 为原点,分别以1AB ,2AB所在直线为x 轴,y 轴建立平面直角坐标系.设B 1(a,0),B 2(0,b ),O (x ,y ),则AP =1AB +2AB=(a ,b ),即P (a ,b ).(步骤1 ) 由|1OB |=|2OB|=1,得(x -a )2+y 2=x 2+(y -b )2=1.所以(x -a )2=1-y 2≥0,(y -b )2=1-x 2≥0. (步骤2 )由|OP |<12,得(x -a )2+(y -b )2<14,即0≤1-x 2+1-y 2<14.(步骤3 )所以74<x 2+y 2≤2,即2<所以|OA |的取值范围是⎝,故选D.(步骤4 ) 二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.已知复数5i12iz =+(i 是虚数单位),则|z |=__________. 【测量目标】复数代数形式的四则运算.【考查方式】先化简复数,再利用定义求解. 【难易程度】容易【试题解析】5i 5i(12i)2i 12i (12i)(12i)z -===+++-,∴||z ==12.已知{}n a 是等差数列,11,a =公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8S =__________.【测量目标】等差数列的前n 项和,等比数列性质. 【考查方式】利用等比中项及等差数列的通项公式求解. 【难易程度】中等 【参考答案】64【试题解析】由a 1=1且a 1,a 2,a 5成等比数列,得a 1(a 1+4d )=(a 1+d )2,解得d =2,故S 8=8a 1+872⨯d =64. 13.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答). 【测量目标】排列组合及其应用.【考查方式】利用两个计数原理,组合数公式求解. 【难易程度】中等 【参考答案】590【试题解析】设选骨科医生x 名,脑外科医生y 名, 则需选内科医生(5-x -y )人. (步骤1 )(1)当x =y =1时,有113345C C C 120= 种不同选法;(2)当x =1,y =2时,有122345C C C 180= 种不同选法; (3)当x =1,y =3时,有131345C C C 60= 种不同选法;(4)当x =2,y =1时,有212345C C C 120= 种不同选法; (5)当x =2,y =2时,有221345C C C 90= 种不同选法;(6)当x =3,y =1时,有311345C C C 20= 种不同选法;(步骤2 )所以不同的选法共有120+180+60+120+90+20=590种.(步骤3 )考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.如图,在△ABC 中,∠C =90,∠A =60,AB =20,过C 作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,则DE 的长为__________.第14题图【测量目标】圆的性质的应用.【考查方式】利用圆的几何性质、解三角形求解. 【难易程度】中等 【参考答案】5【试题解析】在Rt △ABC 中,∠A =60,AB =20,可得BC =由弦切角定理,可得∠BCD =∠A =60. (步骤1)在Rt △BCD 中,可求得CD =,BD =15.又由切割线定理,可得CD 2=DE DB ,可求得DE =5. (步骤2)15.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线23,x t y t⎧=⎨=⎩(t 为参数)相交于A ,B 两点,则|AB |=__________. 【测量目标】坐标系与参数方程.【考查方式】利用极坐标方程与参数方程转化为普通方程求解. 【难易程度】较难 【参考答案】16【试题解析】由极坐标方程ρcos θ=4,化为直角坐标方程可得x =4,而由曲线参数方程消参得x 3=y 2, ∴y 2=43=64,即y =±8,(步骤1) ∴|AB |=|8-(-8)|=16. (步骤2)16.若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________. 【测量目标】解绝对值不等式.【考查方式】利用不等式的解法求解. 【难易程度】较难 【参考答案】(-∞,8]【试题解析】由绝对值不等式,得|x -5|+|x +3|≥|(x -5)-(x +3)|=8,(步骤1) ∴不等式|x -5|+|x +3|<a 无解时,a 的取值范围为(-∞,8].(步骤2)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分,(1)小问6分,(2)小问7分.)设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间与极值.【测量目标】导数的几何意义,利用导数求函数的极值.【考查方式】利用导数的运算、函数的定义域、函数的单调性求解. 【难易程度】容易【试题解析】(1)因f (x )=a (x -5)2+6ln x ,故()f x '=2a (x -5)+6x.(步骤1) 令x =1,得f (1)=16a ,()1f '=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1),由点(0,6)在切线上可得6-16a =8a -6,故12a =.(步骤2) (2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),()f x '=x -5+6x =23x x x(-)(-).(步骤3) 令()f x '=0,解得x 1=2,x 2=3.当0<x <2或x >3时,()0f x '>,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时, ()0f x '<,故f (x )在(2,3)上为减函数.(步骤4)由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3. (步骤5) 18.(本小题满分13分,(1)小问5分,(2)小问8分.)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下: 其余情况无奖且每次摸奖最多只能获得一个奖级. (1)求一次摸奖恰好摸到1个红球的概率;奖级 摸出红、蓝球个数 获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖 2红1蓝 10元(2)求摸奖者在一次摸奖中获奖金额X 的分布列与期望E (X ). 【测量目标】古典概型,离散型随机变量的期望.【考查方式】利用概率公式求解古典概型和独立事件的概率. 【难易程度】中等【试题解析】设A i (i =0,1,2,3)表示摸到i 个红球,B j (j =0,1)表示摸到j 个蓝球, 则A i 与B j 独立.(步骤1)(1)恰好摸到1个红球的概率为P (A 1)=123437C C 18C 35=.(步骤2) (2)X 的所有可能值为0,10,50,200,且P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=3337C 11C 3105=, P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=3337C 22C 3105= , P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=213437C C 1124C 310535== , P (X =0)=12461105105357---=.(步骤3)从而有E (X )=0×7+10×35+50×105+200×105=4(元).(步骤4)19.(本小题满分13分,(1)小问5分,(2)小问8分.)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值.第19题图【测量目标】二面角,空间直角坐标系.【考查方式】利用线面位置关系建立空间直角坐标系求解. 【难易程度】中等【试题解析】(1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形.又AC 平分∠BCD ,故AC ⊥BD.以O为坐标原点,OB ,OC ,AP的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz -,则OC =CD πcos 3=1,而AC =4,得AO =AC -OC =3,又OD =CD πsin 3故A (0,-3,0),B ,C (0,1,0),D (步骤1)第19题图因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,F 0,1,2z ⎛⎫- ⎪⎝⎭.(步骤2)又AF =0,2,2z ⎛⎫ ⎪⎝⎭,PB=z -),因AF ⊥PB ,故AF PB=0,(步骤3)即6-22z =0,z =舍去-),所以|PA|=步骤4)(2)由(1)知AD =(AB =AF=设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),(步骤5)由n 1 AD =0,n 1 AF =0,得111130,20,y y ⎧+=⎪⎨+=⎪⎩(步骤6)因此可取n 1=-2).(步骤7)由n 2AB=0,n 2 AF=0, 得222230,20,y y +==⎪⎩故可取n 2=(3,.(步骤8) 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=12121||||8= n n n n ,故二面角B -AF -D 步骤9) 20.(本小题满分12分,(1)小问4分,(2)小问8分.)在△ABC 中,内角A,B ,C 的对边分别是a ,b ,c ,且a 2+b 2=c 2.(1)求∠C ;(2)设cos A cos B =52cos()cos()cos 5A B ααα++=,求tan α的值. 【测量目标】余弦定理,同角三角函数的基本关系.【考查方式】利用余弦定理的变形求解,借助三角恒等变换将所给等式化简求解. 【难易程度】中等【试题解析】(1)因为a 2+b 2=c 2,由余弦定理有cos C =2222a b c ab +-==(步骤1)故3π4C ∠=.(步骤2)(2)由题意得2(sin sin cos cos )(sin sin cos cos )cos A A B B ααααα--=5.(步骤3)因此(tan αsin A -cos A )(tan αsin B -cos B ),tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B ,tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =5.①(步骤4) 因为3π4C =,A +B =π4,所以sin(A +B )=2,(步骤5)因为cos(A +B )=cos A cos B -sin A sin B ,即5-sin A sin B =,解得sin A sin B =5210-=.(步骤6) 由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. (步骤7)21.(本小题满分12分,(1)小问4分,(2)小问8分.)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率2e =,过左焦点F 1作x 轴的垂线交椭圆于A ,A ′两点,|AA ′|=4. (1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P ′,过P ,P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P ′Q ,求圆Q 的标准方程.第21题图【测量目标】椭圆的标准方程,圆锥曲线中的轨迹问题.【考查方式】利用椭圆的方程,集合性质,平面向量数量积及轨迹方程的求法求解. 【难易程度】较难【试题解析】(1)由题意知点A (-c,2)在椭圆上,则222221c a b(-)+=.(步骤1) 从而e 2+24b=1.由2e =得22481b e ==-, 从而222161b a e ==-. 故该椭圆的标准方程为221168x y +=.(步骤2)(2)由椭圆的对称性,可设()0,0Q x .又设M (x ,y )是椭圆上任意一点, 则|QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 02+28116x ⎛⎫- ⎪⎝⎭=12(x -2x 0)2-x 02+8(x ∈[-4,4]).(步骤3) 设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点, 因此,上式当x =x 1时取最小值.(步骤4)又因x 1∈(-4,4),所以上式当x =2x 0时取最小值, 从而x 1=2x 0,且|QP |2=8-x 02. 因为PQ ⊥P ′Q ,且P ′(x 1,-y 1),所以QP QP ' =(x 1-x 0,y 1) (x 1-x 0,-y 1)=0,(步骤5)即(x 1-x 0)2-y 12=0.由椭圆方程及x 1=2x 0得22111810416x x ⎛⎫--= ⎪⎝⎭,解得1x =,102x x ==.(步骤6) 从而|QP |2=8-x 02=163.故这样的圆有两个,其标准方程分别为22163x y ⎛++= ⎝⎭,22163x y ⎛+= ⎝⎭.(步骤7)22.(本小题满分12分,(1)小问4分,(2)小问8分.)对正整数n ,记I n ={1,2,…,n },,n n n P I k I ⎫=∈∈⎬⎭.(1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”.求n 的最大值,使P n 能分成两个不相交的稀疏集的并.【测量目标】集合的表示,集合中元素的基本特征,间接证明.【考查方式】利用集合元素的特征、分类讨论思想和反证法求解论证. 【难易程度】较难【试题解析】 (1)当k =4时,7I ⎫∈⎬⎭中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(步骤1)(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A B =P n ⊇I n ,不妨设I ∈A ,则因1+3=22,故3∉A ,即3∈B.同理6∈A,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.(步骤2)再证P 14符合要求,当k =1时,1414I I ⎫∈=⎬⎭可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1 B 1=I 14. (步骤3)当k =4时,集合14I ⎫∈⎬⎭中除整数外剩下的数组成集合13513,,,,2222⎧⎫⎨⎬⎩⎭ ,可分解为下面两稀疏集的并:215911,,,2222A ⎧⎫=⎨⎬⎩⎭,23713,,222B ⎧⎫=⎨⎬⎩⎭.(步骤4)当k =9时,集合14I ⎫∈⎬⎭中除正整数外剩下的数组成集合12451314,,,,,,333333⎧⎫⎨⎬⎩⎭ ,可分解为下面两稀疏集的并:31451013,,,,33333A ⎧⎫=⎨⎬⎩⎭,32781114,,,,33333B ⎧⎫=⎨⎬⎩⎭.(步骤5)最后,集合1414,,1,4,9C I k I k ⎫=∈∈≠⎬⎭且中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1 A 2 A 3 C ,B =B 1 B 2 B 3,则A 和B 是不相交的稀疏集,且A B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.(步骤6)。
简约平实重基础 融会贯通考真知——2013年高考数学重庆卷理科第9题赏析
命 题 感 悟
2 0 1 3 年 1 1 月
简约平 实重基础 融会 贯通 考真知
— —
2 O 1 3 年 高考数 学重庆卷理科 第9 题 赏析
⑩重 庆 市梁 平 实验 中 学 蒋 明 建
2 0 1 3 年 高考数学重庆卷理科 第9 题: 4 c o s 5 0 。 一 t a n 4 0 。 =
—
c o s 4 0。 2 c os l O ̄
.
— — — — —
-
s i n 4
—
0
— —
 ̄
— .
—
—
—
—
—
—
.
—
—
—
c o s 4 0 。
求 值 的 目的. 观察 本题 目, 发 现它有两 个特 征 : 一个特 征
是虽然4 0 。 、 5 0 。 不 是特殊角 , 它们 的和9 0 。 却 是特殊 角 , 根
C O s 4 0。 2 s i n 5 0  ̄ c o s 3 0 ̄
—
—
:
、 / 了.
c o s 4 0。
≤ 蘸
中・ ? 毒 《 : - ? 高 中 版
2 0 1 3年 1 1 月
命 题 感 悟
坛 线
评注 : 这 里 是 根 据 角 变换 的 “ 中 间 集 中” 原则 , 将8 0 o
8 0  ̄ 一 3 0 。 . 又 可逆 用 两 角 差 的 正 弦公 式 求 解 . 即
2 s i n 8 0  ̄ - c o s 5 0 。 2 s i n 8 0  ̄ - c o s ( 8 0  ̄ - 3 0 。 )
s i n 5 0 。 s i n 5 0 。
2013年高考真题解析分类汇编(理科数学)含解析
2013高考试题解析分类汇编(理数)5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足()A. B. C. D.D.【解答】作图知,只有,其余均有,故选D.2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知点()A. B. C. D.A,所以,所以同方向的单位向量是,选A.3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设是边上一定点,满足,且对于边上任一点,恒有.则()A. B. C. D.D以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)所以=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)因为恒有所以(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a2≤0所以a=0,即C在AB的垂直平分线上所以AC=BC故△ABC为等腰三角形故选D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))在四边形ABCD中,,,则四边形的面积为()A. B. C.5 D.10C由题意,容易得到.设对角线交于O点,则四边形面积等于四个三角形面积之和即S= .容易算出,则算出S=5.故答案C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是()A. B. C. D.D.在本题中,.建立直角坐标系,设A(2,0),所以选D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,,,.若,则的取值范围是()A. B. C. D.D【命题立意】本题考查平面向量的应用以及平面向量的基本定理。
2013年高考数学试题及答案(全国卷理数3套)
2013年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,2,3}D.{0,1,2,3} 2.(5分)(2013•新课标Ⅱ)设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i3.(5分)(2013•新课标Ⅱ)等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.4.(5分)(2013•新课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l ⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l5.(5分)(2013•新课标Ⅱ)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.﹣4B.﹣3C.﹣2D.﹣16.(5分)(2013•新课标Ⅱ)执行右面的程序框图,如果输入的N=10,那么输出的S=()A.B.C.D.7.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.8.(5分)(2013•新课标Ⅱ)设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.(5分)(2013•新课标Ⅱ)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2B.1C.D.10.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(5分)(2013•新课标Ⅱ)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(5分)(2013•新课标Ⅱ)已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a >0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1)B.C.D.二、填空题:本大题共4小题,每小题5分.13.(5分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则•=.14.(5分)(2013•新课标Ⅱ)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=.15.(5分)(2013•新课标Ⅱ)设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=.16.(5分)(2013•新课标Ⅱ)等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n 的最小值为.三.解答题:解答应写出文字说明,证明过程或演算步骤:17.(12分)(2013•新课标Ⅱ)△ABC在内角A、B、C的对边分别为a,b,c,已知a=b cos C+c sin B.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.18.(12分)(2013•新课标Ⅱ)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x =105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.20.(12分)(2013•新课标Ⅱ)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.21.(12分)(2013•新课标Ⅱ)已知函数f(x)=e x﹣ln(x+m)(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.选考题:(第22题~第24题为选考题,考生根据要求作答.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分评分,作答时请写清题号)22.(10分)(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).2013年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,2,3}D.{0,1,2,3}【分析】求出集合M中不等式的解集,确定出M,找出M与N的公共元素,即可确定出两集合的交集.【解答】解:由(x﹣1)2<4,解得:﹣1<x<3,即M={x|﹣1<x<3},∵N={﹣1,0,1,2,3},∴M∩N={0,1,2}.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•新课标Ⅱ)设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【分析】根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.【解答】解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选:A.【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.3.(5分)(2013•新课标Ⅱ)等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.【分析】设等比数列{a n}的公比为q,利用已知和等比数列的通项公式即可得到,解出即可.【解答】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选:C.【点评】熟练掌握等比数列的通项公式是解题的关键.4.(5分)(2013•新课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l ⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【分析】由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.【解答】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选:D.【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.5.(5分)(2013•新课标Ⅱ)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.﹣4B.﹣3C.﹣2D.﹣1【分析】由题意利用二项展开式的通项公式求得展开式中x2的系数为+a•=5,由此解得a的值.【解答】解:已知(1+ax)(1+x)5=(1+ax)(1+x+x2+x3+x4+x5)展开式中x2的系数为+a•=5,解得a=﹣1,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.6.(5分)(2013•新课标Ⅱ)执行右面的程序框图,如果输入的N=10,那么输出的S=()A.B.C.D.【分析】从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.【解答】解:框图首先给累加变量S和循环变量i赋值,S=0+1=1,k=1+1=2;判断k>10不成立,执行S=1+,k=2+1=3;判断k>10不成立,执行S=1++,k=3+1=4;判断k>10不成立,执行S=1+++,k=4+1=5;…判断i>10不成立,执行S=,k=10+1=11;判断i>10成立,输出S=.算法结束.故选:B.【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律.7.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可.【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选:A.【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.8.(5分)(2013•新课标Ⅱ)设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c【分析】利用log a(xy)=log a x+log a y(x、y>0),化简a,b,c然后比较log32,log52,log72大小即可.【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27>log25>log23,∵,,所以log32>log52>log72,所以a>b>c,故选:D.【点评】本题主要考查不等式与不等关系,对数函数的单调性的应用,不等式的基本性质的应用,属于基础题.9.(5分)(2013•新课标Ⅱ)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2B.1C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=0【分析】利用导数的运算法则得出f′(x),分△>0与△≤0讨论,列出表格,即可得出.【解答】解:f′(x)=3x2+2ax+b.(1)当△=4a2﹣12b>0时,f′(x)=0有两解,不妨设为x1<x2,列表如下x(﹣∞,x1)x1(x1,x2)x2(x2,+∞)f′(x)+0﹣0+f(x)单调递增极大值单调递减极小值单调递增由表格可知:①x2是函数f(x)的极小值点,但是f(x)在区间(﹣∞,x2)不具有单调性,故C不正确.②∵+f(x)=+x3+ax2+bx+c=﹣+2c,=,∵+f(x)=,∴点P为对称中心,故B正确.③由表格可知x1,x2分别为极值点,则,故D正确.④∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃xα∈R,f(xα)=0,故A正确.(2)当△≤0时,,故f(x)在R上单调递增,①此时不存在极值点,故D正确,C不正确;②B同(1)中②正确;③∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃x0∈R,f(x0)=0,故A正确.综上可知:错误的结论是C.由于该题选择错误的,故选:C.【点评】熟练掌握导数的运算法则、中心得出的定义、单调性与极值的关系等基础知识与方法,考查了分类讨论的思想方法等基本方法.11.(5分)(2013•新课标Ⅱ)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x【分析】根据抛物线方程算出|OF|=,设以MF为直径的圆过点A(0,2),在Rt△AOF中利用勾股定理算出|AF|=.再由直线AO与以MF为直径的圆相切得到∠OAF =∠AMF,Rt△AMF中利用∠AMF的正弦建立关系式,从而得到关于p的方程,解之得到实数p的值,进而得到抛物线C的方程.【解答】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M 点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故选:C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.12.(5分)(2013•新课标Ⅱ)已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a >0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1)B.C.D.【分析】解法一:先求得直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由﹣≤0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b=;②若点M在点O和点A之间,求得<b<;③若点M在点A的左侧,求得>b>1﹣.再把以上得到的三个b的范围取并集,可得结果.解法二:考查临界位置时对应的b值,综合可得结论.【解答】解:解法一:由题意可得,三角形ABC的面积为=1,由于直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故﹣≤0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b=.②若点M在点O和点A之间,此时b>,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即=,即=,可得a=>0,求得b<,故有<b<.③若点M在点A的左侧,则b<,由点M的横坐标﹣<﹣1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|x N﹣x P|=,即(1﹣b)•|﹣|=,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.两边开方可得(1﹣b)=<1,∴1﹣b<,化简可得b>1﹣,故有1﹣<b<.再把以上得到的三个b的范围取并集,可得b的取值范围应是,故选:B.解法二:当a =0时,直线y =ax +b (a >0)平行于AB 边,由题意根据三角形相似且面积比等于相似比的平方可得=,b =1﹣,趋于最小.由于a >0,∴b >1﹣.当a 逐渐变大时,b 也逐渐变大,当b =时,直线经过点(0,),再根据直线平分△ABC 的面积,故a 不存在,故b <.综上可得,1﹣<b <,故选:B .【点评】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考察运算能力以及综合分析能力,分类讨论思想,属于难题.二、填空题:本大题共4小题,每小题5分.13.(5分)(2013•新课标Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则•=2.【分析】根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.【解答】解:∵已知正方形ABCD 的边长为2,E 为CD 的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为2.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.14.(5分)(2013•新课标Ⅱ)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=8.【分析】列出从n个正整数1,2,…,n中任意取出两个不同的数的所有取法种数,求出和等于5的种数,根据取出的两数之和等于5的概率为列式计算n的值.【解答】解:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的情况有:(1,4),(2,3)共2种情况;从n个正整数1,2,…,n中任意取出两个不同的数的所有不同取法种数为,由古典概型概率计算公式得:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的概率为p =.所以,即,解得n=8.故答案为8.【点评】本题考查了古典概型及其概率计算公式,考查了组合数公式,解答此题时既可以按有序取,也可以按无序取,问题的实质是一样的.此题是基础题.15.(5分)(2013•新课标Ⅱ)设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=﹣.【分析】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tanθ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sinθ与cosθ的值,即可求出sinθ+cosθ的值.【解答】解:∵tan(θ+)==,∴tanθ=﹣,而cos2θ==,∵θ为第二象限角,∴cosθ=﹣=﹣,sinθ==,则sinθ+cosθ=﹣=﹣.故答案为:﹣【点评】此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.16.(5分)(2013•新课标Ⅱ)等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n 的最小值为﹣49.【分析】由等差数列的前n项和公式化简已知两等式,联立求出首项a1与公差d的值,结合导数求出nS n的最小值.【解答】解:设等差数列{a n}的首项为a1,公差为d,∵S10=10a1+45d=0,S15=15a1+105d=25,∴a1=﹣3,d=,∴S n=na1+d=n2﹣n,∴nS n=n3﹣n2,令nS n=f(n),∴f′(n)=n2﹣n,∴当n=时,f(n)取得极值,当n<时,f(n)递减;当n>时,f(n)递增;因此只需比较f(6)和f(7)的大小即可.f(6)=﹣48,f(7)=﹣49,故nS n的最小值为﹣49.故答案为:﹣49.【点评】此题考查了等差数列的性质,以及等差数列的前n项和公式,熟练掌握性质及公式是解本题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤:17.(12分)(2013•新课标Ⅱ)△ABC在内角A、B、C的对边分别为a,b,c,已知a=b cos C+c sin B.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.【分析】(Ⅰ)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tan B的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(Ⅱ)利用三角形的面积公式表示出三角形ABC的面积,把sin B的值代入,得到三角形面积最大即为ac最大,利用余弦定理列出关系式,再利用基本不等式求出ac的最大值,即可得到面积的最大值.【解答】解:(Ⅰ)由已知及正弦定理得:sin A=sin B cos C+sin B sin C①,∵sin A=sin(B+C)=sin B cos C+cos B sin C②,∴sin B=cos B,即tan B=1,∵B为三角形的内角,∴B=;=ac sin B=ac,(Ⅱ)S△ABC由已知及余弦定理得:4=a2+c2﹣2ac cos≥2ac﹣2ac×,整理得:ac≤,当且仅当a=c时,等号成立,则△ABC面积的最大值为××=××(2+)=+1.【点评】此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.(12分)(2013•新课标Ⅱ)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.【分析】(Ⅰ)通过证明BC1平行平面A1CD内的直线DF,利用直线与平面平行的判定定理证明BC1∥平面A1CD(Ⅱ)证明DE⊥平面A1DC,作出二面角D﹣A1C﹣E的平面角,然后求解二面角平面角的正弦值即可.【解答】解:(Ⅰ)证明:连结AC1交A1C于点F,则F为AC1的中点,又D是AB中点,连结DF,则BC1∥DF,因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(Ⅱ)因为直棱柱ABC﹣A1B1C1,所以AA1⊥CD,由已知AC=CB,D为AB的中点,所以CD⊥AB,又AA1∩AB=A,于是,CD⊥平面ABB1A1,设AB=2,则AA1=AC=CB=2,得∠ACB=90°,CD=,A1D=,DE=,A1E=3故A1D2+DE2=A1E2,即DE⊥A1D,所以DE⊥平面A1DC,又A1C=2,过D作DF⊥A1C于F,∠DFE为二面角D﹣A1C﹣E的平面角,在△A1DC中,DF==,EF==,所以二面角D﹣A1C﹣E的正弦值.sin∠DFE=.【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力与计算能力.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x =105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.【分析】(Ⅰ)由题意先分段写出,当x∈[100,130)时,当x∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(Ⅱ)由(I)知,利润T不少于57000元,当且仅当120≤x≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T不少于57000元的概率的估计值.(Ⅲ)利用利润T的数学期望=各组的区间中点值×该区间的频率之和即得.【解答】解:(Ⅰ)由题意得,当x∈[100,130)时,T=500x﹣300(130﹣x)=800x﹣39000,当x∈[130,150)时,T=500×130=65000,∴T=.(Ⅱ)由(Ⅰ)知,利润T不少于57000元,当且仅当120≤x≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.(Ⅲ)依题意可得T的分布列如图,T45000530006100065000p0.10.20.30.4所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义,是中档题.20.(12分)(2013•新课标Ⅱ)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.【分析】(Ⅰ)把右焦点(c,0)代入直线可解得c.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),利用“点差法”即可得到a,b的关系式,再与a2=b2+c2联立即可得到a,b,c.(Ⅱ)由CD⊥AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣=0与椭圆的方程联立得到根与系数的关系,即=即可得到关于t的表达式,利用二次函可得到弦长|AB|,利用S四边形ACBD数的单调性即可得到其最大值.【解答】解:(Ⅰ)把右焦点(c,0)代入直线x+y﹣=0得c+0﹣=0,解得c=.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),则,,相减得,∴,∴,又=,∴,即a2=2b2.联立得,解得,∴M的方程为.(Ⅱ)∵CD⊥AB,∴可设直线CD的方程为y=x+t,联立,消去y得到3x2+4tx+2t2﹣6=0,∵直线CD与椭圆有两个不同的交点,∴△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3,由C,D在椭圆上,可得﹣<t<.设C(x3,y3),D(x4,y4),∴,.∴|CD|===.联立得到3x2﹣4x=0,解得x=0或,∴交点为A(0,),B,∴|AB|==.===,∴S四边形ACBD∴当且仅当t=0时,四边形ACBD面积的最大值为,满足(*).∴四边形ACBD面积的最大值为.【点评】本题综合考查了椭圆的定义、标准方程及其性质、“点差法”、中点坐标公式、直线与椭圆相交问题转化为方程联立得到一元二次方程根与系数的关系、弦长公式、四边形的面积计算、二次函数的单调性等基础知识,考查了推理能力、数形结合的思想方法、计算能力、分析问题和解决问题的能力.21.(12分)(2013•新课标Ⅱ)已知函数f(x)=e x﹣ln(x+m)(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【分析】(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=2时f(x)>0.求出当m=2时函数的导函数,可知导函数在(﹣2,+∞)上为增函数,并进一步得到导函数在(﹣1,0)上有唯一零点x0,则当x=x0时函数取得最小值,借助于x0是导函数的零点证出f(x0)>0,从而结论得证.【解答】(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.【点评】本题考查了利用导数研究函数的单调性,利用导数求函数在闭区间上的最值,考查了不等式的证明,考查了函数与方程思想,分类讨论的数学思想,综合考查了学生分析问题和解决问题的能力.熟练函数与导数的基础知识是解决该题的关键,是难题.选考题:(第22题~第24题为选考题,考生根据要求作答.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分评分,作答时请写清题号)22.(10分)(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.【分析】(1)已知CD为△ABC外接圆的切线,利用弦切角定理可得∠DCB=∠A,及BC•AE=DC•AF,可知△CDB∽△AEF,于是∠CBD=∠AFE.利用B、E、F、C四点共圆,可得∠CFE=∠DBC,进而得到∠CFE=∠AFE=90°即可证明CA是△ABC外接圆的直径;(2)要求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B、E、F、C四点的圆的直径为CE,及DB=BE,可得CE=DC,利用切割线定理可得DC2=DB•DA,CA2=CB2+BA2,都用DB表示即可.【解答】(1)证明:∵CD为△ABC外接圆的切线,∴∠DCB=∠A,∵BC•AE=DC•AF,∴.∴△CDB∽△AEF,∴∠CBD=∠AFE.∵B、E、F、C四点共圆,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.∴∠CBA=90°,∴CA是△ABC外接圆的直径;(2)连接CE,∵∠CBE=90°,∴过B、E、F、C四点的圆的直径为CE,由DB=BE,得CE=DC,又BC2=DB•BA=2DB2,∴CA2=4DB2+BC2=6DB2.而DC2=DB•DA=3DB2,故过B、E、F、C四点的圆的面积与△ABC面积的外接圆的面积比值==.【点评】熟练掌握弦切角定理、相似三角形的判定与性质、四点共圆的性质、直径的判定、切割线定理、勾股定理等腰三角形的性质是解题的关键.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(1)利用参数方程与中点坐标公式即可得出;(2)利用两点之间的距离公式、三角函数的单调性即可得出.【解答】解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为为参数,0<α<2π).(2)M点到坐标原点的距离d=(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【点评】本题考查了参数方程与中点坐标公式、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【分析】(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;(Ⅱ)利用基本不等式可证得:+b≥2a,+c≥2b,+a≥2c,三式累加即可证得结论.【解答】证明:(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得:a2+b2+c2≥ab+bc+ca,由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(Ⅱ)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.【点评】本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.2013年全国统一高考数学试卷(理科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•大纲版)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.62.(5分)(2013•大纲版)=()A.﹣8B.8C.﹣8i D.8i3.(5分)(2013•大纲版)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)(2013•大纲版)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.5.(5分)(2013•大纲版)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)6.(5分)(2013•大纲版)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)7.(5分)(2013•大纲版)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5B.8C.12D.188.(5分)(2013•大纲版)椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()。
2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。
2013年四川高考数学理科试卷(带详解)
2013年普通高等学校招生全国统一考试(四川卷)数 学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =I ( ) A.{2}- B.{2} C.{2,2}- D.∅ 【测量目标】集合的基本运算.【考查方式】通过解不等式再考查集合间的运算. 【难易程度】容易. 【参考答案】A 【试题解析】{+2=0}{2}.A x x A =∴=-Q ,2{40},{2,2}.B x x B =-=∴=-Q {2}.A B ∴=-I 故选A.2.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是 ( )第2题图【测量目标】复平面.【考查方式】利用共轭复数考查点在复平面上的位置. 【难易程度】容易 【参考答案】B【试题解析】设+i(,)z a b a b =∈R ,且0,0a b <>,则z 的共轭复数为i a b -,其中0,0a b <-<,故选B.3.一个几何体的三视图如图所示,则该几何体的直观图可以是 ( )第3题图A B C D第3题图【测量目标】平图形的直观图和三视图. 【考查方式】给出三视图判断其直观图. 【难易程度】容易. 【参考答案】D【试题解析】由俯视图的圆环可排除A,B,进一步将已知三视图还原为几何体,故选D. 4.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) A.:,2p x A x B ⌝∀∃∈∉ B.:,2p x A x B⌝∀∉∉C.:,2p x A x B ⌝∃∉∈D.:,2p x A x B ⌝∃∈∈ 【测量目标】全称量词与存在量词. 【考查方式】给出全称命题求存在命题. 【难易程度】容易. 【参考答案】D【试题解析】命题p 是全称命题:,2x A x B ∀∈∈,则p ⌝是特称命题:,2x A x B ∃∈∈.故选D.5.函数ππ()2sin(),(0,)22f x x ωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是 ( )第5题图A.π2,3-B.π2,6-C.π4,6-D.π4,3【测量目标】函数sin()y A x ωϕ=+的图象及其变化. 【考查方式】给出三角函数图象求解析式中的未知参数. 【难易程度】中等. 【参考答案】A【试题解析】35π3π()π41234T =--=Q,πT ∴=2ππω∴=2ω∴=.由图象知当5π12x =时,5π2π+=2π+122k k ϕ⨯∈Z (),即π2π()3k k ϕ=-∈Z .π3ϕ∴=-.故选A.6.抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是 ( ) A.12C.1【测量目标】双曲线和抛物线的基本性质. 【考查方式】给出抛物线和双曲线的方程,求距离. 【难易程度】中等. 【参考答案】B【试题解析】由题意可得抛物线的焦点坐标为(1,0),则焦点到渐近线的距离12d ==或22d ==. 7.函数331x x y =-的图象大致是 ( )A B C D第7题图【考查方式】给出函数解析式判断函数图象. 【难易程度】中等. 【参考答案】C【试题解析】由3100,xx -≠≠∴得函数331x x y =-的定义域{0},x x ≠可排除A ,当2x =时,y =1,当x=4时,6480y =,但从选项D 的函数图象可以看出函数在(0,)+∞上是单调增函数,两者矛盾,故选C.8.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( ) A.9 B.10 C.18 D.20 【测量目标】排列组合及其应用.【考查方式】通过数字组合的对数差不同来考查排列组合. 【难易程度】中等. 【参考答案】C【试题解析】从1,3,5,7,9这五个数中每次取出两个不同数的排列个数25A 20,=但lg1lg3lg3lg9,lg3lg1lg9lg3-=--=-,所以不同值的个数为20-2=18,故选C.9.节日里某家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A.14 B.12 C.34 D.78【测量目标】几何概型.【考查方式】给出实际案例求现实生活中的几何概型. 【难易程度】较难. 【参考答案】A【试题解析】设两串彩灯同时通电后,第一次闪亮的时刻分别为,x y ,则04,04x y 剟剟,而事件发生的概率为2x y -…,可行域如图阴影部分所示,有几何概型得22142(22)3244P -⨯⨯⨯==. 第9题图10.设函数()f x =a ∈R ,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是 ( ) A.[1,e] B.1[e 1]--1,C.[1,e 1]+D.1[e 1,e 1]--+【考查方式】给出函数解析式以及等式方程判断参数范围. 【难易程度】较难. 【参考答案】A 【试题解析】由已知点00(,)x y 在曲线000sin sin ,[0,1],y x y x y ==∈上,得即存在000[0,1](())y f f y y ∈=,使成立,则点0000(,()),((),)A y f y A f y y '都在的图象上,又()e x f x x a =+-在[0,1]上单调递增,所以0000()()0,[()][()]0,A A A A x x y y f y y y f y ''--∴--厖200[()]0f y y ∴-„∴00()f y y =,所以()f x x =在[0,1]上有解,2e ,[0,1]x a x x x ∴=+-∈,令2()e ,[0,1],()x x x x x x ϕϕ=+-∈在[0,1]上单调递增,又(0)1,(1)e,()[1,e],x ϕϕϕ==∴∈即[1,e]a ∈.二、填空题:本大题共5小题,每小题5分,共25分.11.二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答) 【测量目标】二项式展开式.【考查方式】求二项式展开式中的某一项. 【难易程度】简单. 【参考答案】10【试题解析】3232345C 10,T x y x y ==故填10.12.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=u u u r u u u r u u u r,则λ=_________.【测量目标】平面向量的四则运算.【考查方式】给出平面向量的等式求未知参数. 【难易程度】简单. 【参考答案】2【试题解析】由向量加法的平行四边形法则,得.AB AD AC +=u u u r u u u r u u u r又O 是AC 的中点,2,2,, 2.AC AO AC AO AB AD AO λλ∴=∴=∴+=∴=u u u r u u u r u u u r u u u r u u u r13.设sin 2sin αα=-,π(,π)2α∈,则tan 2α的值是_________. 【测量目标】二倍角公式.【考查方式】给出关系式求特殊角的正切值. 【难易程度】中等. 3【试题解析】由题意得1cos 2α=-而π(,π)2α∈,24ππ,tan2=tan π=tan 3333αα∴=∴=14.已知()f x 是定义域为R 的偶函数,当x …0时,2()4f x x x =-,那么,不等式(2)5f x +<的解集是________ .【测量目标】解不等式.【考查方式】给出函数的部分区间的解析式,求函数在整个区间的不等式的解集. 【难易程度】较难. 【参考答案】73x -<<【试题解析】220,0.0()4()4x x x f x x x f x x x <->=-∴-=-Q 设则当时,…故()f x 为在定义域上的偶函数224,0(),+4,0x x x f x x x x ⎧-∴=⎨<⎩…由()555f x x x ===-得或,所以()555,(2)5,73f x x f x x <-<<+<-<<得由得,所以不等式的解集为73x -<<.15.设12,,,n P P P L 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P L 点的距离之和最小,则称点P 为12,,,n P P P L 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题:①若,,A B C 三个点共线,C 在线AB 上,则C 是,,A B C 的中位点; ②直角三角形斜边的点是该直角三角形三个顶点的中位点; ③若四个点,,,A B C D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是____________.(写出所有真命题的序号) 【测量目标】考查新定义.【考查方式】给出新定义的含义,根据新定义解题. 【难易程度】较难. 【参考答案】①④【试题解析】+CA CB AB =当且仅当点C 在线段AB 上等号成立,所以点C 是中位点,故①为真命题. ②③为假命题,若P 为点A ,C ,则点P 在线段AC 上,若点P 是B ,D 的中位点,则点P 在线段BD 上,所以若点P 是A,B,C,D 的中位点,则p 是AC ,BD 的交点.所以梯形对角线的交点是该梯形四个顶点的唯一中位点.故④是真命题.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 在等差数列{}n a 中,318a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的首项、公差及前n 项和. 【测量目标】等差数列的性质.【考查方式】给出等差数列的项与项之间的关系,求通项和前n 项和. 【难易程度】中等.【试题解析】设该数列公差为d ,前n 项和为n S .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,(步骤1)解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n S n =或232n n n S -=(步骤2).17.(本小题满分12分) 在ABC △中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-. (Ⅰ)求cos A 的值;(Ⅱ)若42a =,5b =,求向量BA u u u r 在BC uuur 方向上的投影. 【测量目标】正弦定理和余弦定理.【考查方式】给出三角形中角的关系通过投影考查余弦定理. 【难易程度】中等.【试题解析】()I 由()()232coscos sin sin cos 25A B B A B B A C ---++=-,得 ()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦, 即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-. (步骤1)()II 由3cos ,0π5A A =-<<,得4sin 5A =, 由正弦定理,有sin sin a bA B=,所以,sin 2sin 2b A B a ==. 由题知a b >,则A B >,故π4B =.根据余弦定理,有()2223425255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去). (步骤2)故向量BA u u u r 在BC uuu r 方向上的投影为2cos 2BA B =u u u r . (步骤3)18.(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,,24⋅⋅⋅这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =; (Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分) 乙的频数统计表(部分)甲、乙所编程序各自输出y 的值为i(i 1,2,3)=的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大;(Ⅲ)按程序框图正确编写的程序运行3次,求输出y 的值为2的次数ξ的分布列及数学期望.运行 次数n 输出y 的值 为1的频数输出y 的值 为2的频数 输出y 的值为3的频数… ………运行次数n 输出y 的值 为1的频数输出y 的值 为2的频数 输出y 的值为3的频数…………第18题图【测量目标】选择结构的程序框图.【考查方式】通过实际案列来考查对框图的识别。
【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用版):数列解答题(解析版)
专题 06 数列解答题
1.(2022
年全国甲卷理科·第
17
题)记
Sn
为数列 an 的前
n
项和.已知
2Sn n
n
2an
1.
(1)证明: an 是等差数列;
(2)若 a4, a7 , a9 成等比数列,求 Sn 的最小值.
【答案】(1)证明见解析:; (2) 78 .
解析:(1)设数列an 的公差为d
,所以,
aa11dd22bb118ab11
2d
a1
4b1 3d
,即可解得,
b1
a1
d 2
,
所以原命题得证.
(2)由(1)知, b1
a1
d 2
,所以 bk
am
a1
b1 2k1
a1
m 1 d
a1 ,即 2k1
2m ,亦即
m 2k2 1,500 ,解得 2 k 10 ,所以满足等式的解 k 2,3, 4,,10 ,故集合
解析:(1)解:因为
2Sn n
n
2an
1,即 2Sn
n2
2nan
n
①,
当 n 2 时, 2Sn1 n 12 2 n 1 an1 n 1 ②,
① ②得, 2Sn n2 2Sn1 n 12 2nan n 2n 1 an1 n 1 ,
即 2an 2n 1 2nan 2n 1 an1 1 ,
k | bk am a1,1 m 500 中的元素个数为10 2 1 9 .
【题目栏目】数列\数列的综合应用\数列的综合问题 【题目来源】2022 新高考全国 II 卷·第 17 题
2013年高考全国数学卷一理科试题及答案
2013年普通高等学校招生全国统一考试(全国卷一】数 学(理工类】参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分】注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( 】A 、42 B 、35 C 、28 D 、212、复数2(1)2i i-=( 】 A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( 】 A 、不存在 B 、等于6 C 、等于3 D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( 】ABCD5、函数1(0,1)x y a a a a=->≠的图象可能是( 】6、下列命题正确的是( 】A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( 】 A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2013年高考理科数学全国卷1(含详细答案)
数学试卷 第1页(共48页)数学试卷 第2页(共48页)数学试卷 第3页(共48页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合20{}|2A x x x =->,{|55}B x x <<=-,则( )A .AB =R B .A B =∅C .B A ⊆D .A B ⊆ 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为( )A .4-B .45-C .4D .453.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为5,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为( )A .3866πcm 3 B .3500πcm 3 C .31372πcm 3D .32048πcm 37.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m =( )A .3B .4C .5D .68.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+9.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .810.已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 11.已知函数22,0,()ln(1),0.x x x f x x x ⎧-+=⎨+>⎩≤若|()|f x ax ≥,则a 的取值范围是 ( )A .(,1]-∞B .(,0]-∞C .[2,1]-D .[2,0]-12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3,n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )A .{}n S 为递增数列B .{}n S 为递减数列C .21{}n S -为递增数列,2{}n S 为递减数列D .21{}n S -为递减数列,2{}n S 为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________.14.若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________.16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在ABC △中,90ABC ∠=,3AB =,1BC =,P 为ABC △内一点,90BPC ∠=.(Ⅰ)若12PB =,求PA ; (Ⅱ)若150APB ∠=,求tan PBA ∠.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共48页)数学试卷 第5页(共48页) 数学试卷 第6页(共48页)18.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果3n =,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4n =,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.20.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .21.(本小题满分12分)设函数2()f x x ax b =++,()e ()xg x cx d =+.若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线42y x =+.(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若2x -≥时,()()f x kg x ≤,求k 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF △外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02π)ρθ≥≤<.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a ->,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围.=|2A B x{A B=R,故选【提示】根据一元二次不等式的解法,求出集合,再根据的定义求出A B和A B.【考点】并集及其运算,一元二次不等式的解法【答案】D4i)34=+,故z的虚部等于i553/ 16故选A.=,解得1)1245 / 16故选A .(2)(2+1)7!!!(+1)!m m m m m m =⨯,即13,再利用组合数的计算公式,解方程综上可知:[,0]2a∈-.(步骤4)67 / 16【提示】由1n n a a +=可知n n n A B C △的边n n B C 为定值1a ,由111112(2)2n n n n b c a b c a +++=+--及1112b c a +=得12n n b c a +=,则在n n n A B C △中边长1n n B C a =为定值,另两边n n n n A C A B 、的长度之和12n n b c a +=为定值,由此可知顶点n A 在以n n B C 、为焦点的椭圆上,根据111()2n n n n b c b c ++=---,得1111()2n n n b c b c -⎛⎫=- ⎪⎝⎭-,可知n →+∞时n n b c →,据此可判断n n n A B C △的边n n B C 的高n h 随着n 的增大而增大,再由三角形面积公式可得到答案. 【答案】2t =【解析】∵(1)c ta t b =-+,∴2(+1)||b t b ab t =-.(步骤又∵||||1a b ==,且a 与b 夹角为60,b c ⊥,∴0|cos6|||0+t a b =︒2【提示】由于0b c =,对式子(1)c ta t b =-+两边与b 作数量积可得|cos6|||0+a b ︒【考点】平面向量的数量积.85)(22,--+)(25,-+5)单调递增,在5)2-+单调递增,在9 / 161OCOA O =,所以1OAC 平面两两相互垂直.为坐标原点,OA的方向为|OA|为单位长,建立如图所示的空间直角坐标系则(1,0,BC=,11(1,BB AA==-,(0,3,AC=-设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩即可取,1(3,n=-10cos,5||||n ACn ACn AC=-〈〉=BB1C1C所成角的正弦值为51111得1AB AC⊥;(Ⅱ)易证OA,1OA,OC两两垂直.以O为坐标原点,OA的方向为x轴的正向,||OA为单位长,建立坐标系,可得BC,1BB,AC的坐标,设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩,可解得,1(3,n=-,n AC〈〉,即为所求正弦值.1011 / 1622)()A B ,411161616⨯+1【提示】(Ⅰ)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得1212()()|+|+++4PM PN R r r R r r ==-=||,而||2NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(Ⅱ)设曲线C 上任意一点,()P x y ,由于||2222PM PN R ≤|-|=-,所以2R ≤,当且仅当圆P 的圆心为所以可设l :4)+(y k x =,与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【考点】圆的标准方程及其性质,椭圆的的定义及其几何性质,直线与双曲线的位置关系.21.【答案】(Ⅰ)4a =2b =2c =2d =(Ⅱ)2[1,]e【解析】(Ⅰ)由已知得(0)2f =,(0)2g =,(0)4f '=,(0)4g '=.(步骤1)而+()2f x x a =',((+))+x g x e cx d c '=,故2b =,2d =,4a =,+4d c =.(步骤2)从而4a =,2b =,2c =,2d =.(步骤3)13 / 16(Ⅱ)由(Ⅰ)知,2()+4+2f x x x =,()21)+(x g x e x =.设函数2()()()2()+142x F x kg x f x ke x x x =-=---,则()2+()2242+1(2())x x F x ke x x x ke '=--=-.由题设可得(0)0F ≥,即1k ≥(步骤4)令()0F x '=得1ln x k =-,22x -=.(步骤5)①若21k e ≤<,则120x <≤-.从而当12(),x x ∈-时,()0F x '<;当1(),+x x ∈∞时,()0F x '>.即()F x 在1()2,x -单调递减,在1(),+x ∞单调递增.故()F x 在[)2,+-∞的最小值为1()F x .(步骤6)而1111211()2+24+0)22(F x x x x x x =--=-≥-.故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤7)②若2k e =,则2222+()()()2x F e x e e x -'=-.从而当2x >-时,)0(F x '>,即F (x )在()2,+-∞单调递增.而()20F -=,故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤8)③若2k e >,则22222+220()()F ke e k e ---=-=-<-.从而当2x ≥-时,()()f kg x x ≤不可能恒成立.综上,k 的取值范围是2[1,]e .(步骤9)【提示】(Ⅰ)对()f x ,()g x 进行求导,已知在交点处有相同的切线及曲线()y f x =和曲线()y g x =都过点(0,2)P ,从而解出a ,b ,c ,d 的值;(Ⅱ)由(Ⅰ)得出()f x ,()g x 的解析式,再求出()F x 及它的导函数,通过对k 的讨论,判断出()F x 的90,由勾股定理可得,故DG 60.30,所以CF ⊥BF ,故60.从而30.得到15 / 16【提示】(Ⅰ)对于曲线1C 利用三角函数的平方关系式22sin cos 1t t +=即可得到圆1C 的普通方程;再利用极坐标与直角坐标的互化公式即可得到1C 的极坐标方程;(Ⅱ)先求出曲线2C 的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标3⎝⎦21||23|2|x x y x +-=---,画出函数y 的图象,数形结合可得结论.。
2013年重庆市高考数学试卷(理科)答案与解析
2013年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)(2013•重庆)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}考点:交、并、补集的混合运算.专题:计算题.分析:根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.解答:解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选D点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)(2013•重庆)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<0考点:命题的否定;全称命题.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题,写出命题的否定命题即可.解答:解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选D.点评:本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.(5分)(2013•重庆)(﹣6≤a≤3)的最大值为()A.9B.C.3D.考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,利用二次函数的性质求得函数f(a)的最大值,即可得到所求式子的最大值.解答:解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f (a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.4.(5分)(2013•重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8考点:茎叶图.专题:概率与统计.分析:求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.解答:解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.点评:本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(5分)(2013•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.240考点: 由三视图求面积、体积. 专题: 空间位置关系与距离. 分析:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,据此即可计算出体积. 解答:解:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,由图知V==200.故选C .点评: 由三视图正确恢复原几何体是解题的关键. 6.(5分)(2013•重庆)若a <b <c ,则函数f (x )=(x ﹣a )(x ﹣b )+(x ﹣b )(x ﹣c )+(x ﹣c )(x ﹣a )的两个零点分别位于区间( ) A . (a ,b )和(b ,c )内 B . (﹣∞,a )和(a ,b )内 C . (b ,c )和(c ,+∞)内 D . (﹣∞,a )和(c ,+∞)内考点: 函数零点的判定定理. 专题: 函数的性质及应用. 分析: 由函数零点存在判定定理可知:在区间(a ,b ),(b ,c )内分别存在一个零点;又函数f (x )是二次函数,最多有两个零点,即可判断出. 解答: 解:∵a <b <c ,∴f (a )=(a ﹣b )(a ﹣c )>0,f (b )=(b ﹣c )(b ﹣a )<0,f (c )=(c ﹣a )(c ﹣b )>0,由函数零点存在判定定理可知:在区间(a ,b ),(b ,c )内分别存在一个零点; 又函数f (x )是二次函数,最多有两个零点, 因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内. 故选A . 点评: 熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键. 7.(5分)(2013•重庆)已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( ) A . 5﹣4 B . 1 C . 6﹣2 D .考点: 圆与圆的位置关系及其判定;两点间的距离公式. 专题: 直线与圆. 分析: 求出圆C 1关于x 轴的对称圆的圆心坐标A ,以及半径,然后求解圆A 与圆C 2的圆心距减去两个圆的半径和,即可求出|PM|+|PN|的最小值.解答:解:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:=5﹣4.故选A.点评:本题考查圆的对称圆的方程的求法,两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力.8.(5分)(2013•重庆)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7 C.k≤8 D.k≤9考点:程序框图.专题:图表型.分析:根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.解答:解:根据程序框图,运行结果如下:S k第一次循环log23 3第二次循环log23•log34 4第三次循环log23•log34•log45 5第四次循环log23•log34•log45•log56 6第五次循环log23•log34•log45•log56•log67 7第六次循环log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k≤7.故选B.点评:本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题.9.(5分)(2013•重庆)4cos50°﹣tan40°=()A.B.C.D.2﹣1考点:两角和与差的正弦函数;同角三角函数间的基本关系;诱导公式的作用;二倍角的正弦.专题:三角函数的求值.分析:原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.解答:解:4cos50°﹣tan40°=4sin40°﹣tan40°======.故选C点评:此题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.10.(5分)(2013•重庆)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,]B.(,]C.(,]D.(,]考点:向量在几何中的应用;平面向量的基本定理及其意义.专题:压轴题;平面向量及应用.分析:建立坐标系,将向量条件用等式与不等式表示,利用向量模的计算公式,即可得到结论.解答:解:根据条件知A,B1,P,B2构成一个矩形AB1PB2,以AB1,AB2所在直线为坐标轴建立直角坐标系,设|AB1|=a,|AB2|=b,点O的坐标为(x,y),则点P的坐标为(a,b),由=1,得,则∵||<,∴∴∴∵(x﹣a)2+y2=1,∴y2=1﹣(x﹣a)2≤1,∴y2≤1同理x2≤1∴x2+y2≤2②由①②知,∵||=,∴<||≤故选D.点评:本题考查向量知识的运用,考查学生转化问题的能力,考查学生的计算能力,属于难题.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)(2013•重庆)已知复数z=(i是虚数单位),则|z|=.考点:复数求模.专题:计算题.分析:通过复数的分子与分母同时求模即可得到结果.解答:解:|z|===.故答案为:.点评:本题考查复数的模的求法,考查计算能力.12.(5分)(2013•重庆)已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8=64.考点:等差数列的前n项和;等比数列的前n项和.专题:计算题;压轴题;等差数列与等比数列.分析:依题意,a1=1,=a1•(a1+4d),可解得d,从而利用等差数列的前n项和公式即可求得答案.解答:解:∵{a n}是等差数列,a1,a2,a5成等比数列,∴=a1•(a1+4d),又a1=1,∴d2﹣2d=0,公差d≠0,∴d=2.∴其前8项和S8=8a1+×d=8+56=64.故答案为:64.点评:本题考查等差数列的前n项和,考查方程思想与运算能力,属于基础题.13.(5分)(2013•重庆)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是590(用数字作答).考点:排列、组合及简单计数问题.专题:压轴题;概率与统计.分析:不同的组队方案:选5名医生组成一个医疗小组,要求其中骨科、脑外科和内科医生都至少有1人,方法共有6类,他们分别是:3名骨科、1名脑外科和1名内科医生;1名骨科、3名脑外科和1名内科医生,…,在每一类中都用分步计数原理解答.解答:解:直接法:3名骨科、1名脑外科和1名内科医生,有C33C41C51=20种,1名骨科、3名脑外科和1名内科医生,有C31C43C51=60种,1名骨科、1名脑外科和3名内科医生,有C31C41C53=120种,2名骨科、2名脑外科和1名内科医生,有C32C42C51=90种,1名骨科、2名脑外科和2名内科医生,有C31C42C52=180种,2名骨科、1名脑外科和2名内科医生,有C32C41C52=120种,共计20+60+120+90+180+120=590种故答案为:590.点评:本题主要考查了排列、组合及简单计数问题,解答关键是利用直接法:先分类后分步.14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)(2013•重庆)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC 的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为5.考点:与圆有关的比例线段.专题:直线与圆.分析:利用直角△ABC的边角关系即可得出BC,利用弦切角定理可得∠BCD=∠A=60°.利用直角△BCD的边角关系即可得出CD,BD.再利用切割线定理可得CD2=DE•DB,即可得出DE.解答:解:在△ABC中,∠C=90°,∠A=60°,AB=20,∴BC=AB•sin60°=.∵CD是此圆的切线,∴∠BCD=∠A=60°.在Rt△BCD中,CD=BC•cos60°=,BD=BC•sin60°=15.由切割线定理可得CD2=DE•DB,∴,解得DE=5.故答案为5.点评:熟练掌握直角三角形的边角关系、弦切角定理、切割线定理是解题的关键.15.(5分)(2013•重庆)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=16.考点:点的极坐标和直角坐标的互化;两点间的距离公式;参数方程化成普通方程.专题:压轴题;直线与圆.分析:先将直线极坐标方程ρcosθ=4化成直角坐标方程,再代入曲线(t为参数)中得A,B两点的直角坐标,最后利用两点间的距离公式即可得出|AB|.解答:解:将直线极坐标方程ρcosθ=4化成直角坐标方程为x=4,代入曲线(t为参数)中得A,B两点的直角坐标为(4,8),(4,﹣8),则|AB|=16.故答案为:16.点评:本题考查参数方程、极坐标方程、直角坐标方程间的转化,两点间的距离公式,考查转化、计算能力.16.(2013•重庆)若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是(﹣∞,8].考点:绝对值不等式的解法.专题:压轴题;不等式的解法及应用.分析:利用绝对值的意义求得|x﹣5|+|x+3|最小值为8,由此可得实数a的取值范围.解答:解:由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].点评:本题主要考查绝对值的意义,绝对值不等式的解法,求得|x﹣5|+|x+3|最小值为8,是解题的关键,属于中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.考点:利用导数研究函数的单调性;函数在某点取得极值的条件;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)先由所给函数的表达式,求导数fˊ(x),再根据导数的几何意义求出切线的斜率,最后由曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)列出方程求a的值即可;(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到原函数的单调区间,根据在各区间内的单调性求出极值点,把极值点的横坐标代入函数解析式求得函数的极值.解答:解:(1)因f(x)=a(x﹣5)2+6lnx,故f′(x)=2a(x﹣5)+,(x>0),令x=1,得f(1)=16a,f′(1)=6﹣8a,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),由切线与y轴相交于点(0,6).∴6﹣16a=8a﹣6,∴a=.(2)由(I)得f(x)=(x﹣5)2+6lnx,(x>0),f′(x)=(x﹣5)+=,令f′(x)=0,得x=2或x=3,当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,故f(x)在x=2时取得极大值f(2)=+6ln2,在x=3时取得极小值f(3)=2+6ln3.点评:本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性、函数的极值及其几何意义等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于中档题.18.(13分)(2013•重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).考点:离散型随机变量及其分布列;古典概型及其概率计算公式;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(1)从7个小球中取3的取法为,若取一个红球,则说明第一次取到一红2白,根据组合知识可求取球的种数,然后代入古典概率计算公式可求(2)先判断随机变量X的所有可能取值为200,50,10,0根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值解答:解:(1)设A i表示摸到i个红球,B i表示摸到i个蓝球,则Ai与Bi相互独立(i=0,1,2,3)∴P(A1)==(2)X的所有可能取值为0,10,50,200P(X=200)=P(A3B1)=P(A3)P(B1)=P(X=50)=P(A3)P(B0)==P(X=10)=P(A2)P(B1)==P(X=0)=1﹣=∴X的分布列为x 0 10 50 200PEX==4元点评:本题主要考查了古典概型及计算公式,互斥事件、离散型随机变量的分布列及期望值的求解,考查了运用概率知识解决实际问题的能力.19.(13分)(2013•重庆)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.考点:用空间向量求平面间的夹角;点、线、面间的距离计算;二面角的平面角及求法.专题:计算题;证明题;空间位置关系与距离;空间角.分析:(I)连接BD交AC于点O,等腰三角形BCD中利用“三线合一”证出AC⊥BD,因此分别以OB、OC分别为x轴、y轴建立空间直角坐标系如图所示.结合题意算出A、B、C、D各点的坐标,设P(0,﹣3,z),根据F为PC边的中点且AF⊥PB,算出z=2,从而得到=(0,0,﹣2),可得PA的长为2;(II)由(I)的计算,得=(﹣,3,0),=(,3,0),=(0,2,).利用垂直向量数量积为零的方法建立方程组,解出=(3,,﹣2)和=(3,﹣,2)分别为平面FAD、平面FAB的法向量,利用空间向量的夹角公式算出、夹角的余弦,结合同角三角函数的平方关系即可算出二面角B﹣AF﹣D的正弦值..解答:解:(I)如图,连接BD交AC于点O∵BC=CD,AC平分角BCD,∴AC⊥BD以O为坐标原点,OB、OC所在直线分别为x轴、y轴,建立空间直角坐标系O﹣xyz,则OC=CDcos=1,而AC=4,可得AO=AC﹣OC=3.又∵OD=CDsin=,∴可得A(0,﹣3,0),B(,0,0),C(0,1,0),D(﹣,0,0)由于PA⊥底面ABCD,可设P(0,﹣3,z)∵F为PC边的中点,∴F(0,﹣1,),由此可得=(0,2,),∵=(,3,﹣z),且AF⊥PB,∴•=6﹣=0,解之得z=2(舍负)因此,=(0,0,﹣2),可得PA的长为2;(II)由(I)知=(﹣,3,0),=(,3,0),=(0,2,),设平面FAD 的法向量为=(x 1,y 1,z 1),平面FAB 的法向量为=(x 2,y 2,z 2), ∵•=0且•=0,∴,取y 1=得=(3,,﹣2),同理,由•=0且•=0,解出=(3,﹣,2),∴向量、的夹角余弦值为cos <,>===因此,二面角B ﹣AF ﹣D 的正弦值等于=点评:本题在三棱锥中求线段PA 的长度,并求平面与平面所成角的正弦值.着重考查了空间线面垂直的判定与性质,考查了利用空间向量研究平面与平面所成角等知识,属于中档题. 20.(12分)(2013•重庆)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+ab=c 2. (1)求C ; (2)设cosAcosB=,=,求tan α的值.考点:余弦定理;同角三角函数间的基本关系;两角和与差的余弦函数. 专题:解三角形. 分析: (1)利用余弦定理表示出cosC ,将已知等式变形后代入求出cosC 的值,由C 为三角形的内角,利用特殊角的三角函数值即可求出C 的度数;(2)已知第二个等式分子两项利用两角和与差的余弦函数公式化简,再利用同角三角函数间的基本关系弦化切,利用多项式乘多项式法则计算,由A+B 的度数求出sin (A+B )的值,进而求出cos (A+B )的值,利用两角和与差的余弦函数公式化简cos (A+B ),将cosAcosB 的值代入求出sinAsinB 的值,将各自的值代入得到tan α的方程,求出方程的解即可得到tan α的值.解答:解:(1)∵a 2+b 2+ab=c 2,即a 2+b 2﹣c 2=﹣ab , ∴由余弦定理得:cosC===﹣,又C 为三角形的内角, 则C=;(2)由题意==,∴(cosA ﹣tan αsinA )(cosB ﹣tan αsinB )=,即tan 2αsinAsinB ﹣tan α(sinAcosB+cosAsinB )+cosAcosB=tan 2αsinAsinB ﹣tan αsin (A+B )+cosAcosB=,∵C=,A+B=,cosAcosB=,∴sin (A+B )=,cos (A+B )=cosAcosB ﹣sinAsinB=﹣sinAsinB=,即sinAsinB=,∴tan 2α﹣tan α+=,即tan 2α﹣5tan α+4=0,解得:tan α=1或tan α=4.点评: 此题考查了余弦定理,两角和与差的余弦函数公式,同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.21.(12分)(2013•重庆)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率,过左焦点F 1作x 轴的垂线交椭圆于A 、A ′两点,|AA ′|=4. (Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P'Q ,求圆Q 的标准方程.考点:圆锥曲线的综合.专题:压轴题;圆锥曲线中的最值与范围问题.分析:(Ⅰ)利用点A(﹣c,2)在椭圆上,结合椭圆的离心率,求出几何量,即可求得椭圆的标准方程;(Ⅱ)设出圆Q的圆心坐标及半径,由PQ⊥P'Q得到P的坐标,写出圆的方程后和椭圆联立,化为关于x的二次方程后由判别式等于0得到关于t与r的方程,把P点坐标代入椭圆方程得到关于t与r的另一方程,联立可求出t与r的值,经验证满足椭圆上的其余点均在圆Q外,结合对称性即可求得圆Q的标准方程.解答:解:(Ⅰ)由题意知点A(﹣c,2)在椭圆上,则,即①∵离心率,∴②联立①②得:,所以b2=8.把b2=8代入②得,a2=16.∴椭圆的标准方程为;(Ⅱ)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).联立,得x2﹣4tx+2t2+16﹣2r2=0.由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8又P()在椭圆上,所以.整理得,.代入t2+r2=8,得.解得:.所以,.此时.满足椭圆上的其余点均在圆Q外.由对称性可知,当t<0时,t=﹣,.故所求圆Q的标准方程为.点评:本题考查椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,属于中档题.22.(12分)(2013•重庆)对正整数n,记I n={1,2,3…,n},P n={|m∈I n,k∈I n}.(1)求集合P7中元素的个数;(2)若P n的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使P n能分成两个不相交的稀疏集的并集.考点:集合中元素个数的最值;子集与交集、并集运算的转换.专题:集合.分析:(1)对于集合P7 ,有n=7.当k=4时,根据P n中有3个数与I n={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数.(2)先用反证法证明证当n≥15时,P n不能分成两个不相交的稀疏集的并集,再证P14满足要求,从而求得n的最大值.解答:解:(1)对于集合P7 ,有n=7.当k=1时,m=1,2,3…,7,P n={1,2,3…,7},7个数,当k=2时,m=1,2,3…,7,P n对应有7个数,当k=3时,m=1,2,3…,7,P n对应有7个数,当k=4时,P n={|m∈I n,k∈I n}=P n={,1,,2,,3,}中有3个数(1,2,3)与k=1时P n中的数重复,当k=5时,m=1,2,3…,7,P n对应有7个数,当k=6时,m=1,2,3…,7,P n对应有7个数,当k=7时,m=1,2,3…,7,P n对应有7个数,由此求得集合P7中元素的个数为7×7﹣3=46.(2)先证当n≥15时,P n不能分成两个不相交的稀疏集的并集.假设当n≥15时,P n可以分成两个不相交的稀疏集的并集,设A和B为两个不相交的稀疏集,使A∪B=P n⊇I n .不妨设1∈A,则由于1+3=22,∴3∉A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾.再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集.事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1和B1都是稀疏集,且A1∪B1=I14.当k=4时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,…,},可以分为下列3个稀疏集的并:A2={,,,},B2={,,}.当k=9时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,,…,,},可以分为下列3个稀疏集的并:A3={,,,,},B3={,,,,}.最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9 }中的数的分母都是无理数,它与P n中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B=P14.综上可得,n的最大值为14.点评:本题主要考查新定义,集合间的包含关系,体现了分类讨论的数学思想,属于中档题.。
2013全国新课标版高考数学试卷及答案(理科
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)错误!未找到引用源。
(B)- 错误!未找到引用源。
(C)错误!未找到引用源。
(D)- 错误!未找到引用源。
(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1+ 错误!未找到引用源。
+ 错误!未找到引用源。
+…+错误!未找到引用源。
(B )1+ 错误!未找到引用源。
+ 错误!未找到引用源。
重庆市2013高考数学理科试卷(有答案)
重庆市2013高考数学理科试卷(有答案)2013年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)特别提醒:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一个选项是符合题目要求的.(1)已知集合,集合,,则(A)(B)(C)(D)(2)命题“对任意,都有”的否定为(A)对任意,使得(B)不存在,使得(C)存在,都有(D)存在,都有(3)()的最大值为(A)9 (B)(C)3 (D)(4)以下茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分). 甲组乙组 9 0 9 2 1 5 8 7 4 2 4 已知甲组数据的中位数为15,乙组数据的平均数为16.8,则、的值分别为(A)2、5 (B)5、5 (C)5,8 (D)8,8 (5)某几何体的三视图如题(5)图所示,则该几何体的体积为(A)(B)(C)200 (D)240 (6)若,则函数两个零点分别位于区间(A)和内(B)和内(C)和内(D)和内(7)已知圆:,圆:,、分别是圆、上的动点,为轴上的动点,则的最小值为(A)(B)(C)(D)(8)执行如题(8)图所示的程序框图,如果输出,那么判断框内应填入的条件是(A)(B)(C)(D)(9)(A)(B)(C)(D)(10)在平面上,,,.若,则的取值范围是(A)(B)(C)(D)二.填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.(11)已知复数(是虚数单位),则.(12)已知是等差数列,,公差,为其前项和,若、、称等比数列,则.(13)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.(14)如题(14)图,在△ 中,,,,过作△ 的外接圆的切线,⊥ ,与外接圆交于点,则的长为.(15)在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.若极坐标方程为的直线与曲线(为参数)相交于、两点,则.(16)若关于实数的不等式无解,则实数的取值范围是.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)设,其中,曲线在点(1,)处的切线与轴相较于点(0,6).(Ⅰ)确定的值;(Ⅱ)求函数的单调区间与极值.(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个篮球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与篮球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖 3红1蓝 200元二等奖 3红0蓝 50元三等奖 2红1蓝 10元其余情况无奖且每次摸奖最多只能获得一个奖级.(Ⅰ)求一次摸球恰好摸到1个红球的概率;(Ⅱ)求摸奖者在一次摸奖中获奖金额的分布列与期望.(19)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)如题(19)图,四棱锥中,⊥底面,,,,为的中点,⊥ .(Ⅰ)求的长;(Ⅱ)求二面角的余弦值.(20)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)在△ 中,内角、、的对边分别是、、,且.(Ⅰ)求;(Ⅱ)设,,求的值.(21)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如题(21)图,椭圆的中心为原点,长轴在轴上,离心率,过左焦点作轴的垂线交椭圆于、两点,.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于轴的直线与椭圆相较于不同的两点、,过、作圆心为的圆,使椭圆上的其余点均在圆外.若⊥ ,求圆的标准方程.(22)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)对正整数,记…,,,.(Ⅰ)求集合中元素的个数;(Ⅱ)若的子集中任意两个元素之和不是整数的平方,则称为“稀疏集”.求的最大值,使能分成两个不相交的稀疏集的并.。
2013年江西高考数学(理科)试题及答案(word版)
绝密★启用前2013年普通高等学校招生全国统一考试(江西卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘帖的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用0.5毫米黑色墨水签字笔在答题卡上书写作答,若在试题卷上答题,答案无效。
4. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z=()A. -2iB. 2iC. -4iD.4i2.函数y=错误!未找到引用源。
ln(1-x)的定义域为阳光高考门户为中国高中生梦想加油!阳光高考门户 为中国高中生梦想加油 !( )A.(0,1)B.[0,1)C.(0,1]D.[0,1] 3.等比数列x ,3x+3,6x+6,…的的第四项等于 ( )A.-24B.0C.12D.24 4.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为 ( )7816 6572 0802 6314 0702 4369 9728 01983204 9234 4934 8200 3623 4869 6938 7481A.08B.07C.02D.01 5.(x 2-错误!未找到引用源。
)5展开式中的常数项为 ( )A .80 B.-80 C.40 D.-40若 ,则s 1,s 2,s 3的大小关系为6.A. s 1<s 2<s 3B. s 2<s 1<s 3C. s 2<s 3<s 1D. s 3<s 2<s 1阳光高考门户 为中国高中生梦想加油 !7.阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为A.S=2﹡i-2B.S=2﹡i-1C.S=2﹡ID.S=2﹡i+48.如果,正方体的底面与正四面体的底面在同一平面α上,且AB//CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为m ,n ,那么m+n=A.8B.9C.10D.119.过点(错误!未找到引用源。
2013高考全国2卷数学理科试题及答案详解
2013年普通高等学校招生全国统一考试数学(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( ).A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3}2.(2013课标全国Ⅱ,理2)设复数z满足(1-i)z=2i,则z=( ).A.-1+i B.-1-I C.1+i D.1-i3.(2013课标全国Ⅱ,理3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( ).A.13 B .13-C.19 D.19-4.(2013课标全国Ⅱ,理4)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则( ).A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( ).A.-4 B.-3 C.-2 D.-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N=10,那么输出的S=( ).A .111 1+2310+++B.111 1+2!3!10!+++C.111 1+2311+++D.111 1+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a=log36,b=log510,c=log714,则( ).A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件1,3,3.xx yy a x≥⎧⎪+≤⎨⎪≥(-)⎩若z=2x+y的最小值为1,则a=( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.112⎛⎫-⎪⎪⎝⎭ C.113⎛⎤⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。
2013年四川高考数学试题及答案(理科)
2013年四川高考数学试题及答案(理科)一、选择题1. 设集合A ={x|x +2=0},集合B ={x|x 2-4=0},则A ∩B =( )A .{-2}B .{2}C .{-2,2}D .1.A [解析] 由已知,A ={-2},B ={-2,2},故A ∩B ={-2}.2. 如图1-1所示,在复平面内,点A 表示复数z ,则图1-1中表示z 的共轭复数的点是( )图1-1A .AB .BC .CD .D2.B [解析] 复数与共轭复数的几何关系是其表示的点关于x 轴对称. 3. 一个几何体的三视图如图1-2所示,则该几何体的直观图可以是( )图1-2图1-33.D [解析] 根据三视图原理,该几何体上部为圆台,下部为圆柱.4. 设x ∈,集合A 是奇数集,集合B 是偶数集.若命题p :x ∈A ,2x ∈B ,则( ) A .⌝p :x ∈A ,2x B B .⌝p :x A ,2xBC .⌝p :x A ,2x ∈BD .⌝p :x ∈A ,2x B4.D [解析] 注意到全称命题的否定为特称命题,故应选D.图1-4 5. 函数f(x)=2sin (ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图像如图1-4所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π35.A [解析] 由图知3T 4=5π12+π3=3π4,故周期T =π,于是ω=2.∴f(x)=2sin(2x +φ).再由f ⎝⎛⎭⎫5π12=2,得sin ⎝⎛⎭⎫5π6+φ=1,于是5π6+φ=2k π+π2(k ∈),因为-π2<φ<π2,取k =0,得φ=-π3.6., 抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1 D. 3 6.B [解析] 抛物线y 2=4x 的焦点坐标为F(1,0),双曲线x 2-y 23=1的渐近线为3x±y =0,故点F 到3x ±y =0的距离d =|3|1+3=32.7.,, 函数y =x 33x -1的图像大致是( )图1-57.C [解析] 函数的定义域是{x ∈|x ≠0},排除选项A ;当x<0时,x 3<0,3x -1<0,故y>0,排除选项B ;当x →+∞时,y>0且y →0,故为选项C 中的图像.8. 从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lga -lgb 的不同值的个数是( )A .9B .10C .18D .208.C [解析] 从1,3,5,7,9中,每次取出两个不同的数作为a ,b 可以得到不同的差式lg a -lg b 共计A 25=20个,但其中lg 9-lg 3=lg 3-lg 1,lg 3-lg 9=lg 1-lg 3,故不同的值只有18个.9. 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.789.C [解析] 设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4,满足条件的关系式为-2≤x -y ≤2.根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,故概率为1216=34.10., 设函数f(x)=e x +x -a(a ∈,e 为自然对数的底数).若曲线y =sinx 上存在(x 0,y 0)使得f(f(y 0))=y 0,则a 的取值范围是( )A .[1,e]B .[e -1-1,1]C .[1,e +1]D .[e -1-1,e +1]10.A [解析] 因为y 0=sin x 0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x +x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x +x -a =x 在[0,1]上有解.当x ≥0时,两边平方得e x +x -a =x 2,故a =e x -x 2+x.记g(x)=e x -x 2+x ,则g′(x)=e x -2x +1.当x ∈⎣⎡⎦⎤0,12时,e x >0,-2x +1≥0,故g′(x)>0, 当x ∈⎝⎛⎦⎤12,1时,e x >e >1,0>-2x +1≥-1, 故g′(x)>0.综上,g ′(x)在x ∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值范围是[1,e].11. 二项式(x +y)5的展开式中,含x 2y 3的项的系数是________.(用数字作答) 11.10 [解析] 根据二项展开式的性质可得x 2y 3的系数为C 35=10.12. 在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.12.2 [解析] 根据向量运算法则,AB →+AD →=AC →=2AO →,故λ=2.13.,, 设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.13.3 [解析] 解法一:由sin 2α=-sin α,得2sin αcos α=-sin α,又α∈⎝⎛⎭⎫π2,π,故sin α≠0,于是cos α=-12,进而sin α=32,于是tan α=-3,∴tan 2α=2tan α1-tan 2α=2³(-3)1-3= 3.解法二:同上得cos α=-12,又α∈⎝⎛⎭⎫π2,π,可得α=2π3,∴tan 2α=tan 4π3= 3.14., 已知f(x)是定义域为的偶函数,当x ≥0时,f(x)=x 2-4x ,那么,不等式f(x +2)<5的解集是________.14.(-7,3) [解析] 当x +2≥0时,f(x +2)=(x +2)2-4(x +2)=x 2-4,由f(x +2)<5,得x 2-4<5,即x 2<9,解得-3<x <3,又x +2≥0,故-2≤x <3为所求.又因为f(x)为偶函数,故f(x +2)的图像关于直线x =-2对称,于是-7<x <-2也满足不等式.(注:本题还可以借助函数的图像及平移变换求解) 15.,, 设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P 到P 1,P 2,…,P n 点的距离之和最小,则称点P 为P 1,P 2,…,P n 点的一个“中位点”.例如,线段AB 上的任意点都是端点A ,B 的中位点.则有下列命题:①若A ,B ,C 三个点共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号)15.①④ [解析] 对于①,如果中位点不在直线AB 上,由三角形两边之和大于第三边可知与题意矛盾.而当中位点在直线AB 上时,如果不与C 重合,则|PA|+|PB|+|PC|>|PA|+|PB|也不符合题意,故C 为唯一的中位点,①正确;对于②,我们取斜边长为4的等腰直角三角形,此时,斜边中点到三个顶点的距离均为2,和为6;而我们取斜边上中线的中点,该点到直角顶点的距离为1,到两底角顶点的距离均为5,显然2 5+1<6,故该直角三角形的斜边中点不是中位点,②错误;对于③,当A ,B ,C ,D 四点共线时,不妨设他们的顺序就是A ,B ,C ,D ,则当点P 在B ,C 之间运动时,点P 到A ,B ,C ,D 四点的距离之和相等且最小,即这个时候的中位点有无穷多个,③错误;对于④,同样根据三角形两边之和大于第三边的性质,如果中位点不在对角线的交点上,则距离之和肯定不是最小的,④正确.16., 在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项、公差及前n 项和.16.解:设该数列公差为d ,前n 项和为S n ,由已知可得2a 1+2d =8,(a 1+3d)2=(a 1+d)(a 1+8d),所以a 1+d =4,d(d -3a 1)=0.解得a 1=4,d =0或a 1=1,d =3.即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以,数列的前n 项和S n =4n 或S n =3n 2-n2.17.,, 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2 A -B2cos B -sin (A-B)sin B +cos(A +C)=-35.(1)求cos A 的值;(2)若a =4 2,b =5,求向量BA →在BC →方向上的投影.17.解:(1)由2cos 2A -B 2cos B -sin(A -B)sin B +cos(A +C)=-35,得[cos(A -B)+1]cosB -sin(A -B)sinB -cosB =-35,即cos(A -B)cosB -sin(A -B)sinB =-35,则cos(A -B +B)=-35,即cos A =-35.(2)由cos A =-35,0<A<π,得sinA =45.由正弦定理,有a sin A =b sinB ,所以sinB =bsinA a =22.由题意知a>b ,则A>B ,故B =π4.根据余弦定理,有(4 2)2=52+c 2-2³5c ³⎝⎛⎭⎫-35, 解得c =1或c =-7(舍去),故向量BA →在BC →方向上的投影为|BA →|cosB =22.18., 某算法的程序框图如图1-6所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.图1-6(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i(i =1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)运行次数n 输出y 的值为1的频数 输出y 的值为2的频数 输出y 的值为3的频数30 14 6 10 … … … … 2 100 1 027 376 697乙的频数统计表(部分)运行次数n 输出y 的值为1的频数 输出y 的值为2的频数 输出y 的值为3的频数30 12 11 7 … … … … 2 100 1 051 696 353当n =2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为i(i =1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大;(3)按程序框图正确编写的程序运行3次,求输出y 的值为2的次数ξ的分布列及数学期望.18.解:(1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能.当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12;当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13;当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16,所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =2 100时,甲、乙所编程序各自输出y 的值为i(i =1,2,3)的频率如下:输出y 的值为1的频率 输出y 的值为2的频率 输出y 的值为3的频率甲 1 0272 100 3762 100 6972 100乙 1 0512 100 6962 100 3532 100比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大. (3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=C 03³⎝⎛⎭⎫130³⎝⎛⎭⎫233=827,P (ξ=1)=C 13³⎝⎛⎭⎫131³⎝⎛⎭⎫232=49, P (ξ=2)=C 23³⎝⎛⎭⎫132³⎝⎛⎭⎫231=29,P (ξ=3)=C 33³⎝⎛⎭⎫133³⎝⎛⎭⎫230=127, 故ξ的分布列为ξ0 1 2 3 P 827 49 29 127所以,E ξ=0³827+1³49+2³29+3³127=1.即ξ的数学期望为1. 19.,,, 如图1-7所示,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1,∠BAC =120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段AD 的中点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l ⊥平面ADD 1A 1;(2)设(1)中的直线l 交AB 于点M ,交AC 于点N ,求二面角A -A 1M -N 的余弦值.图1-719.解:(1)如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC.由已知,AB =AC ,D 是BC 的中点. 所以,BC ⊥AD ,则直线l ⊥AD.因为AA 1⊥平面ABC ,所以AA 1⊥直线l.又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l ⊥平面ADD 1A 1. (2)解法一:联结A 1P ,过A 作AE ⊥A 1P 于E ,过E 作EF ⊥A 1M 于F ,联结AF.由(1)知,MN ⊥平面AEA 1,所以平面AEA 1⊥平面A 1MN. 所以AE ⊥平面A 1MN ,则A 1M ⊥AE. 所以A 1M ⊥平面AEF ,则A 1M ⊥AF.故∠AFE 为二面角A -A 1M -N 的平面角(设为θ).设AA 1=1,则由AB =AC =2AA 1,∠BAC =120°,有∠BAD =60°,AB =2,AD =1.又P 为AD 的中点,所以M 为AB 中点,且AP =12,AM =1,所以,在Rt △AA 1P 中,A 1P =52;在Rt △A 1AM 中,A 1M = 2.从而AE =AA 1·AP A 1P =15,AF =AA 1·AM A 1M =12,所以sin θ=AE AF =25.所以cos θ=1-sin 2θ=1-⎝ ⎛⎭⎪⎫252=155.故二面角A -A 1M -N 的余弦值为155. 解法二:设A 1A =1,如图,过A 1作A 1E 平行于B 1C 1,以A 1为坐标原点,分别以A 1E →,A 1D 1→,A 1A →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz(点O 与点A 1重合).则A 1(0,0,0),A(0,0,1). 因为P 为AD 的中点,所以M ,N 分别为AB ,AC 的中点,又AB =AC =2AA 1,∠BAC =120°,故可得M(32,12,1),N(-32,12,1),所以A 1M →=⎝⎛⎭⎫32,12,1,A 1A →=(0,0,1),NM →=(3,0,0).设平面AA 1M 的一个法向量为1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧1⊥A 1M →,n 1⊥A 1A →,即⎩⎪⎨⎪⎧·A 1M →=0,n 1·A 1A →=0,故有⎩⎪⎨⎪⎧(x 1,y 1,z 1)·⎝⎛⎭⎫32,12,1=0,(x 1,y 1,z 1)·(0,0,1)=0,从而⎩⎪⎨⎪⎧32x 1+12y 1+z 1=0,z 1=0.取x 1=1,则y 1=-3,所以1=(1,-3,0). 设平面A 1MN 的一个法向量为2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧2⊥A 1M →,n 2⊥NM →,即⎩⎪⎨⎪⎧2·A 1M →=0,n 2·NM →=0,故有⎩⎪⎨⎪⎧(x 2,y 2,z 2)·⎝⎛⎭⎫32,12,1=0,(x 2,y 2,z 2)·(3,0,0)=0,从而⎩⎪⎨⎪⎧32x 2+12y 2+z 2=0,3x 2=0.取y 2=2,则z 2=-1,所以2=(0,2,-1).设二面角A -A 1M -N 的平面角为θ,又θ为锐角,则cos θ=⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(1,-3,0)·(0,2,-1)2·5=155.故二面角A -A 1M -N 的余弦值为155. 20., 已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P ⎝⎛⎭⎫43,13.(1)求椭圆C 的离心率;(2)设过点A(0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且2|AQ|2=1|AM|2+1|AN|2,求点Q 的轨迹方程. 20.解:(1)由椭圆定义知,|PF 1|+|PF 2|=⎝⎛⎭⎫43+12+⎝⎛⎭⎫132+⎝⎛⎭⎫43-12+⎝⎛⎭⎫132=2 2.所以a =2,又由已知,c =1,所以椭圆C 的离心率e =c a =12=22.(2)由(1)知,椭圆C 的方程为x22+y 2=1.设点Q 的坐标为(x ,y).①当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q 的坐标为⎝⎛⎭⎫0,2-3 55.②当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2. 因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM|2=(1+k 2)x 21,|AN|2=(1+k 2)x 22.又|AQ|2=x 2+(y -2)2=(1+k 2)x 2.由2|AQ|2=1|AM|2+1|AN|2,得 2(1+k 2)x 2=1(1+k 2)x 21+1(1+k 2)x 22, 即2x 2=1x 21+1x 22=(x 1+x 2)2-2x 1x 2x 21x 22.① 将y =kx +2代入x 22+y 2=1中,得(2k 2+1)x 2+8kx +6=0.②由Δ=(8k)2-4³(2k 2+1)³6>0,得k 2>32.由②可知,x 1+x 2=-8k 2k 2+1,x 1x 2=62k 2+1,代入①中并化简,得x 2=1810k 2-3.③因为点Q 在直线y =kx +2上,所以k =y -2x ,代入③中并化简,得10(y -2)2-3x 2=18.由③及k 2>32,可知0<x 2<32,即x ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62.又⎝⎛⎭⎫0,2-3 55满足10(y -2)2-3x 2=18,故点Q 的轨迹方程为10(y -2)2-3x 2=18,x ∈⎝⎛⎭⎫-62,62. 21.,, 已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.21.解:(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f′(x 1)f′(x 2)=-1.当x<0时,对函数f(x)求导,得f′(x)=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32且x 2=-12时等号成立.所以,函数f(x)的图像在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1. (3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f′(x 2),故x 1<0<x 2. 当x 1<0时,函数f(x)的图像在点(x 1,f(x 1))处的切线方程为 y -(x 21+2x 1+a)=(2x 1+2)(x -x 1), 即y =(2x 1+2)x -x 21+a.当x 2>0时,函数f(x)的图像在点(x 2,f(x 2))处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2²x +ln x 2-1.两切线重合的充要条件是 ⎩⎪⎨⎪⎧1x 2=2x 1+2,①ln x 2-1=-x 21+a.②由①及x 1<0<x 2,知-1<x 1<0.由①②得,a =x 21+ln 12x 1+2-1=x 21-ln(2x 1+2)-1.设h(x1)=x21-ln(2x1+2)-1(-1<x1<0),则h′(x1)=2x1-1x1+1<0.所以,h(x1)(-1<x1<0)是减函数.则h(x1)>h(0)=-ln 2-1,所以a>-ln 2-1.又当x1∈(-1,0)且趋近于-1时,h(x1)无限增大,所以a的取值范围是(-ln 2-1,+∞).故当函数f(x)的图像在点A,B处的切线重合时,a的取值范围是(-ln 2-1,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校招生全国统一考试(重庆卷)
数学试题卷(理工农医类)
特别提醒:
(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一个选项是符合题目要求的.
(1)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B =ð
(A ){1,3,4} (B ){3,4} (C ){3} (D ){4}
(2)命题“对任意x R ∈,都有20x ≥”的否定为
(A )对任意x R ∈,使得20x < (B )不存在x R ∈,使得20x <
(C )存在0x R ∈,都有200x ≥ (D )存在0x R ∈,都有200x <
(3)(3)(6)a a -+(63a -≤≤)的最大值为
(A )9 (B )92 (C )3 (D )322
(4)以下茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分). 甲组 乙组
9 0 9
x
2 1 5
y 8 7 4 2 4
已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x 、y 的值分别为
(A )2、5 (B )5、5
(C )5,8 (D )8,8
(5)某几何体的三视图如题(5)图所示,则该几何体的体积为 (A )
5603
(B )5803 (C )200
(D )240
(6)若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--两个零点
分别位于区间
(A )(,)a b 和(,)b c 内 (B )(,)a -∞和(,)a b 内
(C )(,)b c 和(,)c +∞内 (D )(,)a -∞和(,)c +∞内
(7)已知圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=,M 、N
分别是圆1C 、2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为
(A )524- (B )171- (C )622- (D )17
(8)执行如题(8)图所示的程序框图,如果输出3s =,那么判断框内应填入的条
件是
(A )6k ≤ (B )7k ≤ (C )8k ≤ (D )9k ≤
(9)004cos50tan 40-=
(A )2 (B )232
+ (C )3 (D )221- (10)在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <
,则OA 的取值范围是 (A )5(0,]2 (B )57(,]22 (C )5(,2]2 (D )7(,2]2
二.填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答
案填写在答题卡相应位置上.
(11)已知复数512i z i
=+(i 是虚数单位),则z = . (12)已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若1a 、2a 、5a 称等比数列,则8S = .
(13)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则
骨科、脑外科和内科医生都至少有1人的选派方法种数是 (用数字作答). 考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.
(14)如题(14)图,在△ABC 中,090C ∠=,0
60A ∠=,20AB =,过C
作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,则DE 的
长为 .
(15)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐
标系.若极坐标方程为cos 4ρθ=的直线与曲线2
3x t y t
⎧=⎨=⎩(t 为参数)相交于A 、B 两点,则AB = .
(16)若关于实数x 的不等式53x x a -++<无解,则实数a 的取值范围是 .
三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)
设2()(5)6ln f x a x x =-+,其中a R ∈,曲线()y f x =在点(1,(1)f )处的切线与y 轴相较于点(0,6).
(Ⅰ)确定a 的值;
(Ⅱ)求函数()f x 的单调区间与极值.
(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)
某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个篮球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与篮球的个数,设一、二、三等奖如下:
奖级
摸出红、蓝球个数 获奖金额 一等奖
3红1蓝 200元 二等奖
3红0蓝 50元 三等奖 2红1蓝 10元
其余情况无奖且每次摸奖最多只能获得一个奖级.
(Ⅰ)求一次摸球恰好摸到1个红球的概率;
(Ⅱ)求摸奖者在一次摸奖中获奖金额X 的分布列与期望()E X .
(19)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)
如题(19)图,四棱锥P ABCD -中,PA ⊥底面ABCD ,
2BC CD ==,4AC =,3ACB ACD π∠=∠=
,F 为PC 的中点,
AF ⊥PB .
(Ⅰ)求PA 的长;
(Ⅱ)求二面角B AF D --的余弦值.
(20)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)
在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且2222a b ab c ++=. (Ⅰ)求C ; (Ⅱ)设32cos cos 5A B =,2cos()cos()2cos 5
A B ααα++=,求tan α的值. (21)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)
如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率22
e =,过左焦点1F 作
x 轴的垂线交椭圆于A 、A '两点,4AA '=.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)取垂直于x 轴的直线与椭圆相较于不同的两点P 、P ',过P 、
P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P Q ',
求圆Q 的标准方程.
(22)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)
对正整数n ,记{1,2,3,n I =…,}n ,{
n n m P m I k
=∈,}n k I ∈. (Ⅰ)求集合7P 中元素的个数; (Ⅱ)若n P 的子集A 中任意两个元素之和不是..
整数的平方,则称A 为“稀疏集”.求n 的最大值,使n P 能分成两个不相交的稀疏集的并.。