(完整word)2018年高考数学总复习三角恒等变换
2018届高考数学(理)一轮复习高频考点大突破学案:专题21简单的三角恒等变换
0 2x
( 2)当
6 3 时,有
3
,从而
5
0 2x
当
3
2 时,即 6
x
12 时, f (x) 单调递增,
当 2x
2
3
5
2
时 ,即
x
时, f ( x) 单调递减,
12
3
综上可知, f ( x) 在 [
5 ,
] 上单调递增;
f ( x) 在 [ 5
2 ,
] 上单调递减 .
6 12
12 3
( 2014·全国卷)直线 l 1 和 l 2 是圆 x2+ y2= 2 的两条切线.若 l1 与 l 2 的交点为 (1, 3),则 l 1 与 l2 的夹角
的正切值等于 ________.
【答案】 4 3
【解析】 如图所示,根据题意, OA⊥ PA,OA= 2, OP= 10,所以 PA= OP2- OA2= 2
2,所以
专题 21 简单的三角恒等变换
tan∠
OPA=
OA PA
= 2
2 = 1,故 22
tan∠
APB
=
2tan∠ OPA 1- tan2∠OPA=
例 3、已知函数
f( x)= sin(x+ θ)+ acos(x+ 2θ),其中
a∈ R ,θ∈
-
2π,
π 2
.
(1)当 a= 2,θ= π4时,求 f( x)在区间 [0, π上]的最大值与最小值;
(2)若
f
π 2
=
0,
f
(
π=)1,求
a, θ的值.
解
(1) f(x)= sin x+ π4 +
高考数学总复习 三角恒等变换基础知识讲解
高考数学总复习三角恒等变换基础知识讲解【考纲要求】1、会用向量的数量积推导出两角差的余弦公式、2、能利用两角差的余弦公式导出两角差的正弦、正切公式、3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系、4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)、【知识网络】简单的三角恒等变换三角恒等变换两角和与差的三角函数公式倍角公式【考点梳理】考点一、两角和、差的正、余弦公式要点诠释:1、公式的适用条件(定义域)XXXXX:前两个公式,对任意实数α,β都成立,这表明该公式是R上的恒等式;公式③中2、正向用公式,,能把和差角的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角的弦函数。
公式正向用是用单角的正切值表示和差角的正切值化简。
考点二、二倍角公式1、在两角和的三角函数公式时,就可得到二倍角的三角函数公式:;;。
要点诠释:1、在公式中,角α没有限制,但公式中,只有当时才成立;2、余弦的二倍角公式有三种:==;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。
3、二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍,,的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键。
考点三、二倍角公式的推论降幂公式:;;、万能公式:;、半角公式:;;、其中根号的符号由所在的象限决定、要点诠释:(1)半角公式中正负号的选取由所在的象限确定;(2)半角都是相对于某个角来说的,如可以看作是3α的半角,2α可以看作是4α的半角等等。
(3)正切半角公式成立的条件是α≠2kπ+π(k∈Z)正切还有另外两个半角公式:,这两个公式不用考虑正负号的选取问题,但是需要知道两个三角函数值。
常常用于把正切化为正余弦的表达式。
简单的三角恒等变换-高考数学复习
cos 2β=1-2 sin θ cos θ.所以2 cos 2α= cos 2β.
所以4 cos 22α- cos 22β=(2 cos 2α- cos 2β)(2 cos 2α+ cos 2β)
=0.
目录
高中总复习·数学
三角恒等变换的综合应用
【例5】 已知3 sin α=2 sin
2 -1.
2−
2× ×
sin2
2sincos
所以 2
=
=
3
2
2
2 −si
+cos2
2×( )
5
4
5
()
2
=12.
目录
高中总复习·数学
2. 已知函数 f ( x )=4 cos x cos
π
( x + )-
6
3.
(1)求 f ( x )的单调递增区间;
解: f ( x )=4 cos x cos
13
所以 sin β= sin [(β+α)-α]= sin (β+α) cos α- cos (β
+α) sin
12 3
5
4
16
α= × - × = .
13 5
13 5
65
目录
高中总复习·数学
(2)求
sin2
2
+cos2
解:因为 cos
的值.
3
α= ,
5
sin
4
α= ,
5
4 3
5 5
目录
高中总复习·数学
2. 证明三角恒等式的基本方法
(1)从左向右推导或从右向左推导,一般由繁到简;
(2)左右归一法,即证明左右两边都等于同一个式子;
高考数学专题复习四-4.2三角恒等变换-高考真题练习(附答案)
4.2三角恒等变换考点三角恒等变换1.(2017课标Ⅲ文,4,5分)已知sinα-cosα=43,则sin2α=()A.-79 B.-29C.29D.79答案A ∵(sinα-cosα)2=169,∴sin2α=-79.解后反思涉及sinα±cosα,sinαcosα的问题,通常利用公式(sinα±cosα)2=1±2sinαcosα进行转换.2.(2017山东文,4,5分)已知cosx=34,则cos2x=()A.-14 B.14C.-18D.18答案D 本题考查二倍角余弦公式.因为cosx=34,所以cos2x=2cos 2-1=18.3.(2016课标Ⅲ文,6,5分)若tanθ=-13,则cos2θ=()A.-45 B.-15C.15D.45答案D 解法一:cos2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1−tan 2θ1+tan 2θ=45.故选D.解法二:由tanθ=-13,可得因而cos2θ=1-2sin 2θ=45.评析本题考查化归与转化的能力.属中档题.4.(2015课标Ⅰ理,2,5分)sin20°cos10°-cos160°sin10°=()C.-12D.12答案D 原式=sin20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=12,故选D.5.(2015重庆理,9,5分)若tanα=2tan π5,)A.1B.2C.3D.4答案C=sinvos π5+cosLin π5sinvos π5-cosLin π5=tanrtan π5tanttan π5,∵tanα=2tanπ5,∴=3tanπ5tanπ5=3.故选C.6.(2015重庆文,6,5分)若tanα=13,tan(α+β)=12,则tanβ=()A.17B.16C.57D.56答案A tanβ=tan[(α+β)-α]=tan(rp-tan1+tan(rp·tan=12-131+12×13=17,故选A.7.(2013课标Ⅱ文,6,5分)已知sin2α=23,则cos2)A.16B.13C.12D.23答案A cos2=1−sin22,把sin2α=23代入,原式=16.选A.评析本题考查了三角函数的化简求值,考查了降幂公式、诱导公式的应用.8.(2016课标Ⅱ,9,5分)若-α=35,则sin2α=()A.725B.15C.-15D.-725答案D解法一:因为-α=35,所以-2α=cos2-α=2cos-α-1=-725.故选D.解法二-α(cosα+sinα)=35⇒1+sin2α=1825,∴sin2α=-725.故选D. 9.(2021全国乙文,6,5分)cos2π12−cos25π12=()A.12答案D解析解法一:cos2π5π12=π=cos2π12−sin2π12=cosπ6=解法二:cos2π12−cos25π12cos2−cos2=cosπ4π6π4π4π6sinπ4×10.(2021全国甲理,9,5分)若α∈tan2α=cos2−sin,则tanα=()答案A 解题指导:先将切化弦,再将分式化为整式,利用两角差的余弦公式及二倍角公式将异角化为同角,最后利用同角三角函数的基本关系求解.解析∵tan 2α=cos 2−sin ,且α∈0,∴sin2cos2=cos2−sin ,∴2sin 2α=cos αcos 2α+sin αsin 2α,即4sin αcos α=cos (2α-α)=cos α,又cos α≠0,∴4sin α=1,∴sin α=14,∴cos αtan αA .疑难突破将tan 2α转化为sin2cos2是本题的突破口.11.(2021新高考Ⅰ,6,5分)若tan θ=-2,则sino1+sin2psinrcos=()A.-65B.−25C.25D.65答案Csino1+sin2psinrcos=sinosin 2rcos 2r2sinbcospsinrcos=sinosinrcosp 2sinrcos=sin θ(sin θ+cos θ)=sin 2θ+sin θ·cosθ=sin 2rsinbcos sin 2rcos 2=tan 2rtan tan 2r1=(−2)2−2(−2)2+1=25.故选C .12.(2022新高考Ⅱ,6,5分)若sin (α+β)+cos (α+β)=22cos β,则()A.tan (α-β)=1B.tan (α+β)=1C.tan (α-β)=-1D.tan (α+β)=-1答案C 因为sin (α+β)+cos (α+β)=sin αcos β+cos αsin β+cos αcos β-sin αsin β,22cos β=(2cosα-2sin α)sin β=2cos αsin β-2sin αsin β,所以sin αcos β+cos αsin β+cos αcos β-sin αsin β=2cos αsin β-2sin αsin β,即sin αcos β-cos αsin β+cos αcos β+sin αsin β=0,进而得sin (α-β)+cos (α-β)=0,又知cos (α-β)≠0,所以tan (α-β)=-1,故选C .13.(2022浙江,13,6分)若3sin α-sin β=10,α+β=π2,则sin α=,cos 2β=.答案45解析设a =sin α,b =sin β=cos α,则3−=10,21,解得a b∴sin α=a cos 2β=1-2sin 2β=1-2b 2=45.14.(2020课标Ⅱ文,13,5分)若sinx=-23,则cos2x=.答案19解析∵sinx=-23,∴cos2x=1-2sin2x=1-2×=19.15.(2018课标Ⅱ文,15,5分)已知tan t=15,则tanα=.答案32解析本题主要考查两角差的正切公式.tan t=tanttan5π41+tanMan5π4=tant11+tan=15,解得tanα=32.16.(2017课标Ⅰ文,15,5分)已知α∈则cos t=.答案解析因为α∈且tanα=sin cos=2,所以sinα=2cosα,又sin2α+cos2α=1,所以则cos t=cosαcosπ4+sinαsinπ4=易错警示在求三角函数值时,常用到sin2α+cos2α=1和tanα=sin cos,同时要注意角的范围,以确定三角函数值的正负.17.(2017江苏,5,5分)若tan t=16,则tanα=.答案75解析本题考查两角和的正切公式.因为tan=16,所以tanα=tan=16+11−16×1=75.18.(2016浙江,理10,文10,5分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.答案2;1解析∵2cos2x+sin2x=1+cos2x+sin2x=2sin2+1,∴A=2,b=1.评析本题主要考查三角恒等变换,熟练利用两角和的正弦公式及二倍角公式是解题关键. 19.(2016课标Ⅰ文,14,5分)已知θ是第四象限角,且sin=35,则tan t=.答案-43解析解法一:∵sin×(sinθ+cosθ)=35,∴sinθ+cosθ=①,∴2sinθcosθ=-725.∵θ是第四象限角,∴sinθ<0,cosθ>0,∴sinθ-cosθ=-1−2sinvos=-由①②得,∴tanθ=-17,∴tan=tant11+tan=-43.解法二:∵-θ=π2,∴sin=35,又2kπ-π2<θ<2kπ,k∈Z,∴2kπ-π4<θ+π4<2kπ+π4,k∈Z,∴cos=45,∴sin-θ=45,-θ=43,∴tan=-43.评析本题主要考查了三角恒等变换,熟练掌握同角三角函数关系式及诱导公式是解题的关键.20.(2016四川理,11,5分)cos2π8-sin2π8=.答案解析由二倍角公式易得cos2π8-sin2π8=cosπ4=21.(2015江苏,8,5分)已知tanα=-2,tan(α+β)=17,则tanβ的值为.答案3解析tanβ=tan[(α+β)-α]=tan(rp-tan1+tan(rptan=17-(-2)1+17×(−2)=3.22.(2015四川理,12,5分)sin15°+sin75°的值是.答案解析sin15°+sin75°=sin15°+cos15°=2sin(15°+45°)=2sin60°=23.(2014课标Ⅱ理,14,5分)函数f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值为.答案1解析f(x)=sin[(x+φ)+φ]-2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ-2sinφcos(x+φ)=sin(x+φ)cosφ-sinφcos(x+φ)=sin(x+φ-φ)=sinx,∴f(x)的最大值为1.24.(2014课标Ⅱ文,14,5分)函数f(x)=sin(x+φ)-2sinφcosx的最大值为.答案1解析f(x)=sin(x+φ)-2sinφcosx=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,所以f(x)max=1.25.(2015广东文,16,12分)已知tanα=2.(1)求tan;(2)求sin2sin2α+sinvostcos2t1的值.解析(1)因为tanα=2,所以tan=tanrtanπ41−tan·tanπ4=2+11−2×1=-3.(2)因为tanα=2,所以sin2sin2α+sinvostcos2t1=2sinvossin2α+sinvost(cos2α-sin2α)-(sin2α+cos2α)=2sinvostan2α+tant2=2×222+2−2=1.sin2α+sinvost2cos2α=2tan26.(2014江苏,15,14分)已知,π(1)求α的值;(2)求-2α.解析(1)因为2,π所以cosα=-1−sin2α=-故α=sinπ4cosα+cosπ4sinα×(2)由(1)知-=-45,cos2α=1-2sin2=35,所以-2α=cos5π6cos2α+sin5π6sin2α=×35+12×评析本题主要考查三角函数的基本关系式、两角和与差的正、余弦公式及二倍角公式,考查运算求解能力.。
五年高考三年模拟2018届高三数学理新课标一轮复习课件:4.3 三角恒等变换 精品
2
3
2
9
9
解法二:sin 2θ=-cos
2
4
θ
=2sin2
4
θ
-1=
2 9
-1=-
7 9
.
方法2 辅助角公式的应用
例3 (2014浙江教育考试院数学样卷,18,14分)在△ABC中,内角A,B,C满足4sin Asin C-2cos(A-C) =1. (1)求角B的大小; (2)求sin A+2sin C的取值范围. 解析 (1)因为4sin Asin C-2cos(A-C)=4sin Asin C-2cos Acos C-2sin Asin C=-2(cos Acos C-sin Asin C)=-2cos(A+C),
(α-β),2α=(β+α)-(β-α),α+β=2·α
2
β
,
α
2
β
=
α
β 2
-
α 2
β
等.
突破方法
方法1 三角函数的化简与求值问题
1.要掌握求值问题的解题规律和途径,寻求角之间关系的特殊性,化非特殊角为特殊角,正确 选用公式,灵活地掌握各个公式的正用、逆用、变形用等. 2.求值题常见类型 (1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但仔细观察会发现非特殊角 与特殊角总有一定关系.解题时,要利用观察得到的关系,结合公式转化为特殊角的三角函数,然 后求值. (2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变 角”,使角相同或具有某种关系. (3)“给值求角”:实质上可转化为“给值求值”,先求角的某一三角函数值,再结合角的范围求 解.
=17 2 .
2018届高考数学理一轮(课标通用)课件:16三角恒等变换
三角恒等变换
考点35
考点36
试做真题
高手必备
萃取高招
对点精练
考点35三角函数式的化简与求值
1.(2016 课标Ⅱ,理 9)若 cos A.
7 25
B.
1 5
π -������ 4
3 5 1 C.5
= ,则 sin 2α=( D.2
)
3 2 7 -1=- , 5 25
7 25
【答案】 D 且 cos 2
典例 导引 2(2)
考点35
考点36
试做真题
高手必备
萃取高招
对点精练
类型
解
读
典例 指引
给值 求角
温馨 提醒
实质上可转化为“给值求值”,关键也是变角,把所求 角用含已知角的式子表示,由所得的函数值结合该 典例 函数的单调区间求得角,有时要压缩角的取值范围. 导引 通过求角的某种三角函数值来求角,在选取函数时, 2(3) 遵照以下原则:已知正切函数值,选正切函数;已知正 弦、余弦函数值,选正弦或余弦函数 在求值的题目中,一定要注意角的范围,要做到“先看角的 范围,再求值”
,所以 α-β= -α,即 2α-β= ,故选 D.
π 2
2α×
2 2
=
2 . 10
考点35
考点36
试做真题
高手必备
萃取高招
对点精练
π 2π , . 6 3 4 π 3 又 cos ������ + = ,∴sin ������ + = , 5 6 5 π π 7 2 则 cos 2 ������ + =1-2sin ������ + = , 6 6 25 π π π 24 sin 2 ������ + =2sin ������ + cos ������ + = . 6 6 6 25 π π π 于是 sin 2������ + =sin 2������ + 12 3 4 π π =sin 2 ������ + 6 4 2 π 2 π 17 2 = sin 2 ������ + − cos 2 ������ + = . 2 6 2 6 50 2 17 2 【答案】 (1)D (2) (3) 10 50
高考数学一轮总复习课件:三角恒等变换
5.(2021·衡水中学调研卷)已知sin(θ+20°)=
2+ 4
6,
cos105°=
2- 4
6 ,tan105°=-2-
3 .(也可由105°=60°+45
°求得)
(2)求值: ①sin2π12-sin251π2 ;
②1-tatna2n222°2°303′0′;
③sin105°·sin15°; ④sin110°-cos130°.
π 【思路】 通过适当变形,创造适合公式的条件.①由sin2 12
π ∴cos(α+ 4 )=-
1-sin2(α+π4 )=-35.
ππ ∴cosα=cos[(α+ 4 )- 4 ]
ππ
ππ
=cos(α+ 4 )cos 4 +sin(α+ 4 )sin 4
=-35× 22+45× 22=102.
(6)∵cos(75°-α)=sin(15°+α)=13, ∴cos(30°+2α)=1-2sin2(15°+α)=1-2×19=79.
【答案】
①
3 3
②4
③2- 3
④14
(4)①(2016·课标全国Ⅱ)若cos(π4 -α)=35,则sin2α=( D )
7 A.25
1 B.5
C.-15
D.-275
②设α为锐角,若cos(α+ 17 2
π 6
)=
4 5
,则sin(2α+
2018年高考数学总复习第四章三角函数解三角形4.6三角恒等变换课件理新人教A版
1
2
3
4
5
������ sin������ -2cos22 2. 化简: ������ π =( sin 2 - 4 ������ ������ A.2√2cos B. √2cos 2 2 ������ ������ C.2√2sin2 D. √2sin2
)
关闭
原式=
2sin cos -2co s 2
-2si n 2 ������ co s 2 ������ +
= =
=2cos 2x.
1
-10考点1 考点2 考点3
(3)(方法一)∵sin α= +cos α,
1 2
∴sin α-cos α=2, ∴√2sin ������- 4 = 2, ∴sin ������- 4 =
又 α∈ 0, 2 ,
√14 √7 =- 4 . 4
∴
cos2 ������ sin ������ -
=
-
√7 4 √2 4
√14 =- 2 .
-12考点1 考点2 考点3
(方法二)∵sin α=2+cos α,
1
∴sin α-cos α=2, ∵α∈ 0, 2 , ∴sin α+cos α
=sin(x+φ)cos φ+cos(x+φ)sin φ-2sin φcos(x+φ)
=sin(x+φ)cos φ-cos(x+φ)sin φ
=sin [(x+φ)-φ]=sin x.
∴f(x)max=1.
1
解析
关闭
答案
-7知识梳理 考点自测
1
2
3
4
5
(完整word版)三角恒等变换-知识点+例题+练习,推荐文档
两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin⎝ ⎛⎭⎪⎫α±π4. 4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β.(2)化简技巧:切化弦、“1”的代换等. 三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).3.已知sin α=23,则cos(π-2α)等于( ).4.(2011·辽宁)设sin ⎝ ⎛⎭⎪⎫π4+θ=13,则sin 2θ=( ).5.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .[审题视点] 切化弦,合理使用倍角公式.三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向.【训练1】化简:sin α+cos α-1sin α-cos α+1sin 2α.考向二三角函数式的求值【例2】►已知0<β<π2<α<π,且cos⎝⎛⎭⎪⎫α-β2=-19,sin⎝⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.【训练2】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练3】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x . (1)求f ⎝ ⎛⎭⎪⎫π3的值;(2)求f (x )的最大值和最小值.高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查还往往渗透在研究三角函数性质中.需要利用这些公式,先把函数解析式化为y =A sin(ωx +φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.【训练4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值.三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝ ⎛⎭⎪⎫0,π2.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.【课后训练】A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( )A.15 B.14 C.13 D.122. (2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A .-53B .-59C.59D.533. 已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于( ) A.π4B.3π4C.π4和3π4D .-π4和-3π44. (2011·福建)若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( ) A.22B.33C. 2D. 3二、填空题(每小题5分,共15分)5. cos 275°+cos 215°+cos 75°cos 15°的值等于________. 6.3tan 12°-34cos 212°-2sin 12°=________.7.sin α=35,cos β=35,其中α,β∈⎝ ⎛⎭⎪⎫0,π2,则α+β=____________.三、解答题(共22分) 8. (10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.9. (12分)已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若s in(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.=-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分) 1. (2012·山东)若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ等于( ) A.35B.45C.74D.342. 已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,那么tan ⎝ ⎛⎭⎪⎫α+π4等于( ) A.1318 B.1322 C.322D.163. 当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的( )A .最大值是1,最小值是-1B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1二、填空题(每小题5分,共15分) 4.已知锐角α满足cos 2α=cos ⎝⎛⎭⎪⎫π4-α,则sin 2α=_______.5.已知cos ⎝ ⎛⎭⎪⎫π4-α=1213,α∈⎝ ⎛⎭⎪⎫0,π4,则cos 2αsin ⎝ ⎛⎭⎪⎫π4+α=_________.6. 设x ∈⎝ ⎛⎭⎪⎫0,π2,则函数y =2sin 2x +1sin 2x 的最小值为________.三、解答题7. (13分)(2012·广东)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫5α+53π=-65,f ⎝ ⎛⎭⎪⎫5β-56π实用标准文档文案大全 =1617,求cos(α+β)的值.。
高考数学考点16 三角函数的诱导公式、同角的基本关系式、简单的三角恒等变换
温馨提示:考点16 三角函数的诱导公式、同角的基本关系式、简单的三角恒等变换一、选择题1.(2018·全国卷I高考文科·T11)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A,B,且cos2α=,则=()A.B.C.D.1【解析】选B.由cos2α=2cos2α-1=可得cos2α===,化简可得tanα=±;当tanα=时,可得=,=,即a=,b=,此时|a-b|=;当tanα=-时,仍有此结果,故|a-b|=.2.(2018·全国卷II高考理科·T10)若f(x)=cos x-sin x在[-a,a]上是减函数,则a的最大值是()A.B.C.D.π【命题意图】本题考查了利用三角函数的单调性来确定参数的范围,同时也考查了三角恒等变换的能力.【解析】选A.f(x)=cos x-sin x=cos在上单调递减,所以[-a,a]⊆,故-a≥-且a≤,解得0<a≤.3.(2018·全国卷II高考文科·T10)若f(x)=cos x-sin x在[0,a]上是减函数,则a的最大值是()A.B.C.D.π【命题意图】本题考查了利用三角函数的单调性来确定参数的范围,同时也考查了三角恒等变换的能力.【解析】选C.f(x)=cos x-sin x=cos在上单调递减,所以[0,a]⊆,故0<a≤.4.(2018·全国Ⅲ高考理科·T4)若sinα=,则cos2α= ()A.B.C.-D.-【命题意图】本题属于三角函数中的给值求值问题,考查三角函数的二倍角的运算,考查逻辑推理能力、运算求解能力,体现了逻辑推理和数学运算的核心素养.试题难度:易.【解析】选B.cos2α=1-2sin2α=1-2×=.5.(2018·全国Ⅲ高考文科·T4)若sinα=,则cos2α= ()A.B.C.-D.-【命题意图】本题属于三角函数中的给值求值问题,考查三角函数的二倍角的运算,考查逻辑推理能力、运算求解能力,体现了逻辑推理和数学运算的核心素养.试题难度:易.【解析】选B.cos2α=1-2sin2α=1-2×=.6.(2018·全国Ⅲ高考文科·T6)函数f=的最小正周期为()A.B.C.πD.2π【命题意图】考查同角三角函数关系,三角函数图象与性质,以及三角恒等变换,意在考查灵活运用公式与基本运算能力,培养学生的逻辑思维能力,体现了逻辑推理、数学运算的数学素养.【解析】选C.f(x)===sin x cos x=sin2x,所以f(x)的最小正周期为T==π.二、填空题7.(2018·全国卷II高考理科·T15)已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=.【命题意图】本题考查两角和与差的三角函数公式的运用以及同角的三角函数基本关系式,同时也考查了推理论证能力.【解析】由sinα+cosβ=1与cosα+sinβ=0分别平方相加得sin2α+2sinαcosβ+cos2β+cos2α+2cosαsinβ+sin2β=1,即2+2sinαcosβ+2cosαsinβ=1,所以sin(α+β)=-.答案:-8.(2018·全国卷II高考文科·T15)已知tan=,则tanα=. 【命题意图】本题考查三角函数的恒等变换,给值求值问题,考查了学生对公式变形的应用能力.【解析】因为tan=tan=,所以=,解得tanα=.答案:三、解答题9.(本小题满分14分)(2018·江苏高考·T16)已知α,β为锐角,tanα=,cos(α+β)=-.(1)求cos2α的值.(2)求tan(α-β)的值.【解析】(1)因为tanα=,tanα=,所以sinα=cosα.因为sin2α+cos2α=1,所以cos2α=,因此,cos2α=2cos2α-1=-.(2)因为α,β为锐角,所以a+β∈(0,π).又因为cos(α+β)=-,所以sin(α+β)==,因此tan(α+β)=-2.因为tanα=,所以tan2α==-,因此,tan(α-β)=tan[2α-(α+β)]==-.10.(2018·浙江高考T18)(本题满分14分)已知角α的顶点与原点O重合,始边与x 轴的非负半轴重合,它的终边过点P .(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cos β的值.【命题意图】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.【解析】(Ⅰ)由角α的终边过点P 得sin α=-,所以sin(α+π)=-sin α=.(Ⅱ)由角α的终边过点P得cos α=-,由sin(α+β)=得cos(α+β)=±. 由β=(α+β)-α得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-或cos β=.关闭Word 文档返回原板块高中数学公式及常用结论大全1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠;(3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->-⇔11()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:()()()()card A B card B C card C A card A B C ---+(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.真值表14.四种命题的相互关系互 否15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数. 22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=. (2)函数()y f x =图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. 26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+0()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm na a-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当n为奇数时,a =;当n为偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用. 33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.(2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ). 48.二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.49. 三倍角公式 3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.51.正弦定理 2sin sin sin a b cR A B C ===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解 sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤.s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤. tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈. tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈. sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.61.a 与b 的数量积(或内积) a ·b =|a ||b |cos θ.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ). 65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λ a 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式 ''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小. (2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大. 73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-. 75.无理不等式 (1)()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (2)2()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (3)2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数. (2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直直线系方程0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左. 85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b +=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b+=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b-=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 101.抛物线px y 22=上的动点可设为P ),2(2y py或或)2,2(2pt pt P P (,)x y ,其中22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-; (3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =. 105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <. 当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212|||AB x x y y ==-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F bkx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量. 117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA y MB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++. 121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e 122.向量的直角坐标运算 设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直 设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉=.推论 222222*********3123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+. 特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+. 特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量). 132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ). 136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =',d EA AF =.d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =).139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例). 141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱. 143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比. 145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =.146.球的半径是R ,则其体积343V R π=,其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.(3) 球与正四面体的组合体: 棱长为a 的正四面体的内切球的半径为,外接球的半径为. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理)12n N m m m =+++.150.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤). 注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1m mn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n nA A mA -+=+.(6)1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.153.组合数公式mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质(1)m n C =mn n C - ;(2) m n C +1-m n C =m n C 1+.注:规定10=nC . 155.组合恒等式 (1)11m m n n n m C C m --+=;(2)1m m n n n C C n m -=-;(3)11mm nn n C C m--=; (4)∑=nr r n C 0=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C .(6)n nn r n n n nC C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n nC C C C C C . (8)1321232-=++++n n n n n nn nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种.。
高考数学历年(2018-2022)真题按知识点分类(三角恒等变换)练习(附答案)
高考数学历年(2018-2022)真题按知识点分类(三角恒等变换)练习一、单选题1.(2022ꞏ北京ꞏ统考高考真题)已知函数22()cos sin f x x x =-,则( )A .()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减B .()f x 在,412ππ⎛⎫- ⎪⎝⎭上单调递增C .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减D .()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增2.(2022ꞏ北京ꞏ统考高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是( )A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-3.(2022ꞏ全国ꞏ统考高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则( )A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-4.(2021ꞏ北京ꞏ统考高考真题)函数()cos cos 2f x x x =-是 A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为985.(2021ꞏ全国ꞏ统考高考真题)22π5πcoscos 1212-=( )A .12B C D 6.(2021ꞏ浙江ꞏ统考高考真题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( )A .0B .1C .2D .37.(2021ꞏ全国ꞏ高考真题)若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A .15B C D 8.(2021ꞏ全国ꞏ统考高考真题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45A C B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''- 1.732≈)( )A .346B .373C .446D .4739.(2021ꞏ全国ꞏ统考高考真题)函数()sin cos 33x xf x =+的最小正周期和最大值分别是( )A .3πB .3π和2C .6πD .6π和210.(2021ꞏ全国ꞏ统考高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .6511.(2020ꞏ山东ꞏ统考高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos 2c B A =,则tan A 等于( ) A .3B .13-C .3或13- D .-3或1312.(2018ꞏ全国ꞏ高考真题)若1sin 3α=,则cos2α= A .89B .79 C .79-D .89-13.(2018ꞏ全国ꞏ高考真题)函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π14.(2018ꞏ全国ꞏ高考真题)已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为415.(2018ꞏ全国ꞏ高考真题)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -= A .15B.5C.5D .116.(2019ꞏ全国ꞏ高考真题)已知α ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BCD二、多选题17.(2022ꞏ全国ꞏ统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( ) AB .32C.2 D.218.(2021ꞏ全国ꞏ统考高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,()1,0A ,则( )A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅三、填空题19.(2022ꞏ浙江ꞏ统考高考真题)若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.20.(2020ꞏ北京ꞏ统考高考真题)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.21.(2018ꞏ全国ꞏ高考真题)已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________. 22.(2018ꞏ全国ꞏ高考真题)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.23.(2019ꞏ江苏ꞏ高考真题)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是_____.四、解答题24.(2022ꞏ天津ꞏ统考高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.25.(2022ꞏ北京ꞏ统考高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.26.(2022ꞏ全国ꞏ统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ; (2)证明:2222a b c =+27.(2021ꞏ天津ꞏ统考高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =. (I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.28.(2021ꞏ浙江ꞏ统考高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.29.(2020ꞏ浙江ꞏ统考高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.30.(2018ꞏ北京ꞏ高考真题)在ABC 中,17,8,cos 7a b B ===-.(1)求A ∠; (2)求AC 边上的高.31.(2018ꞏ浙江ꞏ高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值.32.(2018ꞏ北京ꞏ高考真题)已知函数()2sin cos f x x x x =.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.33.(2018ꞏ江苏ꞏ高考真题)已知,αβ为锐角,4tan 3α=,cos()αβ+=(1)求cos 2α的值;(2)求tan()αβ-的值.34.(2019ꞏ江苏ꞏ高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b cos B =23,求c 的值;(2)若sin cos 2A B a b=,求sin(2B π+的值.35.(2019ꞏ全国ꞏ高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-. (1)求A ;(22b c +=,求sin C .36.(2019ꞏ全国ꞏ统考高考真题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 37.(2019ꞏ北京ꞏ高考真题)在△ABC 中,a =3,b −c =2,cos B =12-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin (B –C )的值.38.(2019ꞏ天津ꞏ高考真题) 在ABC 中,内角A B C ,,所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.五、双空题39.(2022ꞏ北京ꞏ统考高考真题)若函数()sin f x A x x =的一个零点为3π,则A =________;12f π⎛⎫= ⎪⎝⎭________.参考答案1.C【要点分析】化简得出()cos 2f x x =,利用余弦型函数的单调性逐项判断可得出合适的选项.【过程详解】因为()22cos sin cos 2f x x x x =-=.对于A 选项,当26x ππ-<<-时,23x ππ-<<-,则()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递增,A 错; 对于B 选项,当412x ππ-<<时,226x ππ-<<,则()f x 在,412ππ⎛⎫- ⎪⎝⎭上不单调,B 错;对于C 选项,当03x π<<时,2023x π<<,则()f x 在0,3π⎛⎫⎪⎝⎭上单调递减,C 对;对于D 选项,当7412x ππ<<时,7226x ππ<<,则()f x 在7,412ππ⎛⎫⎪⎝⎭上不单调,D 错. 故选:C.2.D【要点分析】依题意建立平面直角坐标系,设()cos ,sin P θθ,表示出PA ,PB,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;【过程详解】解:依题意如图建立平面直角坐标系,则()0,0C ,()3,0A ,()0,4B ,因为1PC =,所以P 在以C 为圆心,1为半径的圆上运动, 设()cos ,sin P θθ,[]0,2θπ∈,所以()3cos ,sin PA θθ=-- ,()cos ,4sin PB θθ=-- , 所以()()()()cos 3cos 4sin sin PA PB θθθθ⋅=-⨯-+-⨯-22cos 3cos 4sin sin θθθθ=--+13cos 4sin θθ=--()15sin θϕ=-+,其中3sin 5ϕ=,4cos 5ϕ=,因为()1sin 1θϕ-≤+≤,所以()415sin 6θϕ-≤-+≤,即[]4,6PA PB ⋅∈-; 故选:D3.C【要点分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解. 【过程详解】[方法一]:直接法由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-, 即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=, 即:()()sin cos 0αβαβ-+-= 所以()tan 1αβ-=- 故选:C[方法二]:特殊值排除法解法一:设β=0则sinα +cosα =0,取=2πα,排除A, B ;再取α=0则sinβ +cosβ= 2sinβ,取β=4π,排除D ;选C.[方法三]:三角恒等变换sin()cos()]44cos sin sin 444ππαβαβαβαβπππαβαβαβ+++=++++=++=+(()()()()cos sin 44ππαβαβ+=+()() sin cos cos sin =044ππαβαβ+-+(()即sin =04παβ+-()sin =sin cos cos sin =sin =044422πππαβαβαβαβαβ∴-+-+--+-()()()()()sin =cos αβαβαβ∴----()()即tan()=-1, 故选:C. 4.D【要点分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.【过程详解】由题意,()()()()cos cos 2cos cos 2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos 22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭,所以当1cos 4x =时,()f x 取最大值98. 故选:D. 5.D【要点分析】由题意结合诱导公式可得22225cos cos cos sin 12121212ππππ-=-,再由二倍角公式即可得解.【过程详解】由题意,2222225coscos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos26π==. 故选:D. 6.C【要点分析】利用基本不等式或排序不等式得3sin cos sin cos sin cos 2αββγγα++≤,从而可判断三个代数式不可能均大于12,再结合特例可得三式中大于12的个数的最大值. 【过程详解】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12.取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<, 由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 424242αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.【名师点睛】思路要点分析:代数式的大小问题,可根据代数式的积的特征选择用基本不等式或拍雪进行放缩,注意根据三角变换的公式特征选择放缩的方向. 7.A【要点分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解. 【过程详解】cos tan 22sin ααα=-2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--, 0,2πα⎛⎫∈ ⎪⎝⎭ ,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,cos α∴==sin tan cos ααα∴==故选:A.【名师点睛】关键名师点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α.8.B【要点分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案.【过程详解】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+, 由题,易知ADB 为等腰直角三角形,所以AD DB =. 所以''100''100AA CC DB A B -=+=+. 因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而sin15sin(4530)sin 45cos30cos 45sin 30︒=︒-︒=︒︒-︒︒=,所以1004''1)273A B ⨯==+≈,所以''''100373AA CC A B -=+≈. 故选:B .【名师点睛】本题关键点在于如何正确将''AA CC -的长度通过作辅助线的方式转化为''100A B +.9.C【要点分析】利用辅助角公式化简()f x ,结合三角函数周期性和值域求得函数的最小正周期和最大值.【过程详解】由题,()sincos 3s 33334x x x x f x x π=+=⎛+⎫⎪⎝⎭,所以()f x 的最小正周期为2613T pp ==故选:C . 10.C【要点分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果. 【过程详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++ ()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .【名师点睛】易错名师点睛:本题如果利用tan 2θ=-,求出sin ,cos θθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论. 11.A【要点分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin A C B +=⇒=,最后利用两角和的正切公式,即可得到答案; 【过程详解】 222sin cos tan 222a b c C C C ab +-==⇒=,4C π∴>, 2sin sin sin a b cR A B C===,sin sin cos sin sin cos sin 2A B C C B A B ∴⋅⋅+⋅⋅=,sin()sin 22A CB ∴+=⇒=,4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A.12.B【过程详解】要点分析:由公式2cos2α12sin α=-可得结果.过程详解:227 cos2α12199sin α=-=-= 故选B.名师点睛:本题主要考查二倍角公式,属于基础题. 13.C【过程详解】要点分析:将函数()2f 1tanxtan xx =+进行化简即可过程详解:由已知得()221f sin2,1221(sinxtanx cosx sinxcosx x x k k Z sinx tan x c x osxππ⎛⎫====≠+∈ ⎪+⎝⎭+ ()f x 的最小正周期2T π2π== 故选C.名师点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题 14.B【要点分析】首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为()35cos222f x x =+,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 【过程详解】根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+, 所以函数()f x 的最小正周期为22T ππ==, 且最大值为()max 35422f x =+=,故选B. 【名师点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 15.B【要点分析】首先根据两点都在角的终边上,得到2b a =,利用2cos23α=,利用倍角公式以及余弦函数的定义式,求得215a =,从而得到5a =,再结合2b a =,从而得到2a b a a -=-=. 【过程详解】由,,O A B 三点共线,从而得到2b a =,因为222cos22cos 1213αα⎛⎫=-=⋅-=,解得215a =,即5a =,所以2a b a a -=-=B. 【名师点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果. 16.B【要点分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案.【过程详解】2sin 2cos 21α=α+ ,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=B . 【名师点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉. 17.AC【要点分析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,利用正弦定理结合三角变换、双曲线的定义得到23b a =或2a b =,即可得解,注意就,M N 在双支上还是在单支上分类讨论.【过程详解】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支, OB a =,1OF c =, 1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=, 235NA NF 22a a ==, 21NF NF 2a -=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e a =∴=, 选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支, 所以OB a =,1OF c =, 1FB b =,设12F NF α∠=, 由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=, 235NA NF 22a a ==, 12NF NF 2a -= 352222a b a a +-=, 所以23b a =,即32b a =,所以双曲线的离心率c e a ===选C[方法二]:答案回代法A e 2=选项 特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===, 则123cos 5F NF ∠=,C e 2=选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=+,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===, 则123cos 5F NF ∠=, [方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G , 若,M N 分别在左右支, 因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支, 又OG a =,1OF c =,1GF b =, 设12F NF α∠=,21F F N β∠=, 在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin ac β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率2c e a ===若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bc β=-, 故()212sin sin sin NF NF c βαβα-=-+即sin sin cos cos sin sin a cβαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故e == 故选:AC. 18.AC【要点分析】A 、B 写出1OP ,2OP 、1AP uuur ,2AP uuu r 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【过程详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP = ,故12||||OP OP = ,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α=====,同理2||2|sin |2AP β== ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确; D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯= ,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC19.45【要点分析】先通过诱导公式变形,得到α的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出α,接下来再求β. 【过程详解】[方法一]:利用辅助角公式处理∵2παβ+=,∴sin cos βα=,即3sin cos αα-=cos 1010αα⎫-=⎪⎪⎭,令sin θ=cos θ=,()αθ-=∴22k k Z παθπ-=+∈,,即22k παθπ=++,∴sin sin 2cos 210k παθπθ⎛⎫=++==⎪⎝⎭, 则224cos 22cos 12sin 15ββα=-=-=.;45. [方法二]:直接用同角三角函数关系式解方程∵2παβ+=,∴sin cos βα=,即3sin cos αα-=又22sin cos 1αα+=,将cos 3sin αα=210sin 90αα-+=,解得sin α=, 则224cos 22cos 12sin 15ββα=-=-=.故答案为:10;45. 20.2π(2,2k k Z ππ+∈均可)【要点分析】根据两角和的正弦公式以及辅助角公式即可求得()()f x x θ=+2=,即可解出.【过程详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=. 故答案为:2π(2,2k k Z ππ+∈均可).【名师点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.21.32【要点分析】方法一:利用两角差的正切公式展开,解方程可得3tan 2α=. 【过程详解】[方法一]:直接使用两角差的正切公式展开因为5tantan tan 1444ππππ⎛⎫=+== ⎪⎝⎭,所以5tan tan5tan 114tan 541tan 51tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+,解之得3tan 2α=. 故答案为:32. [方法二]:整体思想+两角和的正切公式551tan tan 1553445tan tan 15544211tan tan 544ππαππααππα⎛⎫-++ ⎪⎡⎤⎛⎫⎝⎭=-+=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦--- ⎪⎝⎭. 故答案为:32. [方法三]:换元法+两角和的正切公式令54πθα=-,则1tan 5θ=,且54παθ=+.151tan tan5354tan tan 51421tan tan 145πθπαθπθ++⎛⎫=+=== ⎪⎝⎭--. 故答案为:32. 【整体点评】方法一:直接利用两角差的正切公式展开,解方程,思路直接; 方法二:利用整体思想利用两角和的正切公式求出;方法三:通过换元法结合两角和的正切公式求出,是给值求值问题的常用解决方式. 22.12-【要点分析】方法一:将两式平方相加即可解出. 【过程详解】[方法一]:【最优解】两式两边平方相加得22sin()1αβ++=,1in()s 2αβ+=-. [方法二]: 利用方程思想直接解出sin 1cos ,cos sin αβαβ=-=-,两式两边平方相加得1cos 2β=,则1sin 2α=.又cos 2sin αβ⎧=-⎪⎪⎨⎪=⎪⎩或cos 2sin αβ⎧=⎪⎪⎨⎪=⎪⎩,所以1in()s 2αβ+=-.[方法三]: 诱导公式+二倍角公式由cos sin 0αβ+=,可得3sin cos sin 2πβαα⎛⎫=-=+ ⎪⎝⎭,则322k πβπα=++或32()2k k πβππα⎛⎫=+-+∈ ⎪⎝⎭Z .若32()2k k πβπα=++∈Z ,代入得sin cos 2sin 1αβα+==,即2131sin ,sin()sin 22cos22sin 1222k πααβπααα⎛⎫=+=++=-=-=- ⎪⎝⎭.若2()2k k πβπα=--∈Z ,代入得sin cos 0αβ+=,与题设矛盾.综上所述,1in()s 2αβ+=-. [方法四]:平方关系+诱导公式由2222cos sin (1sin )(cos )22sin 1ββααα+=-+-=-=,得1sin 2α=. 又sin 1cos tan tan tan cos sin 22αβββααβ-⎛⎫===-=- ⎪-⎝⎭,()2k k βαπ=-∈Z ,即22k απβ=-,则2()k k αβπα+=-∈Z .从而1sin()sin(2)sin 2k αβπαα+=-=-=-.[方法五]:和差化积公式的应用由已知得1(sin cos )(cos sin )(sin 2sin 2)cos()2αβαβαβαβ++=++-sin()cos()cos()0αβαβαβ=+-+-=,则cos()0αβ-=或sin()1αβ+=-.若cos()0αβ-=,则()2k k παβπ-=+∈Z ,即()2k k παβπ=++∈Z .当k 为偶数时,sin cos αβ=,由sin cos 1αβ+=,得1sin cos 2αβ==,又23cos sin 0,cos sin sin 4αβαββ+==-=-,所以131sin()sin cos cos sin 442αβαβαβ+=+=-=-.当k 为奇数时,sin cos αβ=-,得sin cos 0αβ+=,这与已知矛盾. 若sin()1αβ+=-,则2()2k k παβπ+=-∈Z .则sin sin 2cos 2k παπββ⎛⎫=--=- ⎪⎝⎭,得sin cos 0αβ+=,这与已知矛盾.综上所述,1in()s 2αβ+=-.【整体点评】方法一:结合两角和的正弦公式,将两式两边平方相加解出,是该题的最优解; 方法二:通过平方关系利用方程思想直接求出四个三角函数值,进而解出; 方法三:利用诱导公式寻求角度之间的关系,从而解出; 方法四:基本原理同方法三,只是寻找角度关系的方式不同;方法五:将两式相乘,利用和差化积公式找出角度关系,再一一验证即可解出,该法稍显麻烦.23.10. 【要点分析】由题意首先求得tan α的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可. 【过程详解】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭, 得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-.sin 2sin 2cos cos 2sin 444πππααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212=22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112133=210113⎛⎫⎛⎫⎛⎫⨯-+--⎪ ⎪ ⎪⎝⎭⎝⎭⎪ ⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭综上,sin 2410πα⎛⎫+=⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.24.(1)1c =(2)sin 4B =(3)sin(2)A B -=【要点分析】(1)根据余弦定理2222cos a b c bc A =+-以及2b c =解方程组即可求出; (2)由(1)可求出2b =,再根据正弦定理即可解出;(3)先根据二倍角公式求出sin 2,cos 2A A ,再根据两角差的正弦公式即可求出.【过程详解】(1)因为2222cos a b c bc A =+-,即22162b c bc =++,而2b c =,代入得22264c c c =++,解得:1c =.(2)由(1)可求出2b =,而0πA <<,所以sin A ==sin sin a b A B =,所以2sin sinb AB a===(3)因为1cos 4A =-,所以ππ2A <<,故π02B <<,又sin A == 所以1sin 22sin cos 2448A A A ⎛⎫==⨯-⨯=- ⎪⎝⎭,217cos 22cos 121168A A =-=⨯-=-,而sin B =cos B ==故7sin(2)sin 2cos cos 2sin 8A B A B A B ⎛-=-=+= ⎝⎭. 25.(1)6π(2)6+【要点分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.【过程详解】(1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos 2C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABC S ab C a === a =由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC 的周长为6a b c ++=. 26.(1)5π8; (2)证明见解析.【要点分析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出.【过程详解】(1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得, cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a cb bc a b c a a b c +--+-=+--+-,化简得: 2222a b c =+,故原等式成立.27.(I );(II )34;(III )116【要点分析】(I )由正弦定理可得::2a b c = (II )由余弦定理即可计算;(III )利用二倍角公式求出2C 的正弦值和余弦值,再由两角差的正弦公式即可求出.【过程详解】(I )因为sin :sin :sin 2A B C =::2a b c =b = 2ac ∴==;(II )由余弦定理可得2223cos24a b c C ab +-===;(III )3cos 4C = ,sin C ∴==,3sin 22sin cos 2448C C C ∴==⨯=,291cos 22cos 121168C C =-=⨯-=,所以sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭111828216=⨯-⨯=.28.(1)π;(2)12+. 【要点分析】(1)由题意结合三角恒等变换可得1sin 2y x =-,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得sin 242y x π⎛⎫=-+ ⎪⎝⎭,再由三角函数的图象与性质即可得解.【过程详解】(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,则2223332sin 1cos 21sin 22442y fx x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫ ⎪⎭⎦⎝, 所以该函数的最小正周期22T ππ==;(2)由题意,()2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22sin cos 22x x x x x x ⎛⎫=⋅+= ⎪ ⎪⎝⎭1cos 2sin 22cos 2sin 22222242x x x x x π-⎛⎫=+=-+=-+ ⎪⎝⎭, 由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当242x ππ-=即38x π=时,函数取最大值12+.29.(I )3B π=;(II )13,22⎛⎤⎥ ⎝⎦ 【要点分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【过程详解】(I ) [方法一]:余弦定理由2sin b A =,得22223sin 24a A b b ⎫==⎪⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc+-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=, 即444222222220a b c a c a b b c +++--=, 即44422222222222a b c a c a b b c a c +++--=, 即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->,∴222a c b ac +-=,所以2221cos 22a c b B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin b A =,结合正弦定理可得:2sin sin ,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II ) [方法一]:余弦定理基本不等式 因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤.由临界状态(不妨取2A π=)可知a cb+=而ABC为锐角三角形,所以a cb+>由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++, 222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭故cos cos cos A B C ++的取值范围是13,22⎛⎤⎥ ⎝⎦.[方法二]【最优解】:恒等变换三角函数性质结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,13sin 622A π⎤⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.30.(1)∠A =π3;(2)AC边上的高为2. 【要点分析】(1)方法一:先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠; (2)方法一:利用诱导公式以及两角和正弦公式求sin C ,即可解得AC 边上的高. 【过程详解】(1)[方法一]:平方关系+正弦定理在ABC 中∵,1πcos ,,π,sin 727B B B ⎛⎫=-∴∈∴==⎪⎝⎭.由正弦定理得7ππsin ,π,0,,.sin sin sin 2223a b A B A A A B A π⎛⎫⎛⎫=⇒=∴=∈∴∈∴∠= ⎪ ⎪⎝⎭⎝⎭[方法二]:余弦定理的应用由余弦定理知2222cos b a c ac B =+-.因为17,8,cos 7a b B ===-,代入上式可得3c =或5c =-(舍).所以2221cos 22b c a A bc +-==,又(0,π)A ∈,所以π3A =. (2)[方法一]:两角和的正弦公式+锐角三角函数的定义 在△ABC 中,∵sin sin()sin cos sin cos C A B A B B A =+=+=1172⎛⎫-+ ⎪⎝⎭14. 如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7=, ∴AC边上的高为2.[方法二]:解直角三角形+锐角三角函数的定义 如图1,由(1)得1cos 842AD AC A =∠=⨯=,则14737AB =-⨯=.作BE AC ⊥,垂足为E,则sin 3BE AB A =∠==AC[方法三]:等面积法由(1)得60A ∠=︒,易求CD =1,作CD AB ⊥,易得4=AD ,即3AB =.所以根据等积法有11sin 22AC BE AB AC A ⋅⋅=⋅⋅⋅,即3BE =所以AC 边上的高为2. 【整体点评】(1)方法一:已知两边及一边对角,利用正弦定理求出;方法二:已知两边及一边对角,先利用余弦定理求出第三边,再根据余弦定理求出角; (2)方法一:利用两角和的正弦公式求出第三个角,再根据锐角三角函数的定义求出; 方法二:利用初中平面几何知识,通过锐角三角函数定义解直角三角形求出; 方法三:利用初中平面几何知识,通过等面积法求出. 31.(Ⅰ)45;(Ⅱ)5665- 或1665. 【要点分析】要点分析:(Ⅰ)先根据三角函数定义得sin α,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得cos α,再根据同角三角函数关系得()cos αβ+,最后根据()βαβα=+-,利用两角差的余弦公式求结果.【过程详解】过程详解:(Ⅰ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得4sin 5α=-,所以()4sin πsin 5αα+=-=.(Ⅱ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得3cos 5α=-,由()5sin 13αβ+=得()12cos 13αβ+=±.由()βαβα=+-得()()cos cos cos sin sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=. 名师点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.32.(Ⅰ)π ;(Ⅱ)π3. 【要点分析】(I )将()f x 化简整理成()sin()f x A x ωϕ=+的形式,利用公式2||T πω=可求最小正周期;(II )根据[,]3x m π∈-,可求26x π-的范围,结合函数图象的性质,可得参数m 的取值范围.【过程详解】(Ⅰ)()1cos211π1cos2sin 22222262x f x x x x x -⎛⎫=+=-+=-+ ⎪⎝⎭, 所以()f x 的最小正周期为2ππ2T ==. (Ⅱ)由(Ⅰ)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭.因为π,3x m ⎡⎤∈-⎢⎥⎣⎦,所以π5ππ2,2666x m ⎡⎤-∈--⎢⎥⎣⎦.要使得()f x 在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为1.所以ππ262m -≥,即π3m ≥. 所以m 的最小值为π3. 名师点睛:本题主要考查三角函数的有关知识,解题时要注意利用二倍角公式及辅助角公式将函数化简,化简时要注意特殊角三角函数值记忆的准确性,及公式中符号的正负. 33.(1)725-;(2)211-【过程详解】要点分析:先根据同角三角函数关系得2cos α,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得tan 2α,再利用两角差的正切公式得结果. 过程详解:解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以()0,παβ+∈.又因为()cos 5αβ+=-,所以()sin 5αβ+==,因此()tan 2αβ+=-. 因为4tan 3α=,所以22tan 24tan21tan 7ααα==--,因此,()()()()tan2tan 2tan tan 21+tan2tan 11ααβαβααβααβ-+⎡⎤-=-+==-⎣⎦+. 名师点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.34.(1)c =(2)5. 【要点分析】(1)由题意结合余弦定理得到关于c 的方程,解方程可得边长c 的值; (2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B 的值,然后由诱导公式可得sin()2B π+的值.【过程详解】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以3c =. (2)因为sin cos 2A Ba b=, 由正弦定理sin sin a bA B =,得cos sin 2B B bb =,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 25B B ⎛⎫+==⎪⎝⎭【名师点睛】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.35.(1)3A π=;(2)sin C 【要点分析】(1)利用正弦定理化简已知边角关系式可得:222b c a bc +-=,从而可整理出cos A ,根据()0,A π∈可求得结果;(2)[方法一]由题意利用正弦定理边化角,然后结合三角形内角和可得1sin cos 222C C -=,然后结合辅助角公式可得64ππC =+,据此由两角和差正余弦公式可得sin C =【过程详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=-, 即:222sin sin sin sin sin B C A B C +-=, 由正弦定理可得:222b c a bc +-=, 2221cos 22b c a A bc +-∴==,()0,A π∈ ,3A π∴=.(2)[方法一]正弦定理+两角和差正余弦由(1)知,23B C π+=2b c +=,2sin 2sin 3πA C C ⎛⎫+-= ⎪⎝⎭,1cos 22C C -=,即sin 62C π⎛⎫-= ⎪⎝⎭. 又20,,,3662C C ππππ⎛⎫⎛⎫∈-∈- ⎪⎪⎝⎭⎝⎭,所以64C ππ-=,即64ππC =+,则sin sin 644ππC ⎛⎫=+= ⎪⎝⎭.[方法二]正弦定理+方程思想2b c +=,得sin 2sin B C A ==2sin 2C -, 代入22(sin sin )sin sin sin B C A B C -=-,得23sin 2sin sin 242C C C ⎛⎫⎛⎫-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,整理得24sin 10C C -+=,则sin 4C =.由sin 2sin 0B C =>,得sin 4C >,所以sin 4C =. [方法三]余弦定理令c t a =.由2,b c b c a =+>,得t >将2b c =代入222b c a bc +-=中,可得2230c a -+=,即2310t -+=,解得6t =或6t =(舍去).所以sin sin c C t a A ===从而sin 4C =. [方法四]摄影定理因为2c b =+,所以1cos 45cos 6022c a b a b ︒=+=+︒, 由射影定理得()180456075C ∠=︒-︒+︒=︒,所以sin sin 75C ︒==【整体点评】方法一:首先由正弦定理边化角,然后由两角和差正余弦公式求解sin C 的值; 方法二:首先由正弦定理边化角,然后结合题意列方程,求解方程可得sin C 的值; 方法三:利用余弦定理求得ct a=的值,然后结合正弦定理可得sin C 的值; 方法四:利用摄影定理求得C ∠的值,然后由两角和差正余弦公式求解sin C 的值; 【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.36.(1) 3B π=;(2)()82. 【要点分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅ ,又根据正弦定理和1c =得到ABC S 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C 的值域.【过程详解】(1)[方法一]【最优解:利用三角形内角和为π结合正弦定理求角度】由三角形的内角和定理得222A C Bπ+=-,。
2018届高考数学艺术生短期集训专题知识突破:考点19三角恒等变换
考点十九三角恒等变换知识梳理1. 两角和与差的正弦、余弦、正切公式 sin( a+ 3 = sin a cos 升 cos osin 3 (S (卩 o ) sin( a — 3 = sin a cos p- cos osin 3 (S (厂 3) cos(a+ ®= cos a cos 3— sin a sin 3 (C (a +3) cos( a — 3= cos a cos 3+ sin a sin 3 (C (a -3) tan a+ tan 3tan(a+3= 1 — tan dtan 3 (T(a+3) _ tan a — tan 3tan( a — 3 = (T (a - 3)1 + tan a an 3 2.二倍角公式 sin 2 a= 2sin a cos a (S 2a )2. 22cos 2 a= cos a — Sin a= 2COS a —3. 公式的变形和逆用在准确熟练地记住公式的基础上, 要灵活运用公式解决问题: 如公式的正用、 等•常见变形如下:丿, _ 2 2 升幕公式:1 + cos 2 a= 2 cos a, 1 — cos2a= 2sin a4 d2a” c ・ 2a1 + cos a= 2cos 2, 1 — cos a= 2sin正切和差公式变形:tan a±an 3= tan(a±3(1?tan a an 3), tan a+ tan 3 tan a — tan 3 .tan伽 3= 1 — tan a+ 3 = tan a —3 — 1.aa 2配方变形:1 + sin a= (sin?+ co^),a a 21 — sin a= (sin2— cos^).4. 辅助角公式 asin a+ bcos a = a 2 + b 2sin( a+ 妨,其中 tan降幕公式: 2 cos a=1 + cos2 a sin 2a= 1 — cos 2 a .2 亠1 = 1— 2sin tan 2 a= 2ta n a 1 — tan a逆用和变形用2a2. b °= a .典例剖析题型一给角求值例 1⑴ 计算 cos 42 ° cos 18 — cos 48 ° cos 72 的值为 ________解题要点 解题时先看角,观察是否有30°、60°、90°等特殊角,或是观察能否通过变形凑配出这些特殊角•再看所求式结构,选用合适的三角恒等式对原式进行变形处理 •在解题时还要注意对公式进行正用、逆用,要掌握常见的变式 题型二给值求值(1)求 sin n+ a 的值; ⑵求cos 5?— 2 a 的值.(2)计算co 咒50—%的值为1 1答案⑴2 (2)1解析 (1) cos 42 Cos 18 — cos 48 °cos 72 = cos 42 °cos 18 — sin 42 c in 18 1=cos (42 c 18°) = cos 60 =》2 2⑵■/ cos 155 °— sin 155 °= cos 310 = cos 50 .sin 110 sin 202 2 cos 155 °— sin 155sin 70 sin 20 二 cos 20 sin 20 cos 310 ° — cos 50 °1?sin 40 °[ sin 40 于 2.变式训练sin 47 —sin 17 cbs 30 ° cos 17 °解析原式=sin 30 °+ 17 ° — sin 17 cbs 30cos 17 °sin 30 cos 17 + cos 30 gin 17 — sin 17 c6s 30 cos17 °sin 30 cbs 17cos 17 ° =sin 301 2.例2 已知a€sin a=5・解析(1)因为a n,sina= f,所以cos a=—; 1 —Sin2a=—^^5.故sin + a = sin j cos a+ cos ;sin a=¥ X 2/5 ]+丄X込—血5 +2 5 10 .• Sin 2 a=1 - cos 22 a= ^9^,/22J2• •• sin( a+ 3 = ■ 1 — cos a+ 3 = 3 , --cos( a — 3) = cos[2 a — ( a+ 3]=cos 2 o (cos( a+ 3)+ sin 2 o (sin( a+ 3=f — 7 L (— 1) + 竝x 池=23I 9.X ( 3) + 9327.解题要点1•解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已i 5 n5 n 5 n所以 cos — — 2 a = cosgcos 2 a+ singsin 2 a= c 44 + 3p3\ 5 丿——10一题型三利用角的凑配求值 2已知 tan( a+ 3 = , tan5答案322 解析 因为 a+ n+ 3-a+ 3所以 na+ _ =( a+tan a+ n = tan a+ 3 —ta n a+ 3-tan (3-力 322.变式训练 已知 cos a= 1, cos( a+ 3)=— 3,且 a, 3^ 0 ,才,则 cOS ( a — 3)的值等于答案2327解析 T 尺 3,n ;,A 2 a€ (0, n • cosa =1,:cos 2a =2cos2a-1=—7,而a,3€ 0, 2,二 a+ 3€ (0, n3 5,2cos 2a= 1 — 2sin a= 1 — 2X訂=1,那么tan所以1 + tan a+ 3 tan知角”有两个时,“所求角”一般凑配为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把 “所求角”变成“已知角”.a+ 3 a — 2.常见的凑配技巧:2 a= ( a+ 3)+ ( a — 3, a= ( a+ 3)—3, 3=~Y~= (a+ 2)—(扌+ 3)等.题型四辅助角公式 例 4 (2015 安徽文)已知函数 f(x) = (sin x + cos x)2 + cos 2x.(1)求f(x)的最小正周期;i I r ” 2 2解析 (1)因为 f(x)= sin x + cos x + 2sin xcos x + cos 2x =1 + sin 2x + cos 2x所以函数f(x)的最小正周期为T = 2n = n. ⑵由(1)的计算结果知,f(x) = ,2sin 2x +当 x € 0, n 时,2x + n变式训练 函数f(x)=・.3sin x + cos (n+ x)的最大值为3 答案 1厂解析 f(x)= 3sin x + cos y cos x — sin {in x =2cos x +in x = 3 3 2 2 --f (x)max =解题要点 利用辅助角公式将 asin x + bcos x 化为Asin( ®x+妨是常见的题型,转化时一定要 严格对照a+ 3 a — 3 a= +-,2 21.当 2x + n= n 即,f(x)取最大值 2 + 1 ;当2x +n =簧即x =4 4,f(x)取最小值0.综上,f(x)在0, n的最大值为• "2+1,最小值为0.nsin(x + 6).最大值和最小⑵求f(x)在区间0, 的图象知,n由正弦函数 y = sin x 在 4,和差公式,防止搞错辅助角•对于计算形如y= sin(3汁⑥,x€ [a, b]形式的函数最值时,则务必注意角度范围,最好是画出函数图像,观察所给函数在指定范围内是否越过图像的“波峰”或“波谷” •当堂练习1. (2015 新课标I 理)sin 20 cos 10 - cos 160 sin 10 = ___________ .答案11解析sin 20 cos 10 —cos 160 s in 10 = sin 20 cos 10 °+ cos 20 sin 10 = sin 30 °?2.若2,则tan2 a=sin a+ cos asin a—cos a3答案34…,ta n a+ 1 1小解析由------- =孑得tan a=—3,tan a—1 2a 3 、川r佔, 小2tan--tan2 a= 2 =;,选B 项.1 —ta n a 43. 已知cos( a+ n)= 3,则Sin(2 a—7)的值为___________ .6 3 6答案1解析由cos( a+ n =f ,得COS(2 a+》=2X(于)2—1= —所以sin(2 a— n) = sin(2 a+ 扌―》=—cos(2 a+ # = 3.2 n 2 n4. 若函数f(x)= sin (x+ 4) + cos (x—4)—1,则函数f(x)是 _________ .① 周期为n的偶函数② 周期为2 n的偶函数③周期为2 n的奇函数④周期为n的奇函数答案④解析f(x) = sin 2(:+ x) + si n2(:+ x)—1 = 2s in 2(:+ x)— 1 = —cos(n+ 2x) = sin2x •••故④正确.5. (2015 北京理)已知函数f(x)=72sin|cos|^2sin2^(1)求f(x)的最小正周期;⑵求f(x)在区间[—n 0]上的最小值.解析 (1)因为 f(x)^^2~s in x —孑(1 — cosx)= sin x +4 —冷, 所以f(x)的最小正周期为2 n.3 n n n⑵因为—n< x < 0,所以——W X + 4< 4. 当x + n=— n,即x = — 3n 时,f(x )取得最小值.所以f(x)在区间[一 n, 0]上的最小值为f 「宁=—1—吕2.课后作业一、填空题3 5 、1 .已知 COS a=~, COS( a+ ®=—石,a, B 都是锐角,则 COS 3=513、5 n12a, 3是锐角,二 0<a+3<n,又 COS ( a+ 3 =—石<0 , A 2< a+ n,二 sin( a+3 =乜,4sin a= 5.又 COS 3= cos( a+3~«)= cos( a+ B cos a+ Sin( a+ 3sin 2. sin75 Cos30 一sin15 Sin 150 的值为 _________ . 答案解析 sin75 c os30°— sin15 °n150 = sin75 °cos30°— cos75°sin30 = sin(75 ° 30° = sin45 =2 .3. (2015 陕西文)“sin a= COS a” 是"COS 2 a= 0”的 _________ 条件. 答案充分不必要解析 T sin a= cos a ? cos 2 a= cos 2 a — sin 2 a= 0; cos 2 a= 0? cos a= isin a / sin a= COS a,故为选充分不必要条件.COS a=— 4, a 为第三象限角,则 sin Ja+ 4 = _________ .7,2一 1043T a 为第三象限角, COS a=—— ,A Sin a=—-,55..「丄 n • n .n 迈「4 " A S •-Sin a+ 4 = Sin 0C OS 4+ cos «Si n 4= 2 — 5— 5 =— 10 .sin47 — sin17 Cos30 答案33 65解析色X 3+冬4 =於13 5 13 5 65.4.若 答案解析cos172 .答案1 解析 sin47 ° sin(30 ° 17°= sin30 c os17° + cos30°in17 °原式= sin30 Cos17 cos17 ° =si n30 1 2. 2 6.已知 tan(a+ 3)= 5, tan ,那么tan ”+才等于 3 答案22 解析 n n •/ a+斗 3- = a+ 3 4 4 n a-|— = ( a+ 3)— 4 _ n i ••• tan a+ 4 = tan a+ 3 — 3 22. 7.已知 sin 扌一x = 5, 则sin2x 的值为 答案 7_ 25 解析 •' sin2x = cos n- &已知a n , 3 5,则 tan2 a= 答案 24 7 解析 n , sin a= 3, Cos a=— 45, tan a= — 34./• tan2 2t an a a= 2X247 .9. (2015 四川理)sin15 +sin75 的值是 __________ 答案于解析 sin 15 + sin 75 = sin 15 + cos 15 = 2sin(15 + 45°)= . 2sin 60 tan a+ 3 — tan1 + tan a+ 3ta n10. 已知cos( a+ 4)= 1,a€ (0 , j,则cos a=答案.2+ 4 6解析•/ a (0, n, cos( a+ n=13>0,2 .解析 (1)f(x) = sin 才一x sin x — , 3cos 2x =cos xsin X —現1 + cos 2x) = *sin 2x — ^cos 2x — ¥= sin [2x —扌 j —¥, 因此f(x)的最小正周期为n 最大值为十当0W 2x —詐^,即詐x w 52时,f(x)单调递增, 当詐2x -厂即护x W ,f(x )单调递减.13.若 sin n综上可知,f(x)在-, 单调递减. 单调递增;在 "=15,cos 3 n 35,且0< a <4<仟訂,求cos(a+ B )的值.n n 々 …a€ (0,4) , a+ 4€ n 2),• sin( a+ n =竽,「一n n n n 4cos a= cos( a+ 4 — 4) = COS ( a+ 4)COS” + Sin( a+ 4) sin^ = —6~ 2 11. (2015浙江理)函数f(x)= sin x + sin xcos x + 1的最小正周期是 是 ________ . ,单调递减区间答案 n ~|n+ k n 7冗+ k n (k € Z ) 1 — cos 2x 解析 f(x)= -^4 2sin 2x + 1 = ~22sin 2x — T = ~2 = n,由 + 2k nW 2x — 4W + 2k n k € Z ,解得+ k n< x <g" + k n, k € Z ,k € Z . 二、解答题 12. (2015 重庆理)已知函数 f(x)= sin 扌-x sin x — 3cos 2x. (1)求f(x)的最小正周期和最大值; •••单调递减区间是 的单调性. n ⑵讨论f(x)在6, ,o w 2x —n n 从而 3 r n ⑵当x €又 sin 3n+. n cos( a+ 3= sin 2 + ( a+ 3 =sin解析 ••• 0< a <n < 3<| n 7t 3 3 4 n< n+ a < n, rr 3<0. • •• cos 4 n+ 12 13'cos E =sin 3 n+ 4n+ a Sin 4- 3 33 65.n+ a - in 弓」。
三角恒等变换高三数学一轮复习考点突破课件
题目:已知a=cosθ,b=sinθ,求a^2-b^2的值 答案:-1 答案:-1
06 总结与建议
总结三角恒等变换的重要知识点和考点
三角恒等变换的应用实例和 解题技巧
三角恒等变换在高考中的常 见题型和考点分析Biblioteka 三角恒等变换的公式和推导 过程
三角恒等变换高三数 学一轮复习考点突破
,a click to unlimited possibilities
汇报人:
目录 /目录
01
点击此处添加 目录标题
04
三角恒等变换 的考点解析
02
三角恒等变换 的基本概念
05
三角恒等变换 的实战演练
03
三角恒等变换 的解题方法
06
总结与建议
01 添加章节标题
三角恒等变换的公式
正弦定理:sin(A+B) = sinAcosB + cosAsinB
余弦定理:cos(A+B) = cosAcosB - sinAsinB
正切定理:tan(A+B) = (tanA+tanB)/(1-tanAtanB)
正弦、余弦、正切的和差公式:sin(A-B) = sinAcosB - cosAsinB, cos(A-B) = cosAcosB + sinAsinB, tan(A-B) = (tanAtanB)/(1+tanAtanB)
02
三角恒等变换的基本概 念
三角恒等变换的定义
基本概念:三角恒等变换是指在三角函数中,通过恒等变换将一种三角函数转化为另 一种三角函数的过程。
主要类型:包括正弦、余弦、正切、余切等基本三角函数的恒等变换。
2018年高考数学(人教文科)总复习配套课件:4.6三角恒等变换
√3sin10°-cos10°
解析:由题意可知,r=|OP|=√5,sin α= ,cos α= , 则 cos2α+sin 2α=cos2α+2sin αcos α =
2 2 1 2 +2× × √5 √5 √5
1 √5
2 √5
= + = .
4 54 5Fra bibliotek8 5
专题四
知识梳理
考点自测
4.6
三角恒等变换
考情概览备考定向 必备知识预案自诊 必备知识预案自诊 关键能力学案突破
������
������
=
-cos θ
.
2sin2cos2+2cos2 2 sin2-cos2
������
������
������
sin2 2-cos2 2 cos2
������
������
4cos2 2
������
=
-cos2· cos������
������ cos2
.
������ 0<2
因为 0<θ<π,所以 所以 cos2>0,
专题四
知识梳理
考点自测
4.6
三角恒等变换
考情概览备考定向 必备知识预案自诊 必备知识预案自诊 关键能力学案突破
-3-
与半角有关的公式 ������ 1+cos α=2cos22; 1-cos α=2sin2 ;
������ 2 ������ ������ 2 1+sin α= sin 2 + cos 2 ; ������ ������ 2 1-sin α= sin 2 -cos 2 ; ������ 2tan2
全国通用2018年高考数学考点一遍过专题15三角恒等变换含解析文
考点15三角恒等变换1.两角和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)会用两角差的余弦公式推导出两角差的正弦、正切公式.(3)会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系. 2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).一、两角和与差的三角函数公式 1.两角和与差的正弦、余弦、正切公式(1)()C αβ-:cos()αβ-=cos cos sin sin αβαβ+ (2)()C αβ+:cos()cos cos sin sin αβαβαβ+=- (3)()S αβ+:sin()αβ+=sin cos cos sin αβαβ+ (4)()S αβ-:sin()αβ-=sin cos cos sin αβαβ- (5)()T αβ+:tan()αβ+=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ++≠+∈-Z(6)()T αβ-:tan()αβ-=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ--≠+∈+Z2.二倍角公式(1)2S α:sin 2α=2sin cos αα(2)2C α:cos 2α=2222cos sin 12sin 2cos 1αααα-=-=-(3)2T α:tan 2α=22tan πππ(π,)1tan 224k k k αααα≠+≠+∈-Z 且3.公式的常用变形(1)tan tan tan()(1tan tan )αβαβαβ±=±;tan tan tan tan tan tan 11tan()tan()αβαβαβαβαβ+-=-=-+-(2)降幂公式:21cos 2sin 2αα-=;21cos 2cos 2αα+=;1sin cos sin 22ααα= (3)升幂公式:21cos 22cos αα+=;21cos 22sin αα-=;21sin 2(sin cos )ααα+=+;21sin 2(sin cos )ααα-=-(4)辅助角公式:sin cos a x b x +)x ϕ=+,其中cos ϕϕ==,tan b aϕ=二、简单的三角恒等变换 1.半角公式(1)sin2α=(2)cos2α=(3)tan2α=sin 1cos 1cos sin αααα-==+【注】此公式不用死记硬背,可由二倍角公式推导而来,如下图:2.公式的常见变形(和差化积、积化和差公式) (1)积化和差公式:1cos cos [cos()cos()]2αβαβαβ=++-;1sin sin [cos()cos()]2αβαβαβ=-+--;1sin cos [sin()sin()]2αβαβαβ=++-;1cos sin [sin()sin()]2αβαβαβ=+--.(2)和差化积公式:sin sin 2sincos22αβαβαβ+-+=;sin sin 2cos sin 22αβαβαβ+--=;cos cos 2cos cos 22αβαβαβ+-+=;cos cos 2sin sin 22αβαβαβ+--=-.考向一三角函数式的化简1.化简原则(1)一看角之间的差别与联系,把角进行合理的拆分,正确使用公式; (2)二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;(3)三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.2.化简要求(1)使三角函数式的项数最少、次数最低、角与函数名称的种类最少;(2)式子中的分母尽量不含根号.3.化简方法(1)切化弦;(2)异名化同名;(3)异角化同角;(4)降幂或升幂.典例1 化简:ππsin sin33ππcos cos33αααα⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭=.【答案】【解析】原式=π2sin cos3π2cos cos3αα=tan.【方法技巧】(1)三角化简的常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.(2)三角化简的标准:三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.(3)在化简时要注意角的取值范围.122cos821sin8+-________.考向二三角函数的求值问题1.给角求值给角求值中一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察会发现非特殊角与特殊角之间总有一定的关系.解题时,要利用观察得到的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数,从而得解. 2.给值求值已知三角函数值,求其他三角函数式的值的一般思路: (1)先化简所求式子.(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手). (3)将已知条件代入所求式子,化简求值. 3.给值求角通过求角的某种三角函数值来求角,在选取函数时,有以下原则: (1)已知正切函数值,则选正切函数.(2)已知正、余弦函数值,则选正弦或余弦函数.若角的范围是π(0,)2,则选正、余弦皆可;若角的范围是(0,π),则选余弦较好;若角的范围为ππ(,)22-,则选正弦较好. 4.常见的角的变换 (1)已知角表示未知角 例如:()()ααββββα=+-=--,()()()()2,2ααβαββαβαβ=++-=+--,(2)αβαβα+=++,(2)αβαβα-=-+,22αβαβα+-=+,22αβαββ+-=-.(2)互余与互补关系 例如:π3π()()π44αα++-=,πππ()()362αα++-=. (3)非特殊角转化为特殊角例如:15°=45°−30°,75°=45°+30°.典例2 cos15cos30cos105sin 30︒︒+︒︒的值是A .22B 3C .12D .1【答案】A【名师点睛】把所求式子中的角105°变为90°+15°,利用诱导公式cos (90°+α)=−sin α化简后,再利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可求出值.“给角求值”,一般给出的角都是非特殊角,观察发现题中的角与特殊角都有着一定的关系,如和或差为特殊角,必要时运用诱导公式.2.计算sin 47sin17cos30cos17︒-︒︒︒的值等于A .1-B .32C .12D .1典例3已知tan(α−β)=,tan β=−,且α,β∈(0,π),则2α−β=A .π4 B .π4-C .3π4-D .π4或3π4- 【答案】C又α∈(0,π),所以0<α<.又<β<π,所以−π<2α−β<0,所以2α−β=−.故选C.【名师点睛】在解决给值求角问题时,不仅要注意已经明确给出的有关角的范围,还要结合有关角的三角函数值尽可能地缩小角的范围.3.已知1413)cos(,71cos =-=βαα,且02βαπ<<<. (1)求α2tan 的值. (2)求β的值.典例4 已知324βαπ<<<π,12cos()13αβ-=,3sin(),5αβ+=-则sin 2α= A .6556B .5665-C .5665D .6556-【答案】B【名师点睛】解给值求值型问题的一般思路是:先看公式中的量,哪些是已知的,哪些是待求的,再利用已知条件结合同角三角函数的基本关系求出待求值,注意根据角的象限确定符号. 这类求值问题关键在于结合条件和结论中的角,合理拆、配角.4.已知角α,β均为锐角,且3cos5α=,tan(α−β)=,则tanβ=A. B.C. D.3考向三三角恒等变换的综合应用1.与三角函数的图象及性质相结合的综合问题(1)利用三角恒等变换及辅助角公式把三角函数关系式转化成y=A sin(ωx+φ)+t或y=A cos(ωx+φ)+t的形式.(2)利用公式2π(0)Tωω=>求周期.(3)根据自变量的范围确定ωx+φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为二次函数的最值.(4)根据正、余弦函数的单调区间列不等式求函数y=A sin(ωx+φ)+t或y=A cos(ωx+φ)+t的单调区间.2.与向量相结合的综合问题三角恒等变换与向量的综合问题是高考经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,往往是两向量平行或垂直的计算,即令a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,a∥b⇔x1y2=x2y1,a⊥b⇔x1x2+y1y2=0,把向量形式化为坐标运算后,接下来的运算仍然是三角函数的恒等变换以及三角函数、解三角形等知识的运用.3.与解三角形相结合的综合问题(1)利用正弦定理把边的关系化成角,因为三个角之和等于π,可以根据此关系把未知量减少,再用三角恒等变换化简求解;(2)利用正、余弦定理把边的关系化成角的关系再用三角恒等变换化简求解.【注】此类题中的角是在三角形中,每个角范围限制在(0,π)内,如果是锐角三角形,则需要限制各个角均在π(0,)2内.角的范围在解题中至关重要,做题时要特别注意.典例5 设函数f(x)=sin2ωx−sin ωx cosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.(1)求ω的值;(2)求f(x)在区间上的最大值和最小值.【答案】(1)1;(2)f(x)在区间上的最大值和最小值分别为,−1.因为图象的一个对称中心到最近的对称轴的距离为,且ω>0,所以=4×,因此ω=1.(2)由(1)知f(x)=−sin(2x−).当π≤x≤时,≤2x−≤.所以−≤sin(2x−)≤1.因此−1≤f(x)≤.故f(x)在区间上的最大值和最小值分别为,−1.5.已知向量a =1cos ,2x ⎛⎫- ⎪⎝⎭,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b . (1)求f (x )的最小正周期;(2)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.1.cos9π·cos 29π ·cos 23()9π-= A .−18 B .−116C .116D .182.已知1sin cos 5αα-=-,则的值为A .1225B .2425-C .2425D .1225-3.已知锐角,αβ满足1025sin ,cos 105αβ==,则αβ+的值为 A .3π4B .π4C .π6D .3π4或π44.设,,且,则A .B .C .D .5.已知向量a =(sin(),1)6απ+,b =(4,4cos α−3,若a ⊥b ,则sin 4()3απ+= A .3B .14-C .34D .1463sin 5α=,()4cos 5αβ+=-,则sin β= A .0 B .2425C .1625D .2425或16257.已知1sin23α=,A .13- B .13 C .23-D .238.已知αsin α=AB .1213C D 9.若()()sin 603cos 90θθ+︒=︒-,则tan θ=__________.10.在斜三角形ABC 中,tan tan tan tan 1A B A B ++=,则C ∠=_____________.11.已知函数,若()f x 的一个零点,则0cos2x =__________.12()4sin 5αβ+=. (1)求sin2β的值;(213.已知函数.(1)求的最小正周期和最值;(2)设是第一象限角,且求的值.1.(2017年高考新课标Ⅲ卷)已知4sin cos3αα-=,则sin2α=A.79-B.29-C.29D.792.(2017年高考山东卷)已知3cos4x=,则cos2x=A.14-B.14C .18-D .183.(2016·高考新课标Ⅲ文)若tan 13θ=,则cos 2θ= A .45- B .15-C .15D .454.(2017年高考新课标Ⅱ卷)函数()2cos sin f x x x =+的最大值为.5.(2017年高考江苏卷)若π1tan(),46α-=则tan α=. 6.(2017年高考新课标Ⅰ卷)已知π(0)2a ∈,,tan α=2,则πcos ()4α-=.7.(2016年高考新课标I 卷)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=.8.(2016年高考浙江卷)已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =_______,b =_______.1.【答案】−2sin42.【答案】C【解析】由()sin47sin 3017sin30cos17sin17cos30︒=︒+︒=︒︒+︒︒知,原式=sin30cos171cos172︒︒=︒,故填12.变式拓展3.【答案】(1)83tan 247α=-;(2)3βπ=.【解析】(1)由1cos ,072ααπ=<<,得734)71(1cos 1sin 22=-=-=αα. 3417734cos sin tan =⨯==∴ααα, 于是4738)34(1342tan 1tan 22tan 22-=-⨯=-=ααα. (2)由02βαπ<<<,得0.2αβπ<-< 又1413)cos(=-βα ,1433)1413(1)(cos 1)sin(22=-=--=-∴βαβα. 由)(βααβ--=得)](cos[cos βααβ--=211433734141371)sin(sin )cos(cos =⨯+⨯=-+-=βααβαα. .3βπ∴=4.【答案】D5.【答案】(1)π;(2)f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.【解析】f (x )=1cos ,2x ⎛⎫- ⎪⎝⎭3x ,cos 2x )3x sin x −12cos 2x=32sin 2x−12cos 2x=ππcos sin 2sin cos 2 66x x-=πsin 26x⎛⎫-⎪⎝⎭.(1)f(x)的最小正周期为2π2ππ2Tω===,即函数f(x)的最小正周期为π.(2)∵0≤x≤π2,∴ππ5π2666x-≤-≤.由正弦函数的性质,当ππ262x-=,即π3x=时,f(x)取得最大值1.当ππ266x-=-,即x=0时,f(0)=12-,当π52π66x-=,即π2x=时,π122f⎛⎫=⎪⎝⎭,∴f(x)的最小值为12 -.因此,f(x)在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.1.【答案】A2.【答案】C【解析】由题意得,两边同时平方得故选C.考点冲关3.【答案】B【解析】因为锐角,αβ,所以3105cos ,sin 105αβ==, 因此()310251052cos cos cos sin sin 1051052αβαβαβ+=-=⨯-⨯=, 因为()0,παβ+∈,所以π4αβ+=,选B. 4.【答案】B5.【答案】B【解析】∵a ⊥b ,∴a ·b =4sin()6απ++4cos α−3=23sin α+6cos α−33sin()3απ+−3, ∴1sin()=34απ+,∴41sin()sin().334ααππ+=-+=- 6.【答案】B【解析】因为π0π2αβ<<<<,所以4cos 5α=,()3sin 5αβ+=±, 当()3sin 5αβ+=-时,()()()34sin sin sin cos cos sin 55βαβααβααβα⎡⎤=+-=+-+=-⨯+⎣⎦ 0⨯=,不合题意,舍去; 当()3sin 5αβ+=时,()()()344sin sin sin cos cos sin 555βαβααβααβα⎡⎤=+-=+-+=⨯+⨯⎣⎦525=,应选B. 7.【答案】D【解析】因为()π2cos cos sin 42ααα⎛⎫-=+ ⎪⎝⎭, 所以()()2π11112cos 12cos sin 1sin21422233αααα⎛⎫⎛⎫-=+=+=⨯+= ⎪ ⎪⎝⎭⎝⎭,应选D. 8.【答案】C【解析】∵α为锐角且π5cos 413α⎛⎫+= ⎪⎝⎭,∴π12sin 413α⎛⎫+= ⎪⎝⎭,则ππππππ1225272sin sin sin cos cos sin 44444413213226αααα⎛⎫⎛⎫⎛⎫=+-=+-+=⨯-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故本题选C. 9.【答案】35【解析】由题设可得13sin cos 3sin 22θθθ+=,即35sin 3cos tan 5θθθ=⇒=,应填35. 10.【答案】3π411.351+ 【解析】由()2sin 23sin cos f x x x x =+ππsin sin 44x x ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭,化简可得π()2sin(2)6f x x =-12+,由00π1()2sin(2)062f x x =-+=,得0π1sin(2)=064x --<,又0π02x ≤≤,0ππ5π2666x -≤-≤,所以0ππ2066x -≤-≤,故0π15cos(2)64x -=, 此时:0000ππππππ351cos 2cos[(2)]cos(2)cos sin(2)sin 6666668x x x x +=-+=---=. 12.【答案】(1)79-;(2)82315-. 【解析】(1)πsin2cos 22ββ⎛⎫=-= ⎪⎝⎭2π72cos 149β⎛⎫--=- ⎪⎝⎭.(2)因为π0π2αβ<<<<,所以π3π22αβ<+<, 所以πsin 04β⎛⎫-> ⎪⎝⎭,()cos 0αβ+<, 因为π1cos 43β⎛⎫-= ⎪⎝⎭,()4sin 5αβ+=, 所以π22sin 43β⎛⎫-= ⎪⎝⎭,()3cos 5αβ+=-, 所以()ππcos cos 44ααββ⎡⎤⎛⎫⎛⎫+=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()πcos cos 4αββ⎛⎫=+⋅- ⎪⎝⎭()πsin sin 4αββ⎛⎫++- ⎪⎝⎭31422823535315-⎛⎫=-⨯+⨯=⎪⎝⎭. 【名师点睛】在三角化简求值类题目中,常常考“给值求值”的问题,遇见这类题目一般的方法是配凑角:即将要求的式子通过配凑,得到与已知角的关系,进而用两角和与差的公式展开求值即可. 13.【答案】(1)的最小正周期是,最大值为,最小值为;(2).,则,即,又为第一象限的角,则,. 1.【答案】A【解析】()2sin cos17sin22sin cos19ααααα--===--.所以选A.【名师点睛】应用三角公式解决问题的三个变换角度:(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用或变用公式”、“通分或约分”、“分解与组合”、“配方与平方”等.2.【答案】D【名师点睛】(1)三角函数式的化简与求值要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简与求值要注意观察条件中角之间的联系(和、差、倍、互余、互补等),直通高考寻找式子和三角函数公式之间的共同点. 3.【答案】D【解析】2222222211()cos sin 1tan 43cos 21cos sin 1tan 51()3θθθθθθθ---====+++.故选D. 【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系. 4.【解析】()f x ≤=【名师点睛】通过配角公式把三角函数化为sin()y A x B ωϕ=++的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +≤求最值.5.【答案】75【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 6.【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.7.【答案】43- 【解析】由题意,π3π4sin(),cos(),4545θθ+=+=ππ3sin coscos sin ,445ππ4cos cos sin sin ,445θθθθ⎧+=⎪⎪∴⎨⎪-=⎪⎩解得sin 52cos 52θθ⎧=⎪⎪-⎨⎪=⎪⎩ 所以1tan 7θ=-,1π1tan tan π474tan().π1431tan tan 1147θθθ----===-+-⨯【名师点睛】三角函数求值,若涉及开方运算,要注意根式前正负号的取舍,同时要注意角的灵活变换.8.2 1 【解析】22cos sin21cos2sin22sin(2)14x x x x x π+=++++,所以2, 1.A b =【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos 2sin 21x x ++,进而对照()sin Αx b ωϕ++可得Α和b 的值.。
最新-2018届高考数学一轮复习 三角函数及三角恒等变换 同角三角函数的基本关系式及诱导公式调研课件
考纲下载
1.借助单位圆,理解同角三角函数的基本关系式:sin2α+ sinx
cos2α = 1, cosα = tan α , 掌 握 已 知 一 个 角 的 三 角 函 数 值 求 其他三角函数值的方法.
π 2.借助单位圆中的三角函数线导出诱导公式(2 ±α,π± α的正弦、余弦、正切),经历并体验用诱导公式求三角函数 值,感受诱导公式的变化规律.
【解析】
cos(π+x)=-cosx=35,
∴
cosx=-35<0.∴
x∈
3π (π, 2 ).
此 时 sinx=-45, ∴ tanx=43, 故选 D.
【答案】 D
4 (2)(09·北京)若sin θ=-5,tanθ >0,则cos θ= ____________. 【解析】 ∵sinθ <0,tan θ >0,θ在第三象限内,
分式,分母为1,将1变为sin2α+ cos2α,便可顺利求解.
∵sin2α+cos2α=1,
∴4sin2α-3sinα cosα-5cos2α
4sin2α- 3sinαcosα-5cos2α 4tan2α- 3tanα- 5
=
sin2α+ cos2α
=
tan2α+ 1
=1
sinα
解法二 ∵tanα=2,即
2tanα-3 2×2-3 原 式=4tanα - 9=4× 2- 9= - 1.
2sin2α-3cos2α 2tan2α-3 2×22-3 5 (2)4sin2α - 9cos2α =4tan2α - 9= 4× 22- 9=7.
(3)与 (1)(2)不 同 ,但注意 到式子有 二次齐次 式, 不妨把其 看成
高考数学复习考点知识讲解课件21 简单的三角恒等变换
(新教材) 高三总复习•数学
2.积化和差与和差化积公式 (1)积化和差公式 cosα·cosβ=12[cos(α+β)+cos(α-β)]; sinα·sinβ=-12[cos(α+β)-cos(α-β)]; sinα·cosβ=12[sin(α+β)+sin(α-β)]; cosα·sinβ=12[sin(α+β)-sin(α-β)].
— 返回 —
— 5—
(新教材) 高三总复习•数学
(2)和差化积公式 sinα+sinβ=2sinα+2 βcosα-2 β; sinα-sinβ=2cosα+2 βsinα-2 β; cosα+cosβ=2cosα+2 βcosα-2 β; cosα-cosβ=-2sinα+2 βsinα-2 β.
— 28 —
(新教材) 高三总复习•数学
对点训练
1.(2022·河南郑州联考)已知 sinα+ 3cosα= 32,则 cos76π-α=( B )
A.
2 6
B.-
2 6
C.
34 6
D.-
34 6
— 返回 —
[解析]
因为 sinα+
3 cosα = 2sin α+π3 , 所 以
高考数学复习考点知识讲解课件
第三节 三角恒等变换 第二课时 简单的三角恒等变换
基础知识夯实 核心考点突破
(新教材) 高三总复习•数学
— 返回 —
考试要求:能运用两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切 公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要 求记忆).
∴tan(α+β)=11-+mmtanα.
— 19 —
(新教材) 高三总复习•数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 三角恒等变换考纲解读会用向量的数量积推导出两角差的余弦公式.能利用两角差的余弦公式导出两角差的正弦,正切公式.能利用两角差的余弦公式导出两角和的正弦,余弦,正切公式,导出二倍角的正弦,余弦,正切公式,了解它们的内在联系. 能利用上述公式进行简单的恒等变换(包括导出积化和差,和差化积,半角公式,但对这三种公式不要求记忆). 命题趋势探究 高考必考,在选择题,填空题和解答题中都有渗透,是三角函数的重要变形工具.分值与题型稳定,属中下档难度.考题以考查三角函数式化简,求值和变形为主.化简求值的核心是:探索已知角与未知角的联系,恒等变换(化同角同函). 知识点精讲常用三角恒等变形公式 和角公式sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()1tan tan αβαβαβ++=-差角公式sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ--=+倍角公式sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===半角公式sin22αα==sin 1cos tan.21cos sin a αααα-==+辅助角公式sin cos ),tan (0),ba b ab aαααϕϕ+=+=≠角ϕ的终边过点(,)a b ,特殊地,若sin cos a b αα+=,则tan .baα=常用的几个公式sin cos );4πααα±=±sin 2sin();3πααα=±cos 2sin();6πααα±=±题型65 两角和与差公式的证明 题型归纳及思路提示 思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例4.33 证明(1):cos()cos cos sin sin ;C αβαβαβαβ++=-(2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβαβαβ+++=-解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得2221212122()PP OP OP OP OP cos αβ=+-⋅+22[cos cos()][sin sin()]22cos()αβαβαβ⇒--+--=-+ 22(cos cos sin sin )22cos()αβαβαβ⇒--=-+ :cos()cos cos sin sin .C αβαβαβαβ+⇒+=-证法二:利用两点间的距离公式.如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++3(cos(),sin()),P ββ--由231;OAP OP P ∆≅∆得,213.AP PP =故2222(1cos())(0sin())[cos()cos ][sin()sin ],αβαββαβα-++-+=--+--即222222[1cos()]sin ()cos cos 2cos cos sin sin 2sin sin αβαββααββααβ-+++=+-+++化简得cos()cos cos sin sin αβαβαβ+=-(2)sin()[()][()]22cos cos ππαβαβαβ+=+-=+-cos()sin sin()22cos ππαβαβ=---sin sin cos cos αβαβ=+:sin()sin cos sin S cos αβαβαβαβ+⇒+=+sin(sin cos cos sin (3)tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-sin cos cos sin cos cos cos cos cos cos sin sin cos cos cos cos αβαβαβαβαβαβαβαβ+-tan tan :tan().1tan tan T αβαβαβαβ++⇒+=- 变式1 证明:(1):cos()cos cos sin sin ;C αβαβαβαβ--=+ (2):sin()sin cos sin S cos αβαβαβαβ--=-tan tan (3):tan().1tan tan T αβαβαβαβ---=+题型66 化简求值 思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等.(1)给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角. 一、化同角同函例4.34 已知3cos()45x π+=则2sin 22sin ()1tan x xx -=-7.25A 12.25B 11.25C 18.25D 解析 解法一:化简所求式22sin 22sin 2sin cos 2sin sin 1tan 1cos x x x x xx x x--=--cos 2sin (cos sin )2sin cos .cos sin xx x x x x x x=-=-由3cos()45x π+=3,5x x -=即cos sin x x -=两边平方得2218cos sin 2sin cos ,25x x x x +-=即1812sin cos .25x x -= 所以72sin cos .25x x =故选A. 解法二:化简所求式2sin 22sin 2sin cos sin 21tan x xx x xx-==-27sin[2()]cos 2()12cos ().424425x x x ππππ=+-=-+=-+=故选A.评注 解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构造法较为简单.变式1 若13cos(),cos(),55αβαβ+=-=则tan tan _______.αβ= 变式2 若4cos 5α=-,α是第三象限角,则1tan2()1tan 2αα+=-1.2A - 1.2B .2C .2D -变式3 (2012江西理4)若1tan 4tan θθ+=,则sin 2().θ= 1.5A 1.4B 1.3C 1.2D 二、建立已知角与未知角的联系(通过凑配角建立)将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公式.常见的角的变换有:和、差角,辅助角,倍角,降幂,诱导等. 1.和、差角变换如α可变为()αββ+-;2α可变为()()αβαβ++-;2αβ-可变为()αβα-+ 例4.35 若330,cos ,sin(),255παβπααβ<<<<=+=-则cos β的值为( ). .1A - .1B -或72524.25C - 24.25D ±分析 建立未知角与已知角的联系,().βαβα=+-解析 解法一:cos cos[()]cos()cos sin()sin .βαβααβααβα=+-=+++因为3(,)22ππαβ+∈所以,则 4cos(),(0,),sin 0,52παβαα+=-∈>4sin 5,α=433424cos ()().555525β=-⨯+-⨯=-解法二:因为(,)2πβπ∈,所示cos (1,0).β∈-故选C.评注 利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧: ();();()()βαβαβααβαβαγβγ=+-=--+=-++等.解题时,要注意根据已知角的范围来确定未知角的范围,从而确定所求三角式的符号. 变式1已知sin ),(0,)2πααβαβ=-=∈则().β=.3B π.4C π.6D π变式2 若3335(,),(0,),cos(),sin()44445413πππππαβαβ∈∈-=+=,则sin()______.αβ+=二、辅助角公式变换5.12A π例4.36 已知cos()sin 6παα-+=,则7sin()6πα+的值为( )..5A - .5B 4.5C - 4.5D 分析 将已知式化简,找到与未知式的联系.解析 由题意,cos cossin sinsin 66ππααα++=3sin )26πααα⇒+=+=,得4sin().65πα+= 所以74sin()sin[()]sin().6665πππαπαα+=++=-+=-故选C.变式1设sin14cos14,sin16cos16,b c α=+=+=o o o o 则a,b,c 的大小关系为( ).A.a<b<cB.b<c<aC.a<c<bD.b<a<c变式2设sin15cos15,sin17cos17,b α=+=+o o o o 则下列各式中正确的是( ).22.2a b A a b +<< 22.2a b B a b +<<22.2a b C b a +<< 22.2a b D b a +<<3.倍角,降幂(次)变换例 4.37(2012大纲全国理7)已知α为第二象限角,sin cos αα+=则cos 2().α=.A .B C D 分析 利用同角三角函数的基本关系式及二倍角公式求解.解析 解法一:;因为sin cos 3αα+=所以21(sin cos )3αα+=得22sin cos 3αα=-,即2sin 23α=-.又因为α为第二象限角且sin cos 0αα+=>,则3(2,2)().24k k k Z ππαππ∈++∈所以32(4,4)().2k k k Z παπππ∈++∈故2α为第三象限角,cos 23α==-.故选A.解法二:由α为第二象限角,得cos 0,sin 0αα<>,cos sin 0,αα-< 且2(cos sin )12sin cos αααα-=-,又sin cos αα+=,则 21(sin cos )12sin cos 3αααα+=+=22sin cos 3αα⇒=-,得25(cos sin )3αα-=,所以cos sin 3αα-=-22cos 2cos sin (cos sin )(cos sin )ααααααα=-=+-()333=-=故选A. 变式1 若1sin()63πα-=则2cos()().3πα+= 7.9A - 1.3B - 1.3C 7.9D变式2(2012江苏11)设α为锐角,若4cos()65πα+=,则7sin(2)12πα+的值省为 .变式3已知312sin(2),sin 513αββ-==-且(,),(,0),22ππαπβ∈∈-求sin α值.变式4若31sin ,(,),tan()522πααππβ=∈-=,则tan(2)().αβ-=24.7A - 7.24B - 24.7C 7.24D变式5已知1sin cos 2αα=+,且(0.)2πα∈,则cos 2_____.sin()4απα=-4.诱导变换例4.38若(sin )3cos 2f x x =-,则(cos )().f x =.3cos2A x - .3sin 2B x - .3cos2C x + .3sin 2D x +分析 化同函(cos )(sin())f x f =L 以便利用已知条件. 解析 解法一:(cos )[sin()]3cos 2()3cos(2)3cos 2.22f x f x x x x πππ=+=-+=-+=+故选C.解法二:22(sin )3cos 23(12sin )2sin 2f x x x x =-=--=+则2()22,[1,1]f x x x =+∈-故22(cos )2cos 22cos 13cos 2 3.f x x x x =+=-+=+故选C.变式1α是第二象限角,4tan(2)3πα+=-,则tan _______.α=变式2若5sin(),(0,)4132ππαα-=∈,则cos 2_____.cos()4απα=+ 最有效训练题19(限时45分钟)1.已知函数()sin 3cos ,f x x x =+设(),(),()763a fb fc f πππ===,则,,a b c 的大小关系为( ).A.a<b<cB. c<a<bC.b<a<cD.b<c<a2.若1sin()34πα+=,则cos(2)().3πα-=1.4B - 7.8C - 7.8D 3.若1tan 2α=,则cos(2)().2πα+= 4.5A 4.5B - 1.2C 1.2D - 4.已知11tan(),tan 27αββ-==-,且,(0,)αβπ∈,则2().αβ-= .4A π3.4B π- 5.,44C ππ 35.,,444D πππ-5.函数sin()(0)y x πϕϕ=+>的部分图像如图4-33所示,设P是图像的最高点,A,B是图像与x 轴的交点,则tan ().APB ∠=A.10 B.8 8.7C 4.7D 6.函数sin 3cos 4x y x -=+的最大值是( ).1.2A - 1226.15B -- 4.3C - 1226.15D -+1.4A7.已知tan()34πθ+=,则2sin 22cos ______.θθ-=8.已知,x y 满足1sin sin 31cos cos 5x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,则cos()______.x y +=________.= 10.已知113cos ,cos()714ααβ=-=,且02πβα<<<,则tan 2____,____.αβ==11.已知函数2()2cos .2xf x x =(1)求函数()f x 的最小正周期和值域;(2)若α是第二象限角,且1()33f πα-=,求cos 21cos 2sin 2ααα+-的值.12.已知三点3(3,0),(0,3),(cos ,sin ),(,).22A B C ππααα∈(1)若AC BC =u u u r u u u r,求角α;(2)若1AC BC ⋅=-u u u r u u u r ,求22sin sin 21tan ααα++的值.。