工程光学习题解答

合集下载

工程光学练习题与解答

工程光学练习题与解答

工程光学练习题与解答工程光学练习题与解答光学作为一门应用广泛的工程学科,对于工程师们来说是非常重要的一门课程。

理解光学原理和应用是工程师在设计和制造光学器件和系统时必备的技能。

为了帮助读者更好地理解和掌握工程光学知识,本文将提供一些光学练习题和详细的解答。

1. 一个平行光束垂直入射到一个半径为R的球面透镜上,透镜的焦距为f。

求出该透镜的曲率半径和球面上的光焦点位置。

解答:根据透镜公式,1/f = (n-1)(1/R1 - 1/R2),其中n为透镜的折射率,R1和R2分别为透镜两个球面的曲率半径。

由于球面透镜是对称的,所以R1 = R2 = R。

将入射光束的方向与透镜法线方向垂直,可以得到R = 2f。

由于光线垂直入射到球面透镜上,入射角为0,根据球面折射定律,折射角为0。

因此,光线通过透镜后仍然是平行光束,光焦点位置在无穷远处。

2. 一个凸透镜的焦距为20cm,物距为30cm。

求出像的位置和放大倍数。

解答:根据薄透镜公式,1/f = 1/v - 1/u,其中f为透镜焦距,v为像距,u为物距。

代入已知数据,得到1/20 = 1/v - 1/30。

解方程得到v = 60cm。

根据放大倍数公式,放大倍数为m = -v/u。

代入已知数据,得到m = -60/30 = -2。

由于负号表示像是倒立的,所以像是倒立的,并且放大倍数为2。

3. 一个凹透镜的焦距为-15cm,物距为30cm。

求出像的位置和放大倍数。

解答:由于凹透镜的焦距为负值,所以可以根据薄透镜公式得到1/f = 1/v - 1/u,其中f为焦距,v为像距,u为物距。

代入已知数据,得到1/-15 = 1/v - 1/30。

解方程得到v = -10cm。

根据放大倍数公式,放大倍数为m = -v/u。

代入已知数据,得到m = -(-10)/30 = 1/3。

由于负号表示像是倒立的,所以像是倒立的,并且放大倍数为1/3。

4. 一个平行光束垂直入射到一个半径为R的球面镜上,镜的焦距为f。

物理学:工程光学考试答案(题库版)

物理学:工程光学考试答案(题库版)

物理学:工程光学考试答案(题库版)1、名词解释复消色差物镜正确答案:三条谱线之间的轴向色差经过校正的物镜。

2、问答题棱镜和光栅产生的光谱特征有何不同?正确答案:它们光谱主要区别是:(1)光栅光谱是一个均匀排列光谱,(江南博哥)棱镜光谱是一个非均匀排列的光谱。

(2)光栅光谱中个谱线排列是由紫到红(光)棱镜光谱中各谱线排列三由红到紫(光)(3)光栅光谱有级,级与级之间有重叠现象棱镜光谱没有这种现象。

光栅适用的波长范围较棱镜宽。

3、名词解释虚像点正确答案:发撒的出射同心光束的会聚点。

4、单选原子吸收线的劳伦茨变宽是基于()。

A.原子的热运动B.原子与其它种类气体粒子的碰撞C.原子与同类气体粒子的碰撞D.外部电场对原子的影响正确答案:B5、名词解释视场正确答案:物空间中,在某一距离光学系统所能接受的最大物体尺寸,此量值以角度为单位。

6、问答题同一物体经针孔或平面镜所成的像有何不同?正确答案:由反射定律可知,平面镜的物和像是关于镜面对称的。

坐标由右旋坐标系变为像的左旋坐标系,因此像和物左右互易上下并不颠倒。

即物体经平面镜生成等大、正立的虚像。

物体经针孔成像时,物点和像点之间相对与针孔对称。

右旋坐标系惊针孔所成的像仍为右旋坐标系,因此像和物上下左右都是互易的,而且像的大小与针孔到接受屏的距离有关,即物体经针孔生成倒立的实像。

7、填空题发射光谱定性分析,常以()光源激发。

正确答案:直流电弧8、填空题在进行光谱定性全分析时,狭缝宽度宜(),目的是保证有一定的(),而进行定量分析时,狭缝宽度宜(),目的是保证有一定的()。

正确答案:窄;分辨率;宽;照度9、名词解释临界角角正确答案:光密介质到光疏介质出现全反射现象,产生全反射现象时的最小入射角称为临界角。

10、名词解释波像差正确答案:当实际波面与理想波面在出瞳处相切时,两波面间的光程差就是波像差.11、问答题PLC与FBT光分路器相比有哪些优点?正确答案:与传统的采用光纤熔融拉锥工艺制作的器件相比,PLC光分路器具有工作波长宽,通道损耗均匀性体积小,工作温度范围宽,可靠性高等特点,目前是PON接入网中连接OLT和O NU并实现光信号功率分配的首选.12、填空题等离子体光源(ICP)具体有(),()等优点。

工程光学基础教程-习题答案(完整)

工程光学基础教程-习题答案(完整)

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s , 当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学习题解答

工程光学习题解答

第一章习题1、已知真空中的光速c=3m/s,求光在水n=、冕牌玻璃n=、火石玻璃n=、加拿大树胶n=、金刚石n=等介质中的光速; 解:则当光在水中,n=时,v=m/s,当光在冕牌玻璃中,n=时,v=m/s,当光在火石玻璃中,n=时,v=m/s,当光在加拿大树胶中,n=时,v=m/s,当光在金刚石中,n=时,v=m/s;2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离; 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm;3、一厚度为200mm的平行平板玻璃设n=,下面放一直径为1mm的金属片;若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片;而全反射临界角求取方法为:1其中n2=1,n1=,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:2联立1式和2式可以求出纸片最小直径x=179.385mm, 所以纸片最小直径为358.77mm;4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角;解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI21而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:2由1式和2式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=的玻璃球上,求其会聚点的位置;如果在凸面镀反射膜,其会聚点应在何处如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处反射光束经前表面折射后,会聚点又在何处说明各会聚点的虚实;解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面;1首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处;2 将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像;还可以用β正负判断:3光线经过第一面折射:, 虚像第二面镀膜,则:得到:4 再经过第一面折射物像相反为虚像;6、一直径为400mm,折射率为的玻璃球中有两个小气泡,一个位于球心,另一个位于1/2半径处;沿两气泡连线方向在球两边观察,问看到的气泡在何处如果在水中观察,看到的气泡又在何处解:设一个气泡在中心处,另一个在第二面和中心之间;1从第一面向第二面看2从第二面向第一面看3在水中7、有一平凸透镜r1=100mm,r2=,d=300mm,n=,当物体在时,求高斯像的位置l’;在第二面上刻一十字丝,问其通过球面的共轭像在何处当入射高度h=10mm,实际光线的像方截距为多少与高斯像面的距离为多少解:8、一球面镜半径r=-100mm,求=0 , , ,-1 ,1 ,5,10,∝时的物距像距;解:12 同理,3同理,4同理,5同理,6同理,7同理,8同理,9、一物体位于半径为r 的凹面镜前什么位置时,可分别得到:放大4倍的实像,当大4倍的虚像、缩小4倍的实像和缩小4倍的虚像解:1放大4倍的实像2放大四倍虚像3缩小四倍实像4缩小四倍虚像第二章习题1、已知照相物镜的焦距f’=75mm,被摄景物位于以F点为坐标原点x=处,试求照相底片应分别放在离物镜的像方焦面多远的地方;解:1x= -∝ ,xx′=ff′得到:x′=02x′=3x′=4x′=5x′=6x′=2、设一系统位于空气中,垂轴放大率,由物面到像面的距离共轭距离为7200mm,物镜两焦点间距离为1140mm,求物镜的焦距,并绘制基点位置图;3.已知一个透镜把物体放大-3倍投影在屏幕上,当透镜向物体移近18mm时,物体将被放大-4x试求透镜的焦距,并用图解法校核之;解:4.一个薄透镜对某一物体成实像,放大率为-1x,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动20mm,放大率为原先的3/4倍,求两块透镜的焦距为多少解:5.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向透镜移近100mm,则所得像与物同大小,求该正透镜组的焦距;解:6.希望得到一个对无限远成像的长焦距物镜,焦距=1200mm,由物镜顶点到像面的距离L=700 mm,由系统最后一面到像平面的距离工作距为,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图;解:7.一短焦距物镜,已知其焦距为35 mm,筒长L=65 mm,工作距,按最简单结构的薄透镜系统考虑,求系统结构;解:8.已知一透镜求其焦距、光焦度;解:9.一薄透镜组焦距为100 mm,和另一焦距为50 mm的薄透镜组合,其组合焦距仍为100 mm,问两薄透镜的相对位置;解:10.长60 mm,折射率为的玻璃棒,在其两端磨成曲率半径为10 mm的凸球面,试求其焦距;解:11.一束平行光垂直入射到平凸透镜上,会聚于透镜后480 mm处,如在此透镜凸面上镀银,则平行光会聚于透镜前80 mm 处,求透镜折射率和凸面曲率半径;解:第三章习题1.人照镜子时,要想看到自己的全身,问镜子要多长人离镜子的距离有没有关系解:镜子的高度为1/2人身高,和前后距离无关;2.设平行光管物镜L的焦距=1000mm,顶杆与光轴的距离a=10 mm,如果推动顶杆使平面镜倾斜,物镜焦点F的自准直像相对于F产生了y=2 mm的位移,问平面镜的倾角为多少顶杆的移动量为多少解:3.一光学系统由一透镜和平面镜组成,如图3-29所示,平面镜MM与透镜光轴垂直交于D点,透镜前方离平面镜600 mm 有一物体AB,经透镜和平面镜后,所成虚像至平面镜的距离为150 mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图;解:平面镜成β=1的像,且分别在镜子两侧,物像虚实相反;4.用焦距=450mm的翻拍物镜拍摄文件,文件上压一块折射率n=,厚度d=15mm的玻璃平板,若拍摄倍率,试求物镜后主面到平板玻璃第一面的距离;解:此为平板平移后的像;5.棱镜折射角,C光的最小偏向角,试求棱镜光学材料的折射率;解:6.白光经过顶角的色散棱镜,n=的色光处于最小偏向角,试求其最小偏向角值及n=的色光相对于n=的色光间的交角;解:第四章习题1.二个薄凸透镜构成的系统,其中,,,位于后,若入射平行光,请判断一下孔径光阑,并求出入瞳的位置及大小;解:判断孔径光阑:第一个透镜对其前面所成像为本身,第二个透镜对其前面所成像为,其位置:大小为:故第一透镜为孔阑,其直径为4厘米.它同时为入瞳.2.设照相物镜的焦距等于75mm,底片尺寸为5555,求该照相物镜的最大视场角等于多少解:第五章习题1、一个100W的钨丝灯,发出总光通量为,求发光效率为多少解:2、有一聚光镜,数值孔径,求进入系统的能量占全部能量的百分比;解:而一点周围全部空间的立体角为3、一个的钨丝灯,已知:,该灯与一聚光镜联用,灯丝中心对聚光镜所张的孔径角,若设灯丝是各向均匀发光,求1灯泡总的光通量及进入聚光镜的能量;2求平均发光强度解:4、一个的钨丝灯发出的总的光通量为,设各向发光强度相等,求以灯为中心,半径分别为:时的球面的光照度是多少解:5、一房间,长、宽、高分别为:,一个发光强度为的灯挂在天花板中心,离地面,1求灯正下方地板上的光照度;2在房间角落处地板上的光照度;解:第六章习题1.如果一个光学系统的初级子午彗差等于焦宽,则应等于多少解:2.如果一个光学系统的初级球差等于焦深,则应为多少解:3.设计一双胶合消色差望远物镜,,采用冕牌玻璃K9,和火石玻璃F2 , ,若正透镜半径,求:正负透镜的焦距及三个球面的曲率半径;解:4.指出图6-17中解:第七章习题1.一个人近视程度是屈光度,调节范围是8D,求:1 其远点距离;2 其近点距离;3 配带100度的近视镜,求该镜的焦距;4 戴上该近视镜后,求看清的远点距离;5 戴上该近视镜后,求看清的近点距离;解:远点距离的倒数表示近视程度2.一放大镜焦距,通光孔径,眼睛距放大镜为50mm,像距离眼睛在明视距离250mm,渐晕系数K=50%,试求:1视觉放大率;2线视场;3物体的位置;解:3.一显微物镜的垂轴放大倍率,数值孔径NA=,共轭距L=180mm,物镜框是孔径光阑,目镜焦距;1 求显微镜的视觉放大率;2 求出射光瞳直径;3 求出射光瞳距离镜目距;4 斜入射照明时,,求显微镜分辨率;5 求物镜通光孔径;设物高2y=6mm,渐晕系数K=50%,求目镜的通光孔径;解:4.欲分辨的微小物体,使用波长,斜入射照明,问:1 显微镜的视觉放大率最小应多大2 数值孔径应取多少适合解:此题需与人眼配合考虑5.有一生物显微镜,物镜数值孔径NA=,物体大小2y=,照明灯丝面积,灯丝到物面的距离100mm,采用临界照明,求聚光镜焦距和通光孔径;解:视场光阑决定了物面大小,而物面又决定了照明的大小6.为看清4km处相隔150mm的两个点设,若用开普勒望远镜观察,则:1 求开普勒望远镜的工作放大倍率;2 若筒长L=100mm,求物镜和目镜的焦距;3 物镜框是孔径光阑,求出设光瞳距离;4 为满足工作放大率要求,求物镜的通光孔径;5 视度调节在屈光度,求目镜的移动量;6 若物方视场角,求像方视场角;7 渐晕系数K=50%,求目镜的通光孔径;解:因为:应与人眼匹配7.用电视摄相机监视天空中的目标,设目标的光亮度为2500,光学系统的透过率为,摄象管靶面要求照度为20lx,求摄影物镜应用多大的光圈;解:。

工程光学习题解答

工程光学习题解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学练习答案(带样题).doc

工程光学练习答案(带样题).doc

工程光学练习答案(带样题)期末,东北石油大学审查了09级工程光学的测量和控制材料。

第一章练习1,假设真空中的光速为3米/秒,则计算水中(n=1.333)、皇冠玻璃(n=1.51)、燧石玻璃(n=1.65)、加拿大树胶(n=1.526)、钻石(n=2.417)和其他介质中的光速。

解决方案:当灯在水中时,n=1.333,v=2.25m米/秒,当灯在皇冠玻璃中时,n=1.51,v=1.99m米/秒,当灯在燧石玻璃中时,n=1.65,v=1.82m米/秒,当灯在加拿大树胶中时,n=1.526,v=1.97m米/秒,当灯在钻石中时,n=2.417,v=1.24米/秒。

2.一个物体穿过针孔照相机,在屏幕上形成一个60毫米大小的图像。

如果屏幕被拉开50毫米,图像的尺寸变成70毫米,计算出从屏幕到针孔的初始距离。

解决方案:在同一个均匀的介质空间中,光直线传播。

如果选择通过节点的光,方向不会改变,从屏幕到针孔的初始距离为x,则可以根据三角形的相似性得到:因此,x=300mm毫米意味着从屏幕到针孔的初始距离是300毫米。

3、一块厚度为200毫米的平行平板玻璃(n=1.5),下面放一块直径为1毫米的金属板。

如果玻璃板上覆盖有圆形纸片,则要求玻璃板上方的任何方向都不能看到纸片。

这张纸的最小直径是多少?解决方案:如果纸片的最小半径是x,那么根据全反射原理,当光束从玻璃发射到空气中的入射角大于或等于全反射临界角时,就会发生全反射,正是由于这个原因,在玻璃板上方看不到金属片。

全反射的临界角由下式确定:(1)其中N2=1,n1=1.5,根据几何关系,利用平板的厚度和纸张与金属片的半径计算全反射临界角的方法如下:(2)纸张的最小直径x=179.385mm毫米可以通过组合等式(1)和(2)来获得,因此纸张的最小直径为358.77毫米4.光纤芯的折射率是n1.包层的折射率为n2,光纤所在介质的折射率为n0。

计算光纤的数值孔径(即n0sinI1,其中I1是光在光纤中以全反射模式传播时,光在入射端面的最大入射角)。

工程光学基础教程 习题参考答案

工程光学基础教程 习题参考答案

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学习题解答(第1章)

工程光学习题解答(第1章)

第一章1.举例说明符合光传播基本定律的生活现象及各定律的应用。

答:(1)光的直线传播定律影子的形成;日蚀;月蚀;均可证明此定律.应用:许多精密的测量,如大地测量(地形地貌测量),光学测量,天文测量.(2)光的独立传播定律定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。

说明:各光束在一点交会,光的强度是各光束强度的简单叠加,离开交会点后,各光束仍按各自原来的方向传播。

2.已知真空中的光速c≈3×108m/s,求光在水(n=1。

333)、冕牌玻璃(n=1。

51)、火石玻璃(n=1。

65)、加拿大树胶(n=1。

526)、金刚石(n=2.417)等介质中的光速。

解:v=c/n(1)光在水中的速度:v=3×108/1。

333=2.25×108 m/s(2)光在冕牌玻璃中的速度:v=3×108/1。

51=1。

99×108 m/s(3)光在火石玻璃中的速度:v=3×108/1。

65=1。

82×108 m/s(4)光在加拿大树胶中的速度:v=3×108/1。

526=1。

97×108 m/s(5)光在金刚石中的速度:v=3×108/2.417=1。

24×108m/s*背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。

那时候的玻璃极不均匀,多泡沫。

除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃).3.一物体经针孔相机在屏上成像的大小为60mm,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:⇒l=300mm4.一厚度为200mm的平行平板玻璃(设n=1。

5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:本题是关于全反射条件的问题。

工程光学习题解答第十章_光干涉

工程光学习题解答第十章_光干涉

第十一章 光的干涉1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。

解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。

继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。

试求注入气室内气体的折射率。

解:设气体折射率为n ,则光程差改变()0n n h ∆=- DPxS 2S 1R 1 R 2hP 0图11-47 习题2 图()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。

玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。

解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。

工程光学习题参考答案第一章几何光学基本定律

工程光学习题参考答案第一章几何光学基本定律

⼯程光学习题参考答案第⼀章⼏何光学基本定律第⼀章⼏何光学基本定律1. 已知真空中的光速c =3810?m/s ,求光在⽔(n=1.333)、冕牌玻璃(n=1.51)、⽕⽯玻璃(n=1.65)、加拿⼤树胶(n=1.526)、⾦刚⽯(n=2.417)等介质中的光速。

解:则当光在⽔中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在⽕⽯玻璃中,n =1.65时,v=1.82 m/s ,当光在加拿⼤树胶中,n=1.526时,v=1.97 m/s ,当光在⾦刚⽯中,n=2.417时,v=1.24 m/s 。

2. ⼀物体经针孔相机在屏上成⼀60mm ⼤⼩的像,若将屏拉远50mm ,则像的⼤⼩变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则⽅向不变,令屏到针孔的初始距离为x ,则可以根据三⾓形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. ⼀厚度为200mm 的平⾏平板玻璃(设n =1.5),下⾯放⼀直径为1mm 的⾦属⽚。

若在玻璃板上盖⼀圆形的纸⽚,要求在玻璃板上⽅任何⽅向上都看不到该⾦属⽚,问纸⽚的最⼩直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射⽅式传播时在⼊射端⾯的最⼤⼊射⾓)。

解:位于光纤⼊射端⾯,满⾜由空⽓⼊射到光纤芯中,应⽤折射定律则有: n 0sinI 1=n 2sinI 2 (1)⽽当光束由光纤芯⼊射到包层的时候满⾜全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联⽴得到n 0 .5. ⼀束平⾏细光束⼊射到⼀半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学习题解答典型光学系统

工程光学习题解答典型光学系统

工程光学习题解答第七章典型光学系统1•一个人近视程度是2D (屈光度),调节范围是8D,求: (1)远点距离;(2)其近点距离;(3)配戴100度近视镜,求该镜的焦距;(4)戴上该近视镜后,求看清的远点距离;(5)戴上该近视镜后,求看清的近点距离。

1解:①R 2 (1/m)l rl r 0.5m②A R P A 8D R 2DP R A 2 8 10DI P 1 1 0.1m P 10③D 1 f 1mf④R R D 1D1R1m⑤A R P A 8D R 1DP R A 9DI P 1 0.11m92 .一放大镜焦距f 25mm,通光孔径D 18mm,眼睛距放大镜为50mm,像距离眼睛在明视距离250mm,渐晕系数为k 50%,试求(1)视觉放大率;(2)线视场;(3)物体的位置。

D工程光学习题解答已知:放大镜 f 25mm D 放18mmK 50%求:(①r ②2y ③1解: ①1 P DfP 50mm P I 250mm250 501 ——25 2510 1 2 9②由K 50%可得:tg180.18 2P 2* 50tg tg0.18 tg 0.029tg _y D ••• y Dtg••• 2y 10mm方法二:tg 0.18250* 0.02 5mm y 250* tg 45mmI 200mm f e 250mm I 22.2mmI 200 ex yI 22.2 y2y 10mm50 250 200mm200 25I 22.22mm3.—显微镜物镜的垂轴放大率为3x,数值孔径NA 0.1,共扼距L 180mm,物镜框是孔径光阑,目镜焦距f e25mm。

工程光学习题解答(1)求显微镜的视觉放大率。

(2)求出射光瞳直径。

(3)求出射光瞳距离(镜目距)。

(4)斜入射照明时,0.55 m,求显微镜的分辨率。

(5)求物镜的通光孔径。

(6)射物高2y 6mm,渐晕系数k 50%,求目镜的通光孔径。

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1。

51)、火石玻璃(n=1。

65)、加拿大树胶(n=1.526)、金刚石(n=2。

417)等介质中的光速。

解:则当光在水中,n=1。

333时,v=2。

25 m/s,当光在冕牌玻璃中,n=1。

51时,v=1.99 m/s,当光在火石玻璃中,n=1。

65时,v=1。

82 m/s,当光在加拿大树胶中,n=1.526时,v=1。

97 m/s,当光在金刚石中,n=2。

417时,v=1.24 m/s.2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1。

5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1。

5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179。

385mm, 所以纸片最小直径为358。

77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1。

工程光学复习题及答案

工程光学复习题及答案

工程光学复习题及答案一、单项选择题1. 光学中,光的波动性可以通过以下哪个实验来验证?A. 双缝干涉实验B. 单缝衍射实验C. 迈克尔逊干涉仪实验D. 光的偏振实验答案:A2. 以下哪种光学元件可以实现光的会聚?A. 凸透镜B. 凹透镜C. 平面镜D. 棱镜答案:A3. 光的折射定律是由哪位科学家提出的?A. 牛顿B. 惠更斯C. 斯涅尔D. 爱因斯坦答案:C二、填空题4. 光在真空中的传播速度是_________m/s。

答案:3×10^85. 光的波长、频率和速度之间的关系可以用公式_________来表示。

答案:v=λf6. 光的偏振现象表明光是一种_________。

答案:横波三、简答题7. 简述光的干涉现象及其产生条件。

答案:光的干涉现象是指两束或多束相干光波在空间相遇时,由于光波的相位差引起的光强分布出现明暗相间的条纹。

产生干涉的条件是:两束光必须是相干光,即它们的频率相同,相位差恒定或满足一定的关系。

8. 什么是光的衍射现象?并举例说明。

答案:光的衍射现象是指光波在遇到障碍物或通过狭缝时,光波的传播方向发生改变,形成明暗相间的衍射图样。

例如,当光通过单缝时,会在缝后形成衍射条纹,这种现象称为单缝衍射。

四、计算题9. 已知一束光的波长为500nm,求其在真空中的频率。

答案:根据公式v=λf,光在真空中的速度v=3×10^8 m/s,波长λ=500×10^-9 m,代入公式可得频率f=v/λ=(3×10^8)/(500×10^-9) Hz=6×10^14 Hz。

10. 一束光从空气斜射入水中,入射角为30°,求折射角。

答案:根据斯涅尔定律n1sinθ1=n2sinθ2,其中n1为空气的折射率,n2为水的折射率,θ1为入射角,θ2为折射角。

空气的折射率n1≈1,水的折射率n2≈1.33,代入公式可得sinθ2=n1sinθ1/n2=1×sin30°/1.33≈0.433,因此θ2≈26.3°。

工程光学习题解答

工程光学习题解答

36.2( mm), l F
第二章 理想光学系统
17、有三个薄透镜,其焦距分别为 f1 100mm, f 2 50mm, f 3 50mm, 其间隔 d1 10mm, d 2 10mm 求组合系统的 基点。 h h1 100mm, tan U 2 tan U1 2 解:物方参数 f

lH f
l F l H f 1560mm, l F l H f 1360mm
第二章 理想光学系统
10、解:
f f1f 2

100mm,
f1f 2 f
50mm
d f1 f 2 100mm lH f lH f d f2 d f1 100mm, l F l H f 0
A
OB 50 OB OB 30mm
A
A
n 6、解:0 sin I1 n1 sin I 2 I 2 90 I m
0
n1 sin I m n2 sin 90 sin I m n2 n1 n2 n1
2 2
0
cos I m 1
n0 sin I1 n1 1
H
lH
F2
F1
F
d
l F (lk )
L
f
第二章 理想光学系统
9、已知一透镜 r1 200mm, r2 300mm, d 50mm, n 1.5 , 求其焦距、光焦度、基点位置。 nr1r2 解: f 1440mm 1.44m
( n 1)[ n( r2 r1 ) ( n 1)] 1 f 0.69 D n 1 n d1 120mm, l H f n 1 n d 2 80mm

工程光学课后答案完整版

工程光学课后答案完整版
解:
6.希望得到一个对无限远成像的长焦距物镜,焦距 =1200mm,由物镜顶点到像面的距离L=700 mm,由系统最后一面到像平面的距离(工作距)为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。
解:
7.一短焦距物镜,已知其焦距为35 mm,筒长L=65 mm,工作距 ,按最简单结构的薄透镜系统考虑,求系统结构。
解:该题可以应用单个折射面的高斯公式来解决,
设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:
会聚点位于第二面后15mm处。
(2)将第一面镀膜,就相当于凸面镜
像位于第一面的右侧,只是延长线的交点,因此是虚像。
还可以用β正负判断:
(3)光线经过第一面折射: ,虚像
第二面镀膜,则:
得到:
(4)再经过第一面折射
物像相反为虚像。
6、一直径为400mm,折射率为1.5的玻璃球中有两个小气泡,一个位于球心,另一个位于1/2半径处。沿两气泡连线方向在球两边观察,问看到的气泡在何处?如果在水中观察,看到的气泡又在何处?
解:设一个气泡在中心处,另一个在第二面和中心之间。
(1)从第一面向第二面看
当光在火石玻璃中,n=1.65时,v=1.82 m/s,
当光在加拿大树胶中,n=1.526时,v=1.97 m/s,
当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:
解:(1)
(2)同理,

工程光学习题解答

工程光学习题解答

工程光学习题解答 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第一章习题1、已知真空中的光速c=3m/s,求光在水(n=)、冕牌玻璃(n=)、火石玻璃(n=)、加拿大树胶(n=)、金刚石(n=)等介质中的光速。

?解:则当光在水中,n=时,v=m/s,当光在冕牌玻璃中,n=时,v=m/s,当光在火石玻璃中,n=时,v=m/s,当光在加拿大树胶中,n=时,v=m/s,当光在金刚石中,n=时,v=m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

?解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm?即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1,n1=,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=的玻璃球上,求其会聚点的位置。

工程光学课后答案

工程光学课后答案

第一章16. 一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

还可以用β正负判断:(3)光线经过第一面折射:, 虚像第二面镀膜,则:得到:(4)在经过第一面折射物像相反为虚像。

18.一直径为400mm,折射率为1.5的玻璃球中有两个小气泡,一个位于球心,另一个位于1/2半径处。

沿两气泡连线方向在球两边观察,问看到的气泡在何处?如果在水中观察,看到的气泡又在何处?解:设一个气泡在中心处,另一个在第二面和中心之间。

(1)从第一面向第二面看(2)从第二面向第一面看(3)在水中19.有一平凸透镜r 1=100mm,r =∝2,d=300mm,n=1.5,当物体在时,求高斯像的位置'l 。

在第二面上刻一十字丝,问其通过球面的共轭像在何处?当入射高度h=10mm ,实际光线的像方截距为多少?与高斯像面的距离为多少?解:19.有平凸透镜r 1=100mm ,r 2=∞,d=300mm ,n=1.5,当物体在-∞时,求高斯像的位置l’。

在第二面上刻一十字丝,问其通过球面的共轭像处?当入射高度h=10mm 时,实际光线的像方截距为多少?与高斯像面的距离为多少?d=300mmr 1=100mmI I 'B 'r 2=∞ -I 2I 2’B’B” A’ n=1.5解 1) 由r nn l l -'=-'11代入 ∞=1l , 5.11='n ,11=n ,1001=r 得: mm l 3001='mm d l l 030030012=-=-'=mm l 02='∴即:物体位于-∞时,其高斯像点在第二面的中心处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B B 50 B
60 70
A
O
A
A
n0 sin I1 n1 sin I 2 6、解: I 2 900 I m n1 sin I m n2 sin 900 sin I m n2 n1
2 2 n2 n2 2 cos I m 1 2 n0 sin I1 n1 1 2 n12 n2 n1 n1
lr
lp
7-1
或:近视眼的远点距离为 lr 0.5m,其戴上眼睛能看清的远 点距离为物距 l,通过眼镜后成像在眼睛的远点距离 lr 上: 即:由 1 1 2D, 1 1 1 1D 得: l 1m 1000 mm
l lr f 1m l
(5)由于 A R P 8D lr l p 得: l 1 0.11m
H
F2 F1
lH
f
F
d
(lk ) lF
L
第二章 理想光学系统
9、已知一透镜 r1 200mm, r2 300mm, d 50mm, n 1.5 , 求其焦距、光焦度、基点位置。 nr1r2 解: f 1440mm 1.44m (n 1)[ n(r2 r1 ) (n 1)] 1 0.69 D f n 1 n 1 f lH d1 120mm, lH f d 2 80mm n n lH f 1560mm, lF l H f 1360mm lF
tan y / 250 y h P 250 h y 而:y D P 2 250 h 500 h 500 9 2y 10(mm ) 所以: P P 9 50
y
l 200 mm 250 mm
l
P 50
l 200mm;f 25mm 或(2)由: (3)由:
l 得: 200 22.22 mm 9
y l y l l 200 / 9 45 10(mm ) 得:2 y 2 y 2 l 200
7-3
3 NA 0.1 一显微镜物镜的垂轴放大倍率 ,数值孔径 ,共轭距 L 180 mm ,物镜框是孔径光阑,目镜焦距 。 f e 25mm 。(1)求显微镜的视觉放大率;(2)求出射 光瞳直径;(3)求出射光瞳距离(镜目距);(4)斜入 射照明时, 0.55m 求显微镜分辨率;(5)求物镜通光 孔径;(6)设物高 2 y 6m m,渐晕系数 K 50% ,求目 镜的通光孔径。 250 30 e 解(1) (2)D 500 NA / 1.67mm f e l 3 l l L 180 mm (3)如图所示,由: l 得: l 45m m
f
F
lF
F1
H
F2 lH
F1 F lH lF
H
f
第二章 理想光学系统
15、一块厚透镜, n 1.6, r1 120mm, r2 320mm, d 30mm 试求该透镜焦距和基点位置。如果物距 l1 5m 时,问 像在何处?如果平行光入射时,使透镜绕一和光轴垂直 的轴,而要求像点位置不变,问该轴应装在何处? nr1r2 解(1)f 149.27mm
l 135m m
物镜框是孔径光阑,
l
l
L 180 mm lz
lz
7-3
(3)由 lz l fe 160mm fe 25mm 得: lz 29.63mm 0.5 2.75 m (4)斜入射,用道威判据得: NA (5)物镜的通光孔径即入瞳直径,由: t l z D lz D l 160 得: D D z 1.67 9.02m m
f1 90 h2 h1 d1 tan U1 tan U 2 tan U 3 tan U 2 98 h3 h2 d 2 tan gU 2 tan U 3 tan U 3 f h3 2.76 f 3 h2 0.8 f 2
h3 h1 36.2(mm), l F 35.5(mm) tan gU 3 tan U 3
x f 10 1140 f x ff f H H H F A F H 可得: 10 f 6060 10 f x f 101 f 6060 f 600(mm)
x 60( mm), x 6000( mm) x ( f ) HH f x 7200 HH 60( mm)
第二章 理想光学系统
P37—38页3、6、7、9、10、15、17 3、设系统位于空气中,垂轴放大率 10,有物面到 像面的距离(共轭距)为7200mm,物镜两焦点的距离为 1140mm。求该物镜焦距,并绘出基点位置图。 由: x x 7200 1140 6060(mm) 解:
1
1200 h2 h1 d1 tan U1 tan U 2 tan U 3 tan U 2 16.4 h3 h2 d 2 tan gU 2 tan U 3 tan U 3 f h3 2.76 f 3 h2 4.4 f 2
H
F
H
H
F
F
H
H
H
F F
第二章 理想光学系统
17、有三个薄透镜,其焦距分别为 f1 100mm, f 2 50mm, f 3 50mm,其间隔 d1 10mm, d 2 10mm 求组合系统的 基点。 h h 100 mm , tan U tan U 1 解:像方参数:1 2 1
l1
H
2
13.99mm, lH 5.25mm lH
H
f
f
第二章 理想光学系统
15、如果平行光入射时,使透镜绕一和光轴垂直的轴,而 要求像点位置不变,问该轴应装在何处?
F
F
H
H
H
F
H
F
H
H
F
第二章 理想光学系统
15、如果平行光入射时,使透镜绕一和光轴垂直的轴,而 要求像点位置不变,问该轴应装在何处? F
7200
A
x
第二章 理想光学系统
7、解:d L lF 300mm, l H lF f 800mm d d f f1 f 450mm lH f1 lH f1f 2 f f 2 240mm d f1 f 2
l
l
得: De 21.33mm
L 180 mm lz
lz
或:De 2l z tan 2l z tan 2l z
3 21.33mm 250
7-4
欲分辨0.000725的微小物体,使用波长 0.00055 mm 的斜入射照明,问(1)显微镜的视觉放大率最小应为多 大?(2)数值孔径应取多大? 解:(1)人眼最小分辨角是 1 则 0.000725 tan 1 250 即: 100 2)由道威判据: 0.5
h3 h1 36.2(mm), l F 35.5(mm) tan gU 3 tan U 3
第三章 平面与平面系统
7题
x
y
y
z
x
z
y
z
x x
z
y y y
z
y
x
yxzx来自zyz
x
z
x
a)
b)
c)
第三章 平面与平面系统
7题
x
z
y
y
z
x
d)
x
z
y
y
z
x
z
y
x
e)
7-1
1.一个人近视程度是-2D(屈光度),调节范围是8D,求: (1)其远点距离;(2)其近点距离;(3)配戴100度的 近视镜,求该眼镜的焦距;(4)戴上该近视镜后,求看 清的远点距离;(5)戴上该眼镜后,求看清的近点距离。 1 1 2 D l m 0.5m 500 mm 解:(1)由:l 得: r 2 1 r 1 1 (2)由 A R P 8D 及: 2D lr l l r p 1 得: 则: l p 0.1m 100mm 2D 8D 10D (3)100度近视镜的焦距与100近视眼的远点距离相同, f 1m 1000 mm 则: (4)戴上100度近视镜相当于近视程度减轻100度, 1 即近视程度为-1D,则: 1D lr 1m 1000m m
第二章 理想光学系统
10、解: f f1f 2 100mm, f1f 2 50mm

f d f1 f 2 100mm f lH lH f d lH f0 100mm, l F f1
d 200mm, l F l H f 100mm f2
D/2 D 2 l NA 9mm l (6)由于 2 y 6m m 及:K 50% y D /2 tan e De 2l z tan y lz
或: NA n sin U sin U tan U
lz
29.63
y y tan 0.067 l l
(n 1)[ n(r2 r1 ) (n 1)d ]
(2)l1 5m 5000mm, l l lH 5005.25mm 由高斯物像关系式可得:l 153.83mm l lH 139.83mm 该像距离透镜第二面:l2 l l (3) l
工程光学
习题解答
第一章 第二章 第三章 第七章 几何光学基本定理与成像概念 理想光学系统 平面与平面系统 典型光学系统
相关文档
最新文档