山东省济宁市2020届高三数学模拟考试6月试题

合集下载

山东省济宁市2024届高三下学期三模数学试题(解析版)

山东省济宁市2024届高三下学期三模数学试题(解析版)

山东省济宁市2024届高三下学期三模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则中元素的个数为( )A. 1 B. 2C. 3D. 4【答案】B 【解析】【分析】根据分式不等式解集合B ,结合交集的概念与运算即可求解.【详解】由,得且,解得,即,所以,有2个元素.故选:B2. 的展开式中的系数为( )A. B. C. 120 D. 160【答案】A 【解析】【分析】求出二项式展开式的通项公式,再由给定幂指数求解即得.【详解】二项式展开式的通项为,由,得,所以的展开式中的系数为.故选:A{}22,1,1,2,01x A B x x ⎧⎫+=--=≤⎨⎬-⎩⎭A B ⋂201x x +≤-(2)(1)0≤x x +-10x -≠21x -£<{21}B x x =-≤<{2,}1A B ⋂=--262()x x-3x 160-120-262(x x-261231662C ()()(2)C ,N,6r rr r r r r T x x r r x--+=-=-∈≤1233r -=3r =262()x x-3x 336(2)C 160-=-3. 若随机变量,随机变量,则( )A. 0 B.C.D. 2【答案】B 【解析】【分析】利用正态分布的两个参数就是随机变量的期望和方差,再利用两个线性随机变量之间的期望和方差公式,即,就可以求出结果.【详解】由可知:,又因为,所以,,则,故选:B.4. 已知数列中,,则( )A. B. C. 1D. 2【答案】C 【解析】【分析】利用数列的递推公式求出数列的周期,即可求解.【详解】由,得,,,,,,()2~32X N ,1(3)2Y X =-()1()1E Y D Y +=+1245()()(),E Y E kX b kE X b =+=+()2()()D Y D kX b k D X =+=()2~32X N ,()3,()4E X D X ==1(3)2Y X =-()131333()(0222222E Y E X E X =-=-=-=()131()(1224D Y D X D X =-==()1011()1112E Y D Y ++==++{}n a ()*1211212n n n a a a a a n n +-===-≥∈N ,,,2024a=2-1-()*12112,1,2,n n n a a a a a n n +-===-≥∈N3211a a a =-=-4322a a a =-=-4531a a a ==--6541a a a =-=7652a a a =-=8761a a a ==-则是以6为周期的周期数列,所以.故选:C5. 已知抛物线的焦点为,过且斜率为的直线交抛物线于,两点,若,则( )A.B. 1C.D. 2【答案】D 【解析】【分析】设,,,联立抛物线方程,利用韦达定理和抛物线的定义建立关于的方程,解之即可求解.【详解】由题意知,,设,联立直线与抛物线得,消去,得,所以.由抛物线的定义知.而,故,解得.故选:D.{}n a 20243376221a a a ⨯+===2:2(0)C y px p =>F F 2l C A B ||5AB =p =1232:22p l y x ⎛⎫=-⎪⎝⎭()11,A x y ()22,B x y p ,02p F ⎛⎫⎪⎝⎭()()1122:2(),,,,2p l y x A x y B x y =-22()22p y x y px⎧=-⎪⎨⎪=⎩y 22460x px p -+=1232x x p +=1212352222p p AB AF BF x x x x p p p p ⎛⎫⎛⎫=+=+++=++=+= ⎪ ⎪⎝⎭⎝⎭5AB =552p =2p =6. 已知函数,若在区间上的值域为,则实数的取值范围是( )A. B. C. D. 【答案】D 【解析】【分析】利用二倍角公式、辅助角公式化简函数,再借助正弦函数的图象与性质求解即得.【详解】依题意,函数,当时,,显然,且正弦函数在上单调递减,由在区间上的值域为,得,解得,所以实数的取值范围是.故选:D7. 已知函数为偶函数,当时,,则曲线在点处的切线方程是( )A. B. C. D. 【答案】A 【解析】【分析】利用偶函数的性质求出的解析式,再利用导数的几何意义求出切线方程.【详解】函数为偶函数,当时,,则当时,,求导得,则,而,所以曲线在点处的切线方程是,即.故选:A1()cos )cos 2f x x x x =+-()f x π[,]4m -[m ππ[,62ππ[,62π7π[,612π7π,612⎡⎤⎢⎥⎣⎦()f x 211π()cos cos 2cos 2sin(2226f x x x x x x x =+-=+=+π[,]4x m ∈-πππ2[,2]636x m +∈-+π4ππsin(sin 1332-===sin y x =π4π[,]23()f x π[,]4m -[ππ4π2263m ≤+≤π7π612m ≤≤m π7π,612⎡⎤⎢⎥⎣⎦()f x 0x <2()ln()f x x x =-+()y f x =(1,(1))f 320x y --=320x y +-=320x y ++=320x y -+=0x >()f x 0x <2()ln()f x x x =-+0x >2()()ln f x f x x x =-=+1()2f x x x'=+(1)3f '=(1)1f =()y f x =(1,(1))f 13(1)y x -=-320x y --=8. 已知双曲线的左、右焦点分别为,根据双曲线的光学性质可知,过双曲线上任意一点的切线平分.直线过交双曲线的右支于A ,B 两点,设的内心分别为,若与的面积之比为,则双曲线的离心率为( )A.B.C.D..【答案】C【解析】【分析】利用切线长定理求得直线的方程,再借助双曲线的切线方程求出点的横坐标,结合面积关系求解即得.【详解】令圆切分别为点,则,,令点,而,因此,解得,又,则点横坐标为,同理点横坐标为,即直线方程为,设,依题意,直线的方程分别为:,,联立消去得:,整理得,令直线的方程为,于是,即点的横坐标为,因此,所以双曲线的离心率.故选:C的2222:1(00)x y C a b a b-=>>,12,F F C ()00,P x y 0022:1(0,0)x x y yl a b a b-=>>12F PF ∠1l 2F C 12121,,AF F BF F ABF 12,,I I I 12II I 212F I I 35C 325312I I I 1I 1212,,AF AF F F ,,P Q T 1122||||,||||,||||AP AQ F P FT F Q F T ===121212||||||||||||2FT F T F P F Q AF AF a -=-=-=0(,0)T x 12(,0),(,0)F c F c -00()()2x c c x a ----=0x a =112I T F F ⊥1I a 2I a 12I I x a =1122(,),(,)A x y B x y ,AI BI 11221x x y y a b -=22221x x y y a b -=y 122122(1)(1)x x x x y y a a -=-2211221()a y y x x y x y -=-AB x my c =+22211221()()()a y y a x my c y my c y c -==+-+I 2a c12212235II I F I I a a S a c S c a c -===- C 53c e a ==【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得得值,根据离心率定义求解离心率;②齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9. 已知复数,则下列说法中正确的是( )A. B. C. “”是“”的必要不充分条件 D. “”是“”的充分不必要条件【答案】AC 【解析】【分析】根据复数加法、乘法、乘方运算,结合复数的几何意义计算,依次判断选项即可.【详解】A :设,则,所以,则,故A 正确;B :设,则,所以,,则,故B 错误;C :由选项A 知,,,又,所以,不一定有,即推不出;的,a c e ,a c e 12,z z 1212z z z z =⋅1212z z z z +=+12z z ∈R 12z z =12=z z 2212z z =12i,i(,,,)z a b z c d a b c d =+=+∈R 12(i)(i)()()i z z a b c d ac bd ad bc =++=-++12z z ===1212z z z z =12i,i(,,,)z a b z c d a b c d =+=+∈R 12()()i z z a c b d +=+++1z +=12z z +=1212z z z z +≠+12(i)(i)()()i z z a b c d ac bd ad bc =++=-++2i z c d =-12z z ∈R 0ad bc +=a cb d =⎧⎨=-⎩12z z =由,得,则,则,即,所以“”是“”的必要不充分条件,故C 正确;D :设,则,若,则,即,若,则,得,所以“”是“”的既不充分也不必要条件,故D 错误.故选:AC10. 已知数列的前项和为,且满足,数列的前项和为,且满足,则下列说法中正确的是( )A. B. 数列是等比数列C. 数列是等差数列 D. 若,则【答案】BC 【解析】【分析】由数列的前项和为求出判断B ;由递推公式探讨数列的特性判断C ;求出判断A ;由求出,再利用裂求和法求解即得.【详解】由,得,,当时,,满足上式,因此,数列是等比数列,B 正确;由,得,,解得,,A 错误;当时,,两式相减得,于是,两式相加得,整理得,因此数列是等差数列,C 正确;12z z =i i a b c d +=-a cb d=⎧⎨=-⎩0ad bc +=12z z ∈R 12z z ∈R 12z z =12i,i(,,,)z a b z c d a b c d =+=+∈R 22222212()2i,()2i z a b ab z c d cd =-+=-+12=z z =2222+=+a b c d 2212z z=2222()2i ()2i a b ab c d cd -+=-+222222a b c d ab cd⎧-=-⎨=⎩12=z z 2212z z ={}n a n n S 1233n nS +=-{}n b n n T 112n n T b n =+113=a b {}n a {}n b 23b =101319log 10na n nb ==∑{}n a n n S n a {}n b 1b 23b =n b 1233n nS +=-113322n n S +=⋅-113a S ==2n ≥111(33)32n nn n n n a S S +-=-=-=13a =3n n a ={}n a 112n n T b n =+2n n n T b n =+111112b T b ==+12b =113a b ≠2n ≥11112n n n T b n ---=+-121122n n n n b b ---+=11122n n n n b b +-=+112211222n n n n n n b b b -+---=+112n n n b b b -+=+{}n b当时,等差数列的公差为1,通项,,所以,D 错误.故选:BC11. 如图,在直三棱柱中,,,分别是棱,上的动点(异于顶点),,为的中点,则下列说法中正确的是( )A. 直三棱柱体积的最大值为B. 三棱锥与三棱锥的体积相等C. 当,且时,三棱锥外接球的表面积为D. 设直线,与平面分别相交于点,,若,则的最小值为【答案】BCD 【解析】【分析】A 选项:根据三棱柱体积公式,结合三角函数值域可得最值;B 选项:根据等体积转化可判断;C 选项:结合正弦定理确定正三角形外心,进而确定球心及半径;D选项:根据相似及基本不等式可得最值.【详解】A 选项:由已知可得,又,所以,即体积的最大值为,A 选项错误;B 选项:如图所示,23b ={}n b 1n b n =+31111log (1)1n a n b n n n n ==-++10131111111111011log 22391010111111na n nb ==-+-++-+-=-=∑ 111ABC A B C -2AB BC ==13AA =D E 1AA 1CC 1AD C E =F 11B C 111ABC A B C -1B DEF -A DEF -60ABC ∠=︒123AD AA =D ABC -28π3DF EF ABC P Q 1cos 4ABC ∠=AP CQ +111111sin 6sin 2ABC A B C ABC V S AA BA BC ABC AA ABC -=×=××Ð×=Ð()0,ABC π∠∈(]sin 0,1ABC ∠∈6由点为的中点,则,设点到平面的距离为,则,,又,所以,所以,B 选项正确;C 选项:如图所示,由已知为正三角形,设外接球球心为,中心为,中点为,则平面,且,,即,所以外接球半径为,外接球表面积为,C 选项正确;D 选项:如图所示,取中点,可知在的延长线上,在的延长线上,F 11B C 111B DEF C DEF F C DE V V V ---==F 11AA C C h 11113B DEF F C DE C DE V V S h --==×13B DEF F ADE ADE V V S h --==×1ADC E =1ADE C DE S S = 1F C DE F ADE V V --=ABC O ABC 1O AD M 1OO ⊥ABC 1111123OO AD AA ===12sin AB O A ACB ==∠1O A =R ==228π4π3R =BC N P NA Q BC则,即,设,,易知,,则,,则,,,所以,当且仅当,即时取等号,故D 选项正确;故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12. 已知函数则____________.【解析】【分析】利用已知分段函数,可先求,再求.【详解】因为,所以.所以..13. 甲和乙两个箱子中各装有6个球,其中甲箱子中有4个红球、2个白球,乙箱子中有2个红球、4个白球,现随机选择一个箱子,然后从该箱子中随机取出一个球,则取出的球是白球的概率为____________.【答案】##05的.22212coc 4122144AN BA BN BA BN ABC =+-⋅⋅∠=+-⨯⨯⨯=2AN =11AD C E AA λ==()0,1λ∈PAD PNF 1QCE FC E PA AD PN NF =11QC CEFC C E=()()2PA PN PA AN PA λλλ==+=+21PA λλ=-111QC FC λλλλ--==211AP CQ λλλλ-+=+≥-211λλλλ-=-1λ=410()2log 0xx f x x x ⎧⎛⎫⎪ ⎪=⎨⎝⎭⎪>⎩,,,…12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭11(22f =-1122f f f ⎛⎫⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭410()2log 0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,,,44111log =log 2222f ⎛⎫=-=- ⎪⎝⎭11221112222f f f -⎛⎫⎛⎫⎛⎫⎛⎫=-=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭12【解析】【分析】把所求概率的事件分拆成两个互斥事件的和,再利用互斥事件的概率公式及相互独立事件的概率公式求解即得.【详解】依题意,取出的球是白球的事件是取甲箱并取白球的事件与取乙箱并取白球的事件的和,显然事件与互斥,,,所以.故答案为:14. 已知,则的最小值为____________.【解析】【分析】根据平面向量的模求出数量积,利用向量的几何意义和运算律计算可得与点的距离之和,作出图形,确定的最小值,结合图形即可求解.【详解】由,得,即,解得.,与点的距离之和.如图,点关于x轴的对称点为,连接,A1A2A 1A2A1121()266P A=⨯=2141()263P A=⨯=121()()()2P A P A P A=+=126a a b=-=11()()23f x xa b xa b x=-+-∈Ra b⋅()f x=(,0)P x1111(,(,)2233A B----PA PB+6,a a b=-=222218a b a a b b-=-⋅+=1823618a b-⋅+=18a b⋅=-11()23f x ax b ax b=-+-=====(,0)P x1111(,(,)2233A B----A11(,)22A'-A B'则,当且仅当三点共线时等号成立,所以的最小值为与点的距离之和,结合图形,确定(当且仅当三点共线时等号成立).四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15. 产品重量误差是检测产品包装线效能的重要指标.某食品加工厂为了检查一条新投入使用的全自动包装线的效能,随机抽取该包装线上的20件产品作为样本,并检测出样本中产品的重量(单位:克),重量的分组区间为.由此得到样本的频率分布直方图(如图),已知该产品标准重量为500克.(1)求直方图中的值;(2)若产品重量与标准重量之差的绝对值大于或等于5,即判定该产品包装不合格,在上述抽取的20件PA PB PA PB A B +=+≥=='',,A P B '()f x (,0)P x 1111(,(,)2233A B ----PA PB PA PB A B ++'=≥',,A P B '(485,490],(490,495],,(505,510] a产品中任取2件,求恰有一件合格产品的概率;(3)以样本的频率估计概率,若从该包装线上任取4件产品,设为重量超过500克的产品数量,求的数学期望和方差.【答案】(1)0.05; (2); (3),.【解析】【分析】(1)利用频率分布直方图中小矩形面积和为1求出的值.(2)求出抽取的20件产品中的不合格件数,再利用古典概率计算即得.(3)求出样本中,重量超过500克的产品数量及对应概率,利用二项分布的期望、方差公式计算得解.【小问1详解】依题意,,解得,所以直方图中的值是0.05.【小问2详解】样本中不合格产品数量为,记事件表示“在上述抽取的20件产品中任取2件,恰有一件合格产品”则,所以在上述抽取的20件产品中任取2件,恰有一件合格产品的概率为.小问3详解】根据该样本频率分布直方图,重量超过500克的产品数量为,则从包装线上任取一件产品,其重量超过500克的概率为所以,随机变量,因此,.16. 图1是由正方形ABCD 和两个正三角形组成的一个平面图形,其中,现将沿AD 折起使得平面平面,将沿CD 折起使得平面平面,连接EF ,BE ,BF ,如图2.【Y Y 4895652125a (0.010.060.070.01)51a ++++⨯=0.05a =a 20(0.010.060.01)58⨯++⨯=A 11812220C C 48()C 95P A ==489520(0.050.01)56⨯+⨯=632010=3~(4,)10Y B 36()4105E Y =⨯=3321()4(1)101025D Y =⨯⨯-=,ADE CDF △△2AB =ADE V ADE ⊥ABCD CDF CDF ⊥ABCD(1)求证:平面;(2)求平面与平面夹角的大小.【答案】(1)证明见解析; (2).【解析】【分析】(1)取的中点,利用面面垂直的性质,结合平行四边形的性质、线面平行的判定推理即得.(2)以为原点建立空间直角坐标系,求出平面的法向量,利用面面角的向量求法求解即得.【小问1详解】分别取棱的中点,连接,由是边长为2正三角形,得,又平面平面,平面平面,平面,则平面,同理平面,于是,即四边形为平行四边形,,而平面平面,所以平面.【小问2详解】//EF ABCD ADE BCF π6,CD AD ,O P O BCF ,CD AD ,O P ,,OF PE OP CDF ,OF CD OF ⊥=CDF ⊥ABCD CDF ⋂ABCD DC =OF ⊂CDF OF ⊥ABCD PE ⊥,ABCD PE =//,OF PE OF PE =OPEF //OP EF OP ⊂,ABCD EF ⊄ABCD //EF ABCD取棱的中点,连接,由四边形为正方形,得,以为坐标原点,的方向分别为轴的正方向,建立空间直角坐标系,则,,设平面的一个法向量为,则,令,得,由,平面平面,平面平面平面,得平面,则为平面的一个法向量,设平面与平面的夹角为则,解得,所以平面与平面的夹角为.17. 在△ABC 中,角A ,B ,C 所对的边分别为,已知.(1)求证:;(2)若,求面积的取值范围.【答案】(1)证明见解析 (2)【解析】【分析】(1)根据两角和差的正弦公式、二倍角的余弦公式化简计算可得,结合诱导公式计算即可证明;(2)由(1)得且,根据正弦定理、三角形的面积公式和三角恒等变换化简可得,结合正切函数的性质即可求解.【小问1详解】,,,又,则,,AB Q OQ ABCD OQ CD ⊥O ,,OQ OC OF,,x y z (2,1,0),(0,1,0),(0,1,0)B C F D -(2,0,0),(0,CB CF ==-BCF (,,)n x y z = 200n CB x n CF y ⎧⋅==⎪⎨⋅=-=⎪⎩1z =n =CD AD ⊥ADE ⊥ABCD ADE ,ABCD AD CD =⊂ABCD CD ⊥ADE (0,2,0)DC =ADE ADE BCF θ||cos |cos ,|||||DC n DC n DC n θ⋅=〈〉===π(0,]2θ∈π6θ=ADE BCF π6a b c ,,(1cos 2)(sin 1)cos sin 20C A A C -+-=π2B C =+ππ4,,86a C ⎛⎫=∈⎪⎝⎭ABC (4,2sin (sin cos )0C C B +=π22A C =-ππ64A <<4tan 2ABC S C = (1cos 2)(sin 1)cos sin 20C A A C -+-=sin 1cos 2sin cos 2cos sin 20A C A C A C +---=sin cos 21sin(2)0A C A C -+-+=πA CB +=-sin()cos 21sin()0BC C B C +-+--=2sin cos sin cos 12sin 1sin cos sin cos 0B C C B C B C C B +-++-+=,即,又,所以,即,又,所以;【小问2详解】由(1)知,,得,由,得,由正弦定理得,得,所以,又,所以,又在上单调递增,则,所以,即的面积我取值范围为.18. 已知椭圆的左焦点为,上顶点为,离心率,直线FB 过点.(1)求椭圆的标准方程;(2)过点的直线与椭圆相交于M ,N 两点(M 、N 都不在坐标轴上),若,求直线的方程.【答案】(1);(2).【解析】【分析】(1)根据给定条件,求出即得椭圆的标准方程.(2)根据给定条件,借助倾斜角的关系可得,设出直线的方程,与椭圆方程联立,利用韦达定理结合斜率的坐标公式求解即得.【小问1详解】22sin 2sin cos 0C C B +=2sin (sin cos )0C C B +=sin 0C >sin cos 0C B +=πcos sin cos()2B C C =-=+0π,0πB C <<<<π2B C =+π2B C =+πA B C ++=π22A C =-ππ86C <<ππ64A <<sin sin a c A C=sin sin 4sin πsin cos 2sin(2)2a C a C Cc A C C ===-2211sin π1sin 4sin 2sin 4sin()4cos 4tan 222cos 222cos 2cos 2ABC C C CS ac B C C C C C C==⨯⨯+=⨯⨯== ππ86C <<ππ243C <<tan y x =ππ(,22-tan 2C ∈4tan 2C ∈ABC (4,2222:1(0)x y E a b a b +=>>F B e =(1,2)P E F l E MPF NPF =∠∠l 2212x y +=550x y ++=,,a b c E 1MP NP k k ⋅=l令,由,得,则直线的斜率,由直线过点,得直线的方程为,因此所以椭圆的标准方程为.【小问2详解】设,直线的倾斜角为,直线的倾斜角为,由直线的斜率知直线的倾斜角为,于是,即有,显然均不等于,则,即直线的斜率满足,由题设知,直线的斜率不为0,设直线的方程为,由,消去x 并整理得,,显然,设,则,由,得,即,则,整理得,即,于是,而,解得,,所以直线的方程为,即.【点睛】关键点点睛:本题第2问,由,结合直线倾斜角及斜率的意义求得(,0)F c -c e a ==,a b c ==FB 1k =FB (1,2)P FB 1y x =+1,b c a ===C 2212x y +=MPF NPF θ∠=∠=MP βNP αFP 1k =FP π4ππ,44αθβθ=+=+π2αβ+=,αβπ2πsin()sin 2tan tan 1πcos cos()2αααβαα-=⋅=-,MP NP 1MP NP k k ⋅=l l 1,1x my m =-≠22122x my x y =-⎧⎨+=⎩22(2)210m y my +--=0∆>1122(,),(,)M x y N x y 12122221,22m y y y y m m +==-++1MP NP k k ⋅=121222111y y x x --⋅=--1212(1)(1)(2)(2)0x x y y -----=1212(2)(2)(2)(2)0my my y y -----=21212(1)(22)(0)m y y m y y ---+=2221(22)2022m m m m m --⋅--=++25410m m --=1m ≠15m =-l 115x y =--550x y ++=MPF NPF =∠∠是解题之关键.19. 已知.(1)判断在上的单调性;(2)已知正项数列满足.(i )证明:;(ii )若的前项和为,证明:.【答案】(1)单调递减;(2)(i )证明见解析;(ii )证明见解析.【解析】【分析】(1)求出函数的导数,再判断时,导数值的正负即可得解.(2)(i )利用(1)的结论,结合分析法可得,再利用分析法推理,构造函数借助导数确定单调性即可得;(ii )利用(i )的结论,借助放缩法及等比数列求和即得.【小问1详解】函数的定义域为,求导得,令,求导得,当时,,函数在上单调递减,则,即所以在上单调递减.【小问2详解】(i )首先证明:,即证明,即证明,即证明,由及(1)知,,所以;要证明,即证,只需证,而,则只需证,,令,则,由,知,则,1MP NP k k ⋅=()(2)e x f x x x =--()f x (0,)+∞{}n a 1*1)1,e e 1(n n a a n a a n +=⋅=-∈N *112()n n n a a a n ++<<∈N {}n a n n S *112()2n n S n -≥-∈N ()f x 0x >1n n a a +<12n n a a +<()f x R ()(1)e 1x f x x '=--()(1)e 1x g x x =--()e x g x x '=-,()0x ∈+∞()0g x '<()g x (0,)+∞()(0)g x g <()0f x '<()f x (0,)+∞1n n a a +<1ee n na a +<e 1e n na a na -<(1e 10)n a n a --<0n a >((1)e 0)1n an n g a a =--<1n n a a +<12n n a a +<112n n a a +<112e e n n a a n n a a +<1*e e 1()n n a a n a n +⋅=-∈N 12e e 1n n aa na ⋅<-12e n a t =2ln n a t =111,n n a a a +=<01n a <≤t ∈只需证,即证,令,求导得,于是函数在上单调递减,,即,因此,所以.(ii )由(i )可知,,则当且时,,当时,,所以.【点睛】思路点睛:数列是一类特殊的函数某些数列问题,,准确构造相应的函数,借助函数导数研究其单调性是解题的关键,背景函数的条件,应紧扣题中的限制条件.22ln 1t t t ⋅<-12ln ,t t t t<-∈1()2ln (),h t t t t t =--∈222222121(1)()10t t t h t t t t t-+--'=--==-<()ht t ∈()(1)0h t h <=12ln t t t<-12n n a a +<112n n n a a a ++<<1213243231111111,,,222222a a a a a a a =>=>>>>541411111,,2222n n n a a a a -->>>> 2n ≥*n ∈N 1232111111112*********n n nn n S a a a a ---=++++>++++==-- 1n =11S =*112()2n n S n -≥-∈N。

2020届山东省新高考高三优质数学试卷分项解析 专题05 三角函数与解三角形(原卷版)

2020届山东省新高考高三优质数学试卷分项解析 专题05 三角函数与解三角形(原卷版)

专题5 三角函数与解三角形1.近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.2.高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.预测2020年将突出考查恒等变换与三角函数图象和性质的结合、恒等变换与正弦定理和余弦定理的结合.一、单选题1.(2020届山东省潍坊市高三上期中)sin 225︒= ( )A .12-B .2-C .D .1-2.(2020届山东省泰安市高三上期末)“1a <-”是“0x ∃∈R ,0sin 10+<a x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.(2020届山东省潍坊市高三上期末)已知345sin πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A .10B .10C .2 D .104.(2020届山东省枣庄市高三上学期统考)设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .-2C .2019D .-20195.(2020届山东省枣庄市高三上学期统考)已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭…恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是( ) A .π6 B .π3C .2π3D .5π66.(2020届山东省滨州市三校高三上学期联考)若π1sin 34α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭( ).A .78-B .14-C .14 D .787.(2020届山东省潍坊市高三上期中)已知函数()sin cos f x x x =+,则( ) A .()f x 的最小正周期为π B .()y f x =图象的一条对称轴方程为4x π=C .()f x 的最小值为2-D .()f x 的0,2π⎡⎤⎢⎥⎣⎦上为增函数8.(2020届山东省九校高三上学期联考)如图是一个近似扇形的鱼塘,其中OA OB r ==,弧AB 长为l (l r <).为方便投放饲料,欲在如图位置修建简易廊桥CD ,其中34OC OA =,34OD OB =.已知1(0,)2x ∈时,3sin 3!x x x ≈-,则廊桥CD 的长度大约为( )A .323432r r l - B .323432l l r - C .32324l l r-D .32324r r l-9.(2020·武邑县教育局教研室高三上期末(理))已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为() A .-7B .7C .1D .-110.(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位11.(2020届山东省枣庄、滕州市高三上期末)将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则6f π⎛⎫= ⎪⎝⎭( )A .1B .-1C D .12.(2020届山东省济宁市高三上期末)在ABC ∆中,1,3,1AB AC AB AC ==⋅=-u u u r u u u r,则ABC ∆的面积为( )A .12B .1CD .213.(2020届山东省潍坊市高三上学期统考)将函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0a a >个单位得到函数()πcos 24g x x ⎛⎫=+ ⎪⎝⎭的图像,则a 的值可以为( )A .5π12B .7π12C .19π24D .41π2414.(2020届山东省临沂市高三上期末)已知函数2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭(0)>ω的图象关于直线4x π=对称,则ω的最小值为( ) A .13B .16C .43D .5615.(2020届山东省潍坊市高三上学期统考)已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,2b =,则△ABC 面积的最大值是A .1B C .2D .416.(2020届山东省烟台市高三上期末)若x α=时,函数()3sin 4cos f x x x =+取得最小值,则sin α=( )A .35B .35-C .45D .45-17.(2020届山东实验中学高三上期中)在ABC △中,若 13,3,120AB BC C ==∠=o ,则AC =( ) A .1B .2C .3D .418.(2020届山东实验中学高三上期中)已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为( ) A .-7B .7C .1D .-119.(2020届山东省济宁市高三上期末)函数22cos cos 1y x x =-++,,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象大致为( ) A . B .C .D .20.(2020届山东师范大学附中高三月考)泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45︒,沿点A 向北偏东30︒前进100 m 到达点B ,在点B 处测得“泉标”顶端的仰角为30︒,则“泉标”的高度为( ) A .50 mB .100 mC .120 mD .150 m21.(2020届山东实验中学高三上期中)已知函数()sin 23f x a x x =的图象关于直线12x π=-对称,若()()124f x f x ⋅=-,则12a x x -的最小值为( ) A .4πB .2π C .πD .2π22.(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( ) A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为1 二、多选题23.(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( ) A .π-是()f x 的一个周期 B .()f x 的图像可由sin 2y x =的图像向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图像关于直线1712x π=对称 24.(2020届山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+25.(2020·蒙阴县实验中学高三期末)关于函数()22cos cos(2)12f x x x π=-+-的描述正确的是( )A .其图象可由2y x =的图象向左平移8π个单位得到 B .()f x 在(0,)2π单调递增C .()f x 在[]0,π有2个零点D .()f x 在[,0]2π-的最小值为26.(2020·山东省淄博实验中学高三上期末)已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中正确的是( )A .函数()f x 的值域与()g x 的值域不相同B .把函数()f x 的图象向右平移2π个单位长度,就可以得到函数()g x 的图象 C .函数()f x 和()g x 在区间,44ππ⎛⎫-⎪⎝⎭上都是增函数 D .若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点27.(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称28.(2020届山东省潍坊市高三上期末)已知()()22210f x cos x x ωωω=->的最小正周期为π,则下列说法正确的有( ) A .2ω= B .函数()f x 在[0,]6π上为增函数C .直线3x π=是函数()y f x =图象的一条对称轴D .5π,012骣琪琪桫是函数()y f x =图象的一个对称中心29.(2020届山东省潍坊市高三上学期统考)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A ,1tan B ,1tan C依次成等差数列,则下列结论中不一定成立.....的是( ) A .a ,b ,c 依次成等差数列B C .2a ,2b ,2c 依次成等差数列 D .3a ,3b ,3c 依次成等差数列30.(2020届山东省济宁市高三上期末)将函数()sin 2f x x =的图象向右平移4π个单位后得到函数()g x 的图象,则函数()g x 具有性质( )A .在0,4π⎛⎫⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=-对称 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称 31.(2020届山东实验中学高三上期中)己知函数()()()sin 0,023f x x f x ππωϕωϕ⎛⎫=+><<- ⎪⎝⎭,为的一个零点,6x π=为()f x 图象的一条对称轴,且()()0f x π在,上有且仅有7个零点,下述结论正确..的是( ) A .=6πϕB .=5ωC .()()0f x π在,上有且仅有4个极大值点D .()042f x π⎛⎫⎪⎝⎭在,上单调递增32.(2019·山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+33.(2020届山东省烟台市高三上期末)已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( ) A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增 C .若()()122f x f x -=,则12x x -的最小值为3πD .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 三、填空题34.(2020届山东省枣庄市高三上学期统考)已知1sin 4x =,x 为第二象限角,则sin 2x =______. 35.(2020届山东省日照市高三上期末联考)已知tan 3α=,则sin cos sin cos αααα-+的值为______.36.(2020届山东师范大学附中高三月考)已知1tan 3α=,则2sin 2sin 1cos 2ααα-+的值为________.37.(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,角α的顶点是O ,始边是x 轴的非负半轴,02απ<<,点1tan,1tan1212P ππ⎛⎫+- ⎪⎝⎭是α终边上一点,则α的值是________. 38.(2020·全国高三专题练习(文))已知sin cos 11cos 2ααα=-,1tan()3αβ-=,则tan β=________.39.(2020届山东实验中学高三上期中)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 40.(2020届山东省日照市高三上期末联考)已知函数()9sin 26f x x π⎛⎫=-⎪⎝⎭,当[]0,10x π∈时,把函数()()6F x f x =-的所有零点依次记为123,,,,n x x x x ⋅⋅⋅,且123n x x x x <<<⋅⋅⋅<,记数列{}n x 的前n 项和为n S ,则()12n n S x x -+=______.41.(2020届山东省德州市高三上期末)已知函数()()sin f x A x =+ωϕ0,0,||2A πωϕ⎛⎫>><⎪⎝⎭的最大值2π,且()f x 的图象关于直线3x π=-对称,则当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为______.42.(2020届山东省泰安市高三上期末)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若cos cos sin A B C a b c +=,22265b c a bc +-=,则tan B =______. 四、解答题43.(2020届山东省临沂市高三上期末)在①3cos 5A =,cos C =,②sin sin sin c C A b B =+,60B =o,③2c =,1cos 8A =三个条件中任选一个补充在下面问题中,并加以解答. 已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =,______,求ABC V 的面积S . 44.(2020届山东省泰安市高三上期末)在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x图象关于原点对称;②向量),cos 2m x x ωω=u r,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭r u r r ;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若02πθ<<,且sin θ=()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.45.(2020届山东省枣庄市高三上学期统考)ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=.(I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积.46.(2020届山东省滨州市三校高三上学期联考)已知函数()sin()f x A x ωϕ=+,其中0A >,0>ω,(0,)ϕπ∈,x ∈R ,且()f x 的最小值为-2,()f x 的图象的相邻两条对称轴之间的距离为2π,()f x 的图象过点,03π⎛-⎫ ⎪⎝⎭.(1)求函数()f x 的解析式和单调递增区间; (2)若[0,2]x πÎ函数()f x 的最大值和最小值.47.(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=.(1)求a ,b 的值: (2)求sin C 的值.48.(2020届山东省烟台市高三上期末)在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sinsin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答. 在ABC ∆中,角,,A B C 的对边分别为,,a bc ,6b c +=,a =, . 求ABC ∆的面积.49.(2020届山东省泰安市高三上期末)如图所示,有一块等腰直角三角形地块ABC ,90A ∠=o ,BC 长2千米,现对这块地进行绿化改造,计划从BC 的中点D 引出两条成45°的线段DE 和DF ,与AB 和AC 围成四边形区域AEDF ,在该区域内种植花卉,其余区域种植草坪;设BDE α∠=,试求花卉种植面积()S α的取值范围.50.(2020届山东省日照市高三上期末联考)在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC . 如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .51.(2020届山东省滨州市三校高三上学期联考)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,23sin 2cos02A CB +-=. (1)求角B 的大小;(2)若2sin 2sin sin B A C =,且ABC ∆的面积为3ABC ∆的周长.52.(2020届山东省德州市高三上期末)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①2633()b a ac c a b -+=+;②2cos 22cos 12A A +=;③6a =④2b =(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分)53.(20203(cos )sin b C a c B -=;②22cos a c b C +=;③sin 3sin2A Cb A a += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,23,b =4a c +=,求ABC ∆的面积.54.(2020届山东师范大学附中高三月考)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos cos 2c A a C a +=.(1)求a b的值; (2)若1a =,7c =,求ABC V 的面积. 55.(2020·蒙阴县实验中学高三期末)在非直角ABC ∆中,a ,b ,c 分别是A ,B ,C 的对边.已知4a =,5AB AC ⋅=u u u r u u u r ,求:(1)tan tan tan tan A A B C+的值; (2)BC 边上的中线AD 的长.56.(2020届山东师范大学附中高三月考)设函数5()2cos()cos 2sin()cos 122f x x x x x ππ=++++. (1)设方程()10f x -=在(0,)π内有两个零点12,x x ,求12x x +的值;(2)若把函数()y f x =的图象向左平移6π个单位,再向下平移2个单位,得函数()g x 图象,求函数()g x 在[,]33ππ-上的最值. 57.(2020届山东省潍坊市高三上期末)在①34asinC ccosA =;②252B C bsinasinB +=这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知 ,32a =.(1)求sinA ;(2)如图,M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC V 的面积58.(2020·山东省淄博实验中学高三上期末)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知4cos cos cos a A c B b C =+.(1)若4a =,ABC ∆的面积为15,求b ,c 的值; (2)若()sin sin 0B k C k =>,且角C 为钝角,求实数k 的取值范围.59.(2020届山东省潍坊市高三上学期统考)已知函数()()23sin cos sin 10f x x x x ωωωω=-+>图象的相邻两条对称轴之间的距离为2π.(1)求ω的值及函数()f x 的单调递减区间;(2)如图,在锐角三角形ABC 中有()1f B =,若在线段BC 上存在一点D 使得2AD =,且6AC =,31CD =-,求三角形ABC 的面积.60.(2020届山东省济宁市高三上期末)已知()()23sin sin cos 2f x x x x ππ⎛⎫=-+- ⎪⎝⎭. (1)若1210f α⎛⎫= ⎪⎝⎭,求2cos 23πα⎛⎫+ ⎪⎝⎭的值; (2)在△ABC 中,角A ,B ,C 所对应的边分别,,a b c ,若有()2cos cos a c B b C -=,求角B 的大小以及()f A 的取值范围.61.(2020届山东省济宁市高三上期末)如图,某市三地A ,B ,C 有直道互通.现甲交警沿路线AB 、乙交警沿路线ACB 同时从A 地出发,匀速前往B 地进行巡逻,并在B 地会合后再去执行其他任务.已知AB =10km ,AC =6km ,BC =8km ,甲的巡逻速度为5km /h ,乙的巡逻速度为10km /h .(1)求乙到达C 地这一时刻的甲、乙两交警之间的距离;(2)已知交警的对讲机的有效通话距离不大于3km ,从乙到达C 地这一时刻算起,求经过多长时间,甲、乙方可通过对讲机取得联系.62.(2020·全国高三专题练习(文))在ABC V 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )(3sin sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③3=c b 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积.63.(2020届山东实验中学高三上期中)己知函数()23sin cos sin 244f x x x x a ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求实数a 的值;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.64.(2020届山东实验中学高三上期中)“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形ABCD 的麦田里成为守望者,如图所示,为了分割麦田,他将BD 连接,设ABD ∆中边BD 所对的角为A ,BCD ∆中边BD 所对的角为C ,经测量已知2AB BC CD ===,23AD =.(1)霍尔顿发现无论BD 3cos A C -为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记ABD ∆与BCD ∆的面积分别为1S 和2S ,为了更好地规划麦田,请你帮助霍尔顿求出2212S S +的最大值.。

2020届全国100所名校高三模拟金典卷(一)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(一)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(一)数学(文)试题一、单选题1.已知集合{|24},{|22}A x x B x x =-<≤=-≤<,则A B =U ( ) A .{|22}x x -<< B .{|24}x x -≤≤ C .{|22}x x -≤≤ D .{|24}x x -<≤【答案】B【解析】直接利用并集的定义计算即可. 【详解】由已知,集合{|24},{|22}A x x B x x =-<≤=-≤<,所以{|24}A B x x ⋃=-≤≤. 故选:B 【点睛】本题考查集合的并集运算,考查学生的基本计算能力,是一道基础题.2.已知a 是实数,()11a a i -++是纯虚数,则复数z a i =+的模等于( )A .2B CD .1【答案】C【解析】()11a a i -++是纯虚数可得1a =,则1z i =+,再根据模的计算的公式计算即可. 【详解】()11a a i -++是纯虚数,则实部为0,虚部不为0,即1a =,所以1z i =+,||z =故选:C 【点睛】本题考查复数模的计算,涉及到复数的相关概念,是一道容易题.3.某产品的宣传费用x (万元)与销售额y (万元)的统计数据如下表所示:根据上表可得回归方程ˆ9.6 2.9yx =+,则宣传费用为3万元时销售额a 为( ) A .36.5 B .30C .33D .27【答案】D【解析】由题表先计算出x ,将其代入线性回归方程即可. 【详解】 由已知,1(4235) 3.54x =+++=, 由回归方程过点(),x y ,故36.5y =, 即1(452450)36.54y a =+++=,解得27a =. 故选:D 【点睛】本题考查线性回归方程的简单应用,回归方程一定过样本点的中心(,)x y ,考查学生的基本计算能力,是一道容易题.4.已知在等差数列{}n a 中,34576, 11a a a a ++==,则1a =( ) A .3 B .7C .7-D .3-【答案】C【解析】由3456a a a ++=,可得42,a =结合7 11a =,可得公差d ,再由413a a d =+可得1a . 【详解】由等差数列的性质,得345436a a a a ++==, 所以42,a =公差7493743a a d -===-, 又4132a a d =+=,所以17a =-. 故选:C 【点睛】本题考查等差数列的性质及等差数列基本量的计算,考查学生的运算能力,是一道容易题.5.已知抛物线24y x =的准线与圆2260x y x m +--=相切,则实数m 的值为( ) A .8 B .7 C .6 D .5【答案】B【解析】由题可得准线方程为1x =-,再利用圆心到直线的距离等于半径计算即可得到答案. 【详解】由已知,抛物线的准线方程为1x =-,圆2260x y x m +--=的标准方程为22(3)9x y m -+=+,由1x =-与圆相切,所以圆心到直线的距离()314d =--==, 解得7m =. 故选:B 【点睛】本题主要考查抛物线的定义,涉及到直线与圆的位置关系,考查学生的运算求解能力,是一道容易题.6.已知平面向量a r ,b r满足a =r ,||3b =r ,(2)a a b ⊥-r r r ,则23a b -r r ( )A .BC .4D .5【答案】A【解析】由(2)0a a b ⋅-=r r r,可得2a b ⋅=r r,将其代入|23|a b -==r r .【详解】由题意可得||2a ==r ,且(2)0a a b ⋅-=r r r,即220a a b -⋅=r r r,所以420a b -⋅=r r, 所以2a b ⋅=r r.由平面向量模的计算公式可得|23|a b -==r r==故选:A 【点睛】本题考查利用数量积计算向量的模,考查学生的数学运算能力,是一道容易题. 7.已知定义在R 上的函数()y f x =,对于任意的R x ∈,总有()()123f x f x -++=成立,则函数()y f x =的图象( ) A .关于点()1,2对称 B .关于点33,22⎛⎫⎪⎝⎭对称 C .关于点()3,3对称 D .关于点()1,3对称【答案】B【解析】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,再结合()()123f x f x -++=简单推导即可得到. 【详解】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,则(2)(1(21))3(221)f a x f x a f x a -=--+=-+-+3(32)2()f a x b f x =--+=-,所以有23,320b a =-=,解得33,22a b ==.所以函数()y x =的图象关于点33,22⎛⎫⎪⎝⎭对称. 故选:B 【点睛】本题考查函数图象的对称性,考查学生的逻辑推理能力,当然也可以作一个示意图得到,是一道中档题.8.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生【答案】C【解析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.9.函数||4x e y x=的图象可能是( )A .B .C .D .【答案】C【解析】由函数的奇偶性可排除B ;由(1),(3)f f 可排除选项A 、D. 【详解】设||()4x e f x x =,定义域为{|0}x x ≠,||()()4x e f x f x x-=-=-,所以()f x 为奇函数,故排除选项B ;又(1)14e f =<,排除选项A ;3(3)112e f =>,排除选项D.故选:C 【点睛】本题考查由解析式选函数图象的问题,涉及到函数的性质,此类题一般从单调性、奇偶性、特殊点的函数值入手,是一道容易题.10.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .163πB .3π C .29π D .169π【答案】D【解析】由三视图可知该几何体为底面是圆心角为23π的扇形,高是4的圆锥体,再利用圆锥体积公式计算即可. 【详解】从三视图中提供的图形信息与数据信息可知:该几何体的底面是圆心角为23απ=的扇形,高是4的圆锥体, 容易算得底面面积2112442233S r παπ==⨯⨯=,所以其体积111644339V ππ=⨯⨯⨯=. 故选:D 【点睛】本题考查三视图还原几何体以及几何体体积的计算,考查学生的空间想象能力、数学运算能力,是一道中档题.11.已知函数()sin 3(0)f x x x ωωω=+>的图象上存在()()12,0,,0A x B x 两点,||AB 的最小值为2π,再将函数()y f x =的图象向左平移3π个单位长度,所得图象对应的函数为()g x ,则()g x =( ) A .2sin 2x - B .2sin2xC .2cos 26x π⎛⎫-⎪⎝⎭D .2sin 26x π⎛⎫- ⎪⎝⎭【答案】A【解析】()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由min ||2AB π=可得T π=,2ω=,再由平移变换及诱导公式可得()g x 的解析式.【详解】()sin 3cos 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,因为||AB 的最小值为12222T ππω=⨯=,解得2ω=. 因为函数()y f x =的图象向左平移3π个单位长度, 所得图象对应的函数为()g x , 所以()2sin 22sin(2)2sin 233g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A 【点睛】本题考查三角函数图象的变换,涉及到辅助角公式、诱导公式的应用,考查学生的逻辑推理能力,是一道中档题.12.如图所示,在棱锥P ABCD -中,底面ABCD 是正方形,边长为2,22PD PA PC ===,.在这个四棱锥中放入一个球,则球的最大半径为( )A .2B 21C .2D 21【答案】D【解析】由题意,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD ,SA SB SC SP 、、、,则把此四棱锥分为五个棱锥,设它们的高均为R ,求出四棱锥的表面积S 以及四棱锥的体积P ABCD V -,利用公式13P ABCD V S -=⨯R ⨯,计算即可. 【详解】由已知,22PD AD PA ===,,所以222PD AD PA +=,所以PD AD ⊥,同理PD CD ⊥,又CD AD D =I ,所以PD ⊥平面ABCD ,PD AB ⊥,又AB AD ⊥,PD AD D ⋂=,所以AB ⊥平面PAD ,所以PA AB ⊥,设此球半径为R ,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD,SA SB SC SP、、、,则把此四棱锥分为五个棱锥,它们的高均为R.四棱锥的体积211222 3323P ABCD ABCDVS PD-⨯=⨯⨯=⨯=W,四棱锥的表面积S22112222222242222PAD PAB ABCDS S S=++=⨯⨯+⨯⨯⨯+=+ V V W,因为13P ABCDV S-=⨯R⨯,所以3222142221P ABCDVRS-====-++.故选:D【点睛】本题考查几何体内切球的问题,考查学生空间想象能力、转化与化归的能力,是一道有一定难度的压轴选择题.二、填空题13.设实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,则34z x y=-的最大值是__________.【答案】4【解析】作出可行域,344zy x=-,易知截距越小,z越大,【详解】根据实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,画出可行域,如图,平移直线34y x=即可得到目标函数的最大值.344z y x =-,易知截距越小,z 越大,平移直线34y x =,可知当目标函数经过点A 时取得最大值,由11y y x =-⎧⎨=--⎩,解得()0,1A -,所以max 304(1) 4.z =⨯-⨯-=故答案为:4 【点睛】本题考查简单的线性规划及应用,考查学生数形结合的思想,是一道容易题.14.曲线()e 43xf x x =+-在点()(0,)0f 处的切线方程为__________.【答案】52y x =-【解析】直接利用导数的几何意义计算即可. 【详解】因为()02f =-,'()4xf x e =+,所以'0(0)45f e =+=,所以切线方程为()25y --=()0x -,即5 2.y x =- 故答案为:52y x =- 【点睛】本题考查导数的几何意义,考查学生的基本计算能力,是一道容易题.15.已知数列{}n a 满足:11a =,12nn n a a +=+,则数列{}n a 的前n 项和n S =__________.【答案】122n n +--【解析】利用累加法可得数列{}n a 的通项公式,再利用分组求和法求和即可. 【详解】由已知,12nn n a a +-=,当2n ≥时,()()()211213211212222112n n n n n n a a a a a a a a ---=+-+-+⋅⋅⋅+-=+++⋅⋅⋅+==--,又11a =满足上式,所以21nn a =-,()212122222212n n n n S n n n +-=++⋅⋅⋅+-=-=---.故答案为:122n n +-- 【点睛】本题考查累加法求数列的通项以及分组求和法求数列的和,考查学生的运算求解能力,是一道中档题.16.已知双曲线22221x y a b-=(0b a >>)的左、右焦点分别是1F 、2F ,P 为双曲线左支上任意一点,当1222PF PF 最大值为14a时,该双曲线的离心率的取值范围是__________.【答案】【解析】112222111224|24|2PF PF a PF PF aPF a PF ==+++,1PF c a ≥-,分2c a a -≤,2a c a ≥-两种情况讨论,要注意题目中隐含的条件b a >.【详解】由已知,11222111224|24|2PF PF a PF PF aPF a PF ==+++,因为1PF c a ≥-,当2c a a -≤时,21121444a a PF a PF ≤=++,当且仅当12PF a =时,1222PF PF 取最大值14a, 由2a c a ≥-,所以3e ≤;当2c a a ->时,1222PF PF 的最大值小于14a,所以不合题意.因为b a >,所以22211b e a=->,所以2e >,所以2 3.e <≤故答案为:(2,3] 【点睛】本题考查双曲线的离心率的取值范围问题,涉及到双曲线的概念与性质及基本不等式,考查学生的逻辑推理能力,是一道有一定难度的题.三、解答题17.某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.成绩分组 频数[)75,80 2 [)80,85 6[)85,90 16[)90,9514[)95,1002高二(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;(2)在抽取的学生中,从成绩为[]95,100的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率. 【答案】(1)0.85;(2)715【解析】(1)利用1减去[)75,80的概率即可得到答案;(2)高一年级成绩为[]95,100的有4人,记为1234, , , A A A A ,高二年级成绩为[]95,100的有2名,记为12,B B ,然后利用列举法即可.【详解】(1)高一年级知识竞赛的达标率为10.0350.85-⨯=.(2)高一年级成绩为[]95,100的有0.025404⨯⨯=(名),记为1234, , , A A A A , 高二年级成绩为[]95,100的有2名,记为12,B B .选取2名学生的所有可能为121314111223242122343132414212, , , , , , , , , , , , , , A A A A A A A B A B A A A A A B A B A A A B A B A B A B B B ,共15种;其中2名学生来自于同一年级的有12131423243412,,,,,,A A A A A A A A A A A A B B ,共7种. 所以这2名学生来自于同一年级的概率为715. 【点睛】本题考查统计与古典概率的计算,涉及到频率分布直方图和频数分布表,考查学生简单的数学运算,是一道容易题.18.在ABC V 中,角、、A B C 所对的边分别是a b c 、、,且2B A C =+,b =. (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值【答案】(1)4;(2)【解析】(1)由已知,易得3B π=,由正弦定理可得34c a =,再由角B 的余弦定理即可得到答案;(2)正弦定理得sin sin sin a c b A C B ===,所以,a A c C ==,sin )a c A C +=+,再利用两角和的正弦公式以辅助角公式可得6a c A π⎛⎫+=+⎪⎝⎭,即可得到最大值.【详解】(1)因为2B A C =+, 又A B C π++=,得3B π=.又3sin 4sin C A =,由正弦定理得34c a =,即34a c =, 由余弦定理2222cosb ac ac B =+-,得22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =或4c =-(舍).(2)由正弦定理得sin sin sin a c b A C B ===,,a A c C ∴==,sin )a c A C ∴+=+sin()]A A B =++1sin sin sin sin cos322A A A A A π⎡⎤⎤⎛⎫=++=++⎢⎥ ⎪⎥⎝⎭⎦⎣⎦6A π⎛⎫=+ ⎪⎝⎭,由203A π<<,得5666A πππ<+=,当62A ππ+=,即3A π=时,max ()a c +=.【点睛】本题考查正余弦定理解三角形,涉及到两角和的正弦公式及辅助角公式的应用,考查学生的数学运算求解能力,是一道容易题. 19.在菱形ABCD 中,,3ADC AB a π∠==,O 为线段CD 的中点(如图1).将AOD △沿AO 折起到'AOD △的位置,使得平面'AOD ⊥平面ABCO ,M 为线段'BD 的中点(如图2).(Ⅰ)求证:'OD BC ⊥; (Ⅱ)求证:CM ∥平面'AOD ; (Ⅲ)当四棱锥'D ABCO -的体积为32时,求a 的值. 【答案】(Ⅰ)见解析. (Ⅱ)见解析. (Ⅲ) 2a =.【解析】(Ⅰ)证明OD '⊥AO . 推出OD '⊥平面ABCO . 然后证明OD '⊥BC .(Ⅱ)取P 为线段AD '的中点,连接OP ,PM ;证明四边形OCMP 为平行四边形,然后证明CM ∥平面AOD ';(Ⅲ)说明OD '是四棱锥D '﹣ABCO 的高.通过体积公式求解即可. 【详解】(Ⅰ)证明:因为在菱形ABCD 中,3ADC π∠=,O 为线段CD 的中点,所以'OD AO ⊥. 因为平面'AOD ⊥平面ABCO 平面'AOD I 平面ABCO AO =,'OD ⊂平面'AOD ,所以'OD ⊥平面ABCO . 因为BC ⊂平面ABCO ,所以'OD BC ⊥. (Ⅱ)证明:如图,取P 为线段'AD 的中点,连接OP,PM ; 因为在'ABD ∆中,P ,M 分别是线段'AD ,'BD 的中点, 所以//PM AB ,12PM AB =. 因为O 是线段CD 的中点,菱形ABCD 中,AB DC a ==,//AB DC , 所以122a OC CD ==. 所以OC //AB ,12OC AB =. 所以//PM OC ,PM OC =.所以四边形OCMP 为平行四边形, 所以//CM OP ,因为CM ⊄平面'AOD ,OP ⊂平面'AOD ,所以//CM 平面'AOD ;(Ⅲ)由(Ⅰ)知'OD ⊥平面ABCO .所以'OD 是四棱锥'D ABCO -的高,又S=23332228a a a a ⎛⎫+ ⎪⎝⎭= ,'2a OD = 因为3133'3162a V S OD =⨯⨯==, 所以2a =. 【点睛】本题考查线面平行与垂直的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力,是基础题20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,过右焦点F 作与x 轴垂直的直线,与椭圆的交点到x 轴的距离为32. (1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 的直线'l 与椭圆C 交于A B 、两点(A B 、不在x 轴上),若OE OA OB =+u u u r u u u r u u u r,求四边形AOBE 面积S 的最大值.【答案】(1)22143x y +=;(2)3. 【解析】(1)由12c a =,232b a =结合222a bc =+解方程组即可;(2)设':1l x ty =+,联立直线'l 与椭圆的方程得到根与系数的关系,因为OE OA OB =+u u u r u u u r u u u r,可得四边形AOBE为平行四边形,12122||2AOB S S OF y y =⨯-==△将根与系数的关系代入化简即可解决. 【详解】 (1)由已知得12c a =, Q 直线经过右焦点,2222231,||2c y b y a b a ∴+===, 又222a b c =+Q,2,1a b c ∴===,故所求椭圆C 的方程为22143x y +=.(2)Q 过()1,0F 的直线与椭圆C 交于A B 、两点(A B 、不在x 轴上), ∴设':1l x ty =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩,得22(34)690t y ty ++-=,设()()1122,,,A x y B x y ,则122122634934t y y t y y t -⎧+=⎪⎪+⎨-⎪=⎪+⎩,OE OA OB =+u u u r u u u r u u u rQ ,∴四边形AOBE 为平行四边形,122122||234AOBS OF y y t S =∴⨯-===+△1m =≥, 得2621313m S m m m==++,由对勾函数的单调性易得当1m =,即0t =时,max 32S =. 【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆的方程、椭圆中面积的最值问题,考查学生的逻辑推理能力,是一道中档题.21.设函数()2a 2xf x x alnx (a 0)x -=-+>. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()f x 的最小值为()g a ,证明:()g a 1<.【答案】(I )()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增;(II )详见解析. 【解析】(I )对函数()f x 求导,解导函数所对应的不等式即可求出结果; (II )由(I )先得到()g a ,要证()1g a <,即证明1ln 1a a a a--<,即证明2111ln a a a--<, 构造函数()211ln 1h a a a a=++-,用导数的方法求函数()h a 的最小值即可. 【详解】(Ⅰ)显然()f x 的定义域为()0,+∞.()()()()222242332222221x x a x x a x a x x f x a x x x x x+----++=-⋅='-+=. ∵220x +>,0x >,∴若()0,x a ∈,0x a -<,此时()0f x '<,()f x 在()0,a 上单调递减; 若(),x a ∈+∞,0x a ->,此时()0f x '>,()f x 在(),a +∞上单调递增; 综上所述:()f x 在()0,a 上单调递减,在(),a +∞上单调递增. (Ⅱ)由(Ⅰ)知:()()min 1ln f x f a a a a a==--, 即:()1ln g a a a a a=--. 要证()1g a <,即证明1ln 1a a a a --<,即证明2111ln a a a--<, 令()211ln 1h a a a a =++-,则只需证明()211ln 10h a a a a=++->,∵()()()22333211122a a a a h a a a a a a'-+--=--==,且0a >, ∴当()0,2a ∈,20a -<,此时()0h a '<,()h a 在()0,2上单调递减; 当()2,a ∈+∞,20a ->,此时()0h a '>,()h a 在()2,+∞上单调递增, ∴()()min 1112ln21ln20244h a h ==++-=->.∴()211ln 10h a a a a=++->.∴()1g a <. 【点睛】本题主要考查导数在函数中的应用,通常需要对函数求导,用导数的方法研究函数的单调性,最值等,属于常考题型.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:cos 4sin (0)C a a ρθθ=>,直线的参数方程为21x ty t=-+⎧⎨=-+⎩,(t 为参数).直线l 与曲线C 交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程.(2)设()2,1P --,若||,||,||PM MN PN 成等比数列,求a 和的||MN 值.【答案】(1)22cos 4sin (0)a a ρθρθ=>,10x y -+=;(2)10.【解析】(1)利用直角坐标、极坐标、参数方程互化公式即可解决;(2)将直线参数方程标准化,联立抛物线方程得到根与系数的关系,再利用直线参数方程的几何意义即可解决. 【详解】(1)曲线2:cos 4sin (0)C a a ρθθ=>,两边同时乘以ρ,可得22cos 4sin (0)a a ρθρθ=>,化简得24(0)x ay a =>;直线l 的参数方程为21x ty t =-+⎧⎨=-+⎩(t 为参数),消去参数t ,可得1x y -=-,即10x y -+=.(2)直线l 的参数方程21x ty t=-+⎧⎨=-+⎩(t 为参数)化为标准式为21x y ⎧=-⎪⎪⎨='+'⎪-⎪⎩('t 为参数),代入24(0)x ay a =>并整理得'2'1)8(1)0t a t a -+++=, 设M N ,两点对应的参数为''12, t t ,由韦达定理可得''121)t t a +=+,''128(1)0t t a ⋅=+>, 由题意得2||||||MN PM PN =⋅,即2''''1212t t t t -=⋅, 可得()2''''''1212124t t t t t t +-⋅=⋅, 即232(1)40(1)a a +=+,0a >,解得1,4a =所以2''121||81104MN t t ⎛⎫=⋅=+= ⎪⎝⎭,||MN =【点睛】本题考查极坐标与参数方程的应用,涉及到极坐标方程、普通方程、参数方程的互化,以及直线参数方程的几何意义求距离的问题,是一道容易题. 23.已知函数()|||2|f x x a x =-++. (1)当1a =时,求不等式()3f x ≤的解集; (2)()00,50x f x ∃∈-≥R ,求实数a 的取值范围. 【答案】(1){|21}x x-#;(2)[7,3]-【解析】(1)当1a =时,()|1||2|f x x x =-++,分2x -≤,21x -<<,1x ≥三种情况讨论即可;(2)()00,50x f x ∃∈-≥R ,则()min 5f x ≥,只需找到()f x 的最小值解不等式即可. 【详解】(1)当1a =时,()|1||2|f x x x =-++,①当2x -≤时,()21f x x =-- ,令()3f x ≤,即213x --≤,解得2x ≥-,所以2x =-, ②当21x -<<时,()3f x =,显然()3f x ≤成立,21x ∴-<<,③当1x ≥时,()21f x x =+,令()3f x ≤,即213x +≤,解得1x ≤,所以1x =. 综上所述,不等式的解集为{|21}x x-#.(2)0()|||2||()(2)||2|,f x x a x x a x a x =-++--+=+∃∈R Q …,有()050f x -…成立,∴要使()05f x ≥有解,只需|2|5a +≤,解得73a ≤≤-, ∴实数a 的取值范围为[7,3]-.【点睛】本题考查解绝对值不等式以及不等式能成立问题,考查学生的基本计算能力,是一道容易题.。

06不等式多选题

06不等式多选题

06不等式多选题1.【山东省菏泽一中2019 2020学年高三3月线上模拟】已知1a >,01c b <<<,下列不等式成立的是( ) A .b c a a > B .c c ab b a+>+ C .log log b c a a <D .b cb ac a>++ 【答案】ACD【解析】对于A :由1a >,01c b <<<,可得b c a a >,故A 正确; 对于B :由1a >,01c b <<<,c c a bb a +-+ 可得()()()0a c b cb ca bc ba b b a b b a -+--==<++ ,c c ab b a +<+ ,故B 错误;对于C :由1a >,01c b <<<,1log log b a a b =,1log log ca a c=,则log log 0a a c b <<,则110log log a a b c<<,可得log log b c a a <,故C 正确;对于D :由1a >,01c b <<<,()()()()()0a b c b c bc ba cb cab ac a b a c a b a c a -+---==>++++++可得b cb ac a>++,故D 正确. 故选:ACD .2.【山东省济南外国语2019-2020学年高三寒假综合测试三月份在线考试】下列结论正确的是( )A .x R ∀∈,12x x+≥B .若0a b <<,则3311a b ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .若()20x x -<,则()2log 0,1x ∈D .若0a >,0b >,1a b +≤,则104ab <≤ 【答案】BD【解析】对于A :当0x <时,1x x+为负数,所以A 不正确; 对于B :若0a b <<,则110b a<<,考虑函数3()f x x =在R 上单调递增,所以11()()f f a b >,即3311()()a b>,所以B 正确; 对于C :若()20x x -<,则02x <<,2log (,1)x ∈-∞,所以C 不正确;对于D :若0a >,0b >,1a b +≤21,0()224a b a b ab ++≤<≤=所以D 正确. 故选:BD .3.【百师联盟2019-2020学年高三上学期期中联考】下列命题中不正确...的是( ) A .设m 为直线,,αβ为平面,且m α⊥;则“//m β”是“αβ⊥”的充要条件 B .设随机变量1)0(N ζ,,若()3P p ζ≥=,则()1302P p ζ-<<=- C .若不等式922x m x+≥+(0x >)恒成立,则m 的取值范围是(,2)-∞ D .已知直线2ax by +=经过点(1)3,,则28a b +的取值范围是[4)+∞, 【答案】AC【解析】A 选项,如图所示:αβ⊥,m α⊥,m β⊂,不一定//m β,因此不是充要条件,故A 错误.B 选项,对称轴为0x =,由对称性可知:121(30)22p P p ζ--<<==-.故B 正确. C 选项,由996x x x x+≥=,可得622m ≥+,所以m 的范围为(]2-∞,,故C 不正确. 选项D ,由直线2ax by +=经过点(1,3),可得32a b +=,则328228224a b a b a b ++≥==,当且仅当31a b ==等号成立, 所以取值范围是[4,)+∞, 故D 正确. 故选:AC4.【江苏省海安高级中学2019-2020学年高三上学期12月月考】下列结论正确的是( )A .若22a b >,则11a b< B .若0x >,则44x x+≥ C .若0a b >>,则lg lg a b > D .若0ab >,1a b +=,则114a b+≥ 【答案】BCD【解析】对于A ,若22a b >,则a b >,当2a =,1b =-时,11a b<不成立,故A 错;对于B ,由0x >,则44x x +≥=,当且仅当2x =取等号,故B 正确; 对于C ,由lg y x =为单调递增函数,由0a b >>,则lg lg a b >,故C 正确;对于D ,由0ab >,1a b +=,则()111124b a a b a b a b ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当12a b ==时取等号,故D 正确; 故选:BCD5.【江苏省徐州市2019-2020学年高三上学期期中】给出下面四个推断,其中正确的为( ).A .若,(0,)a b ∈+∞,则2b aa b+;B .若,(0,)x y ∈+∞则lg lg 2lg lg x y x +⋅C .若a ∈R ,0a ≠,则44a a+; D .若,x y ∈R ,0xy <,则2x yy x+≤-. 【答案】AD【解析】对于选项A ,因为,(0,)a b ∈+∞,则22b a b aa b a b+⨯=,当且仅当b a a b =,即a b =时取等号,即选项A 正确;对于选项B ,当,(0,1)x y ∈时,lg ,lg (,0)x y ∈-∞,lg lg 2lg lg x y x +⋅B 错误;对于选项C ,当0a <时,44a a+显然不成立,即选项C 错误;对于选项D ,0xy <,则0,0y x x y ->->,则[()()]2x y x y y x y x +=--+-≤-=-,当且仅当()()xy y x-=-,即x y =-时取等号,即选项D 正确, 即四个推段中正确的为AD , 故选:AD.6.【山东省滨州市三校联考2019-2020学年高三上学期期中】设11a b >>>-,0b ≠,则下列不等式中恒成立的是( ) A .11a b< B .11a b> C .2a b > D .22a b >【答案】CD【解析】当12,2a b ==-,满足条件.但11a b <不成立,故A 错误,当0a b >>时,11a b <,故B错误,11,0b b >>-≠,201b ∴<<,则2a b >,故C 正确,11,0,0a b a b a b >>>-∴+>->,22()()0a b a b a b ∴-=+->,故D 正确.故选:CD .7.【山东省德州市2019-2020学年高三上学期期中】对于实数a 、b 、c ,下列命题中正确的是( )A .若a b >,则ac bc <;B .若0a b <<,则22a ab b >>C .若0c a b >>>,则a b c a c b>-- D .若a b >,11a b >,则0a >,0b <【答案】BCD【解析】若0c >,则由a b >得ac bc >,A 错;若0a b <<,则2a ab >,2ab b > 22a ab b >>,B 正确;若0c a b >>>,则0c b c a ->->,∴110c a c b>>--,∴a b c a c b >--,C 正确; 若a b >,且,a b 同号时,则有11a b <,因此由11,a b a b>>得0,0a b ><,D 正确.故选:BCD .8.【山东省烟台市2019-2020学年高三上学期期中】下列结论正确的是( )A .若0,0a b c d >><<,则一定有b ac d> B .若0x y >>,且1xy=,则()21log 2xyx x y y +>>+C .设{}n a 是等差数列,若210a a >>,则2a >D .若[)0,x ∈+∞,则()21ln 18x x x +≥- 【答案】AC【解析】选项A ,由0c d <<,可得0c d ->->,则110d c->->,又0a b >>,所以a b d c ->-,则b ac d>,故A 正确. 选项B ,取12,2x y ==,则221154,,log ()log 1282x y x x y y +==+=>,不等式不成立,故B 不正确.选项C ,由题意得1322a a a +=且13a a ≠,所以21311=()22a a a +>⨯=C 正确. 选项D ,设21()ln(1)8h x x x x =+-+,则1(3)()1144(1)x x x h x x x -'=-+=++,当03x <<时,()0h x '<,则()h x 单调递减,()(0)0h x h <=,故D 不正确. 故选:AC.9.【山东省枣庄市第三中学2010-2020学年高三上学期10月学情调查】如下的四个命题中真命题的标号为( )A .已知实数a ,b ,c 满足2743b c a a +=-+,254c b a a -=-+,则c b a >>B .若22ππαβ-<<<,则αβ-的取值范围是(),ππ-C .如果ln 33a =,ln 44b =,ln 55c =,那么c b a << D .若0a b <<,则不等式11b b a a +<+一定成立 【答案】ABCD【解析】对A ,由2245(2)10c b a a a -=-++=->,c b ∴>.再由2347b c a a +=-+①,245c b a a -=-+②,-①②得:2222b a =+,即21b a =+.22131()24a a a +-=-+,21b a a ∴=+>,c b a ∴>>,故A 正确;对B ,22ππβ-<<,22ππβ∴-<-<,παβπ∴-<-<,故B 正确;对C ,由ln x y x =,则'21ln x y x-=,当x e >时,1ln 0x -<,∴ln x y x =在(,)e +∞上单调递减,345e <<<,ln 3ln 4ln 5345∴>>,c b a ∴<<,故C 正确; 对D ,要证不等式11b b a a +<+成立,等价于证明(1)(1)a b a b +⋅<⋅+b a ⇔<,0a b <<,||||b a ∴<显然成立,故D 正确.故选ABCD .10.【2019年山东省济南市外国语学校高三9月阶段测试】已知a ,b 为正实数,则下列命题正确的是()A .若221a b -=,则1a b -<B .若111b a-=,则1a b -<C .若1a b e e -=,则1a b -<D .若ln ln 1a b -=,则1a b -<【答案】AC 【解析】对于A :221a b -=时,()()1a b a b -+=⋅.0,0a b >>,0a b a b ∴<-<+,11a b a b∴-=<+,故A 正确; 对于B :111b a-=时,不妨取33,4a b ==满足条件,则914a b -=>,所以B 错误.对于C :由1a b e e -=,可得(1)1a b bb b a b e e e e -+--=-=.0b >,1b e ∴>,11a b e -∴-<,即2a b e -<,ln 2ln 1a b e ∴-<<=,故C 正确.对于D :不妨取2,a e b e ==满足条件,则21a b e e -=->,所以D 错误. 故选:AC .11.【山东省青岛市2020届高三第三次模拟】已知曲线()32213f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( ) A .196B .3C .103D .92【答案】AC 【解析】由题可知,322()13f x x x ax =-+-,则2()22f x x x a '=-+,可令切点的横坐标为m ,且0m >,可得切线斜率2223k m m a =-+=,由题意,可得关于m 的方程22230m m a -+-=有两个不等的正根,且可知1210m m +=>,则1200m m ∆>⎧⎨>⎩,即48(3)0302a a -->⎧⎪⎨->⎪⎩,解得:732a <<,a ∴的取值可能为196,103.故选:AC. 12.【山东省2020届普通高等学校招生全国统一考试数学试题模拟卷(二)】已知函数()e 2xf x x =+-的零点为a ,函数()ln 2g x x x =+-的零点为b ,则下列不等式中成立的是( ) A .e ln 2a b +> B .e ln 2a b +< C .223a b +<D .1ab <【答案】CD【解析】由()0f x =,()0g x =得e 2x x =-,ln 2x x =-,函数e x y =与ln y x =互为反函数,在同一坐标系中分别作出函数e x y =,ln y x =,2y x =-的图象,如图所示,则(),eaA a ,(,ln )B b b .由反函数性质知,A B 关于(1,1)对称,则2a b +=,e ln 2ab +=,2()14a b ab +<=,∴A 、B 错误,D 正确.()e 10xf x '=+>,()f x ∴在R 上单调递增,且(0)10f =-<,13e 022f ⎛⎫=-> ⎪⎝⎭,102a ∴<<.又∵点(e ),aA a 在直线2y x =-上,即e 2a a b =-=,22221e e 34a a b a ∴+=+<+<,故C 正确.故选:CD13.【山东省2020届普通高等学校招生全国统一考试数学试题模拟卷(一)】对于实数a ,b ,m ,下列说法正确的是( ) A .若22am bm >,则a b > B .若a b >,则a ab bC .若0b a >>,0m >,则a m ab m b+>+ D .若0a b >>且ln ln a b =,则()23,a b +∈+∞ 【答案】ABCD【解析】对实数a ,b ,m .2220am bm m ∴>>,a b ∴>,A 正确;a b >,分三种情况,当0a b >>时,0a ab b ;当0a b >>时,22a a ab b b ;当0a b >>时,22a aa b b b ,a a b b ∴>成立,B 正确;0b a >>,0m >,()()()()()0()a m b a b m b a m a m a ab bm ab am b m b b b m b b m b b m +-+-++---===+++∴>+,C 正确; 若0a b >>,且ln ln a b =,1a b ∴=,且1a >.122a b a a∴+=+, 设()()121f a a a a=+>,根据双勾函数的单调性知,()f a 在区间()1,+∞上单调递增, ()(1)3f a f ∴>=,即()23,a b +∈+∞,D 正确.故选:ABCD .14.【山东省2020届普通高等学校招生全国统一考试数学试题模拟卷(一)】已知函数()ln f x x =,若()f x 在1x x =和()212x x x x =≠处切线平行,则( )A12= B .12128x x <C .1232x x +<D .2212512x x +>【答案】AD【解析】由题意知()()10f x x x'=>,因为()f x 在1x x =和()212x x x x =≠处切线平行,所以()()12f x f x ''=1211x x =-12=,A 正确; 由基本不等式及12x x ≠,可得12=>12256x x >,B错误;1232x x +>>,C 错误;2212122512x x x x +>>,D 正确. 故选:AD15.【山东省泰安市2020届高三第五次模拟】已知向量()()()2,1,1,1,2,,a b c m n ==-=--其中,m n 均为正数,且()//a b c -,下列说法正确的是( ) A . a 与b 的夹角为钝角 B .向量a 在bC .24m n +=D .mn 的最大值为2【答案】CD【解析】由题意知,10a b ⋅=>,所以a 与b 的夹角为锐角,故选项A 错误;向量a 在b 方向上的投影为12a b b⋅==,故选项B 错误; ()1,2a b -=,因为()//a b c -,,m n 均为正数,所以c 为非零向量,且24,24n m m n -=-+=,故选项C 正确;由基本不等式知,42m n =+≥,2mn ≤,当且仅当22m n ==时取等号, 故mn 的最大值为2,故选项D 正确. 故选:CD16.【山东省潍坊市2020届高三模拟(二模)】若1a b <<-,0c >则下列不等式中一定成立的是( )A .11a b a b->- B .11b a a b -<- C .ln()0b a -> D .()()c ca b b a>【答案】BD【解析】由函数1y x x=-在(,1)-∞-上为增函数可知,当1a b <<-时,11a b a b -<-,故选项A 错误; 由函数1y x x =+在(,1)-∞-上为增函数可知,当1a b <<-时,11a b a b +<+,即11b aa b -<-,故选项B 正确;由于a b <,则0b a ->,但不确定b a -与1的大小关系,故ln()b a -与0的大小关系不确定,故选项C 错误;由1a b <<-可知,1a b >,01b a <<,而0c >,则10c ca b b a ⎛⎫⎛⎫>>> ⎪ ⎪⎝⎭⎝⎭,故选项D 正确.故选:BD17.【山东省济宁市2020届高三6月高考模拟考试(三模)】已知直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( )A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .122x x >【答案】ABC【解析】函数xy e =与ln y x =互为反函数,则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<,122112211ln ln ln ln x x x x x x x x +=-<()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤,由于12x x ≠,则121x x <,故D 错误; 故选:ABC18.【山东省淄博市部分学校2020届高三6月阶段性诊断考试(二模)】设[]x 表示不小于实数x 的最小整数,则满足关于x 的不等式[][]2120x x +-≤的解可以为( ) A 10 B .3 C .-4.5 D .-5【答案】BC【解析】因为不等式[][]2120x x +-≤,所以[]()[]()340x x -+≤,所以[]43x -≤≤,又因为[]x表示不小于实数x 的最小整数,所以不等式[][]2120x x +-≤的解可以为3,-4.5.故选:BC 19.【山东省德州市2020届高三第二次(6月)模拟】若正实数a ,b 满足1a b +=则下列说法正确的是( )A .ab 有最大值14B C .11a b+有最小值2 D .22a b +有最大值12【答案】AB【解析】对于A :2211224a b ab +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12a b ==时取等号.故A 正确;对于B :22a b a b a b =++≤+++=,≤,当且仅当12a b ==时取等号.故B 正确;对于C :()1111224b a a b a b a b a b ⎛⎫+=++=++≥+⎝= ⎪⎭.当且仅当12a b ==时取等号.所以11a b+有最小值4.故C 错误; 对于D :()()2222222121a b a ab b a a bb +=⇒++=≤+++,即2212a b +≥,故22a b +有最小值12.故D 错误; 故选:AB .20.【山东省、海南省新高考2019-2020学年高三4月份】对于实数a ,b ,c ,下列命题是真命题的为( )A .若a >b ,则11a b< B .若a >b ,则ac 2≥bc 2 C .若a >0>b ,则a 2<﹣ab D .若c >a >b >0,则a b c a c b--> 【答案】BD【解析】A .根据a >b ,取a =1,b =﹣1,则11ab<不成立,故A 错误; B .∵a >b ,∴由不等式的基本性质知ac 2≥bc 2成立,故B 正确; C .由a >0>b ,取a =1,b =﹣1,则a 2<﹣ab 不成立,故C 错误;D .∵c >a >b >0,∴(a ﹣b )c >0,∴ac ﹣ab >bc ﹣ab ,即a (c ﹣b )>b (c ﹣a ),∵c ﹣a >0,c ﹣b >0,∴a b c a c b-->,故D 正确. 故选:BD .21.【2020届山东省临沂市蒙阴县实验中学高三上学期期末】下列判断正确的是( )A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的必要不充分条件;C .若随机变量ξ服从二项分布:14,4B ξ⎛⎫⎪⎝⎭,则()1E ξ=; D .已知直线2ax by +=经过点()1,3,则28a b +的取值范围是[)4,+∞ 【答案】ACD【解析】A 选项,若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,根据正态分布曲线的对称性有()()240.79P P ξξ≥-=≤=,所以()()21210.790.21P P ξξ≤-=-≥-=-=,A 选项正确;B 选项,因为//αβ,直线l ⊥平面α,所以直线l ⊥平面β,又直线//m 平面β,所以l m ⊥,充分性成立;设n αβ=,在α内取平行于n 的直线m n ≠,则l m ⊥且βn//,但是α与β相交,必要性不成立,B 不正确; C 选项,因为14,4B ξ⎛⎫⎪⎝⎭,所以1414E np ξ==⨯=,C 正确;D 选项,由题意知32a b +=,因为20a >,3820b b =>,所以2824a b +≥=,当且仅当11,3a b ==时取等号,故D 正确. 故选:ACD22.【2020届山东省聊城市高三高考模拟(一)】若实数2a ≥,则下列不等式中一定成立的是( )A .21(1)(2)a a a a +++>+B .1log (1)log (2)a a a a ++>+C .1log (1)a a a a ++< D .12log (2)1a a a a +++<+ 【答案】ABD 【解析】令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减,对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++, 即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确;对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a+>+,故选项C 错误; 对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥,所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦.因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确;故选:ABD23.【2020届天一大联考海南省高三年级第三次模拟】设a ,b ,c 为实数且a b >,则下列不等式一定成立的是( ) A .11a b> B .20201a b -> C .ln ln a b > D .()()2211a c b c +>+【答案】BD【解析】对于A ,若0a b >>,则11a b<,所以A 错误; 对于B ,因为0a b ->,所以20201a b ->,故B 正确;对于C ,函数ln y x =的定义域为0,,而a ,b 不一定是正数,所以C 错误;对于D ,因为210c +>,所以()()2211a c b c +>+,所以D 正确.故选:BD24.【山东省泰安市2019-2020学年高三上学期期末】已知a b c d ,,,均为实数,则下列命题正确的是( )A .若,a b c d >>,则ac bd >B .若0,0ab bc ad >->,则0c da b-> C .若,,a b c d >>则a d b c ->- D .若,0,a b c d >>>则a b d c> 【答案】BC【解析】若0a b >>,0c d >>,则ac bd <,故A 错; 若0ab >,0bc ad ->,则0bc adab ->,化简得0c d a b->,故B 对; 若c d >,则d c ->-,又a b >,则a d b c ->-,故C 对; 若1a =-,2b =-,2c =,1d =,则1a d =-,1b c =-,1a bd c==-,故D 错; 故选:BC .25.【2020届山东省潍坊市临朐县高三综合模拟考试数学试题(一)】实数x ,y 满足2220x y x ++=,则下列关于1yx -的判断正确的是( )A .1yx -B .1yx -的最小值为C .1y x -的最大值为3D .1y x -的最小值为3- 【答案】CD【解析】由题意可得方程2220x y x ++=为圆心是(1,0)C -,半径为1的圆,由1yx -为圆上的点与定点(1,0)P 的斜率的值.设过(1,0)P 点的直线为(1)y k x =+,即0kx y k -+=,圆心到到直线的距离d r =1=,整理可得231k =解得3k =±,所以[]133y x ∈--,即1y x -的最3-.故选CD .26.【山东省日照市五莲县第一中学2019-2020学年高三3月过程检测】已知2a b >,则( )A .23b b a <-B .3322a b a b ab +>+C .ab a b >+D .12112ab a b+>+ 【答案】BC【解析】2a b >,对于A :A 错误,比如3a =,2b =,43>不成立; 对于B :()3322222()()()()0a b a b aba ab b a b a b a b +-+=---=-+>成立;对于C :由1(1)(1)(1)1011b ab a b a b b b a b a b b ⎡⎤⎛⎫⎛⎫--=--=--=--+> ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦,故C 成立, 对于D :1211(2)(2)022a b ab a b ab--+--=,故D 不成立, 故选:BC .27.【山东省日照市五莲县第一中学2019-2020学年高三3月过程检测】数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线()32222:16C x y x y +=恰好是四叶玫瑰线.给出下列结论正确的是( )A .曲线C 经过5个整点(即横、纵坐标均为整数的点)B .曲线C 上任意一点到坐标原点O 的距离都不超过2 C .曲线C 围成区域的面积大于4πD .方程()3222216(0)x y x y xy +=>表示的曲线C 在第一象限和第三象限【答案】BD【解析】把2x =,2y =代入曲线C ,可知等号两边成立,所以曲线C 在第一象限过点(2,2), 由曲线的对称性可知,该点的位置是图中的点M ,对于A 选项,只需要考虑曲线在第一象限内经过的整点即可,把(1,1),(1,2)和(2,1)代入曲线C 的方程验证可知,等号不成立,所以曲线C 在第一象限内不经过任何整点.再结合曲线的对称性可知,曲线C 只经过整点(0,0),即A 错误;对于B 选项,因为222(0,0)x yxy x y +>>,所以222x y xy +,所以()()()22232222222161644x y xy x y x y ++=⨯=+,所以224x y +,即B 正确;对于C 选项,以O 为圆点,2为半径的圆O 的面积为4π,显然曲线C 围成的区域的面积小于圆O 的面积,即C 错误;对于D 选项,因为0xy >,所以x 与y 同号,仅限与第一和三象限,即D 正确. 故选:BD .28.【2020届山东省潍坊市奎文区第一中学高三下学期3月月考】设正实数a ,b 满足1a b +=,则( )A .11a b+有最小值4 B 12C 有最大值1D .22a b +有最小值12【答案】AD【解析】对于A :正实数a ,b 满足1a b +=,即有a b +≥104ab <≤,即有1114a b ab +=≥,即有a b =时,11a b+取得最小值4,无最大值,故A 正确;对B :由102<≤有最大值12,故B 错误;对于C ==≤=a b =,故C 错误;对于D :由222a b ab +≥可得2222()()1a b a b +≥+=,则2212a b +≥,当12a b ==时,22a b +取得最小值12,故D 正确. 故选:AD .29.【2020届山东省枣庄、滕州市高三上学期期末】如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h 【答案】AC 【解析】A.∵24,u x x +24v x x =+24,22u v u vx x +-+==, 由题意4uv =,4v u=在(0,)+∞上是减函数,A 正确. B.24125x x t +-=126510u v u v+-=+-,整理得15436t u v =++,B 错误; C.由A 、B 得161615363644t u u u u=++≥⋅=,16u u =即4u =时取等号,244x x +=,解得31.52x ==,C 正确; D.4x =时,2585t =+,25710521500441305t ---=-==>,3t >,D 错. 故选:AC.30.【山东省潍坊市2019-2020学年高三上学期期中】若x y ≥,则下列不等式中正确的是( )A .22x y ≥B .2x yxy +≥C .22x y ≥ D .222x y xy +≥【答案】AD【解析】对A ,由指数函数的单调性可知,当x y ≥,有22x y ≥,故A 正确; 对B ,当0,0,x y x y <<>时,2x yxy +≥不成立,故B 错误;对C ,当0x y ≥≥时,22x y ≥不成立,故C 错误; 对D ,2222()0x y xy x y +-=-≥成立,从而有222x y xy +≥成立,故D 正确;故选:AD.。

山东省实验中学2020届高三第一次模拟考试数学(理)试卷含解析

山东省实验中学2020届高三第一次模拟考试数学(理)试卷含解析

山东省实验中学2020届高三第一次模拟考试数学(理)试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在直角坐标平面内,已知A(-2,0),3(2,0)以及动点。

是AABC的三个顶点,且sin Asin B-2cosC=0,则动点C的轨迹曲线「的离心率是()\/2a/3A.2B.2 c.扬 D.右2.若函数f(x)=l+\x\+x\贝0/(lg2)+/flg|k/(lg5)+/flg^=()A.2b.4 C.6 D.83.在AA3C中,CA_CA AB.则sinA:sin3:sinC=()543A.9:7:8b.c.6:8:7D何.3:由4.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()种A.120B.260C.340D.4205.已知直线y=kx-1与抛物线J=8y相切,则双曲线x2-k2y2=l的离心率为()73A.打B.右C.D.26.已知数列{%}的前〃项和S"满足S"+a"=2n(nwN*),则%=()1_127321385A.3b.64 c.32d.64x+y>l,7.设x,y满足约束条件\x-y>-l,若目标函数z=ax+3y仅在点(1,0)处取得最小值,则。

的取值范围2x-y<2,为()A.(—6,3)B.(-6,-3)C.(。

,3)D.(-6,0]8.已知集合M=(x|y=log2(-4x-x2)},2V=(x|(-)x>4},则肱N=()A.d-2]b.[-2,0) c.(-4,2]D(-co,-4)9.如图,已知等腰梯形A3CD中,AB=2DC=4,AD=BC=^5,E是OC的中点,P是线段BC±的动点,则的最小值是()_9_4A.5B.0C.5D.110.已知^A={x\a-l<x<a+2},B=(x|3<x<5},则能使A^B成立的实数。

2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题及答案

2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题及答案

绝密★启用前2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上 一、单选题 1.已知集合{}|26Mx x =-<<,{}2|3log 35N x x =-<<,则MN =( )A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x <<答案:A根据对数性质可知25log 356<<,再根据集合的交集运算即可求解. 解:∵25log 356<<, 集合{}|26Mx x =-<<,∴由交集运算可得{}2|2log 35M N x x ⋂=-<<.故选:A. 点评:本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题. 2.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =- D .221y x =-答案:B根据共轭复数定义及复数模的求法,代入化简即可求解. 解:z 在复平面内对应的点的坐标为(),x y ,则z x yi =+,z x yi =-,∵12z zz +=+,1x =+,解得221y x =+. 故选:B. 点评:本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题. 3.“2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案:A根据幂函数定义,求得b 的值,结合充分条件与必要条件的概念即可判断. 解:∵当函数()()2231af x b b x =--为幂函数时,22311b b --=,解得2b =或12-, ∴“2b =”是“函数()()2231af x b b x =--为幂函数”的充分不必要条件.故选:A. 点评:本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.4.已知()21AB =-,,()1,AC λ=,若cos BAC ∠=,则实数λ的值是( ) A .-1 B .7C .1D .1或7答案:C根据平面向量数量积的坐标运算,化简即可求得λ的值. 解:由平面向量数量积的坐标运算,代入化简可得cos 105AB AC BAC AB AC⋅∠===. ∴解得1λ=. 故选:C. 点评:本题考查了平面向量数量积的坐标运算,属于基础题.5.嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆有下述四个结论: (1)焦距长约为300公里; (2)长轴长约为3988公里; (3)两焦点坐标约为()150,0±; (4)离心率约为75994. 其中正确结论的个数为()A .1B .2C .3D .4答案:B根据椭圆形轨道,设该椭圆长轴长为a ,半焦距为c ,先求得月球的半径r ,再根据近月点与月球表面距离为100公里,有100a c r -=+,远月点与月球表面距离为400公里,有400a c r +=+,然后两式联立求解. 解:设该椭圆长轴长为a ,半焦距为c ,依题意可得月球半径约为1347617382⨯=, 所以1001738183840017382138a c a c -=+=⎧⎨+=+=⎩,解得1988150a c =⎧⎨=⎩所以离心率150751988994c e a ===,可知结论(1)(4)正确,(2)错误; 因为没有给坐标系,焦点坐标不确定,所以(3)错误. 故选:B 点评:本题主要考查椭圆的几何性质,还考查了阅读抽象应用的能力,属于基础题. 6.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1a =,6A π=,且321c b -=,则cos C ()A .12-B .3C .12D 6 答案:A根据1a =,321c b -=,由正弦定理边化为角得到3sin 2sin sin C B A -=,由A B C π++=,得到()3sin 2sin sin C A C A -+=,再根据6A π=求解.解:由321c b -=,得32c b a -=,即3sin 2sin sin C B A -=, 所以()3sin 2sin sin C A C A -+=, 而6A π=,所以3sin 2sin sin 66C C ππ⎛⎫-+= ⎪⎝⎭, 即3113sin 2sin cos 222C C C ⎛⎫-+= ⎪ ⎪⎝⎭, 解得1cos 2C =-. 故选:A 点评:本题主要考查正弦定理和三角恒等变换,还考查了运算求解的能力,属于中档题. 7.函数()2cos2cos221xxf x x =+-的图象大致是( ) A . B .C .D .答案:C根据函数奇偶性可排除AB 选项;结合特殊值,即可排除D 选项. 解:∵()2cos221cos2cos22121x x x x f x x x +=+=⨯--,()()()2121cos 2cos22121x x x x f x x x f x --++-=⨯-=-⨯=---,∴函数()f x 为奇函数,∴排除选项A ,B ;又∵当04x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故选:C. 点评:本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.8.设x ,y 满足约束条件2010x y x y x m -+≥⎧⎪+-≥⎨⎪≤⎩,若2z x y =+的最大值大于17,则实数m 的取值范围为() A .()4,+∞ B .13,2⎛⎫+∞⎪⎝⎭C .()6,+∞D .()5,+∞答案:D先作出不等式组表示的平面区域,然后平移直线l :20x y +=,当直线l 在y 轴上的截距最大时,z 取得最大值求解. 解:作出不等式组表示的平面区域如图所示,作出直线l :20x y +=,并平移,当直线l 经过点(),2m m +时,直线在y 轴上的截距最大,z 取得最大值, 因为2z x y =+的最大值大于17, 所以2217m m ++>,解得5m >. 故选:D 点评:本题主要考查线性规划求最值,还考查了数形结合的方法的能力,属于基础题. 9.七巧板是一种古老的中国传统智力玩具,是由七块板组成.而这七块板可拼成许多图形,人物、动物、建筑物等,在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧图谱》.若用七巧板(图1为正方形),拼成一只雄鸡(图2),在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡头或鸡尾(阴影部分)的概率为A .112B .18C .14D .316答案:D这是一个几何概型模型,设包含7块板的正方形边长为4,求得正方形的面积,即为雄鸡的面积,然后求得雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和,代入公式求解. 解:设包含7块板的正方形边长为4,正方形的面积为4416⨯=, 则雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和为1212132⨯⨯+⨯=, 在雄鸡平面图形上随机取一点,则恰好取自雄鸡几头或鸡尾(阴影部分)的概率为316p. 故选:D 点评:本题主要考查几何概型的概率,还考查了阅读抽象应用的能力,属于基础题.10.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为()A .2π B .3π C .4π D .6π 答案:C设AE BF a ==,13B EBF EBFV S B B '-'=⨯⨯,利用基本不等式,确定点E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解.设AE BF a ==,则()()23119333288B EBFaa V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 9322222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭, ∴3,3,32A F ⎛⎫'=--⎪⎝⎭,()3,3,0AC =-, 所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯,所以异面直线A F '与AC 所成的角为4π. 故选:C 点评:本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.11.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是() A .①②③ B .①③④C .①④D .③④答案:B 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证. 解: ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即=1a =,①正确; ∴()sin 2sin 3π⎛⎫==- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈, 当0k =时,12x x +取最小值23π,所以①③④正确,②错误.故选:B 点评:本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.12.如图,在ABC 中,AB 4=,点E 为AB 的中点,点D 为线段AB 垂直平分线上的一点,且4DE =,固定边AB ,在平面ABD 内移动顶点C ,使得ABC 的内切圆始终与AB 切于线段BE 的中点,且C 、D 在直线AB 的同侧,在移动过程中,当CA CD +取得最小值时,ABC 的面积为()A .12524-B .6512-C .12518-D .658-答案:A以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,利用圆的切线长定理,得到C 点的轨迹是以A 、B 为焦点的双曲线在第一象限部分,然后利用直线段最短,得到点C 的位置,再求三角形的面积. 解: 如图,以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,则()2,0A -,()2,0B ,()0,4D ,设ABC 的内切圆分别切BC 、AC 、AB 于F ,G ,H 点,∵3124CA CB AG BF AH HB -=-=-=-=<,所以C 点的轨迹是以A 、B 为焦点的双曲线的第一象限部分,且1a =,2c =,2223b c a =-=,∴C 的轨迹方程为()220,03y x x y ->>.∵2CA CB -=,∴2CA CB =+,∴2CA CD CB CD +=++, 则当点C 为线段BD 与双曲线在第一象限的交点时,CA CD +最小, 如图所示:线段BD 的方程为()4202y x x =-≤≤,将其代入22330x y --=,得216190x x -+=,解得835x =+835x =-,∴426512y x =-=, ∴()835,6512C -. ∴ABC 的面积为()146512125242⨯⨯=. 故选:A 点评:本题主要考查双曲线的定义,圆的切线长定理以及三角形的面积,还考查了数形结合的思想和运算求解的能力,属于中档题. 二、填空题13.若函数()()()()()2log 2242x x f x f x x ⎧->⎪=⎨+≤⎪⎩,则()()5f f -=__________. 答案:1利用分段函数,先求()5f -,再求()()5f f -的值.解: ∵()()()5130f f f -=-==,∴()()()()5041ff f f -===.故答案为:1 点评:本题主要考查分段函数求函数值问题,还考查了运算求解的能力,属于基础题. 14.若()()613x a x -+的展开式中3x 的系数为45-,则实数a =__________. 答案:13利用通项公式得到()()613x a x -+的展开式中含3x 的项为:()()23236633x C x a C x ⋅-⋅,再根据系数为45-,建立方程求解.解:因为()()613x a x -+的展开式中含3x 的项为:()()()232336633135540x C x a C x a x ⋅-⋅=-,∴13554045a -=-,解得13a =. 故答案为:13点评:本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题. 15.如图,在矩形ABCD 中,24==AD AB ,E 是AD 的中点,将ABE △,CDE △分别沿BE CE ,折起,使得平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,则所得几何体ABCDE 的外接球的体积为__________.答案:323π 根据题意,画出空间几何体,设BE EC BC ,,的中点分别为M N O ,,,并连接AM CM AO DN NO DO OE ,,,,,,,利用面面垂直的性质及所给线段关系,可知几何体ABCDE 的外接球的球心为O ,即可求得其外接球的体积. 解:由题可得ABE △,CDE △,BEC △均为等腰直角三角形,如图所示,设BE EC BC ,,的中点分别为M N O ,,, 连接AM CM AO DN NO DO OE ,,,,,,, 则OM BE ⊥,ON CE ⊥.因为平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE , 所以OM ⊥平面ABE ,ON ⊥平面DEC , 易得2OA OB OC OD OE =====,则几何体ABCDE 的外接球的球心为O ,半径2R =, 所以几何体ABCDE 的外接球的体积为343233V R ππ==. 故答案为:323π. 点评:本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.16.若函数()2ln 2f x x x ax x =--有两个不同的极值点,则实数a 的取值范围为__________. 答案:10,4e ⎛⎫ ⎪⎝⎭由函数()2ln 2f x x x ax x =--有两个不同的极值点,则()ln 40f x x ax '=-=有两个不同的根,转化为方程ln 4x a x =有两个不同解,即函数()g x ln 4xx=的图象与直线y a =有两个公共点求解.解:由()ln 40f x x ax '=-=,得ln 4xa x=, 记()ln 4x g x x =,则()21ln 4xg x x-'=, 当()0,x e ∈时,()0g x '>,()g x 单调递增,当(),x e ∈+∞时,()0g x '<,()g x 单调递减. 又∵()14g e e=,当0x →时,()g x →-∞,当x →+∞时,()0g x →. 因为函数()2ln 2f x x x ax x =--有两个不同的极值点, 所以方程ln 4xa x=有两个不同的解, 即函数()g x 的图象与直线y a =有两个公共点, 故实数a 的取值范围为10,4e ⎛⎫ ⎪⎝⎭. 故答案为:10,4e ⎛⎫ ⎪⎝⎭点评:本题主要考查导数与函数的极值点以及导数与函数的零点问题,还考查了数形结合的思想和运算求解的能力,属于中档题. 三、解答题17.在如图所示的多面体中,四边形ABEG 是矩形,梯形DGEF 为直角梯形,平面DGEF ⊥平面ABEG ,且DG GE ⊥,//DF GE ,2222AB AG DG DF ====.(1)求证:FG ⊥平面BEF . (2)求二面角A BF E --的大小. 答案:(1)见解析;(2)23π(1)根据面面垂直性质及线面垂直性质,可证明BE FG ⊥;由所给线段关系,结合勾股定理逆定理,可证明FE FG ⊥,进而由线面垂直的判定定理证明FG ⊥平面BEF .(2)建立空间直角坐标系,写出各个点的坐标,并求得平面AFB 和平面EFB 的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角A BF E --的大小. 解:(1)证明:∵平面DGEF ⊥平面ABEG ,且BE GE ⊥, ∴BE ⊥平面DGEF , ∴BE FG ⊥,由题意可得2FG FE ==, ∴222FG FE GE +=,∵FE FG ⊥,且FE BE E ⋂=, ∴FG ⊥平面BEF .(2)如图所示,建立空间直角坐标系,则()1,0,0A ,()1,2,0B ,()0,2,0E ,()0,1,1F ,()1,1,1FA =--,()1,1,1FB =-,()0,1,1FE =-.设平面AFB 的法向量是()111,,n x y z =,则11111111100000x y z x z FA n x y z y FB n --==⎧⎧⎧⋅=⇒⇒⎨⎨⎨+-==⋅=⎩⎩⎩,令11x =,()1,0,1n =,由(1)可知平面EFB 的法向量是()0,1,1m GF ==,∴1cos<,222n m n m n m⋅>===⨯⋅,由图可知,二面角A BF E --为钝二面角,所以二面角A BF E --的大小为23π. 点评:本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.18.在等差数列{}n a 中,12a =,35730a a a ++=.(1)求数列{}n a 的通项公式;(2)记23n n a an b =+,当*n N ∈时,1n n b b λ+>,求实数λ的取值范围.答案:(1)2n a n =(2)实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭(1)根据12a =,35730a a a ++=,利用“1,a d ”法求解.(2)由(1)得到2349n naa n n nb =+=+,将()114949n n n n λ+++>+对*n N ∀∈恒成立,转化为5419nλ<⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立求解. 解:(1)在等差数列{}n a 中,3575330a a a a ++==,∴510a =,所以{}n a 的公差51251a a d -==-, ∴()112n a a n d n =+-=. (2)∵2349n naa n n nb =+=+,∴()114949n n n n λ+++>+对*n N ∀∈恒成立,即4499595444949419n n n n n n n n λ⨯+⨯⨯<=+=+++⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立, 又∵55974441341199n+≥+=⎛⎫++ ⎪⎝⎭,∴9713λ<,即实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭.点评:本题主要考查等差数列的基本运算以及有关数列的不等式恒成立问题,还考查了运算求解的能力,属于中档题.19.在直角坐标系xOy 中,曲线1C 上的任意一点M 到直线1y =-的距离比M 点到点()02F ,的距离小1.(1)求动点M 的轨迹1C 的方程;(2)若点P 是圆()()222221C x y -++=:上一动点,过点P 作曲线1C 的两条切线,切点分别为A B 、,求直线AB 斜率的取值范围.答案:(1)28x y =;(2)13,44⎡⎤⎢⎥⎣⎦(1)设(),M x y ,根据题意可得点M 的轨迹方程满足的等式,化简即可求得动点M 的轨迹1C 的方程;(2)设出切线PA PB 、的斜率分别为12k k ,,切点()12,A x x ,()22,B x y ,点()P m n ,,则可得过点P 的拋物线的切线方程为()y k x m n =-+,联立抛物线方程并化简,由相切时0∆=可得两条切线斜率关系12,k k +12k k ;由抛物线方程求得导函数,并由导数的几何意义并代入抛物线方程表示出12,y y ,可求得4AB mk =,结合点()P m n ,满足()()22221x y -++=的方程可得m 的取值范围,即可求得AB k 的范围.解:(1)设点(),M x y ,∵点M 到直线1y =-的距离等于1y +, ∴11y +=,化简得28x y =,∴动点M 的轨迹1C 的方程为28x y =.(2)由题意可知,PA PB 、的斜率都存在,分别设为12k k ,,切点()12,A x x ,()22,B x y ,设点()P m n ,,过点P 的拋物线的切线方程为()y k x m n =-+,联立()28y k x m n x y⎧=-+⎨=⎩,化简可得28880x kx km n -+-=,∴26432320k km n ∆=-+=,即220k km n -+=, ∴122m k k +=,122n k k =. 由28x y =,求得导函数4xy '=, ∴114x k =,2211128x y k ==,2222228x y k ==,∴222121212121224424ABy y k k k k m k x x k k --+====--, 因为点()P m n ,满足()()22221x y -++=, 由圆的性质可得13m ≤≤,∴13444AB m k ≤=≤,即直线AB 斜率的取值范围为13,44⎡⎤⎢⎥⎣⎦. 点评:本题考查了动点轨迹方程的求法,直线与抛物线相切的性质及应用,导函数的几何意义及应用,点和圆位置关系求参数的取值范围,属于中档题.20.某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案()a 规定每日底薪100元,外卖业务每完成一单提成2元;方案()b 规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为[)[)[)[)[)[)[]2535354545555565657575858595,,,,,,,,,,,,,七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案()a 的概率为13,选择方案()b 的概率为23.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案()a 的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替) 答案:(1)0.4;(2)1127;(3)应选择方案()a ,理由见解析 (1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重复试验概率求法,先求得四人中有0人、1人选择方案()a 的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案()a 的概率;(3)设骑手每日完成外卖业务量为X 件,分别表示出方案()a 的日工资和方案()b 的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择. 解:(1)设事件A 为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单的频率分别为0.2,0.15,0.05,∵020*******++=...., ∴()P A 估计为0.4.(2)设事件′为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案()a ”, 设事件i C ,为“甲、乙、丙、丁四名骑手中恰有()01234ii =,,,,人选择方案()a ”, 则()()()41310144212163211111333818127P B P C P C C C ⎛⎫⎛⎫⎛⎫=--=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以四名骑手中至少有两名骑手选择方案()a 的概率为1127. (3)设骑手每日完成外卖业务量为X 件, 方案()a 的日工资()11002,*Y X X N =+∈,方案()b 的日工资()215054*15055454*X X N Y X X X N ≤∈⎧=⎨+->∈⎩,,,,,所以随机变量1Y 的分布列为()1160005180005200022200324002260015280005224E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.......;同理,随机变量2Y 的分布列为()21500318003230022800153300052035E Y =⨯+⨯+⨯+⨯+⨯=.......∵()()21EY E Y >,∴建议骑手应选择方案()a . 点评:本题考查了频率分布直方图的简单应用,独立重复试验概率的求法,数学期望的求法并由期望作出方案选择,属于中档题.21.已知函数()()ln 1f x m x x =+-,()sin g x mx x =-.(1)若函数()f x 在()0+∞,上单调递减,且函数()g x 在02,上单调递增,求实数m 的值;(2)求证:()()21111sin11sin 1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫+++⋯+<⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭(*n N ∈,且2n ≥).答案:(1)1;(2)见解析(1)分别求得()f x 与()g x 的导函数,由导函数与单调性关系即可求得m 的值; (2)由(1)可知当0x >时,()ln1x x +<,当02x π<<时,sin x x <,因而()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,,,构造()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,由对数运算及不等式放缩可证明()()1111ln 1sin11+sin 1+sin 1sin 2212231n n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+=-<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,从而不等式可证明. 解:(1)∵函数()f x 在()0+∞,上单调递减, ∴()101mf x x'=-≤+,即1m x ≤+在()0+∞,上恒成立, ∴1m ,又∵函数()g x 在02,上单调递增,∴()cos 0g x m x '=-≥,即cos m x ≥在02,上恒成立,m 1≥,∴综上可知,1m =.(2)证明:由(1)知,当1m =时,函数()()ln 1f x x x =+-在()0+∞,上为减函数,()sin g x x x =-在02,上为增函数,而()()00,00f g ==,∴当0x >时,()ln 1x x +<,当02x π<<时,sin x x <. ∴()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,, ∴()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()111ln 1sin1ln 1+sin ln 1+sin ln 1sin 12231n n ⎛⎫⎛⎫⎛⎫=+++⋯++ ⎪ ⎪ ⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭ ()111sin1sinsin sin 12231n n <+++⋯+⨯⨯-⨯()11111111111122312231n n n n ⎛⎫⎛⎫⎛⎫<+++⋯+=+-+-+⋯+- ⎪ ⎪ ⎪⨯⨯-⨯-⎝⎭⎝⎭⎝⎭122n=-< 即()()111ln 1sin11+sin 1+sin 1sin 212231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦, ∴()()()2*1111sin11+sin 1+sin 1sin ,212231e n N n n n ⎛⎫⎛⎫⎛⎫+⋯+<∈≥⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭,. 点评:本题考查了导数与函数单调性关系,放缩法在证明不等式中的应用,属于难题. 22.在直角坐标系xOy 中,直线l 的方程为0x y a -+=,曲线C 的参数方程为22cos 22sin x y αα=+⎧⎨=+⎩(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)若射线6πθ=与l 的交点为M ,与曲线C 的交点为A ,B ,且4OA OB OM +=,求实数a 的值.答案:(1)l :cos sin 0a ρθρθ-+=,C :24cos 4sin 40ρρθρθ--+=(2)12a =- (1)先消去参数得到C 的普通方程,然后利用cos x ρθ=,sin y ρθ=分别代入,得到直线和曲线C 的极坐标方程.(2)在极坐标系中,设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭,将π6θ=代入24cos 4sin 40ρρθρθ--+=,然后利用韦达定理求解.解:(1)将cos x ρθ=,sin y ρθ=代入方程0x y a -+=中,得到直线l 的极坐标方程为cos sin 0a ρθρθ-+=;曲线C 的普通方程为()()22224x y -+-=,即224440x y x y +--+=, 所以曲线C 的极坐标方程为24cos 4sin 40ρρθρθ--+=.(2)在极坐标系中,可设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭, 将π6θ=代入24cos 4sin 40ρρθρθ--+=,得()2240ρρ-+=,∴232ρρ+=,∵4OA OB OM +=,∴1ρ=即1π,26M ⎛⎫ ⎪ ⎪⎝⎭,将1π,26M ⎛⎫ ⎪ ⎪⎝⎭代入cos sin 0a ρθρθ-+=,得()111sin cos 222a ρθθ=-=⨯=-. 点评:本题主要考查参数方程,普通法方程极坐标方程间的转化以及直线与曲线的位置关系,还考查了运算求解的能力,属于中档题.23.已知不等式112x x ++-≤的解集为{}x a x b ≤≤.(1)求实数a 、b 的值;(2)设0m >,0n >,且满足122a b m n-=,求证:1212m n ++-≥. 答案:(1)1a =-,1b =(2)见解析(1)利用绝对值的几何意义,去绝对值求解.(2)由(1)得到1122m n+=,利用三角不等式转化为1212m n m n ++-≥+,再利用基本不等式求解.解:(1)原不等式等价于①122x x <-⎧⎨-≤⎩,∴x ∈∅; ②1122x -≤≤⎧⎨≤⎩,∴11x -≤≤; ③122x x >⎧⎨≤⎩,∴x ∈∅. 所以原不等式的解集为{}11x x -≤≤,∴1a =-,1b =.(2)∵122a b m n -=,∴1122m n+=, ∴()()1211212m n m n m n ++-≥++-=+()111122222222n m m n m n m n ⎛⎫⎛⎫=+⋅+=++≥ ⎪ ⎪⎝⎭⎝⎭, 当且仅当22n m m n =,即1m =,12n =时取等号, ∴1212m n ++-≥.点评:本题主要考查绝对值不等式的解法以及三角不等式和基本不等式的应用,还考查了运算求解的能力,属于中档题.。

山东省济宁市2024届高三上学期期中考试数学含答案

山东省济宁市2024届高三上学期期中考试数学含答案

2023~2024学年度第一学期期中教学质量检测高三数学试题2023.11本试卷共6页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的考场、座号、姓名、班级填(涂)写在答题卡上,将条形码粘贴在“贴条形码区”.2.作选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再改涂其它答案标号.3.非选择题须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡中各题目指定的区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.否则,该答题无效.4.考生必须保持答题卡的整洁;书写要求字体工整,符号规范,笔迹清楚.一、单项选择题:本题共8个小题,每小题5分,共10分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数()()12i 2i +-对应的点位于().A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{}28xA x =<,{}240B x x x =-<,则A B = ().A .{}03x x <<B .{}04x x <<C .{}3x x <D .{}4x x <3.设等差数列{}n a 的前n 项和为n S ,已知3718a a +=,24621a a a ++=,则8S =().A .32B .64C .80D .1284.若曲线()1xy ax e =+在点()0,1处的切线方程是210x y -+=,则a =().A .3B .2C .1D .05.已知实数0a b >>,则下列结论正确的是().A .ac bc>B .11a b a b +>+C .a bc a c b>--D .22222a b a b++<+6.已知函数()f x 的定义域为R ,满足()()()2023f x y f x f y +-+=⎡⎤⎣⎦,则下列说法正确的是().A .()f x 是偶函数B .()f x 是奇函数C .()2023f x +是偶函数D .()2023f x +是奇函数7.在ABC △中,点D ,E 是线段BC 上的两个动点,且2y AD AE xAB AC +=+ ,则12x y +的最小值为().A .23B .43C .2D .88.已知函数()()22,01ln ,0f x x x x x x x ⎧-+≥⎪=⎨-+<⎪⎩,则函数()1y f f x =-⎡⎤⎣⎦的零点个数是().A .2B .3C .4D .5二、多项选择题:本题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是().A .命题“x ∀∈R ,210x x ++>”的否定形式是“x ∃∈R ,210x x ++≤”B .当()0,πx ∈时,4sin sin y x x=+的最小值为4C .“()ππ4k k θ=±∈Z ”是“()π4k k θ=∈Z ”的充分不必要条件D .tan 25tan 20tan 25tan 201︒+︒+︒︒=10.音量的大小用声强级η(单位:dB )表示,声强级η与声强I (单位:2W m )之间的关系是:10lg II η=,其中0I 指的是人能听到的最低声强.人能承受的最大声强为21W m ,对应的声强级为120dB .若学生早读期间读书的声音的声强级范围为[]70,80(单位:dB ),则下列选项中正确的是().A .12010I -=(单位:2W m )B .学生早读期间读书的声强范围为5410,10--⎡⎤⎣⎦(单位:2W m )C .如果声强变为原来的2倍,则对应声强级也变为原来的2倍D .如果声强级增加10dB ,则声强变为原来的10倍11.函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,则().A .()3π4f x f ⎛⎫≤⎪⎝⎭B .π12y f x ⎛⎫=-⎪⎝⎭为偶函数C .2π2π033f x f x ⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭D .函数()y f x =在[]0,a 内有且仅有三条对称轴,则a 的取值范围为17π23π,1212⎡⎤⎢⎥⎣⎦12.已知函数()2ln x f x x =,()()12xg x ae a x=-∈R ,则下列说法正确的是().A .函数()f x 的极大值为12eB .当1a =时,用二分法求函数()g x 在区间()0,1内零点的近似值,要求误差不超过0.01时,所需二分区间的次数最少为6C .若函数g ()x 在区间(),0-∞上单调递增,则a 的取值范围为2,8e ⎡⎫-+∞⎪⎢⎣⎭D .若函数()()f x g x ≤在区间()0,+∞上恒成立,则a 的取值范围为1,2e ⎡⎫+∞⎪⎢⎣⎭三、填空题:本题共4个小题.每小题5分,共20分,其中,多空题1空2分,第2空3分.13.已知向量()2,1a =-,()1,b t =- ,若a b ∥ ,则实数t =______.14.已知π1cos 125α⎛⎫-= ⎪⎝⎭,则πsin 23α⎛⎫+= ⎪⎝⎭______.15.已知函数()()22log 4x f x x a x-=+-关于直线x b =对称,则22a b+=______.16.已知数列{}n a 满足12121333n n n n n a a a a S ---++++=L ,若2nn a =,则n S =______;若1n a ≥-,10a ≠,n a ∈Z ,0n S =,则当3n =时,满足条件的2a 的所有项组成的集合为______.四、解答题(本大题共6个小题,共70分.解答要写出必要的文字说明、证明过程或演算步骤.)17.(本小题10分)已知函数()()2ππsin 2022f x x x ϕϕϕ+⎛⎫⎫=+++<<⎪⎪⎝⎭⎭,且π2x =-是()f x 的极值点.(Ⅰ)求ϕ的值;(Ⅱ)若将()f x 的图象向右平移π6个单位长度后,得到函数()g x 的图象,求()g x 在区间π0,4⎡⎤⎢⎥⎣⎦上的值域.18.(本小题12分)已知对任意平面向量(),AB x y = ,把AB绕其起点逆时针方向旋转θ角得到向量()cos sin ,sin cos AP x y x y θθθθ=-+,叫做把点B 绕点A 沿逆时针方向旋转θ角得到点P .(Ⅰ)已知平面内点()1,2A ,点(12B ++,若把点B 绕点A 沿顺时针方向旋转π4得到点P ,求点P 的坐标;(Ⅱ)已知()1,1AB = ,把点B 绕点A 沿逆时针方向旋转θ角得到点P ,其中π,π2θ⎛⎫∈ ⎪⎝⎭,()2,6CD =,若AP CD ⊥,求sin 2θ的值.19.(本小题12分)某市城郊由3条公路围成的不规则的一块土地(其平面图形为图1所示).市政府为积极落实“全民健身”国家战略,准备在此地块上规划一个体育馆.建立图2所示的平面直角坐标系,函数()f x 的图象由曲线段OA 和直线段AB 构成,已知曲线段OA 可看成函数()2f x kx =的一部分,直线段6OB =(百米),体育馆平面图形为直角梯形BCDE (如图2所示),π2BCD ∠=,BC DE ∥.10≈)(Ⅰ)求函数()f x 的解析式;(Ⅱ)在线段OB 上是否存在点C ,使体育馆平面图形面积最大?若存在,求出该点C 到原点O 的距离;若不存在,请说明理由.20.(本小题12分)记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为1S ,2S ,3S ,且123ABC S S S S +-=△.(Ⅰ)求角C 的大小;(Ⅱ)若M 为边AB 上一点(不包含端点),且满足2AMC ABC ∠=∠,求AMBM的取值范围.21.(本小题12分)已知数列{}n a 的各项均为正数,其前n 项和为n S ,且13a =,14n n n S a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列{}3nn a 的前n 项和nT .22.(本小题12分)已知函数()()sin 1xf x e a x a =--∈R .(Ⅰ)当1a =时,讨论函数()()xf xg x e =在π3π,22⎛⎫-⎪⎝⎭上的单调性;(Ⅱ)当3a =-时,证明:对()0,x ∀∈+∞,有()212xxf x e x e-<++-.高三期中数学试题参考答案2023.11一、单选题(本大题共10个小题,每小题5分,共40分)题号12345678答案AABCDDCD二、多选题(本大题共4个小题,每小题5分,部分答对得2分,共2分)题号9101112答案ACDABDBCACD三、填空题(本大题共4个小题,每小题5分,共20分)13.1214.2325-15.65816.()232n n-;{}1,0,1,2,3-三、解答题(本大题共6个小题,共70分)17.解:(Ⅰ)因为()()2sin 22f x x x ϕϕ⎛⎫=+++-⎪⎝⎭()()sin 2cos 21x x ϕϕ=++++⎡⎤⎣⎦()()sin 22x x ϕϕ=+++π2sin 23x ϕ⎛⎫=++ ⎪⎝⎭.因为π2x =-是()f x 的极值点,所以π2π2sin 223f ϕ⎛⎫⎛⎫-=-=± ⎪ ⎪⎝⎭⎝⎭.即2πππ32k ϕ-=+,k ∈Z .所以得π6ϕ=.(Ⅱ)由(Ⅰ)得()2cos 2f x x =,()f x 向右平移π6个单位长度后得()π2cos 23g x x ⎛⎫=- ⎪⎝⎭.因为π0,4x ⎡⎤∈⎢⎥⎣⎦,所以πππ2,336x ⎡⎤-∈-⎢⎥⎣⎦,即π1cos 2,132x ⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,所以()[]π2cos 21,23g x x ⎛⎫=-∈ ⎪⎝⎭.故()g x 的值域为[]1,2.18.解:(1)由题意知AB =,()ππππ5,34444AP ⎫⎛⎫⎛⎫⎛⎫⎛⎫=----+-= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎭ ,所以点P 的坐标为()6,5.(Ⅱ)由题意得:()cos sin ,sin cos AP θθθθ=-+.因为AP CD ⊥ ,所以0AP CD ⋅=,所以()()2cos sin 6sin cos 0θθθθ-++=,整理得:8cos 4sin 0θθ+=,①又22sincos 1θθ+=,②因为π,π2θ⎛⎫∈⎪⎝⎭,cos 0θ<,sin 0θ>,由①②解得:cos π5=-,sin 5θ=.所以4sin 22sin cos 5θθθ==-.19.解:(Ⅰ)因为()2,4A 在曲线()2f x kx =上,即()244f k ==,1k =,所以02x ≤≤,()2f x x =.又因为()2,4A ,()6,0B ,所以线段AB 方程为()404226y x --=--,所以6y x =-+,26x ≤≤.所以函数()f x 的解析式为()2,026,26x x x x f x ⎧≤≤=⎨-+<≤⎩.(Ⅱ)设C 点坐标为(),0t ,则()2,D t t.又26t x =-+,26x t =-,E 点坐标为()226,t t -,所以直角梯形BCDE 的面积()()()221662S t t t t t ⎡⎤=--+-⋅⎣⎦,即()()()4321212062S t t t t t =--+<<,所以()()3223122312S t t t t t t t 2=--+=-+-.令()0S t '=,解得3744t -+=≈.当704t <<时,()0S t '>;当764t <<时,()0S t '<.所以()S t 在70,4⎛⎫ ⎪⎝⎭上单调递增,在7,64⎛⎫ ⎪⎝⎭上单调递减.所以74t =时,函数()S t 取得最大值.故在线段OB 上存在点C ,使体育馆平面图形面积最大,且C 到O 的距离74(百米).20.解:(Ⅰ)由三角形面积公式得:()2221234S S S a b c +-=+-,1sin 2ABC S ab C =△.又因为123ABC S S S S +-=△,所以()2221sin 42a b c ab C +-=.①在ABC △中,由余弦定理得:2222cos c a b ab C =+-,②将②代入①得:sin C C =,所以tan C =又()0,πC ∈,故π3C =.(Ⅱ)由2AMC ABC ∠=∠得:BCM AMC ABC ABC ∠=∠-∠=∠,所以BM CM =.设BCM θ∠=,由π3BCM ACB ∠<∠=,得:π30,θ⎛⎫∈ ⎪⎝⎭.在AMC △,π3ACM θ∠=-,2π3CAM θ∠-=,所以sin sin sin π2π2π333AM CM BM θθθ--==⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝-⎭⎝⎭⎝⎭,所以31sin cos sin 22sin π32π3AM BM θθθθ⎛⎫- ⎪⎝⎭==⎛⎫ ⎪⎝-⎭-又π30,θ⎛⎫∈ ⎪⎝⎭,所以(tan θ∈()10,1-∈.故AMBM的取值范围为()0,1.21.解:(Ⅰ)由14n n n S a a +=,①得114n n n S a a --=,2n ≥,②②-①得:()114n n n n a a a a +-=-,又0n a >,所以()1142n n a a n +--=≥.因为13a =,所以24a =.所以数列{}n a 奇数项、偶数项分别成等差数列.当n 为奇数时,134212n n a n -=+=+;当n 为偶数时,24422n n a n -=+=.所以21,2,n n n a n n +⎧=⎨⎩为奇数为偶数.(Ⅱ)由(Ⅰ)知21,2,n n n a n n +⎧=⎨⎩为奇数为偶数,当n 为偶数时,()123413343738321323n n n T n n -=⋅+⋅+⋅+⋅++-⋅+⋅L ,①()2345133343738321323n n n T n n +=⋅+⋅+⋅+⋅++-⋅+⋅L ,②①-②得224466123333333323nnn n T n +-=++++++++-⋅+L ,()1913222319n n n T n +--=-⋅-,193388n n T n +⎛⎫=+- ⎪⎝⎭.当n 为奇数时,()19113321388nnn n n n T T a n n -⎛⎫=+=+-++ ⎪⎝⎭,191388n n T n +⎛⎫=+- ⎪⎝⎭.故11933,88913,88n n n n n T n n ++⎧⎛⎫+- ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+- ⎪⎪⎝⎭⎩为偶数为奇数.22.解:(Ⅰ)当1a =时,()sin 1sin 11x x x e x x g x e e --+==-,()π1cos sin 14x xx x x g e x e ⎛⎫+- ⎪--⎝⎭'=-=-,当π2π2π2k x k -+<<,k ∈Z 时,()0g x '<,()g x 单调递减;3π2π2π2k x k <<+,k ∈Z 时,()0g x '>,()g x 单调递增.所以()g x 在π2π,2π2k k ⎛⎫-+ ⎪⎝⎭,k ∈Z 单调递减,在3π2π,2π2k k ⎛⎫+ ⎪⎝⎭,k ∈Z 单调递增.(Ⅱ)证明:要证()212xxf x e x e -<++-,只要证23sin 22xx x e---<-,即证()23sin 22xex x --<-.令()()23sin 2xF x ex x =--,()()26sin 23cos 5x F x e x x x '=-+-.当0x >时,令()sin h x x x =-,()1cos 0h x x '=-≥,所以()h x 在()0,+∞单调递增,所以()()00h x h >=,即sin x x >,从而22sin x x -<-.所以()()()226sin 23cos 56sin 2sin 3cos 5xx F x ex x x e x x x '=-+-<-+-,()()224sin 3cos 55sin 50x x e x x e x ϕ=+-=+-≤⎡⎤⎣⎦,所以()F x 在()0,+∞单调递减,即()()02F x F <=-.故()212xxe xf x e-<++-成立.。

专题04 求函数的定义域、值域(解析版)

专题04 求函数的定义域、值域(解析版)

专题04 求函数的定义域、值域【热点聚焦与扩展】函数的定义域作为函数的要素之一,是研究函数的基础,也是高考的热点.函数的值域也是高考中的一个重要考点,并且值域问题通常会渗透在各类题目之中,成为解题过程的一部分.所以在掌握定义域求法的基础上,掌握一些求值域的基本方法,当需要求函数的取值范围时便可抓住解析式的特点,寻找对应的方法从容解决.(一)函数的定义域1.求函数定义域的主要依据是:①分式的分母不能为零;②偶次方根的被开方式其值非负;③对数式中真数大于零,底数大于零且不等于1.2.①若的定义域为,则不等式的解集即为函数的定义域; ②若的定义域为,则函数在上的的值域即为函数的定义域.3.对于分段函数知道自变量求函数值或者知道函数值求自变量的问题,应依据已知条件准确找出利用哪一段求解.4.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义; 第三类是不给出函数的解析式,而由的定义域确定函数的定义域或由的定义域确定函数的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决. (二)函数的值域1.利用函数的单调性:若是上的单调增(减)函数,则,分别是在区间上取得最小(大)值,最大(小)值.2.利用配方法:形如型,用此种方法,注意自变量x 的范围.3.利用三角函数的有界性,如.4.利用“分离常数”法:形如y= 或 (至少有一个不为零)的函数,求其值域可用此法. 一般地,()y f x =(),a b ()a g x b <<()()y f g x =()()y f g x =(),a b ()g x (),a b ()y f x =()f x )]([x g f )]([x g f ()f x )(x f ],[b a )(a f )(b f )(x f ],[b a 2(0)y ax bx c a =++≠sin [1,1],x ∈-cos [1,1]x ∈-ax b cx d ++2ax bx ey cx d++=+c a ,① :换元→分离常数→反比例函数模型② :换元→分离常数→模型③ :同时除以分子:→②的模型 ④ :分离常数→③的模型共同点:让分式的分子变为常数5.利用换元法: 在高中阶段,与指对数,三角函数相关的常见的复合函数分为两种: ① :此类问题通常以指对,三角作为主要结构,在求值域时可先确定的范围,再求出函数的范围. ② :此类函数的解析式会充斥的大量括号里的项,所以可利用换元将解析式转为的形式,然后求值域即可. ③形如,可用此法求其值域. 6.利用基本不等式法:7.导数法:利用导数与函数的连续性求图复杂函数的极值和最值,然后求出值域8.分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值域范围是否符合相应段的自变量的取值范围.数形结合法也可很方便的计算值域. 9.由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部 分剔除.10.数形结合法:即作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该 函数的图象,从而利用图象求得函数的值域.(2)函数的解析式具备一定的几何含义,需作图并与解析几何中的相关知识进行联系,数形结合求得值域,ax by cx d+=+2ax bx cy dx e++=+a y x x =±2dx ey ax bx c+=++21y ax bx c dx e=+++22ax bx cy dx ex f++=++()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦()f x ()()(),log ,sin xay f ay f x y f x ===()y f t =y ax b =+()f x ()f x如:分式→直线的斜率;被开方数为平方和的根式→两点间距离公式.(三)常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数():一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域. (2)二次函数(),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内). (3)反比例函数:(1)图像关于原点中心对称(2)当 ,当. (4)对勾函数: ① 解析式特点:的系数为1;注:因为此类函数的值域与相关,求的值时要先保证的系数为,再去确定的值 例:,并不能直接确定,而是先要变形为,再求得② 极值点:③ 极值点坐标:y kx b =+2y ax bx c =++1y x=,0x y →+∞→,0x y →-∞→()0ay x a x=+>x 0a>a a x 1a 42y x x =+4a =22y x x ⎛⎫=+ ⎪⎝⎭2a=x x ==(,-④ 定义域:⑤ 自然定义域下的值域: (5)函数: 注意与对勾函数进行对比① 解析式特点:的系数为1; ② 函数的零点:③ 值域:(5)指数函数():其函数图像分为与两种情况,可根据图像求得值域,在自然定义域下的值域为(6)对数函数()其函数图像分为与两种情况,可根据图像求得值域,在自然定义域下的值域为【经典例题】()(),00,-∞+∞(),2,a ⎡-∞-+∞⎣()0ay x a x=->x 0a >x =R xy a =1a >01a <<()0,+∞log a y x =1a >01a <<()0,+∞例1.【2020年高考北京卷11】函数1()=ln 1f x x x ++的定义域是__________. 【答案】(0,)+∞【解析】要使得函数1()ln 1f x x x =++有意义,则100x x +≠⎧⎨>⎩,即0x >,∴定义域为(0,)+∞. 【专家解读】本题考查了分式函数、对数函数定义域的求法,考查数学运算学科素养.例2.【河南省部分重点高中2020届高三三模】函数ln y x=的定义域是( )A .(0,1)∪(1,4]B .(0,4]C .(0,1)D .(0,1)∪[4,+∞) 【答案】A 【解析】2340ln ln 0,0x x x y x x x ⎧-++≥-=⎨≠>⎩14(0,1)(1,4]0,1x x x x -≤≤⎧∴∴∈⋃⎨>≠⎩故选:A【专家解读】本题考查函数定义域,考查基本分析求解能力,属基础题.例3.【福建省2020届高三考前冲刺适应性模拟卷】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为() A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1 D .(]1,4 【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠ .所以10022x x -≠⎧⎨≤≤⎩解得01x ≤<故答案为C例4.【山东省济宁市第一中学2020届高三三模】函数()1lnxf x x =-的定义域为( )A .[)()0,11,⋃+∞B .()()0,11,⋃+∞C .[)0,+∞D .()0,+∞【答案】B【解析】函数ln ()1xf x x =-,∴010x x >⎧⎨-≠⎩, 解得x >0且x≠1,∴f (x )的定义域为(0,1)∪(1,+∞).故选:B .例5.【黑龙江省哈尔滨市第一中学校2020届高三三模】已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B【解析】因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .例6.【山东省实验中学2020年高三三模】若函数()f x 的定义域为实数集R ,则实数a 的取值范围为( ) A .22(﹣,)B .22∞∞⋃+(﹣,﹣)(,)C .][22∞∞⋃+(﹣,﹣,)D .[]22﹣,【答案】D【解析】因为函数()f x =R ,所以开口向上的二次函数的图象,与x 轴没有交点,即240,22a a ∆=-≤-≤≤,即实数a 的取值范围为[]22﹣,,故选D. 【专家解读】本题考查函数的定义域、二次函数的图象与性质以及一元二次方程的根与系数的关系,属于简答题.对于定义域为R 求参数的题型,主要有三种:(1)根式型,()f x =,只需00a >⎧⎨∆≤⎩;(2)对数型,()()2log m f x ax bx c =++,只需00a >⎧⎨∆<⎩,(3)分式型,()21f x ax bx c =++,只需00a ≠⎧⎨∆<⎩. 例7.【山东省泰安市2020届高三6月全真模拟(三模)数学试题】已知函数()f x =()11f x x -+的定义域为( )A .(),1-∞B .(),1-∞-C .()(),11,0-∞--D .()(),11,1-∞--【答案】D【解析】令24x x >,即21x <,解得0x <. 若()11f x x -+有意义,则10,10x x -<⎧⎨+≠⎩,即()(),11,1x ∈-∞-⋃-.故选:D.【专家解读】本题考查函数的定义域,考查运算求解能力,属于基础题.【精选精练】1.【江西省宜春市宜丰中学2020高三三模】函数()()2log 1f x x =- ) A .(),1-∞ B .[)1,1-C .(]1,1-D .[)-1,+∞ 【答案】B【解析】使函数有意义的x 满足1010x x ->⎧⎨+≥⎩解得11x -≤<即函数()()2log 1f x x =-+[)1,1-.故选B.【专家解读】本题考查了具体函数定义域,属于基础题.2.【2020届北京市东城区高三三模】下列函数中,与函数()15xf x ⎛⎫= ⎪⎝⎭的定义域和值域都相同的是( )A .22y x x =+,0x >B .1y x =+C .10x y -=D .1y x x=+【答案】C【解析】由指数函数性质知:()15xf x ⎛⎫= ⎪⎝⎭的定义域为R ,值域为()0,∞+.对于A ,定义域为()0,∞+,与()f x 不同,A 错误; 对于B ,值域为[)0,+∞,与()f x 不同,B 错误;对于C ,定义域为R ,值域为()0,∞+,与()f x 相同,C 正确; 对于D ,定义域为{}0x x ≠,与()f x 不同,D 错误. 故选:C .【专家解读】本题考查函数定义域和值域的求解问题,属于基础题.3.【吉林省梅河口市第五中学2020届高三第七次模拟考】已知函数()21,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a=有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3122344x x x x x -++的取值范围是( ) A .(]6,9 B .()6,9C.()+∞D.)⎡+∞⎣【答案】A【解析】作出函数()21,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图像如下:因为方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<, 所以有122x x +=-,341x x =,故()31232343442x x x x x x x -++=+, 再由2log 1x =可得2x =或12x =, 即3112x ≤<,令4()2g x x x =+,(112x ≤<), 则24()2g x x'=-,因为112x ≤<,所以24()20g x x'=-<,即函数4()2g x x x =+在1,12⎡⎫⎪⎢⎣⎭上单调递减, 又1()1892g =+=,(1)246g =+=,所以(]()6,9g x ∈. 即()3122344x x x x x -++的取值范围是(]6,9 故选A【专家解读】本题主要考查根据方程的根求取值范围的问题,通常需要结合函数图像求解,灵活运用数形结合的思想即可,属于常考题型.4.【浙江省宁波市镇海中学2020届高三仿真测试数学试题】若函数()f x 满足()()a f x b a b ≤≤<,定义b a -的最小值为()f x 的值域跨度,则下列函数中值域跨度不为2的是( )A .()cos21f x x =+B .()f x =C .()1f x x x =--D .()3232x xx xf x -=+ 【答案】B【解析】∵1cos21x -≤≤,∴0cos212x ≤+≤, 即函数()cos21f x x =+的值域为[]0,2,值域跨度为2; ∵()2221122x x x -++=--+≤, ∴()f x =⎡⎣;∵1,0()121,011,1x f x x x x x x -≤⎧⎪=--=-<<⎨⎪≥⎩,∴函数()1f x x x =--的值域为[]1,1-,值域跨度为2;∵323222222()11(1,1)323232312x x x x x xxx x x x x x f x -+-⋅⋅===-=-∈-+++⎛⎫+ ⎪⎝⎭,值域跨度为2;故选:B.【专家解读】本题主要考查函数值域的求法,掌握初等函数的性质是解题的关键,属于中档题.5.【2020届湖北省高三高考模拟调研考试】函数y x = ).A.2⎡⎤-⎣⎦B .[]0,4C.0,2⎡+⎣D.2⎡-+⎣【答案】A【解析】因为y x = 由240x x -,解得04x .可得函数()y f x x ==-[]0,4.又()1f x '==.令()(2)g x x =-,则()()()1222410g x x x x -'=--+>,即()f x '在[]0,4上单调递增,(2)0x -=,解得2x =即()f x在0,2⎡⎣上单调递减,在2⎡⎤⎣⎦上单调递增,所以2x =为极小值点,又(22f -=-(0)0f =,()44f =.∴函数y x =的值域为2⎡⎤-⎣⎦.故选:A .【专家解读】本题考查了利用导数研究函数的单调性极值最值,考查了推理能力与计算能力,属于基础题.6.【东北三省三校2020届高三第四次模拟考试】已知函数()2cos 4x x xf x a=+是偶函数,则函数()f x 的最大值为( )A .1B .2C .12D .3【答案】C【解析】因为函数()2cos 4x x xf x a=+是偶函数,所以()()f x f x -=,即()2cos 2cos 44x x x xx x a a---=++,化简可得:()4141x xa -=-, 解得:1a =,即()2cos cos =4122x x xxx xf x -=++. 又因为c o s 1x ≤,222x x -+≥,所以()12f x ≤(当且仅当0x =时两个“=”同时成立). 故选:C.【专家解读】本题考查偶函数的定义,考查求函数的最值,合理利用基本不等式和函数性质是解答本题的关键,属于中档题.7.【江西省赣州一中2020年高三三模】已知函数2()32(3)3f x x m x m =-+++的值域为[0,)+∞,则实数m 的取值范围为( )A .{0,3}-B .[3,0]-C .(,3][0,)-∞-⋃+∞D .{0,3}【答案】A【解析】∵函数2()32(3)3f x x m x m =-+++的值域为[0,)+∞, ∴2[2(3)]43(3)0m m ∆=-+-⨯⨯+= ∴30m =-或∴实数m 的取值范围为{0,3}-【专家解读】本题考查通过观察二次函数的图象,根据函数的值域求参数的取值范围.8.【2020届湖南省五岳高三6月联考】函数()26512x x f x -+⎛⎫= ⎪⎝⎭的值域为( )A .(]0,16B .[)16,+∞C .10,16⎛⎤⎥⎝⎦D .1,16⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】设2265(3)44u x x x =-+=--≥-,则()1,42uf u u ⎛⎫=≥- ⎪⎝⎭, 因为12xy ⎛⎫= ⎪⎝⎭为减函数,所以()()0416f u f <≤-=,即值域为(]0,16. 故选:A.【专家解读】本题考查了函数值域的求解.本题的难点是利用换元法,结合函数的性质求值域.一般地,求函数的值域时,常结合函数的图像、导数、函数的性质、基本不等式进行求解.9.【2020届百校联考高考考前冲刺必刷卷】函数()284f x x x =-+在[]1,8上的值域为( )A .[]12,3--B .[]16,4-C .[]3,4-D .[]12,4-【答案】D【解析】函数()284f x x x =-+的对称轴为4x =,由于二次函数()f x 的开口向上,故函数()f x 在4x =处取到最小值()24484412f =-⨯+=-,最大值为()2888844f =-⨯+=,故所求值域为[]12,4-. 故选:D.【专家解读】本题考查了二次函数性质的简单应用,由定义域求函数的值域,属于基础题.10.【2020届福建省福州第一中学高三考试数学试题】若函数y (a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1 B .2C .3D .4【答案】C【解析】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0,所以a =2, 所log a56+log a 485=log 256+log 2485=log 28=3. 故选C【专家解读】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.11.【2020届上海市高三高考压轴卷数学试题】函数()lg 2cos 21y x =-的定义域是______. 【答案】553,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦【解析】因为()lg 2cos 21y x =-,所以2902cos 210x x ⎧-≥⎨->⎩,所以331cos 22x x -≤≤⎧⎪⎨>⎪⎩,所以33,66x k x k k Z ππππ-≤≤⎧⎪⎨-<<+∈⎪⎩, 解得536x π-≤<-或66x ππ-<<或536x π<≤. 故答案为:553,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦ 【专家解读】本题主要考查函数定义域的求法以及一元二次不等式,三角不等式的解法,还考查了运算求解的能力,属于中档题.12.【2020届江苏省淮安市新淮高级中学高三调研数学试题】函数()2134lg x y x x -=--的定义域是____________【答案】()(),11,1-∞--【解析】()2134lg x y x x -=--∴210340x x x ->⎧∴⎨--≠⎩解得1x <且1x ≠-即即函数()2134lg x y x x -=--的定义域为()(),11,1-∞--,故答案为:()(),11,1-∞--【专家解读】本题主要考查了分式函数与对数函数的定义域,以及不等式组的解法,同时考查了运算求解的能力,属于基础题.13.【2020届上海市高考模拟数学试题】对于函数()f x =,其中0b >,若()f x 的定义域与值域相同,则非零实数a 的值为______________. 【答案】-4【解析】函数()f x ,其中0b > 若0a >,由于20ax bx +≥,即()0x ax b +≥, ∴对于正数b ,()f x 的定义域为:,[0,)b D a⎛⎤=-∞-+∞ ⎥⎝⎦,但()f x 的值域[)0,A ⊆+∞,故D A ≠,不合要求.若0a <,对于正数b ,()f x 的定义域为D 0,a b ⎡⎤=-⎢⎥⎣⎦. 由于此时max [()]2b f x f a ⎛⎫=-= ⎪⎝⎭A ⎡=⎢⎣. 由题意,有b a -=,由于0b >,所以4a =﹣. 故答案为:﹣4【专家解读】本题考查了函数的定义域和值域,意在考查学生的计算能力.14.【2020届陕西省咸阳市高三高考模拟检测数学试题】如果几个函数的定义域相同、值域也相同,但解析式不同,称这几个函数为“同域函数”. 试写出y =“同域函数”的解析式为____________.【答案】23xy =-,[]1,2x ∈(答案不唯一)【解析】由1020x x -≥⎧⎨-≥⎩得:12x ≤≤ y ∴=[]1,2又y =∴值域为[]1,1-y ∴=的一个“同域函数”为23x y =-,[]1,2x ∈故答案为:23xy =-,[]1,2x ∈(答案不唯一)【专家解读】本题考查函数新定义的问题,关键是能够明确新定义的含义实际是确定定义域和值域相同的函数,通过求解函数的定义域和值域得到所求函数.15.【浙江省衢州二中2020届高三下学期6月模拟数学试题】已知函数()f x =[)0,+∞,则实数t 的取值范围是__________.【答案】1(,]4-∞【解析】令221ty x x =+-, 当0t <时,22211,(0)t t y x m m x x m =+-=+-=>,因为1t y m m=+-在(0,)+∞上单调递增,因此221ty x x=+-值域为[),0,R +∞为R 的子集,所以0t <;当0t =时,222111t y x x x=+-=-≥-, [)0,+∞为[1,)-+∞的子集,所以0t =;当0t >时,22111,t y x x =+-≥=,当且仅当||x =[)0,+∞为1,)+∞的子集,所以11004t ≤∴<≤; 综上,14t ≤故答案为:1(,]4-∞【专家解读】本题考查函数值域、利用基本不等式求值域,考查分类讨论思想方法以及基本求解能力,属中档题.16.【2020届江苏省南京市第二十九中高三三模】已知函数()[]11,1,05xf x x ⎛⎫=-∈- ⎪⎝⎭,()22log +3,g x a x a x ⎤=∈⎥⎢⎥⎣⎦,若对任意的0x ⎤∈⎥⎢⎥⎣⎦,总存在[]11,0x ∈-使得()()01g x f x =成立,则实数a 的取值范围是__________.【答案】01a ≤≤【解析】因为函数()151xf x ⎛⎫= ⎪⎭-⎝在[1,0]-上单调递减,所以(0)()(1)f f x f ≤≤-,即0()4f x ≤≤, 所以函数()f x 的值域为[0,4],因为对任意的0x ⎤∈⎥⎢⎥⎣⎦,总存在[]11,0x ∈-使得()()01g x f x =成立, 故()g x 的值域是()f x 值域的子集,对22()log 3g x a x a =+,2]2x ∈, 当0a =时,()0g x =,符合题意; 当0a ≠时,函数()g x在,2]2单调递增,所以2213()32a a g x a a -≤≤+,所以22103234a a a a ⎧≤-⎪⎨⎪+≤⎩,,解得01a ≤≤,又0a ≠,所以01a <≤, 综上,实数a 的取值范围是[0,1]. 故答案为:[0,1]【专家解读】本题主要考查等式型双变量存在性和任意性混搭问题,对于形如“任意的1x A ∈,都存在2x B ∈,使得12()()g x f x =成立”此类问题“等价转化”策略是利用()g x 的值域是()f x 值域的子集来求解参数的范围.。

2020届山东省名校联盟高三第三次联考数学试卷

2020届山东省名校联盟高三第三次联考数学试卷

2020届山东省名校联盟高三第三次联考数学试题★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第I卷(选择题60分)一、选择题(本大题共12个小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 的值为A. B. C. D.2. 已知全集,集合,,则A. B. C. D.3.“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4. 在等差数列中,若其前项和记为,已知,那么等于A.25B.35C.45D.555. 设向量,,且,则等于A .错误!未找到引用源。

错误!未找到引用源。

B .C.D .6. 函数的零点所在区间是A .B .C .D .7. 函数的图象如右图所示,为了得到的图象,只需将的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位8.在中,若,,则的形状是A.等边三角形 B.等腰三角形C.直角三角形D.等腰直角三角形9. 函数的图象大致是A B C D10.已知函数,若存在,使得, 则的取值范围为A. B. C. D.11.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁“哀”得100,60,36,21.6个单位,递减的比例为40%,今共有粮(0)m m 石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m的值分别为A.20%369B.80%369C.40%360D.60%36512.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦ B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦ 第Ⅱ卷(非选择题共90分)二、填空题:(本大题共4个小题,每小题5分,共20分)13.已知向量与夹角为,且,,则 .14.已知,,且,则的最小值是 .15.设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a = ; 若是]1,1[-上的减函数,则a 的取值范围是___________.16.若函数满足,对定义域内的任意,总有恒成立,则称为“”函数.现给出下列函数: ①; ②; ③; ④; ⑤.其中为“”函数的序号是 .(把你认为所有正确的序号都填上)三、解答题:(本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(本题共2个小题,每小题5分,满分10分) (Ⅰ)求值:;(Ⅱ)解关于x 的不等式:<3.18.(本题满分12分) 设向量,,若.(Ⅰ)试求的值;(Ⅱ)求函数的最小正周期及单调递增区间.19. (本题满分12分)在中, 分别是角的对边,已知.(Ⅰ)求角的大小;(Ⅱ)若,求的面积的值.20. (本题满分12分)已知是递增的等差数列,且是方程的根;数列的前项和为,且().(Ⅰ)求数列,的通项公式;(Ⅱ)若(),试求数列的前和.21.(本题满分13分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司拟定在2014年圣诞节期间举行某产品的促销活动,经测算该产品的年销售量P万件(生产量与销售量相等)与促销费用万元满足(其中,为正常数).已知2014年生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为元/件.(Ⅰ)试将2014年该产品的利润万元表示为促销费用万元的函数;(Ⅱ)问:2014年该公司促销费用投入多少万元时,厂家的利润最大?22.(本题满分12分)已知函数() ,=2.718 28…为自然对数的底数.(Ⅰ)求函数在点处的切线方程;(Ⅱ)若函数为上的单调递增函数,试求实数的范围;(Ⅲ)若当时,总有成立,试求实数的最大值.高三数学参考答案一、选择题:(本大题共10个小题,每小题5分,共50分)(本大题共4个小题,每小题5分,共20分)13. 14. 15. 16. ②③三、解答题:(本大题共5个小题,共75分)16. 解:(Ⅰ)原式=……………………………3分. …………6分(Ⅱ)原不等式化为.令, 则有, 解得.…………8分即, ∴,即, ………10分∴, (※)即.…………………………………………………11分∴原不等式的解集为. ……………………12分【说明】若考生最后结果解得的集合中的范围为(※)形式不予扣分.17.解:【方法一】(Ⅰ)由题设,得,……2分∴. ………………………………………5分(Ⅱ)由(Ⅰ)知,,…………………………8分∴,即函数的最小正周期为. ……………………………9分由(),得(),∴函数的单调递增区间为 (). ………………12分【方法二】由题意,得. ………………4分(Ⅰ).………7分(Ⅱ)由,∴函数的最小正周期为. ……………………9分由(),得(),∴函数的单调递增区间为 (). ………………12分18.解:(Ⅰ)在中,,则由,得,…………2分即,解得或(舍去). ……………………………………4分∵, ∴. …………………………………………………6分(Ⅱ)由余弦定理,得, …………………………7分∵,∴, 即, ……………9分解得. ……………………………………………………………10分∴的面积为. ……………12分19.解:(Ⅰ)易得方程的两根为,则由题意,得. …………………………………………1分设等差数列的公差为,首项为,则,∴.从而, ∴.∴数列的通项公式为. ………………………3分∵,①∴当时,,②①-②得,,∴(). ……………………………………………………5分由①式,令,有, 解得. ………………6分∴是以2为首项,公比为2的等比数列.且. ……………………………………………………7分(Ⅱ)由题意及(Ⅰ)得.∴, ………………………………………8分即,①∴. ②①-②得,………10分∴ ,∴ . …………………………………………………12分20.解:(Ⅰ)由题意,得.∵,将其代入上式并化简,得().此即为所求产品的利润关于促销费用的函数关系式. ……………………5分(Ⅱ)由(Ⅰ)得,当且仅当,即时,上式取等号. ……………………………8分①当时,促销费用需投入1万元,厂家的利润最大;……………………9分②当时,易得,由于,,∴,∴∴函数在上单调递增,∴当时,函数有最大值.即促销费用投入万元时,厂家的利润最大.…12分综上,当时,促销费用投入1万元,厂家的利润最大;当时, 促销费用投入万元,厂家的利润最大. ……………………13分【说明】本题用其它方法解答,只要思路、结果正确,请参照评分标准赋分.22.解:(Ⅰ)由题设,得,∴, ……………………1分∴在点处的切线方程为,即. ………………………………………………………3分(Ⅱ)依题意,知 ()恒成立,①当时,有恒成立,此时.②当时,有,令,则, …………………4分由得,,且当时,;当时,.∴,则有,∴. …………………………………………………………5分③当时,有,∵, 则有, ∴.又时恒成立.综上,若函数为上的单调递增函数,所求. …………………6分(Ⅲ)依题意,得恒成立,记,即()恒成立.∴. ………………………………………………7分当时,,则,显然,当时,,∴此时,在单调递增,且有,∴,即(当且仅当时取等号). ………………………8分∴.从而①当,即当时,(),此时,在上单调递增.而,于是,当时,. ………………………………9分由()可得,即().则有②当时,.则有,得, ∴,∴当时,, ∴在单调递减.又,∴当时,有,此不合题意. ………………11分综上,所求实数的最大值为. ………………………………………………12分。

山东省济宁市济宁一中2020届高三上学期10月阶段检测数学试题+Word版含答案

山东省济宁市济宁一中2020届高三上学期10月阶段检测数学试题+Word版含答案

济宁一中2017级高三年级第一学期阶段检测数学试题2019.10出题人:杨涛审题人:张善举、曹雷注意事项:1.本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共4页,满分150分,考试用时120分钟。

2.选择题答案请填涂在答题卡的相应位置,非选择题答案必须用黑色签字笔写在规定的答题区域内,否则不得分。

第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则的子集个数为()A.B.C.D.2.已知复数,则在复平面上对应的点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.在等差数列中,若,,则()A.B.C.D.4.下列函数中,既是奇函数又在定义域内递增的是()A.B.C.D.5.,则的值为()山东中学联盟A.B.C.D.6.已知向量,,则“”是为钝角的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若向量,的夹角为,且,,则向量与向量的夹角为()A.B.C.D.8.函数在上单调递增,且关于对称,若,则的的取值范围是()A.B.C.D.9.设函数,若,()A.B.C.D.10.函数(其中,)的图象如图所示,为了得到的图象,只需把的图象上所有点()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度11.在中,是的中点,,点在上且满足,则等于()A.B.C.D.12.定义在R上的函数满足:,,则不等式的解集为()A.(3,+ ∞) B.(-∞,0)∪(3,+ ∞)C.(-∞,0)∪(0,+∞) D.(0,+∞)第Ⅱ卷(共90分)二、填空题:本题共4小题,每小题5分.13.若等差数列的前项和为,则_________.Sdzxlm14. 已知,,且共线,则向量在方向上的投影为__________.15.设,将的图像向右平移个单位长度,得到的图像,若是偶函数,则的最小值为__________.16.已知函数,则当函数恰有两个不同的零点时,实数的取值范围是.三、解答题:本题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a的值;(2)证明;(3)求的值.18.(本小题满分12分)已知函数.(I)求函数的最小正周期和对称中心坐标;(II)讨论在区间上的单调性.19.(本小题满分12分)已知中,角的对边分别为,.(1)求角的大小;(2)若,求的面积.20. (本小题满分12分)设Sn为数列{an}的前n项和.已知an>0,a2n+2an=4Sn+3.(1)求{an}的通项公式;(2)设bn=1anan+1,求数列{bn}的前n项和.21. (本小题满分12分)某品牌电脑体验店预计全年购入360台电脑,已知该品牌电脑的进价为3 000元/台,为节约资金决定分批购入,若每批都购入x(x∈N*)台,且每批需付运费300元,储存购入的电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比(比例系数为k),若每批购入20台,则全年需付运费和保管费7 800元.(1)记全年所付运费和保管费之和为y元,求y关于x的函数;(2)若要使全年用于支付运费和保管费的资金最少,则每批应购入电脑多少台?22.(本小题满分12分)已知为实数,函数.(1)讨论函数的单调性;(2)若函数有两个不同的零点,①求实数的取值范围;②证明:.济宁一中2017级高三年级第一学期第二次阶段检测数学答案一、选择题。

山东省2020届高三数学上学期第三次模拟考试试题文

山东省2020届高三数学上学期第三次模拟考试试题文

2021级高三第三次模拟考试试题数学〔文史类〕本试卷分第I 卷和第II 卷两局部,共5页.第I 卷1至2页,第II 卷2至5页.总分值150分,考试时刻120分钟。

本卷须知:1.答题前,考生务必用0.5毫米黑色签字笔将姓名、座号、准考证号、科类填写在答题卡规定的位置上.2.第I 卷每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.第I 卷〔共50分〕一、选择题:本大题共10个小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.{}{}0,1,2,2,M B x x a a M ===∈,那么集合M N ⋂= A. {}0 B. {}0,1 C. {}1,2 D. {}0,2,a b c R >∈,那么以下命题中成立的是A. 22ac bc ≥B. 1a b >C. 11a b <D. ac bc >{}n a 中,假设2345894,16,a a a a a a +=+=+=则A.128B. 128-C.256D. 256-()21tan ,tan tan 5444ππαββα⎛⎫⎛⎫+=-=+ ⎪ ⎪⎝⎭⎝⎭,那么等于 A. 1318 B. 1322 C. 322 D. 165.某种产品的支出广告额x 与利润额y 〔单位:万元〕之间有如下对应数据:那么回归直线方程必过A. ()5,36B. ()5,35C. ()5,30D. ()4,30()()121log 21f x x =+,那么()f x 的概念域为 A. 1,02⎛⎫- ⎪⎝⎭ B. 1,2⎛⎫-+∞ ⎪⎝⎭ C. ()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭ D. 1,22⎛⎫- ⎪⎝⎭()3cos391x x x f x ⋅=-的图象大致为()3sin f x x x π=-,命题():0,,02p x f x π⎛⎫∀∈< ⎪⎝⎭,那么 A.p 是真命题:():0,,02p x f x π⎛⎫⌝∀∈> ⎪⎝⎭B. p 是真命题:()00:0,,02p x f x π⎛⎫⌝∃∈≥ ⎪⎝⎭C. p 是假命题:():0,,02p x f x π⎛⎫⌝∀∈≥ ⎪⎝⎭D. p 是假命题:()00:0,,02p x f x π⎛⎫⌝∃∈≥ ⎪⎝⎭,x y 知足约束条件231,1x x y y x ≥⎧⎪-≥⎨⎪≥+⎩,那么以下不等式恒成立的是A. 3x ≥B. 4y ≥C. 280x y +-≥D.210x y -+≥10.如以下图,两个不共线向量,OA OB 的夹角为θ,M,N 别离为OA 与OB 的中点,点C 在直线MN 上,且(),OC xOA yOB x y R =+∈,那么22x y +的最小值为 A. 24 B. 18 C. 22 D. 12第II 卷〔非选择题 共100分〕二、填空题:本大题共5个小题,每题5分,共25分,将答案填在题中横线上. 11.一个几何体的三视图如以下图,那么该几何体的体积是________. ()()00ln ,2,f x x x f x x '===若则_______.13.长方形ABCD 中,4,1,AB BC M AB ==为的中点,那么在此长方形内随机取一点P ,P 与M 的距离小于1的概率为_________.14.整数的数对排列如下:〔1,1〕,〔1,2〕,〔2,1〕,〔1,3〕,〔2,2〕,〔3,1〕,〔1,4〕,〔2,3〕,〔3,2〕,〔4,1〕,〔1,5〕,〔2,4〕,……,那么第60个数对是________.()f x 知足:①图象关于()1,0点对称; ②()()11f x f x -+=--;③当[]1,1x ∈-时,()[](]21,1,0,cos ,0,1,2x x f x x x π⎧-∈-⎪=⎨∈⎪⎩那么函数()[]1332x y f x ⎛⎫=-- ⎪⎝⎭在区间,上的零点个数为__________. 三、解答题:本大题共6个小题.共75分.解允许写出文字说明,证明进程或演算步骤.16.〔本小题总分值12分〕在ABC ∆中,角A,B,C 的对边别离为,,a b c ,向量()()cos ,cos ,,2m A B n a c b ==-,且//m n .〔I 〕求角A 的大小;〔II 〕假设4a =∆,求ABC 面积的最大值.17. 〔本小题总分值12分〕为了调查某高中学生天天的睡眠时刻,现随机对20名男生和20名女生进展问卷调查,结果如下:〔I 〕现把睡眠时刻缺乏5小时的概念为“严峻睡眠缺乏〞,从睡眠时刻缺乏6小时的女生中随机抽取3人,求此3人中恰有一人为“严峻睡眠缺乏〞的概率; 〔II 〕完成下面2×2列联表,并回答是不是有90%的把握以为“睡眠时刻与性别有关〞?()()()()()22=n ad bc x n a b c d a b c d a c b d ⎛⎫-=+++ ⎪ ⎪++++⎝⎭,其中18. 〔本小题总分值12分〕三棱柱1111ABC A B C CC -⊥中,底面,ABC AB AC =,,,D E F 别离为11,,B A C C BC 的中点.〔I 〕求证:DE//平面ABC ;〔II 〕求证:平面AEF ⊥平面11BCC B .19. 〔本小题总分值12分〕如图,菱形ABCD 的连长为6,60BAD AC BD O ∠=⋂=,.将菱形ABCD 沿对角线AC 折起,取得三棱锥B ACD -,点M 是棱BC 的中点,DM =〔I 〕求证:OD ⊥面ABC ;〔II 〕求M 到平面ABD 的距离.20. 〔本小题总分值13分〕数列{}n a 的前n 项和21n n S a n =+-,数列{}n b 知足()11131,3n n n n b n a na b ++⋅=+-=且.〔I 〕求,n n a b ;〔II 〕设n T 为数列{}n b 的前n 项和,求n T ,并求知足7n T <时n 的最大值.21. 〔本小题总分值14分〕设函数()()21ln ,f x x a x a R =--∈.〔I 〕假设曲线()()()11y f x f =在点,处的切线与直线210x y +-=垂直,求a 的值; 〔II 〕求函数()f x 的单增区间;〔III 〕假设函数()f x 有两个极值点1212,x x x x <且,求证:()211ln 242f x >-.。

2020届全国100所名校高三模拟金典卷(三)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(三)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(三)数学(文)试题一、单选题1.集合{(,)|1}P x y y x ==+,{}2(,)|Q x y y x ==,则集合P Q I 中元素的个数是( ) A .0个 B .1个C .2个D .3个【答案】C【解析】根据集合,P Q 元素特征,联立方程,判断其解的个数即可. 【详解】P Q I 表示直线1y x =+与抛物线2y x =的图象交点,联立21y x y x=+⎧⎨=⎩,整理得210,1450x x --=∆=+=>, ∴方程有两个不同的实数解,即方程组有两个解,可知两个函数有两个公共点,故集合P Q I 中元素的个数为2. 故选:C. 【点睛】本题考查交集中元素的个数,注意集合元素的特征,属于基础题. 2.若复z 满足(2)23i z i ⋅+=-+(i 是虚数单位),则z 的虚部为( ) A .i B .2iC .1D .2【答案】D【解析】根据复数除法的运算法则,求出z ,即可得出结论. 【详解】∵223i z i i ⋅+=-+,∴212iz i i-+==+, ∴z 的虚部为2. 故选:D. 【点睛】本题考查复数的代数运算及复数的基本概念,属于基础题.3.已知向量()()2332a b ==r r ,,,,则|–|a b =r rA .B .2C .D .50【答案】A【解析】本题先计算a b -r r,再根据模的概念求出||a b -r r .【详解】由已知,(2,3)(3,2)(1,1)a b -=-=-r r,所以||a b -==r r故选A 【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.4.设等差数列{}n a 的前n 项和为n S ,若75a =,927S =,则公差d 等于( ) A .0 B .1C .12D .32【答案】B【解析】由927S =可求出5a ,结合已知即可求解. 【详解】()199599272a a S a +===,解得53a =, 所以75531752a a d --===-. 故选:B. 【点睛】本题考查等差数列的前n 和、等差数列基本量的运算,掌握公式及性质是解题的关键,属于基础题.5.若双曲线22:19y x C m -=的渐近线方程为23y x =±,则C 的两个焦点坐标为( )A .(0,B .(0)C .(0,D .(【答案】C【解析】根据双曲线渐近线方程,建立m 的等量关系,求出双曲线方程,即可得出结论. 【详解】∵双曲线22:19y x C m -=的渐近线方程为23y x =±,23=,解得4m =, ∴双曲线方程为22149y x -=,∴双曲线C 的两个焦点坐标为(0,. 故选:C. 【点睛】本题考查双曲线的简单几何性质与标准方程的应用,要注意双曲线焦点位置,属于基础题.6.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:则下列判断中不正确的是( ) A .该公司2018年度冰箱类电器销售亏损B .该公司2018年度小家电类电器营业收入和净利润相同C .该公司2018年度净利润主要由空调类电器销售提供D .剔除冰箱类销售数据后,该公司2018年度空调类电器销售净利润占比将会降低 【答案】B【解析】根据表格提供的数据,逐项分析,即可得出结论. 【详解】选项A ,该公司2018年度冰箱类电器利润率占比为负值, 因此冰箱类销售亏损,所以A 项正确;选项B ,该公司2018年度小家电类电器营业收入和净利润是不同的量,不知道相应的总量,无法比较,所以B 项错误;选项C ,该公司2018年度空调类净利润占比比其它类占比大的多, 因此2018年度净利润主要由空调类电器销售提供,所以C 项正确; 选项D ,剔除冰箱类销售数据后,该公司2018年度总净利润变大, 而空调类电器销售净利润不变,因此利润占比降低,所以选项D 正确. 故选:B. 【点睛】本题考查统计图表与实际问题,考查数据分析能力,属于基础题.7.函数()()11x x e f x x e+=-(其中e 为自然对数的底数)的图象大致为( )A .B .C .D .【答案】A【解析】求得f (x )的奇偶性及f (1)的值即可得出答案. 【详解】∵f (﹣x )()()()111111x x x x x xe e e x e x e x e--+++====-----f (x ), ∴f (x )是偶函数,故f (x )图形关于y 轴对称,排除C ,D ; 又x=1时,()e 111ef +=-<0, ∴排除B , 故选A . 【点睛】本题考查了函数图像的识别,经常利用函数的奇偶性,单调性及特殊函数值对选项进行排除,属于基础题.8.将函数()cos(2)(0)f x A x ϕϕπ=+<<的图象向左平移6π个单位长度后,得到函数()g x 的图象关于y 轴对称,则ϕ=( )A .4π B .34π C .3π D .23π 【答案】D【解析】根据函数平移关系求出()g x ,再由()g x 的对称性,得到ϕ的值,结合其范围,即可求解. 【详解】因为()cos 2cos 263g x A x A x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦图象关于y 轴对称, 所以()3k k πϕπ+=∈Z ,因为0ϕπ<<,所以23ϕπ=. 故选:D. 【点睛】本题考查三角函数图象变换关系以及余弦函数的对称性,属于基础题. 9.已知1b a <<,则下列大小关系不正确的是( ) A .b a a a < B .a b b b > C .b b a b > D .b a a b >【答案】D【解析】根据指数函数和幂函数的单调性,逐项验证,即可得出结论. 【详解】∵1b a <<,∴x y a =和x y b =均为增函数, ∴b a a a <,a b b b >,A ,B 项正确,又∵by x =在(0,)+∞为增函数,∴b b a b >, C 项正确; b a 和a b 的大小关系不能确定,如3,2,b aa b a b ==>;4,2,b a a b a b ===;5,2,b a a b a b ==< ,故D 项不正确.故选:D. 【点睛】本题考查比较指数幂的大小关系,应用指数函数与幂函数的性质是解题的关键,属于基础题.10.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为14圆周,则该不规则几何体的体积为( )A .12π+B .136π+ C .12π+D .1233π+ 【答案】B【解析】根据三视图知该几何体是三棱锥与14圆锥体的所得组合体,结合图中数据计算该组合体的体积即可. 【详解】解:根据三视图知,该几何体是三棱锥与14圆锥体的组合体, 如图所示;则该组合体的体积为21111111212323436V ππ=⨯⨯⨯⨯+⨯⨯⨯=+; 所以对应不规则几何体的体积为136π+.故选B .【点睛】本题考查了简单组合体的体积计算问题,也考查了三视图转化为几何体直观图的应用问题,是基础题.11.如图,圆柱的轴截面ABCD 为正方形,E 为弧»BC的中点,则异面直线AE 与BC 所成角的余弦值为( )A .33B .5 C .306D .66【答案】D【解析】取BC 的中点H ,连接,,?EH AH ED ,则异面直线AE 与BC 所成角即为EAD ∠,再利用余弦定理求cos EAD ∠得解.【详解】取BC 的中点H ,连接,,90,EH AH EHA ∠=o设2,AB =则1,5,BH HE AH ===所以6,AE =连接,6,ED ED =因为//,BC AD所以异面直线AE 与BC 所成角即为,EAD ∠在EAD V 中6cos ,226EAD ∠==⨯⨯ 故选:D【点睛】本题主要考查异面直线所成角的计算,考查余弦定理,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.12.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是( )A .(,]e -∞B .(,)e -∞C .(,)e -+∞D .[,)e -+?【答案】A 【解析】【详解】由函数()()ln xe f x k x x x =+-,可得()211'1x x x e x e x e f x k x x x x ⎛⎫--⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭,()f x Q 有唯一极值点()1,'0x f x =∴=有唯一根1x =,0xe k x ∴-=无根,即y k=与()xe g x x =无交点,可得()()21'x e x g x x-=,由()'0g x >得,()g x 在[)1+∞上递增,由()'0g x <得,()g x 在()0,1上递减,()()min 1,g x g e k e ∴==∴≤,即实数k 的取值范围是(],e -∞,故选A. 【方法点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题 .二、填空题13.设x ,y 满足约束条件001030x y x y x y >⎧⎪>⎪⎨-+>⎪⎪+-<⎩,则3z x y =-的取值范围为_________.【答案】(1,9)-【解析】做出满足条件的可行域,根据图形求出目标函数的最大值和最小值即可. 【详解】做出满足不等式组001030x y x y x y >⎧⎪>⎪⎨-+>⎪⎪+-<⎩表示的平面区域,如下图(阴影部分)所示,根据图形,当目标函数3z x y =-过点(0,1)A 时, 取得最小值为1-,当目标函数3z x y =-过点(3,0)B 时, 取得最大值为9,所以3z x y =-的取值范围为(1,9)-. 故答案为:(1,9)-. 【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.14.设n S 为等比数列{}n a 的前n 项和,4727a a =,则63S S =_________. 【答案】2827【解析】根据已知求出等比数列的公比,再由等比数列的前n 项和公式,即可求解. 【详解】设等比数列{}n a 的公比为q , 根据题意,有3127q =,解得13q =, 则()()6136331128112711a q S q q S a q q--==+=--. 故答案为:2827. 【点睛】本题考查等比数列的前n项和,考查计算求解能力,属于基础题.A B C D四位同学周五下午参加学校的课外活动,在课外15.高三某班一学习小组的,,,活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A不在散步,也不在打篮球;②B不在跳舞,也不在散步;③“C在散步”是“A在跳舞”的充分条件;④D不在打篮球,也不在散步;⑤C不在跳舞,也不在打篮球.以上命题都是真命题,那么D在_________.【答案】画画【解析】以上命题都是真命题,∴对应的情况是:则由表格知A在跳舞,B在打篮球,∵③“C在散步”是“A在跳舞”的充分条件,∴C在散步,则D在画画,故答案为画画16.设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y , 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.三、解答题17.在ABC V 中,a 、b 、c 分别为角A 、B 、C 所对的边,122cos b a c C=-.(1)求角B 的大小;(2)若2a =,b =,求ABC V 的面积.【答案】(1)3B π=; (2 【解析】(1)由正弦定理将已知等式边化角,再由两角和的正弦公式,即可求解; (2)利用余弦定理,建立c 边方程关系,再由三角形面积公式,即可求出结论. 【详解】 (1)由122cos b a c C=-,得sin 12sin sin 2cos B A C C =-,2sin cos 2sin()sin 2sin cos 2cos sin sin B C B C C B C B C C =+-=+-,∴2cos sin sin B C C =,又∵在ABC V 中,sin 0C ≠, ∴1cos 2B =,∵0B π<<,∴3B π=.(2)在ABC V 中,由余弦定理得2222cos b a c ac B =+-, 即2742c c =+-,∴2230c c --=,解得3c =或1c =-(舍), ∴ABC V 的面积133sin 2S ac B ==. 【点睛】本题考查正、余弦定理以及两角和差公式解三角形,考查计算求解能力,属于基础题. 18.某快递网点收取快递费用的标准是重量不超过1kg 的包裹收费10元,重量超过1kg 的包裹,除收费10元之外,超过1kg 的部分,每超出1kg (不足1kg ,按1kg 计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均数和中位数;(2)该快递网点负责人从收取的每件快递的费用中抽取5元作为工作人员的工资和网点的利润,剩余的作为其他费用.已知该网点有工作人员3人,每人每天工资100元,以样本估计总体,试估计该网点每天的利润有多少元? 【答案】(1)平均数和中位数都为260件; (2)1000元.【解析】(1)根据频率分布直方图,求出每组的频率,即可求出平均数,确定中位数所在的组,然后根据中位数左右两边图形面积各占0.5,即可求出中位数;(2)由(1)每天包裹数量的平均数求出网点平均总收入,扣除工作人员工资即为所求. 【详解】(1)每天包裹数量的平均数为0.1500.11500.52500.23500.1450260⨯+⨯+⨯+⨯+⨯=;(0,200)Q 的频率为0.2,[200,300)的频率为0.5中位数为0.32001002600.5+⨯=, 所以该网点每天包裹的平均数和中位数都为260件. (2)由(1)可知平均每天的揽件数为260, 利润为260531001000⨯-⨯=元, 所以该网点平均每天的利润有1000元. 【点睛】本题考查频率分布直方图求中位数、平均数以及简单应用,属于基础题.19.在如图所示的几何体中,已知BAC 90∠=o ,PA ⊥平面ABC ,AB 3=,AC 4=,PA 2.=若M 是BC 的中点,且PQ //AC ,QM //平面PAB .()1求线段PQ 的长度;()2求三棱锥Q AMC -的体积V .【答案】(1)2;(2)2.【解析】()1取AB 的中点N ,连接MN ,PN ,推导出四边形PQMN 为平行四边形,由此能求出线段PQ 的长度.()2取AC 的中点H ,连接QH ,推导出四边形PQHA 为平行四边形,由此能求出三棱锥Q AMC -的体积. 【详解】解:()1取AB 的中点N ,连接MN ,PN ,MN //AC ∴,且1MN AC 22==,PQ //AC Q ,P ∴、Q 、M 、N 确定平面α, QM //Q 平面PAB ,且平面α⋂平面PAB PN =,又QM ⊂平面α,QM //PN ∴,∴四边形PQMN 为平行四边形,PQ MN 2∴==.解:()2取AC 的中点H ,连接QH ,PQ //AH Q ,且PQ=AH=2,∴四边形PQHA 为平行四边形, QH //PA ∴,PA ⊥Q 平面ABC ,QH ∴⊥平面ABC ,AMC 11S AC AB 322=⨯⨯=V Q (),QH PA 2==,∴三棱锥Q AMC -的体积:AMC 11V S QH 32233V =⋅=⨯⨯=.【点睛】本题考查线段长的求法,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题. 20.平面直角坐标系中,O 为坐标原点,已知抛物线C 的方程为22(0)y px p =>. (1)过抛物线C 的焦点F 且与x 轴垂直的直线交曲线C 于A 、B 两点,经过曲线C 上任意一点Q 作x 轴的垂线,垂足为H .求证: 2||||||QH AB OH =⋅;(2)过点(2,2)D 的直线与抛物线C 交于M 、N 两点且OM ON ⊥,OD MN ⊥.求抛物线C 的方程.【答案】(1)见解析;(2)24y x =【解析】(1)设()()00000,,,0,,,Q x y H x QH y OH x ==再根据点Q 在抛物线上可得到结果;(2)联立直线和抛物线得到2280y py p +-=,设()()1122,,,M x y N x y ,OM ON ⊥有12120x x y y +=,根据韦达定理得到结果.【详解】(1)设()()00000,,,0,,,Q x y H x QH y OH x ==2AB p =,从而2200||2QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C ,有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设()()1122,,,M x y N x y ,由OM ON ⊥有12120x x y y +=,有()()1212440y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =. 【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21.已知2()2()x f x mx e m R =-∈.(Ⅰ)若()'()g x f x =,讨论()g x 的单调性;(Ⅱ)当()f x 在(1,(1))f 处的切线与(22)3y e x =-+平行时,关于x 的不等式()0f x ax +<在(0,1)上恒成立,求a 的取值范围.【答案】(Ⅰ)()g x 在(ln ,)m +∞上单调递减,在(,ln )m -∞上单调递增. (Ⅱ)(,21]a e ∈-∞-.【解析】试题分析:(Ⅰ)求得函数的导数'()2()xg x m e =-,分0m ≤和0m >两种情况讨论,即可得到函数()g x 的单调性;(Ⅱ)由(Ⅰ)求得1m =,把不等式()0f x ax +<即220xx e ax -+<,得2x e a xx<-在(0,1)上恒成立,设2()xe F x x x=-,利用导数求得函数()F x 的单调性与最值,即可得到实数a 的取值范围. 试题解析:(Ⅰ)因为()()'22xg x f x mx e ==-,所以()()'2xg x m e=-,当0m ≤时,()'0g x <,所以()g x 在R 上单调递减,当0m >时,令()'0g x <,得ln x m >,令()'0g x >,得ln x m <, 所以()g x 在()ln ,m +∞上单调递减,在(),ln m -∞上单调递增. (Ⅱ)由(Ⅰ)得()'122f m e =-,由2222m e e -=-,得1m =,不等式()0f x ax +<即220xx e ax -+<,得2xe a x x<-在()0,1上恒成立.设()2x e F x x x =-,则()2222'x x xe e x F x x --=. 设()222xxh x xe e x =--,则()()'222221xxxxh x xe e e x x e =+--=-,在区间()0,1上,()'0h x >,则函数()h x 递增,所以()()11h x h <=-, 所以在区间()0,1上,()'0F x <,函数()F x 递减.当0x →时,()F x →+∞,而()121F e =-,所以()()21,F x e ∈-+∞, 因为()a F x <在()0,1上恒成立,所以(],21a e ∈-∞-.点睛:本题主要考查导数求解函数的单调区间,利用导数求解不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行: (1)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (2)利用导数求函数的最值(极值),解决函数的恒成立与有解问题; (3)利用导数研究函数的图象与性质,注意数形结合思想的应用.22.在平面直角坐标系xOy 中,已知曲线11C x y +=:与曲线222cos :2sin x C y ϕϕ=+⎧⎨=⎩,(ϕ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)写出曲线1C ,2C 的极坐标方程;(2)在极坐标系中,已知():0l θαρ=>与1C ,2C 的公共点分别为A ,B ,0,2πα⎛⎫∈ ⎪⎝⎭,当4OB OA =时,求α的值. 【答案】(1)1C的极坐标方程为:14ρπθ=⎛⎫+ ⎪⎝⎭;2C 的极坐标方程为:4cos ρθ= (2)4πα=【解析】(1)根据直角坐标与极坐标的互化关系,参数方程与一般方程的互化关系,即得解;(2)将():0l θαρ=>代入1C ,2C 的极坐标方程,求得||,||OA OB 的表达式,代入4OB OA=,即得解.【详解】(1)解:将直角坐标与极坐标互化关系cos sin x y ρθρθ=⎧⎨=⎩代入曲线11C x y +=:得cos sin 1ρθρθ+=,即:14ρπθ=⎛⎫+ ⎪⎝⎭; 所以曲线1C的极坐标方程为:14ρπθ=⎛⎫+ ⎪⎝⎭; 又曲线222cos :2sin x C y ϕϕ=+⎧⎨=⎩(ϕ为参数).利用22sin cos 1ϕϕ+=消去参数ϕ得2240x y x +-=,将直角坐标与极坐标互化关系:cos sin x y ρθρθ=⎧⎨=⎩代入上式化简得4cos ρθ=,所以曲线2C 的极坐标方程为:4cos ρθ=.(2)∵():0l θαρ=>与曲线1C ,2C 的公共点分别为A ,B ,所以将()0θαρ=>代入14ρπθ=⎛⎫+ ⎪⎝⎭及4cos ρθ=得14OA πα=⎛⎫+ ⎪⎝⎭,4cos OB α=, 又4OBOA =,sin 14παα⎛⎫+= ⎪⎝⎭,∴0,2πα⎛⎫∈ ⎪⎝⎭,∴sin cos αα=,4πα=. 【点睛】本题考查了参数方程,极坐标方程的综合应用,考查了学生综合分析,转化与划归,数学运算的能力,属于中档题.23.已知函数()11f x x x =+--, ()22g x x a x b =++-,其中a , b 均为正实数,且2a b +=.(Ⅰ)求不等式()1f x ≥的解集; (Ⅱ)当x ∈R 时,求证()()f x g x ≤.【答案】(1)1,2⎡⎫+∞⎪⎢⎣⎭(2)见解析【解析】(Ⅰ)把()f x 用分段函数来表示,分类讨论,求得()1f x ≥的解集. (Ⅱ)当x ∈R 时,先求得()f x 的最大值为2,再求得()g x )的最小值,根据()g x 的最小值减去()f x 的最大值大于或等于零,可得()()f x g x ≤成立. 【详解】(Ⅰ)由题意, ()2,12,112,1x f x x x x -≤-⎧⎪=-⎨⎪≥⎩<<,(1)当1x ≤-时, ()21f x =-<,不等式()1f x ≥无解;(2)当11x -<<时,()21f x x =≥,解得12x ≥,所以112x ≤<.(3)当1x ≥时, ()21f x =≥恒成立,所以()1f x ≥的解集为1,2⎡⎫+∞⎪⎢⎣⎭. (Ⅱ)当x R ∈时, ()()11112f x x x x x =+--≤++-=;()()222222g x x a x b x a x b a b =++-≥+--=+.而()()()22222222222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭, 当且仅当1a b ==时,等号成立,即222a b +≥,因此,当x R ∈时,()()222f x a b g x ≤≤+≤,所以,当x R ∈时, ()()f x g x ≤.【点睛】本题主要考查带有绝对值的函数,绝对值三角不等式的应用,比较2个数大小的方法,属于中档题.。

2020年山东新高考数列精选模拟试题(含解析)

2020年山东新高考数列精选模拟试题(含解析)

专题8 数列数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系;解答题的难度中等或稍难,将稳定在中等难度.往往在利用方程思想解决数列基本问题后,进一步数列求和,在求和后可与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要. 预测2020年将保持稳定,注意主观题与不等式、函数等相结合.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC.D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3-B .1-C .3D .13.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( ) A .此人第二天走了九十六里路 B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路若存在两项,m n a a32=,则14m n+的最小值为 A .34B .910C .32D .955.(2020届山东省青岛市高三上期末)已知数列{}n a 中,32a =,71a =.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a =( ) A .23B .32C .43D .34二、多选题6.(2020届山东省潍坊市高三模拟一)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则下列正确的是( ) A .12a =-B .12a =C .4d =D .4d =-7.(2020·山东曲阜一中高三3月月考)在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路8.(2020届山东省潍坊市高三模拟二)将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 9.(2020届山东省济宁市第一中学高三一轮检测)等差数列{}n a 是递增数列,满足753a a =,前n 项和为n S ,下列选择项正确的是( ) A . 0d >B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为810.(2020·山东滕州市第一中学高三3月模拟)已知数列{}{},n n a b 满足1111312,2ln(),0n n n n n n n a a b b a b n N a b n*+++=+=++∈+> 给出下列四个命题,其中的真命题是( ) A .数列{}n n a b -单调递增; B .数列{}n n a b + 单调递增; C .数{}n a 从某项以后单调递增; D .数列{}n b 从某项以后单调递增.三、填空题11.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和公式为221n S n n =-+,则数列{}n a 的通项公式为___.12.(2020届山东省潍坊市高三模拟一)九连环是我国从古至今广泛流传的一种益智游戏.在某种玩法中,用n a 表示解下()*9,n n n N≤∈个圆环所需移动的最少次数,{}na 满足11a=,且()()112122n n n a n a a n --⎧-⎪=⎨+⎪⎩为偶数为奇数,则解下5个圆环需最少移动________次.四、解答题13.(2020·山东高三模拟)已知各项均不相等的等差数列{}n a 的前4项和为414S =, 且137,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .14.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 15.(2020届山东省高考模拟)已知数列{}n a 的前n 项和为n S ,且12n n S a a =-(*n N ∈),数列{}n b 满足16b =,14n n nb S a =++(*n N ∈). (Ⅰ)求数列{}n a 通项公式; (Ⅱ)记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:12nT <. 16.(2020届山东省济宁市第一中学高三一轮检测)已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =.(1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.17.(2020届山东省济宁市第一中学高三二轮检测)已知数列{}n a 中,11a =,121n n a a n +=+-,n n b a n =+.(1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .18.(2020·山东滕州市第一中学高三3月模拟)已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)若12111n n T S S S =+++,证明:34n T <. 19.(2020届山东省泰安市肥城市一模)记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.20.(2020届山东省济宁市高三3月月考)已知数列{}n a 为公差不为0的等差数列,且139a a a 、、成等比数列,246a a +=.(1)求数列{}n a 的通项n a ; (2)设()21cos3n n n a b a π+=,求数列{}nb 的前2020项的和2020S.21.(2020届山东省菏泽一中高三2月月考)设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,n *∈N . (1)证明:{}1n S +为等比数列,求出{}n a 的通项公式; (2)若n nn b a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -⋅=+成立?若存在求出所有n 值;若不存在说明理由.22.(2020届山东省潍坊市高三模拟一)已知等差数列{}n a 的前n 项和为n S ,34a =,627S =. (1)求{}n a 的通项公式;(2)设2n an b =,记n T 为数列{}n b 的前n 项和.若124m T =,求m .23.(2020届山东省潍坊市高三模拟二)已知数列{a n }的首项为a 1=1,且*12(1)()n n a a n N +=+∈.(Ⅰ)证明:数列{a n +2}是等比数列,并求数列{a n }的通项公式; (Ⅱ)设b n =log 2(a n +2)﹣log 23,求数列32n n b a ⎧⎫⎨⎬+⎩⎭的前n 项和n T .24.(2020届山东省六地市部分学校高三3月线考)数列{}n a 满足:123a a a +++()1312nn a +=- (1)求{}n a 的通项公式; (2)若数列{}n b 满足3n na b n a =,求{}n b 的前n 项和n T .25.(2020届山东省潍坊市高三下学期开学考试)已知函数()log k f x x =(k 为常数,0k >且1k ≠). (1)在下列条件中选择一个________使数列{}n a 是等比数列,说明理由; ①数列(){}n f a 是首项为2,公比为2的等比数列; ②数列(){}n f a 是首项为4,公差为2的等差数列;③数列(){}n f a 是首项为2,公差为2的等差数列的前n 项和构成的数列.(2)在(1)的条件下,当k =12241+=-n n n a b n ,求数列{}n b 的前n 项和n T . 26.(2020届山东济宁市兖州区高三网络模拟考)在①325256a a a b =+=,;②234323b a a b =+=,;③345298S a a b =+=,,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为()1d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b d q ==,,____________.(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}n c ,的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 27.(2020·山东高三下学期开学)已知数列{}n a 满足123123252525253n n na a a a ++++=----….(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:11226n T ≤<. 28.(2020届山东省淄博市高三二模)已知数列{}n a 满足132a =,且()1112,22n n n a a n n *--=+≥∈N .(1)求证:数列{}2nn a 是等差数列,并求出数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .29.(2020届山东省淄博市部分学校高三3月检测)已知数列{}n a 满足11a =,1431n n a a n +=+-,n n b a n =+.(1)证明:数列{}n b 为等比数列; (2)求数列{}n a 的前n 项和.30.(2020·2020届山东省淄博市高三二模)(本小题满分12分)设函数()()22ln 11x f x x x =+++.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)如果对所有的x ≥0,都有()f x ≤ax ,求a 的最小值;(Ⅲ)已知数列{}n a 中, 11a =,且()()1111n n a a +-+=,若数列{}n a 的前n 项和为n S ,求证:11ln 2n n n na S a a ++>-.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC. D.【答案】D 【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以1(2,)n n a n n N -+=≥∈, 又1a f =,则7781a a q f === 故选D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3- B .1-C .3D .1【答案】C 【解析】当2n ≥ 时,1121,,33n n n n n n S a S a --++== 两式作差可得:11211213311n n n n n a n n n a a a a n n --+++=-⇒==+-- , 据此可得,当2n = 时,1nn a a -的最大值为33.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( )A .此人第二天走了九十六里路B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路【答案】C 【解析】由题意可知,每天走的路程里数构成以12为公比的等比数列,由S 6=378求得首项,再由等比数列的通项公式求第二天的,第三天的,后三天的路程,即可得到答案.4.(2020届山东省济宁市第一中学高三二轮检测)已知正项等比数列{}n a 满足:2853516,20a a a a a =+=,若存在两项,m n a a 32=,则14m n+的最小值为 A .34B .910C .32D .95【答案】A 【解析】因为数列{}n a 是正项等比数列,28516a a a ,3520a a +=,所以2285516a a a a ,516a =,34a =,所以253a a q =,2q ,451a a q ,11a =,1112n n n a a q --==,32=,所以1110222m n,12m n +=,414114112125n m mnm n mnm n431124520,0n m mnm n ,当且仅当2n m =时“=”成立, 所以14mn的最小值为34,故选A 。

2020届 山东省济宁市嘉祥一中 高三第三次质量检测数学试题(解析版)

2020届  山东省济宁市嘉祥一中 高三第三次质量检测数学试题(解析版)

2020届山东省济宁市嘉祥一中高三第三次质量检测数学试题一、单选题1.已知集合{|{|2,}A x N y B x x n n Z =∈===∈,则A B =I ( )A .[0,4]B .{0,2,4}C .{2,4}D .[2,4]【答案】B【解析】计算{}0,1,2,3,4A =,再计算交集得到答案 【详解】{}{|0,1,2,3,4A x N y =∈==,{|2,}B x x n n Z ==∈表示偶数,故{0,2,4}A B =I . 故选:B . 【点睛】本题考查了集合的交集,意在考查学生的计算能力.2.欧拉公式为cos sin ix e x i x =+,(i 虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,3ie π表示的复数位于复平面中的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A【解析】计算31cossin 332πππ=+=+i e i ,得到答案. 【详解】根据题意cos sin ixe x i x =+,故31cossin 3322πππ=+=+i ei i ,表示的复数在第一象限. 故选:A . 【点睛】本题考查了复数的计算, 意在考查学生的计算能力和理解能力.3.已知不重合的平面,,αβγ 和直线l ,则“//αβ ”的充分不必要条件是( ) A .α内有无数条直线与β平行 B .l α⊥ 且l β⊥C .αγ⊥ 且γβ⊥D .α内的任何直线都与β平行【答案】B【解析】根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案. 【详解】A. α内有无数条直线与β平行,则,αβ相交或//αβ,排除;B. l α⊥ 且l β⊥,故//αβ,当//αβ,不能得到l α⊥ 且l β⊥,满足;C. αγ⊥ 且γβ⊥,//αβ,则,αβ相交或//αβ,排除;D. α内的任何直线都与β平行,故//αβ,若//αβ,则α内的任何直线都与β平行,充要条件,排除. 故选:B . 【点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.4.已知角α的终边经过点P(00sin 47,cos 47),则sin(013α-)= A .12BC .12-D. 【答案】A 【解析】【详解】由题意可得三角函数的定义可知:22cos 47sin cos 47sin 47cos 47α==+o o o o ,22sin 47cos sin 47sin 47cos 47α==+o oo o,则: ()()sin 13sin cos13cos sin13cos 47cos13sin 47sin131cos 4713cos 60.2ααα-=-=-=+==o o o o o o o o o o本题选择A 选项.5.若x ∈(0,1),a =lnx ,b =ln 12x⎛⎫ ⎪⎝⎭,c =e lnx ,则a ,b ,c 的大小关系为( )A .b >c >aB .c >b >aC .a >b >cD .b >a >c【答案】A【解析】利用指数函数、对数函数的单调性直接求解. 【详解】 ∵x ∈(0,1), ∴a =lnx <0,b =(12)lnx >(12)0=1, 0<c =e lnx <e 0=1,∴a ,b ,c 的大小关系为b >c >a . 故选:A . 【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题. 6.函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( ) A .4x π=B .3x π=C .56x π=D .1912x π=【答案】D【解析】由三角函数的周期可得23πω=,由函数图像的变换可得, 平移后得到函数解析式为244sin 39y x π⎛⎫=+ ⎪⎝⎭,再求其对称轴方程即可.【详解】解:函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则函数2()4sin 33f x x π⎛⎫=+ ⎪⎝⎭,经过平移后得到函数解析式为2244sin 4sin 36339y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由24()392x k k πππ+=+∈Z ,得3()212x k k ππ=+∈Z ,当1k =时,1912x π=. 故选D. 【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.7.“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为 ABC. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以1(2,)n n a n n N -+=≥∈, 又1a f =,则7781a a q f === 故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n N ≠∈)或1nn a q a -=(*0,2,q n n N ≠≥∈), 数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n N ≥∈),则数列{}n a 是等比数列.8.已知点1F 是抛物线C :22x py =的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F ,2F 为焦点的双曲线上,则双曲线的离心率为( )A .2B 1C .2D 1【答案】D【解析】根据抛物线的性质,设出直线方程,代入抛物线方程,求得k 的值,设出双曲线方程,求得2a =丨AF2丨﹣丨AF 11)p ,利用双曲线的离心率公式求得e . 【详解】直线F 2A 的直线方程为:y =kx 2p -,F 1(0,2p ),F 2(0,2p -), 代入抛物线C :x 2=2py 方程,整理得:x 2﹣2pkx +p 2=0, ∴△=4k 2p 2﹣4p 2=0,解得:k =±1,∴A (p ,2p ),设双曲线方程为:2222y x a b-=1,丨AF 1丨=p ,丨AF 2丨==,2a =丨AF2丨﹣丨AF 1丨=( 1)p ,2c =p ,∴离心率eca ===1, 故选:D . 【点睛】本题考查抛物线及双曲线的方程及简单性质,考查转化思想,考查计算能力,属于中档题.二、多选题9.(多选题)下列说法中,正确的命题是( ) A .已知随机变量ξ服从正态分布()22,N δ,()40.84P ξ<=,则()240.16P ξ<<=.B .以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3.C .已知两个变量具有线性相关关系,其回归直线方程为y a bx =+,若2b =,1x =,3y =,则1a =.D .若样本数据1x ,2x ,…,10x 的方差为2,则数据121x -,221x -,…,1021x -的方差为16. 【答案】BC【解析】根据正态分布性质求()24P ξ<<即可判断A;根据方程变形即可确定c ,k 的值,再判断B; 根据回归直线方程过样本中心,即可判断C;根据数据变化与方差变化关系判断D. 【详解】因为随机变量ξ服从正态分布()22,N δ,()40.84P ξ<=,所以()()2440.50.840.50.340.16P P ξξ<<=<-=-=≠,即A 错;ln ln()ln ln kx kx y ce y ce y kx c =∴=∴=+Q ,0.34ln 0.34z x y x =+∴=+Q ,从而40.3,ln 40.3,k c k c e ==∴==,即B 正确;y a bx =+Q 过(,)x y , 321a b b a =+=∴=Q ,即C 正确;因为样本数据1x ,2x ,…,10x 的方差为2,所以数据121x -,221x -,…,1021x -的方差为222=8⨯,即D 错误; 故选:BC 【点睛】本题考查正态分布、方差性质以及线性回归方程及其性质,考查基本分析求解能力,属基础题.10.甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门.若同学甲必选物理,则下列说法正确的是( ) A .甲、乙、丙三人至少一人选化学与全选化学是对立事件 B .甲的不同的选法种数为15C .已知乙同学选了物理,乙同学选技术的概率是16D .乙、丙两名同学都选物理的概率是949【答案】BD【解析】根据对立事件的概念可判断A ;直接根据组合的意义可判断B ;乙同学选技术的概率是13可判断 C ;根据相互独立事件同时发生的概率可判断D . 【详解】甲、乙、丙三人至少一人选化学与全不选化学是对立事件,故A 错误;由于甲必选物理,故只需从剩下6门课中选两门即可,即2615C =种选法,故B 正确;由于乙同学选了物理,乙同学选技术的概率是2163=,故C 错误; 乙、丙两名同学各自选物理的概率均为37,故乙、丙两名同学都选物理的概率是3397749⨯=,故D 正确; 故选BD . 【点睛】本题主要考查了对立事件的概念,事件概率的求法以及相互独立事件同时发生的概率,属于基础题.11.如图所示,在四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,CDE ∆是正三角形,M 为线段DE 的中点,点N 为底面ABCD 内的动点,则下列结论正确的是( )A .若BC DE ⊥时,平面CDE ⊥平面ABCDB .若BC DE ⊥时,直线EA 与平面ABCD 所成的角的正弦值为104C .若直线BM 和EN 异面时,点N 不可能为底面ABCD 的中心D .若平面CDE ⊥平面ABCD ,且点N 为底面ABCD 的中心时,BM =EN 【答案】AC【解析】推导出BC ⊥平面CDE ,结合面面垂直的判定定理可判断A 选项的正误;设CD 的中点为F ,连接EF 、AF ,证明出EF ⊥平面ABCD ,找出直线EA 与平面ABCD 所成的角,并计算出该角的正弦值,可判断B 选项的正误;利用反证法可判断C 选项的正误;计算出线段BM 和EN 的长度,可判断D 选项的正误.综合可得出结论. 【详解】因为BC CD ⊥,BC DE ⊥,CD DE D =I ,所以BC ⊥平面CDE ,BC ⊂Q 平面ABCD ,所以平面ABCD ⊥平面CDE ,A 项正确;设CD 的中点为F ,连接EF 、AF ,则EF CD ⊥.Q 平面ABCD ⊥平面CDE ,平面ABCD I 平面CDE CD =,EF ⊂平面CDE .EF ∴⊥平面ABCD ,设EA 平面ABCD 所成的角为θ,则EAF θ=∠,223EF CE CF =-=,225AF AD FD =+=,2222AE EF AF =+=,则6sin EF EA θ==,B 项错误;连接BD ,易知BM ⊂平面BDE ,由B 、M 、E 确定的面即为平面BDE , 当直线BM 和EN 异面时,若点N 为底面ABCD 的中心,则N BD ∈, 又E ∈平面BDE ,则EN 与BM 共面,矛盾,C 项正确;连接FN ,FN ⊂Q 平面ABCD ,EF ⊥平面ABCD ,EF FN ∴⊥,F Q 、N 分别为CD 、BD 的中点,则112FN BC ==, 又3EF=故222EN EF FN =+=,227BM BC CM =+=则BM EN ≠,D 项错误. 故选:AC. 【点睛】本题考查立体几何综合问题,涉及面面垂直的判断、线面角的计算以及异面直线的判断,考查推理能力与计算能力,属于中等题. 12.已知数列{}{},n n a b 满足1111312,2ln(),0n n n n n n n a a b b a b n N a b n*+++=+=++∈+>给出下列四个命题,其中的真命题是( ) A .数列{}n n a b -单调递增; B .数列{}n n a b + 单调递增; C .数{}n a 从某项以后单调递增; D .数列{}n b 从某项以后单调递增.【答案】BCD【解析】计算得到2211ln 2a b a b -=--,A 错误,化简()1113ln -+=+⋅+n n n a b a b n ,B 正确,1111ln ()30n n n a a n a b -+-=++>,C 正确,1111ln(1)2ln ()3n n n b b n n a b -+-=+-++,D 正确,得到答案.【详解】因为1112,2lnn n n n n n n a a b b a b n +++=+=++,所以1131ln n n n n n a b a b n+++-=--, 当1n =时, 2211ln 2a b a b -=--,所以2211-<-a b a b ,所以A 错误;11313()lnn n n n n a b a b n++++=++,11ln(1)3(ln )n n n n a b n a b n +++-+=--, 所以{ln }n n a b n +-是等比数列,()1113ln -+=+⋅+n n n a b a b n ,所以B 正确;11112ln ()3n n n n n a a b a n a b -+=+=+++,故1111ln ()30n n n a a n a b -+-=++>,C 正确;因为131lnn n n n n b b a b n++=+++,所以1111ln(1)2ln ()3n n n b b n n a b -+-=+-++, 根据指数函数性质,知数列从某一项以后单调递增,所以D 正确. 故选:BCD . 【点睛】本题考查了数列的单调性,意在考查学生对于数列性质的综合应用.三、填空题13.已知向量(1,1)a x =+v,(,2)b x =v ,若满足a b v v P ,且方向相同,则x =__________.【答案】1【解析】由向量平行坐标表示计算.注意验证两向量方向是否相同. 【详解】∵a b r rP ,∴(1)20x x +-=,解得1x =或2x =-,1x =时,(1,2),(1,2)a b ==r r满足题意,2x =-时,(1,1),(2,2)a b =-=-r r,方向相反,不合题意,舍去.∴1x =. 故答案为:1. 【点睛】本题考查向量平行的坐标运算,解题时要注意验证方向相同这个条件,否则会出错.14.6212x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______;系数最大的项是______. 【答案】60 6240x【解析】求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项. 【详解】6212x x ⎛⎫+ ⎪⎝⎭的展开式的通项为()62612366122kk k kk k C x C x x ---⎛⎫⋅⋅=⋅⋅ ⎪⎝⎭, 令1230k -=,得4k =,所以,展开式中的常数项为426260C ⋅=;令()662,6k kk a C k N k -=⋅∈≤,令11n n n n a a a a -+≥⎧⎨≥⎩,即61766615662222n n n n n n n n C C C C ----+-⎧⋅≥⋅⎨⋅≥⋅⎩,解得4733n ≤≤,n N ∈Q ,2n ∴=,因此,展开式中系数最大的项为246662240C x x ⋅⋅=.故答案为:60;6240x . 【点睛】本题考查二项展开式中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.15.已知直线0x y a -+=与圆心为C 的圆222440x y x y ++--=相交于,A B 两点,且AC BC ⊥,则实数a 的值为_________. 【答案】0或6【解析】计算得到圆心()1,2C -,半径3r =,根据AC BC ⊥得到2d =心到直线的距离公式解得答案.【详解】222440x y x y ++--=,即()()22129x y ++-=,圆心()1,2C -,半径3r =.AC BC ⊥,故圆心到直线的距离为2d =,即2d ==,故6a =或0a =. 故答案为:0或6. 【点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。

2020届山东省新高考高三优质数学试卷分项解析 专题02 相等关系与不等关系,计数原理(原卷版)

2020届山东省新高考高三优质数学试卷分项解析 专题02 相等关系与不等关系,计数原理(原卷版)

专题2 相等关系与不等关系高考试题不等式的考查有两类,一是涉及不等式的性质、不等式的解法、绝对值不等式;二是基本不等式及其应用等,一般不独立命题,而是以工具的形式,与充要条件、函数与导数、解析几何、三角函数、数列等综合考查.预测2020年独立考查的内容将是不等式的性质或基本不等式的应用问题,不等式的解法将与集合、函数等其它知识点综合考查.第一部分 相等关系与不等关系一、单选题1.(2020届山东省日照市高三上期末联考)如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子原高一丈(一丈10=尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高是( )A .2.55尺B .4.55尺C .5.55尺D .6.55尺2.(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( )A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,23.(2020届山东省泰安市高三上期末)若()33log 21log a b ab +=+2+a b 的最小值为( )A .6B .83C .3D .1634.(2020·全国高三专题练习(文))“[]1,2x ∀∈,210ax +≤”为真命题的充分必要条件是( )A .1a ≤-B .14a -≤ C .2a ≤- D.0a ≤5.(2020届山东省枣庄、滕州市高三上期末)已知a R ∈,则“01a <<”是“,x R ∀∈2210ax ax ++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( )A .22a b >B .1ba<C .()10g a b ->D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭7.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.(2020届山东省枣庄市高三上学期统考)不等式220ax bx ++>的解集为{12}x x -<<,则不等式220x bx a ++>的解集为( )A .{1x <-或1}2x > B .1{1}2x x -<<C .{21}x x -<<D .{2x <-或1}x >9.(2020届山东省济宁市高三上期末)已知奇函数()f x 在R 上单调,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值是( ) A .1B .92C .9D .1810.(2020届山东省枣庄市高三上学期统考)如图,在△ABC 中,点,D E 是线段BC 上两个动点,且AD AE +u u u r u u u rx AB y AC =+u u u r u u u r ,则14x y+的最小值为( )A .32B .2C .52D .9211.(2020届山东省枣庄市高三上学期统考)不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( )A .(,1]e -∞-B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-12.(2020届山东省滨州市三校高三上学期联考)已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .913.(2020届山东师范大学附中高三月考)若0a >,0b >,()lg lg lg 2a b a b +=+,则2a b +的最小值为( ) A .9B .8C .7D .614.(2020届山东实验中学高三上期中)设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =I ,求实数a 组成的集合的子集个数有 A .2B .3C .4D .815.(2020届山东实验中学高三上期中)已知定义在R 上的函数()f x 满足()()22f x f x +=-,且当2x >时,有()()()()2,11xf x f x f x f ''+>=若,则不等式()12f x x <-的解集是( ) A .(2,3) B .(),1-∞C .()()1,22,3⋃D .()(),13,-∞⋃+∞二、多选题16.(2020届山东省泰安市高三上期末)已知a b c d ,,,均为实数,则下列命题正确的是( ) A .若,a b c d >>,则ac bd > B .若0,0ab bc ad >->,则0c da b-> C .若,,a b c d >>则a d b c ->- D .若,0,a b c d >>>则a b d c> 17.(2020届山东省滨州市三校高三上学期联考)设11a b >>>-,0b ≠,则下列不等式中恒成立的是( ) A .11a b< B .11a b> C .2a b > D .22a b >18.(2020届山东省潍坊市高三上期中)若x y ≥,则下列不等式中正确的是( ) A .22x y ≥B .2x yxy +≥ C .22x y ≥ D .222x y xy +≥19.(2020届山东省九校高三上学期联考)下列结论正确的是( )A .x R ∀∈,12x x+≥B .若0a b <<,则3311a b ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .若()20x x -<,则()2log 0,1x ∈D .若0a >,0b >,1a b +≤,则104ab <≤20.(2020届山东省枣庄、滕州市高三上期末)如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h 三、填空题21.(20201x x +x =______. 22.(2020届山东省枣庄市高三上学期统考)函数2245()(1)1x x f x x x -+=>-的最小值是__________.23.(2020届山东省潍坊市高三上期中)“x R ∃∈,220x x a --<” 为假命题,则实数a 的最大值为__________.24.(2020·全国高三专题练习(理))谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数13与115的和表示25等.从11111,,,,,234100101⋅⋅⋅这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)25.(2020·全国高三专题练习(理))已知圆()()22212x y -+-=关于直线()10,0ax by a b +=>>对称,则21a b+的最小值为__________. 26.(2020届山东实验中学高三上期中)设命题21:01x p x -<-,命题()()2:2110q x a x a a -+++≤,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________.27.(2020·山东省淄博实验中学高三上期末)设()()201x a x f x x x x ⎧-≤⎪=⎨+⎪⎩,,>. (1)当12a =时,f (x )的最小值是_____; (2)若f (0)是f (x )的最小值,则a 的取值范围是_____. 四、解答题28.(2020届山东师范大学附中高三月考)已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a 元时,生产x 件产品的销售收入是21()5004R x x x =-+(元),()P x 为每天生产x 件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件a 元进货后又以每件b 元销售, ()b a c a λ=+-,其中c 为最高限价()a b c <<,λ为销售乐观系数,据市场调查,λ是由当b a -是c b -,c a -的比例中项时来确定.(1)每天生产量x 为多少时,平均利润()P x 取得最大值?并求()P x 的最大值; (2)求乐观系数λ的值;(3)若600c =,当厂家平均利润最大时,求a 与b 的值.29.(2020届山东省潍坊市高三上期中)在经济学中,函数()f x 的边际函数()Mf x 定义为()()()1Mf x f x f x =+-.某医疗设备公司生产某医疗器材,已知每月生产x 台()x N *∈的收益函数为()2300020R x x x =- (单位:万元),成本函数()5004000C x x =+(单位:万元),该公司每月最多生产100台该医疗器材.(利润函数=收益函数-成本函数)(1)求利润函数()P x 及边际利润函数()MP x ;(2)此公司每月生产多少台该医疗器材时每台的平均利润最大,最大值为多少?(精确到0.1) (3)求x 为何值时利润函数()P x 取得最大值,并解释边际利润函数()MP x 的实际意义. 30.(2020届山东省枣庄市高三上学期统考)非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<(Ⅰ)当3a =时,求A B I ;(Ⅱ)命题p :x A ∈,命题q :x B ∈,若q 是p 的必要条件,求实数a 的取值范围.第二部分 计数原理一、单选题1.(2020届山东省烟台市高三上期末)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.若课程“乐”不排在第一周,课程“御”不排在最后一周,则所有可能的排法种数为( ) A .216B .480C .504D .6242.(2020届山东省九校高三上学期联考)汽车维修师傅在安装好汽车轮胎后,需要紧固轮胎的五个螺栓,记为A 、B 、C 、D 、E (在正五边形的顶点上),紧固时需要按一定的顺序固定每一个螺栓,但不能连续固定相邻的两个,则不同固定螺栓顺序的种数为( ) A .20 B .15 C .10D .53.(2020·全国高三专题练习(理))已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲只会用现金结账,顾客乙只会用现金和银联卡结账,顾客丙与甲.乙结账方式不同,丁用哪种结账方式都可以若甲乙丙丁购物后依次结账,那么他们结账方式的组合种数共有( ) A .36种B .30种C .24种D .20种4.(2020·山东省淄博实验中学高三上期末)“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )A .59B .49C .716D .9165.(2020届山东省潍坊市高三上学期统考)6本不同的书摆放在书架的同一层上,要求甲、乙两本书必须摆放在两端,丙、丁两本书必须相邻,则不同的摆放方法有( )种 A .24B .36C .48D .606.(2020届山东省滨州市高三上期末)展开式中项的系数为( )A .B .C .D .7.(2020届山东省九校高三上学期联考)吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )A .15 B .815 C .35D .3208.(2020届山东省临沂市高三上期末)6324x x ⎛⎝的展开式的中间项为( ) A .-40B .240x -C .40D .240x9.(2020届山东省潍坊市高三上期中)(82x 展开式中3x 的系数为( )A .-112B .28C .56D .112二、多选题 三、填空题10.(2020届山东省日照市高三上期末联考)二项式261(2)x x-的展开式中的常数项是_______.(用数字作答)11.(2020届山东省潍坊市高三上学期统考)在32nx x ⎛ ⎝的展开式中,只有第五项的二项式系数最大,则展开式中的常数项是 .12.(2020届山东省德州市高三上期末)6212x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______;系数最大的项是______. 13.(2020届山东省临沂市高三上期末)现将七本相同的书分给甲、乙、丙三人,每人至少一本,则甲分得的书不少于3本的概率是______.14.(2020·全国高三专题练习(理))在()8x 的展开式中,含44x y 项的系数是_______.。

山东省济宁市2020届高三5月高考模拟考试化学试题(附参考答案)

山东省济宁市2020届高三5月高考模拟考试化学试题(附参考答案)
济宁市 2020 届高考模拟考试
化学试题
2020.05
1.答题前,考生先将自己的姓名、考生号、座号填写在相应位置,认真核对条形码上的姓名、考生号 和座号,并将条形码粘贴在指定位置上。
2.选择题答案必须使用 2B 铅笔(按填涂样例)正确填涂;非选择题答案必须使用 0.5 毫米黑色签字笔 书写,字体工整、笔迹清楚。
①电解法可制得 K2FeO4,装置如图,阳极电极反应式为
②K2FeO4 在水解过程中铁元素形成的微粒分布分数与 pH 的关系如图所示,向 pH=6 的溶液中加入 KOH
溶液,发生反应的离子方程式为

(4)复合氧化物铁酸锰(MnFe2O4)可用于热化学循环分解制氢气,原理如下:
①MnFe2O4(s)=MnFe2O(4-x)(s)+
15.T℃时,在恒容密闭容器中通入 CH3OCH3,发生反应:
CH3OCH3(g)
CO(g)+H2(g)+CH4(g),测得容器内初始
压强为 41.6kPa,反应过程中反应速率 v(CH3OCH3)、时
间 t 与 CH3OCH3 分压 p(CH3OCH3)的关系如图所示。
下列说法正确的是
A.t=400s 时,CH3OCH3 的转化率为 0.16 B.该温度下,要缩短达到平衡所需的时间,只可以使用催化剂
下列说法不正确的是 A.转化过程说明 Cl2 的氧化性大于 I2 和 IO3— B.转化时发生反应的离子方程式为 I2+5Cl2+12OH—=2IO3—+10Cl-+6H2O C.将水层溶液用 CCl4 多次萃取、分液,除去 HIO3 水溶液中少量 I2 D.向水层中加入 Ca(OH)2 或 CaCl2 粉末,经过滤、洗涤、干燥制得 Ca(IO3)2·H2O 二、本题共 5 小题,每小题 4 分,共 20 分。每小题有 1 个或 2 个选项符合题意,全都选对得 4 分,选对 但不全的得 1 分,有选错的得 0 分。 11.黄铁矿(主要成分 FeS2),在空气中会被缓慢氧化,氧化过程如图所示。下列说法不正确的是

山东省济宁市2024届高三第一次高考模拟 基本能力试题Word版(2024济宁一模)

山东省济宁市2024届高三第一次高考模拟 基本能力试题Word版(2024济宁一模)

山东省济宁市2024届高三第一次模拟考试基本实力试题本试卷分第一部分和其次部分,两部分均为选择题,满分100分。

以考生得分的60%计入总分。

答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置,并仔细核准条形码上的信息。

考试结束后,将本试卷和答题卡—并交回。

第一部分留意事项:1.第一部分70题,每题1分,共70分。

在每题给出的四个选项中,只有一个选项最符合题目要求。

2.每小题选出答案后,用2B铅笔将答题卡上对应的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不涂答题卡,只答在试卷上不得分。

1.由乔羽作词、刘炽作曲的混声合唱《我的祖国》和斯美塔那创作的交响诗套曲《我的祖国》都分别以他们的母亲河( )为背景,这两部音乐作品都从时代背景、体裁、题材、音乐的叙述性及主题各方面阐述了它们的异曲同工之妙。

A.长江、尼罗河B.黄河、多瑙河C.长江、莱茵河D.黄河、沃尔塔瓦河2.我国的民族民间音乐既有悠久的历史,又有无限的生命力,是中华传统文化的重要组成部分,以下有关中国民族民间音乐叙述完全正确的是①民歌是经过广泛的群众性的即兴编作、口头传唱而渐渐形成和发展起来的,它是多数人才智的结晶。

②中国民间器乐的历史悠久,演奏形式丰富多样,有各种乐器的独奏、重奏和合奏。

③江南丝竹的音乐风格以轻愉快泼为主,有时也表现的较为粗犷。

主奏乐器是二胡、唢呐。

④“打溜子”是流行于湖南土家族的一种民间器乐合奏,通常用马锣、大锣、头钹、二钹四件乐器演奏,乐曲内容多描绘动物形象及劳动生活场景。

⑤藏族人民创建了绚丽的民族文化,对中华民族有着重要的贡献。

藏族音乐可分为长调音乐、宗教音乐和宫廷音乐三大类。

A.①②⑤B.①④⑤C.②③④D.①②④3.选修乐器演奏模块的同学们在新年音乐会上演奏了乐曲《金蛇狂舞》,乐队中不应当出现的乐器是①扬琴②长笛③小号④琵琶⑤风笛⑥架子鼓⑦木鱼⑧二胡A.①②③④B.②③④⑤C.②③⑥⑦D.②③⑤⑥4.漂亮的奥地利诞生过很多闻名的音乐家,“艺术歌曲之王”舒伯特就是其中之一。

2020年6月江苏省苏北七市2020届高三毕业班下学期第三次调研联考数学试题(解析版)

2020年6月江苏省苏北七市2020届高三毕业班下学期第三次调研联考数学试题(解析版)

绝密★启用前江苏省苏北七市普通高中(南通泰州扬州徐州淮安连云港宿迁)2020届高三毕业班下学期第三次联合调研考试数学试题(解析版)2020年6月一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........)1. 已知集合A={﹣1,0,1},B={0,2},则A B=_______.【答案】{﹣1,0,1,2}【解析】【分析】直接利用集合的并集运算求解.【详解】解:∵集合A={﹣1,0,1},B={0,2},∴A B={﹣1,0,1,2}.故答案为:{﹣1,0,1,2}【点睛】本题主要考查集合的并集运算,意在考查学生对该知识的理解掌握水平,属于基础题.2. 设复数z满足(3﹣i)z,其中i为虚数单位,则z的模是_______.【答案】1【解析】【分析】先利用复数的除法求出复数z,再求复数的模得解.【详解】解:∵(3﹣i)z=10,∴1010(3)3101031010i i i z ++====+, ∴2231010()()11010z =+=. 故答案为:1【点睛】本题主要考查复数的除法运算和复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.3. 如图是一个算法流程图,则输出的k 的值是____.【答案】5【解析】【分析】由已知中的框图可知进入循环的条件为不满足条件2k 4k 0,->模拟程序的运行结果,即可得到输出的k 值【详解】模拟执行程序,可得k=1不满足条件2k 4k 0,->执行循环体,k=2不满足条件2k 4k 0,->执行循环体,k=3不满足条件2k 4k 0,->执行循环体,k=4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省济宁市2020届高三数学模拟考试(6月)试题注意事项:1.答题前考生务必将自己的姓名、准考证号在答题卡上涂写清楚;2.第I 卷,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案母号,在试题卷上作答无效.第I 卷(选择题 共60分)一、单项选择题:本题共8小题,每小题5分,共,40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{}25,3,2,1,2,4A x x B A B =<=--⋂=,则A. {}22-,B. {}22-,1,C. {}21,3,2-,D.5,5⎡⎤-⎣⎦2.i 为虚数单位,复数2112iz i i +=++-,复数z 的共轭复数为z ,则z 的虚部为A.iB. 2i -C. 2-D.13.设,a b 是非零向量,“0a b ⋅=”是“a b ⊥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.在()6132x x x ⎛⎫-+ ⎪⎝⎭的展开式中,常数项为A .152- B. 152 C .52- D .525.函数()1cos sin 1x x e f x x e ⎛⎫-=⋅ ⎪+⎝⎭的图象大致为6.设0.32111log ,432a b ⎛⎫== ⎪⎝⎭则有A .a b ab +>B .a b ab +<C .a b ab +=D .a b ab -=7.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径。

“开立圆术”相当给出了一个已知球的体积V ,求这个球的直径d 的近似公式,即3169d V ≈.随着人们对圆周率π值的认知越来越精确,还总结出了其他类似的近似公式.若取 3.14π=,试判断下列近似公式中最精确的一个是A. 32d V ≈B. 3169d V ≈C. 32011d V ≈D. 32111d V ≈ 8.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线C 的两个交点分别为A ,B ,且满足2,AF FB E =为AB 的中点,则点E 到抛物线准线的距离为A .114B .94C .52D .54二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列说法正确的是A .在做回归分析时,残差图中残差点分布的带状区域的宽度越窄表示回归效果越差B .某地气象局预报:6月9日本地降水概率为90%,结果这天没下雨,这表明天气预报并不科学C .回归分析模型中,残差平方和越小,说明模型的拟合效果越好D .在回归直线方程0.110y x =+中,当解释变量每增加1个单位时,预报变量多增加0.1个单位10.线段AB 为圆O 的直径,点E ,F 在圆O 上,AB ∥EF ,矩形ABCD 所在平面和圆O 所在平面垂直,且2,1AB AD EF ===.则A .DF ∥平面BCEB .异面直线BF 与DC 所成的角为30°C .△EFC 为直角三角形D .1:4C BEF F ABCD V V --=:11.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,下列关于()f x 结论正确的是A .cos12f π⎛⎫= ⎪⎝⎭B .()f x 的一个周期是2πC .()f x 在()0,π上单调递减D .()f x 的最大值大于212.已知直线2y x =-+分别与函数ln xy e y x =和=的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是A .122x x += B. 122x xe e e +> C .1221ln ln 0x x x x +< D .12e x x > 第Ⅱ卷(非选择题 共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知()sin cos tan 2sin cos ααπααα+-==-,则__________. 14.在平行四边形ABCD 中,6,3,.AD AB ==1160,,22DAB DE EC BF FC ∠===2FG GE =若,则=AG BD __________.15.5人并排站成一行,如果甲乙两人不相邻,那么不同的排法种数是__________.(用数字作答);5人并排站成一行,甲乙两人之间恰好有一人的概率是__________(用数字作答)(本题第一空2分,第二空3分)16.设双曲线()222210x y C a b a b-=>0,>:的左、右焦点分别为12122,,2,F F FF c F =过作 x 轴的垂线,与双曲线在第一象限的交点为A ,点Q 坐标为3,2a c ⎛⎫ ⎪⎝⎭且满足22F Q F A >,若在双曲线C 的右支上存在点P 使得11276PF PQ F F +<成立,则双曲线的离心率的取值范围是___________.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)如图,在四边形ABCD 中,AB AD ⊥,___________,DC=2在下面给出的三个条件中任选一个,补充在上面的问题中,并加以解答.(选出一种可行的方案解答,若选出多个方案分别解答,则按第一个解答记分)①234,sin 3AB BC ACB =∠=;②tan 36BAC π⎛⎫∠+= ⎪⎝⎭; ③2cos 23BC ACB AC AB ∠=-(I)求DAC ∠的大小;(Ⅱ)求△ADC 面积的最大值.18.(12分)如图1,四边形ABCD 为矩形,BC=2AB ,E 为AD 的中点,将△ABE 、△DCE 分别沿BE 、CE 折起得图2,使得平面ABE ⊥平面BCE ,平面DCE ⊥平面BCE . (I)求证:平面ABE ⊥平面DCE ;(II)若F 为线段BC 的中点,求直线FA 与平面ADE 所成角的正弦值.19.(12分)已知数列{}n a 的各项均为正数,其前n 项和()1,2n n n a a S n N *+=∈. (I)求数列{}n a 的通项公式a n ;(Ⅱ)设22log 1n n n a b a +=+;若称使数列{}n b 的前n 项和为整数的正整数n 为“优化数”,试求区间(0,2020)内所有“优化数”的和S .20.(12分)过去五年,我国的扶贫工作进入了“精准扶贫”阶段.目前“精准扶贫”覆盖了全部贫困人口,东部帮西部,全国一盘棋的扶贫格局逐渐形成.到2020年底全国830个贫困县都将脱贫摘帽,最后4335万贫困人口将全部脱贫,这将超过全球其他国家过去30年脱贫人口总和.2020年是我国打赢脱贫攻坚战收官之年,越是到关键时刻,更应该强调“精准”.为落实“精准扶贫”政策,某扶贫小组,为一“对点帮扶”农户引种了一种新的经济农作物,并指导该农户于2020年初开始种植.已知该经济农作物每年每亩的种植成本为1000元,根据前期各方面调查发现,该经济农作物的市场价格和亩产量均具有随机性,且两者互不影响,其具体情况如下表:(I)设2020年该农户种植该经济农作物一亩的纯收入为X 元,求X 的分布列;(Ⅱ)若该农户从2020年开始,连续三年种植该经济农作物,假设三年内各方面条件基本不变,求这三年中该农户种植该经济农作物一亩至少有两年的纯收入不少于16000元的概率; (Ⅲ)2020年全国脱贫标准约为人均纯收入4000元.假设该农户是一个四口之家,且该农户在2020年的家庭所有支出与其他收入正好相抵,能否凭这一亩经济农作物的纯收入,预测该农户在2020年底可以脱贫?并说明理由.21.(12分)已知点F 为椭圆22198x y +=的右焦点,点A 为椭圆的右顶点. (I)求过点F 、A 且和直线9x =相切的圆C 的方程;(Ⅱ)过点F 任作一条不与x 轴重合的直线l ,直线l 与椭圆交于P ,Q 两点,直线PA ,QA 分别与直线9x =相交于点M ,N .试证明:以线段MN 为直径的圆恒过点F .22.(12分)已知函数()ln f x x a x =-.(I)若曲线()(),1y f x b a b R x =+∈=在处的切线方程为30x y +-=,求,a b 的值;(Ⅱ)求函数()()()1a g x f x a R x+=+∈的极值点; (Ⅲ)设()()()1ln 0x x h x f x ae a a a a=+-+>,若当x a >时,不等式()0h x ≥恒成立,求a 的最小值.2019—2020学年度高考模拟考试数学参考答案一、单项选择题(每小题5分,共40分)1—4:BCCA 5—8:CADB二、多项选择题(每小题5分,共20分)9.CD 10.BD 11.ABD 12ABC三、填空题(每小题5分,共20分)13.13 14.21 15.72 310 16. 3,22⎛⎫ ⎪ ⎪⎝⎭(注:15题第一个空2分,第二个空3分).四、解答题17.(10分)(I )解:若选①在ABC ∆,由正弦定理可得:sin sin AB BC ACB BAC =∠∠ ………………………………………………………………………………………………1分 又234,sin 3AB BC ACB =∠=可得:1sin ,26BAC BAC π∠=∴∠=………………3分 又23AB AD BAD DAC ππ⊥∠=∠=所以,所以;…………………………………4分(II )在=2ACD DC ∆中,,由余弦定理可得:2224DC AC AD AC AD AC AD ==+-≥…………………………………………6分 即4AC AD ≤……………………………………………………………………………8分11sin 422ADC S AC AD DAC ∆∴=∠≤⨯=10分 当且仅当AC AD =时取“=”若选择②(I )由tan 6BAC π⎛⎫∠+= ⎪⎝⎭6BAC π∴∠=,………………………………2分 又AB AD ⊥所以23BAD DAC ππ∠=∠=,所以;…………………………………4分(II )在2ACD DC ∆=中,,由余弦定理可得:2224DC AC AD AC AD AC AD ==+-≥…………………………………………6分 即4AC AD ≤……………………………………………………………………………8分11sin 4222ADC S AC AD DAC ∆∴=∠≤⨯⨯=10分 当且仅当AC AD =时取“=”.若选③(I )2cos 2BC ACB AC ∠=-,由正弦定理得:2sin cos 2sin BAC ACB ABC ACB ∠∠=∠∠………………………………1分 ()2sin cos 2sin BAC ACB ABC BAC ACB ∠∠=∠+∠∠可得:cos 26BAC BAC π∠=∠=,………………………………………3分 又AB AD ⊥所以23BAD DAC ππ∠=∠=,所以;………………………………4分(II )在2ACD DC ∆=中,,由余弦定理可得:2224DC AC AD AC AD AC AD ==+-≥………………………………………6分 即4AC AD ≤…………………………………………………………………………8分11sin 4222ADC S AC AD DAC ∆∴=∠≤⨯⨯=10分 当且仅当AC AD =时取“=”18.(12分)解:(I )证明:在图1中,BC=2AB ,且E 为AB 的中点,,AE AB AEB ∴=∴∠45︒=,同理45DEC ∠=所以90CEB BE CE ∠=∴⊥, ………………………………………………………………………………………………2分 又平面ABE ⊥平面BCE ,平面ABE ⋂平面BCE BE =,所以CE ⊥平面ABE ,……………………………………………………………………4分 又CE DCE ⊂平面,所以平面ABE ⊥平面DCE ……………………………………5分 (II )由题意可知以E 为坐标原点,EB,EC 所在的直线分别为,x y 轴轴建立空间直角坐标系,设1AB =则()()()2222220,0,0,2,0,0,0,2,0,,0,,0,,0222222E B C A D F ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,, ………………………………………………………………………………………………6分 向量2222,0,,0,,2222EA ED ⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设平面ADE 的法向量为(),,n x y z = 由00100n EA x z z y z n ED ⎧=+=⎧⎪=⎨⎨+==⎩⎪⎩得,令, 得平面ADE 的一个法向量为()1,1,1n =--,…………8分又220,,FA ⎛⎫=- ⎪ ⎪⎝⎭…………………………………10分 设直线FA 与平面ADE 所成角为θ,则26sin 313FA nFA n θ===⨯ 直线FA 与平面ADE 所成角的正弦值为6……………………………………………12分 19.(12分)解:(I )由数列{}n a 的前()12n n n a a n S +=和知 当()1111111=,2a a n S a S +==时, ()111100a a a ∴-=>,又,所以11a =…………………………………………………2分当()()111111,22n n n n n n n a a a a n a S S ---++>=-=-时 整理得:()()1110n n n n a a a a --+--=因为10n n a a -+>,所以有11n n a a --=…………………………………………………4分 所以数列{}n a 是首项11a =,公差1d =的等差数列数列{}n a 的通项公式为()11n a a n d n =+-=…………………………………………6分 (II )由n a n =知:22+22log log 11n n n a n b a n +==++ 数列{}n b 的前n 项和为 12322223452log log log log 2341n n b b b b n ++++⋅⋅⋅+=+++⋅⋅⋅++ ()223452log log 212341n n n +⎛⎫=⨯⨯⨯⋅⋅⋅⨯=+- ⎪+⎝⎭………………………………………8分 令()123n b b b b k k Z +++⋅⋅⋅=∈则有()12log 21,22k n k n ++-==-由()0,2020,10n k Z k k N *∈∈<∈知,且……………………………………………10分所以区间()0,2020内所有“优化数”的和为()()()()2341022222222S -=-+-+-+⋅⋅⋅+-()()29234101121222221818222202612-=+++⋅⋅⋅+-=-=-=-………………12分20.(12分)解:(I )由题意知:120020100023000,120015100017000⨯-=⨯-=,90020100017000,90015100012500⨯-=⨯-=,所以X 的所有可能取值为:23000,17000,12500……………………………………1分 设A 表示事件“作物产量为900kg ”,则()0.5P A =;B 表示事件“作物市场价格为15元/kg ”,则()0.4P B =.则:()()()()2300010.510.40.3P X P A B ===--=……………………………6分 ()()()()()1700010.50.40.510.40.5P X P A B P A B ===+=-+-=………3分()()125000.50.40.2P X P A B ===⨯=,…………………………………………4分 所以X 的分布列为:………………………………………………………………………………………………5分 (II )设C 表示事件“种植该农作物一亩一年的纯收入不少于16000元”,则()()()()1600023000170000.30.50.8P C P X P X P X =>==+==+=,…6分 设这三年中有Y 年的纯收入不少于16000元,则有:()~3,0.8Y B ………………………………………………………………………7分 所以这三年中至少有两年的纯收入不少于16000元的概率为()33223320.80.80.20.896P P Y C C =≥=⨯+⨯⨯=.…………………………………9分(III )由(I )知,2020年该农户种植该经济农作物一亩的预计纯收入为()230000.3170000.5125000.217900E X =⨯+⨯+⨯=(元)…………………10分 1790040004>……………………………………………………………………………11分 凭这一亩经济农作物的纯收入,该农户的人均纯收入超过了国家脱贫标准,所以,能预测该农户在2020年底可以脱贫。

相关文档
最新文档