识一元一次方程优秀课件

合集下载

人教版七上数学.1一元一次方程课件(共37张)

人教版七上数学.1一元一次方程课件(共37张)
你能解释这些方程中等号两边各表示什 么意思吗?体会列方程所根据的相等关系.
(来自教材)
总结
知2-讲
分析实际问题中的数量关系,利用其中的相等关 系列出方程.
知2-练
1 列等式表示: (1)比a大5的数等于8; (2)b的三分之一等于9; (3)x的2倍与10的和等于18; (4)x的三分之一减y的差等于6; (5)比a的3倍大5的数等于a的4倍; (6)比b的一半小7的数等于a与b的和.
(1)a+5=8;
(2) 1 b=9;
3
(3)2x+10=18;
(4) 1 x-y=6;
3
(5)3a+5=4a;
(6) 1 b-7=a+b.
2
(来自教材)
2 根据下列条件能列出方程的是( D ) A.a与5的和的3倍 B.甲数的3倍与乙数的2倍的和 C.a与b的差的15% D.一个数的5倍是18
知2-练
知识点 3 一元一次方程
知3-讲
定义 只含有一个未知数(元),未知数的次数都是1, 等号两边都是整式的方程叫做一元一次方程.
知3-讲
一元一次方程
1、只含有一个未知数 2、未知数的最高次数是1次 3、等号的两边都是整式
知3-讲
例3 下列方程,哪些是一元一次方程?
(1) 1 x+y=1-2y; (2)7x+5=7(x-2);
知4-讲
1.使方程中等号左右两边相等的未知数的值,就是 这个方程的解.
2.求方程的解的过程叫做解方程.
例5 下列说法中正确的是( C )
A.y=4是方程y+4=0的解
B.x=0.000 1是方程200x=2的解
C.t=3是方程|t|-3=0的解
D.x=1是方程
x 2

《一元一次方程》示范课教学PPT课件

《一元一次方程》示范课教学PPT课件
(1)此题中涉及哪些量,这些量之间有什么关系?如何 表示?
(2)你认为应引进什么样的未知量?如何用方程表示这 个问题中的相等关系?
(3)列方程的依据是什么?
合作探究
问题1:一辆客车和一辆卡车同时从A地出发沿同一公路同 方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?
课堂练习
解:(1)设沿跑道跑x周, 400 x 3 000 是一元一次方程.
(2)设甲种铅笔买了x支,乙种铅笔买了(20-x)支,
0.3 x 0.6 20 x 9 是一元一次方程.
课堂练习
2.练习:根据下列问题,设未知数,列出方程,并指出是 不是一元一次方程:
(3)一个梯形的下底比上底多2 cm,高是5 cm,面积是40 cm2,求上底.
合作探究
问题1:一辆客车和一辆卡车同时从A地出发沿同一公路同 方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?
问题2:对于上面的问题,你还能列出其他方程吗? 设客车行驶时间为x h, 根据路程相等列方程,得:70x=60(x+1).
km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?
你会用算术方法解决这个问题吗?
对于1
km的路程,客车比卡车少用:
1 60
1 70
h,
则A,B两地间的路程是:
1
1 60
1 70
=42( 0 km).
合作探究
问题1:一辆客车和一辆卡车同时从A地出发沿同一公路同 方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?

课件《一元一次方程》优质课堂课件_人教版1

课件《一元一次方程》优质课堂课件_人教版1
一件工作,甲单独做10天完成,乙单独做8天完成,
某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生
产多少零件?
第三章 一元一次方程 第12课 一元一次方程与实际问题(6)
一项工程甲单独做需要10天,乙单独做需要12天, 一件工作,甲单独做10天完成,乙单独做8天完成,
产多少零件?
第12课 一元一次方程与实际问题(6)
C

4. 一丙乙项单参工 独 与程 做 工甲 需 作单 要 ,独问15做还天需需.甲要几、天10丙完天先成,做?乙3单天独后做,需甲要因1事2离天去,, 一一一一某产一第一 一一一甲一一一 甲某产第 一一一一一一两某产第第两一第一第一项项件件工多项1件项件项、项件件、工多1件件次件项件根工多三三人件三次1项222工 工 工 工 厂 少 工 工工 工 工 丙 工 工 工丙 厂 少 工 工 停 工 工 工 同 厂 少 章 章 合 工 章 停 工课课 课程程作作计零程作 程作程先程作作 先计零作作电作程作样计零作作电程一一一一一一甲甲,,划件甲, 甲,甲做甲,, 做划件,,,,甲,长划件几,,甲元元元元元 元单单甲甲2?单甲 单甲单3单甲甲 32?甲甲同甲单甲的2?天甲同单666一一一天天一一 一独独单单独单 独单独独单单 单单时单独单蜡完单时独小小小次次次后后次次 次做做独独做独 做独做做独独 独独点独做独烛成独点做时时时方方方,,方方 方需需做做需做 需做需需做做 做做燃做需做,?做燃需生生生程程程甲甲程程 程要要要要要要两要粗两要11111111111产产产00000000000因因与与 与根的根11111111天天天 天天天 天天天天天一一一00000000事事实实 实蜡可蜡天天完完天完 天完天天完完 完完完天完完天批批批离离际际 际烛燃烛,,成成,成 ,成,,成成 成成成,成成,零零零去去问问 问,,4乙乙,,乙, 乙,乙乙,, ,,,乙,,乙件件件小,,题题 题来来单单乙乙单乙 单乙单单乙乙 乙乙乙单乙乙单,,,时(( (电电独独单单独单 独单独独单单 单单单独单单独后后后,666同同做做独独做独 做独做做独独 独独独做独独做因因因)) )细时时需需做做需做 需做需需做做 做做做需做做需每每每的吹吹要要要要要要要要小小小88888888888可天天天 天天天 天天天天天灭灭时时时11111111燃22完完2完 2完22完完 完完完2完完2,,多多多天天天天天天天天3成成成成成成成成成成成发发生生生小,,,,,,,,,,, ,,, ,,,,,现现产产产时粗粗55.5件件件蜡蜡,,,烛烛用用用是是222细细444小小小蜡蜡时时时烛烛,,,的的不不不两两但但但倍倍完完完长长成成成,,了了了求求任任任这这务务务次次,,,停停而而而电电且且且时时还还还间间比 比 比.. 原原原计计计划划划多多多生生生产产产了了了666000件件件,,,问问问原原原计计计划划划生生生

课件《一元一次方程》优秀课件完美版_人教版9

课件《一元一次方程》优秀课件完美版_人教版9

一元一次方程
-4= -1
2x+10=10×4+6×2
2x+10=10×4+6×2
在一个底面直径为5 cm,高为18 cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6 cm,高为10 cm的圆柱形玻璃中,能否
完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离.
π·82·x=π·62·(x+5)
A. 2(x+10)=10×4+6×2 B. 2(x+10)=10×3+6×2 C. 2x+10=10×4+6×2 D. 2(x+10)=10×2+6×2
12. 如图,甲,乙两个等高圆柱形容器,内部底面积分别
为20 cm2,50 cm2,且甲中装满水,乙是空的.若将甲
中的水全部倒入乙中,则乙中的水位高度比原先甲中
解:根据小王的设计可以设宽为x米,则长为(x+5)米. 根据题意得2x+(x+5)=35. 解方程,得x=10. 因此小王设计的长为x+5=10+5=15(米),而墙的长度 只有14米,小王的设计不符合实际. 根据小赵的设计可以设宽为y米,长为(y+2)米. 根据题意得2y+(y+2)=35. 解方程,得y=11. 因此小赵设计的长为y+2=11+2=13(米),而墙的长度 有14米,显然小赵的设计符合要求,此时鸡场的面积为 13×11=143(平方米).
C. 14-3x=6 第7课 应用一元一次方程(1)——水箱变高了
由题意得
π×18=
πy+
π×10.
x- x+5=5

课件《一元一次方程》优秀PPT课件 _人教版6

课件《一元一次方程》优秀PPT课件 _人教版6

典型例题
例3.解方程 9-3x=-5x+5. 解:移项,得 5x-3x=-9+5.
合并同类项,得 2x=-4. 系数化为1,得 x=-2.
随堂练习
1.下列解方程 2(x 15) 3 5(x 7) 时, 去括号正确的是( C ).
A. 2x 15 3 5x 35 B. 2x 30 3 5x 7 C. 2x 30 3 5x 35
解:去括号: 4x+2+x=17.
移项:
4x+x=17-2.
合并同类项: 5x=15.
方程两边同除以5: x=3.
典型例题
例2 解方程-2(x-1)=4. 解法一:去括号: -2x+2=4. 移项: -2x=4-2. 合并同类项: -2x=2. 方程两边同除以5: x=-1. 解法二:方程两边同除以-2,得x-1=-2. 移项: x=-2+1,即x=-1.
随堂练习
3.甲、乙两人登一座山,甲每分登高10米,并且先出发30分, 乙每分登高15米,两人同时登上山顶.甲用多少时间登山?这座山 有多高?
随堂练习
解:设甲用x分登山. 列方程:10x=15(x-30). 去括号: 10x=15x-450. 移项: 10x-15x=-450. 合并: -5x=-450. 系数化为1: x=90. 把x=90代入10x=900. 答:甲用90分登山,这座山高为900米.
复习巩固
3.(1)一元一次方程的解法我们学了哪几步? 移项,合并同类项,系数化为1.
(2)合并同类项及移项的依据是什么? 等式的性质.
(3)“移项”要注意什么? 移项要注意变号.
探究新知
小明家来客人了,爸爸给了小明20元钱,让他买1听果奶和4听
可乐.从商店回来后,小明交给爸爸3元钱.如果我们知道1听可乐

《一元一次方程》PPT优秀课件

《一元一次方程》PPT优秀课件
列方程: 1700 .150x 2450 .
探究新知
(3) 某校女生占全体学生数的52%,比男生多8人,这个学校一共有多少学 生?
解:设这个学校的学生人数为x,那么女生人数为 0.52x,男生人数为 (1- 0.52)x.
等量关系:女生人数- 男生人数=8, 列方程:0.52x- (1-0.52)x=8.
(7) 3x+1.8=3 y.
含有两个
未知数 解析: 只含有一个未知数(元),未知数的次数都是1(次)的整式方程
叫做一元一次方程.
(4)(5)是一元一次方程.
巩固练习
下列哪些是一元一次方程?
(1)3y-7 ;
(2)7a+8=10 ;√
(3)16y-7=9-2y ; √ (4)7y-y2=12;
(5)-4.5y-12=x-10 ; (7)7-13 y 9 .
方程 的解
解方程就是求出使方程中等号两边相等的未知数 的值,这个值就是方程的解.
建立 方程 模型
实际 问题
设未 找等量 知数 关系
列方程
一元一次方程
导入新知 用方程来解决
汽车匀速行驶途经王家庄、青山、秀水三地的时间 如表所示,翠湖在青山、秀水两地之间,距青山50千米 ,距秀水70千米.王家庄到翠湖的路程有多远?
地名 时间 王家庄 10:00
青山 13:00 秀水 15:00
如果设王家庄到翠湖的路程为x千米,你能列出方程吗? 70千米
x千米 50千米
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.

《一元一次方程》_精品课件

《一元一次方程》_精品课件

活动2:探究新知
列方程58+0.25(t-150)=88. 解得t=270.
故当 t =270时,两种计费方式的费用相同, 都是88元;当150<t<270时,按方式一计费 少于按方式二计费; 当270<t< 350时,按方 式一计费多于按方式二计费.
【获奖课件ppt】《一元一次方程》_ 精品课 件2-课 件分析 下载
第三章 一元一次方程 3.4 实际问题与一元一次方程 第4课时 解决实际问题(4)
活动1:创设情境,导入新课
老师这几天又高兴又发愁,高兴的是手 机话费大降价,发愁的是不知如何选择手机 卡,请同学们帮忙出主意.
活动2:探究新知
老师手中的手机卡有两种计费方式,请你 帮老师计算一下哪种方式更省钱.
月使用 费/元
【获奖课件ppt】《一元一次方程》_ 精品课 件2-课 件分析 下载
【获奖课件ppt】《一元一次方程》_ 精品课 件2-课 件分析 下载
活动3:综合运用
某班将买一些乒乓球和乒乓球拍,现了 解情况如下:甲、乙两家商店出售同样品牌 的乒乓球和乒乓球拍.乒乓球拍每副定价40 元,乒乓球每盒10元,经洽谈后,甲店每买一 副球拍赠一盒乒乓球,乙店全部按定价的9折 优惠.该班需买球拍6副,乒乓球若干盒(不 小于6盒).
【获奖课件ppt】《一元一次方程》_ 精品课 件2-课 件分析 下载
【获奖课件ppt】《一元一次方程》_ 精品课 件2-课 件分析 下载
活动2:探究新知
计费方式一
基本费58元
0
150
基本费88元
计费方式二
加超时费0.25元/min
270 350
t /min ( t 是正整数)
加超时费0.19元/min

《一元一次方程》优秀ppt课件

《一元一次方程》优秀ppt课件
(1)写出y1,y2与x之间的函数关系式(即等式); (2)一个月内通话多少分钟,两种通话方式的费用相同? (3)若某人预计一个月内使用话费120元,则应选择哪一
种通话方式较合算?
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
课堂小结
1、计费类的应用题解决时应注意什么? 2、列一元一次方程解应用题的一般步骤有哪
3.4实际问题与一元一次方程
——电话计费问题
(第1课时)
学习目标
会用一元一次方程解决电话计费问题; 重点
会根据实际情况进行列表讨论。难点
《一元一次方程》优秀实用课件(PPT 优秀课 件)
情境导入
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
议一议:怎样选择计费方式更省钱?
•如果一个月内累计通话时间不 足300分,那么选择“方式二” 收费少;如果一个月内累计通 话时间超过300分,那么选择 “方式一”收费少。
《一元一次方程》优秀实用课件(PPT 优秀课 件)
• 假如你爸爸也遇到同样的问题,请为你爸爸作个选择。
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
典题精讲
• 一个周末,王老师等3名教师带着若干名学生外出考察旅游(旅费 统一支付),联系了标价相同的两家旅游公司,经洽谈,甲公司给 出的优惠条件是:教师全部付费,学生按七五折付费;乙公司给的优 惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较 省钱?

《一元一次方程》课件

《一元一次方程》课件
解释
一元代表方程中只有一个未知数 ,一次代表未知数的指数为1,即 未知数为线性关系。
方程形式
标准形式
ax + b = 0(a ≠ 0)
特殊形式
a = 0 或 b = 0 或 ax + b = c(c 为常数)
方程解的概念
01
02
03
解的概念
满足方程的未知数的值称 为方程的解。
解的求法
通过移项、合并同类项、 系数化为1等步骤求解。
PART 03
一元一次方程的应用
代数式与方程的关系
代数式
由数字、字母通过有限次加、减 、乘、乘方运算得到的数学表达
式。
方程
含有未知数的等式,通过等号连接 。
关系
方程是代数式的一种特殊形式,用 于表示未知数与已知数之间的关系 。
实际问题中的一元一次方程
购物问题
速度与时间问题
如“买x个苹果,每个苹果y元,共花 费z元”,可以建立一元一次方程 z = x × y。
a。
利润问题
某商品进价为p元,售价为q元, 利润为r元,可以建立一元一次
方程 r = q - p。
时间与速度问题
某人在路上行走,从起点到终点 需要的时间为t小时,行走的距 离为d公里,可以建立一元一次
方程 d = v × t。
PART 04
一元一次方程的解法技巧
观察法
总结词
通过观察方程的形式,直接得出解的方法。
图解法
总结词
通过绘制数轴上的点来表示方程的解的 方法。
VS
详细描述
对于一些一元一次方程,可以通过在数轴 上绘制点来表示方程的解。例如,对于形 如 (x - 3 = 0) 的方程,可以在数轴上找 到表示 (3) 的点,该点即为方程的解。这 种方法直观易懂,适用于一些简单的一元 一次方程。

《一元一次方程》课件完美版

《一元一次方程》课件完美版
《一元一次方程》课件完美版(PPT优 秀课件 )
定义
注意:移项一定要变号 移项
步骤 合并同类项
应用
系数化为1
《一元一次方程》课件完美版(PPT优 秀课件 )
布置作业
1.教科书第92页习题3.2第6,10,11题。 2.补充作业:周末,甲、乙两个商场搞促销活动,甲商场的 活动为所有商品全部按标价的8折出售,乙商场的活动为标价 200元以下的商品按标价出售,超出200元的部分打7折。现有 某件商品在两个商场的标价都为400元,应当在哪个商场购买 更实惠?如果标价为600元呢?为800元呢?你能否给顾客一 些建议,以便获得更大的实惠呢?
怎样才能使它向 x=a (a为常数)的形式转化呢?
一、用移项解一元一次方程
合作探究 请运用等式的性质解下列方程:
(1) 4x-15 = 9;
你有什么发现?
解:两边都加15,得 4x-15 +15 = 9 +15 合并同类项,得 4x = 9 +15。 4x = 24 系数化为1,得 x=6
(1) 4x--1155= 9

4x = 9 +15 ②
问题1 观察方程①到方程②的变形过程,说一说有 改变的是哪一项?它有哪些变化?
(1) 4x--1155 = 9

4x = 9 +15 ② “-15”这项移动后,从方程的左边移到了方程的右边。
符号由“-”变“+”
(2) 2x = 5x -21 解:两边都减5x,得
2x-5x = 5x-21-5x 2x-5x = -21 合并同类项,得
例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最 大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t。 新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

检验一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算, 2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是
方程的解,反之,则不是.
定标导学
自主合作
释疑深化
主体提升
评估小结
例1 下列各式中哪些是方程?哪些是一 元一次方程?
(1)3x 1 5; (2)1 y 2; (3)2a 3b;
定标导学
自主合作
释疑深化
主体提升
评估小结
例2 根据题意列出方程:
(1)一个数的
1 7
与3的差是最大的一位数,求
这个数;
(2)从正方形的铁皮上,截去2cm宽的一个长
方形条,余下的面积是80cm2,那么原来
的正方形铁皮的边长是多少?
归纳
以上的分析过程可以表示如下 实际问题 设未知数 列方程 一元一次方程
丢番图的墓志铭
坟中安葬着丢番图,多么令人惊讶,它忠实 地记录了其所经历的人生旅程。上帝赐予他的童 年占六分之一,又过了十二分之一他两颊长出了 胡须,再过七分之一,点燃了新婚的蜡烛。五年 之后喜得贵子,可怜迟来的宁馨儿,享年仅及其 父之半,便入黄泉。悲伤只有用数学研究去弥补, 又过四年,他也走完了人生的旅途。
定标导学 自主互助一
释疑深化
主体提升
评估小结
试一试
请你写出两个一元一次方程,并 请小组同学帮你判断,有问题要 及时讨论哦!
定标导学 自主互助二
释疑深化
方程的解:
主体提升
评估小结
使方程左、右两边的 值相等的未知数的值, 叫做方程的解.
定标导学 自主互助二
释疑深化
主体提升
评估小结
探究二
判断:a=2是下列方程的解吗? (1) 3a+(10-a)=14; (2) 2a2+5=7a.
分析实际问题中的数量关系,利用其 中的相等关系列出方程,是用数学解决实 际问题的一种方法.
定标导学
自主合作
释疑深化
主体提升
评估小结
探究三
(1)
是一元一次方程,则k=__2____ .
(2) x|k| 21 0 是一元一次方程,则k=__±__1__ . (3) (k 1)x|k| 21 0 是一元一次方程,则k=___-_1__ . (4)(k 2)x2 kx 21 0 是一元一次方程,则k=__-_2___ .
——法国数学家 笛卡儿
1、根据这篇墓志铭,我们可以用什么方法求出丢番图 去世时的年龄呢?
2、你对方程有什么认识? 含有未知数的等式叫做方程
3、列方程解决实际问题的关键是什么?
5.1 认识一元一次方程
(第一课时)
学习目标
通过对多种实际问题中数量关 1 系的分析,感受方程是刻画现
实世界数量关系的有效模型;
2 通过观察,归纳一元一次方程 的概念,理解方程解的概念;释疑源自化主体提升评估小结
(1) 2x-5=21 共同点:
1、只有一个未知数; (2) 40+15x=100
2、未知数的指数是1;
(3) 22 22 12
x x1 60
3、方程的两边都是整式,即 整式方程
(4) 在x(一1+个147(.3整0%式)=)893方0 程中,只含有一个 (5) 未样(x 知的+2数方5 )程,x=叫且585做未0 知一整数元理 的一指次方数都程是。1,这
一次项的系数不能为0
定标导学
自主合作
释疑深化
主体提升
评估小结
课堂小结(想一想、说一说):
1、本节课你有哪些收获? 2、你还存在的疑问? 3、你参与合作学习的情况如何?
名人语录
“一切问题都可以转化为数学问题, 一切数学问题都可以转化为代数问题,而一 切代数问题又都可以转化为方程问题,因此,
一旦解决了方程问题,一切问题将迎刃而解!”
(4)x 0; (5) x 1 5 ; (6) 2 5 1;
7
x 1
(7) 3x 1 4 2x; (8) y2 3y 0; (9)9x 2 y 15; 2
(10)2x2 4 x 2(5 x2 ).
定标导学
自主合作
释疑深化
主体提升
评估小结
归纳小结
一个整式方程化为最简后,若只含有一 个未知数,并且未知数的指数为1,这才 叫一元一次方程,一元一次方程的标准形 式:ax+b=0 (a、b为常数,a≠0)
3
能利用一元一次方程解决实际 问题。
定标导学 自主互助一
释疑深化
主体提升
评估小结
探究一
1、自主完成学案探究一中的问题; 2、小组合作订正,并解决出现的问题; 3、小组讨论:这些方程中哪些是你熟悉的方程?
它们有什么共同点?(提示:可以从未知数的个数、次数
等方面去考虑。)
4、小组代表展示。
定标导学 自主互助一
相关文档
最新文档