七年级上数学期末复习分类复习.doc

合集下载

七年级上册数学全册期末复习资料

七年级上册数学全册期末复习资料

七年级上册数学全册期末复习资料精典专题一有理数课本-中考-奥数一、单元典型题例1.有理数的分类易错题(1)π不是有理数;(2)0既不是正数,也不是负数;(3)-a是负数吗?2.有理数的大小比较3.利用绝对值的定义求值已知|a|=3,|b|=5,且a<b,求a-b的值4.逆用数学公式、法则若x+y<0,xy<0,x>y,则有()A x>0,y<0,x的绝对值较大;B x>0,y<0,y的绝对值较大;C x<0,y>0,x的绝对值较大;D x<0,y>0,y的绝对值较大.5.利用绝对值的非负性求值若|x-1|+|y+3|=0,求x+y的值6.有理数混合运算计算|-15|+15(-1)2013-52(-0.2)3二. 单元基础检测得分1.(济宁)在数轴上到原点距离等于2的点所表示的数为()A 2B -2C D不能确定2.若|a-2|+(b+3)2=0,则(a+b)2013的值为()A -1B 1CD 520133.下列说法:(1)绝对值等于与它本身的数是正数;(2)近似数2.34万精确到百分位;(3)-a+b与a-b 互为相反数;(4)一个数的倒数等于它的本身,这样的有理数有两个;(5)a2=(-a)2;(6)若|a|>b,则a2>b2,其中正确的个数有()A 2个 B 3个 C 4个 D 5个4.5.(盐城中考)6. 计算 -(-1)+32-21)(⨯+|-2|= 7.(永州)已知0=+bba a ,则ab ab 的值为 。

8. 2(-3)2-4×(-2)+10 9. (-30)×)1036531(--10 ])1(4[41)25.2(134--⨯⨯---11 若ab>0,a+b<0,且|a|=5,|b|=2,,则a 3+b 2的值是多少?12.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)三、有理数的计算提高版例1.求和2012...3211...432113211211++++++++++++++例2.已知a 、b 、c 都不等于0,且||||||||abc abc c c b b a a +++的最大值为m ,最小值为n ,求2012(m+n+1)的值。

山东省数学七年级上学期期末复习专题1 有理数的分类及数轴

山东省数学七年级上学期期末复习专题1 有理数的分类及数轴
②对折后数轴上原点与表示的点重合(用含 , 的式子表示).
B.①该数轴对折点表示的有理数为(用含 , 的式子表示);
②对折后数轴上表示有理数 的点与表示的点重合(用含 , , 的式子表示).
三、 综合题 (共8题;共81分)
19. (5分)(2020七上·台州月考)把下列各数填入相应的大括号内(将各数用逗号分开)6,-3,2.4, ,0,-3.14, ,+2,-3 ,-1.414,-17, .
(4) 同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.
(5) 由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
参考答案
一、 单选题 (共10题;共20分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、
考点:
解析:
答案:6-1、
考点:
解析:
答案:7-1、
考点:
解析:
答案:8-1、
考点:
解析:
答案:9-1、
考点:
解析:
答案:10-1、
考点:
解析:
二、 填空题 (共8题;共9分)
答案:11-1、
考点:
解析:
答案:12-1、
考点:
解析:
答案:13-1、
考点:
解析:
答案:14-1、
考点:

七年级数学上册期末复习资料(Word版)

七年级数学上册期末复习资料(Word版)

七年级数学上册期末复习资料(2021最新版)作者:______编写日期:2021年__月__日-----------3.1一元一次方程及其解法①方程是含有未知数的等式。

②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

方程的解代入满足,方程成立。

⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。

a=b得:a+(-)c=b+(-)c2)等式两边同时乘以或除以同一个不为零的数,等式不变。

a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。

⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b (a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)--------3.2一次方程的应用:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。

初中七年级数学上册期末专项复习4套含答案

初中七年级数学上册期末专项复习4套含答案

A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020

② 1 1 1
1

13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)1.数轴是学习初中数学的一个重要工具利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:数轴上点A、点B表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为;AB=a﹣b线段AB的中点M表示的数为.如图,已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位长度的速度沿数轴向右匀速运动,点B以每秒2个单位长度向左匀速运动,设运动时间为t 秒(t>0).(1)运动开始前,A、B两点的距离为个单位长度;线段AB的中点M所表示的数为;(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为.(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A、B按上述方式运动,A、B两点经过多少秒,线段AB的中点M与原点重合?2.已知两点A、B在数轴上,AB=9,点A表示的数是a,且a与(﹣1)3互为相反数.(1)写出点B表示的数;(2)如图1,当点A、B位于原点O的同侧时,动点P、Q分别从点A、B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P、Q所表示的数;(3)如图2,当点A、B位于原点O的异侧时,动点P、Q分别从点A、B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当|OM﹣ON|=2时,求动点P、Q运动的速度.3.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合).4.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.5.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示﹣12,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:(1)动点Q从点C运动至点A需要秒;(2)P、Q两点相遇时,求出t的值及相遇点M所对应的数是多少?(3)求当t为何值时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍(即P点运动的路程=Q点运动的路程).6.【阅读理解】点A、B在数轴上对应的数分别是a,b,且|a+2|+(b﹣8)2=0.A、B两点的中点表示的数为;当b>a时,A、B两点间的距离为AB=b﹣a.(1)求AB的长.(2)点C在数轴上对应的数为x,且x是方程2x+8=x﹣2的解,在数轴上是否存在点P,使PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由.(3)点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒8个单位的速度向左运动,点N从点B出发,以每秒5个单位的速度向右运动,P、Q 分别为ME、ON的中点,求证:在运动过程中,的值不变,并求出这个值.7.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?8.已知,如图所示,A、B、C是数轴上的三点,点C对的数是6,BC=4,AB=12.(1)写出A、B对应的数;(2)动点P、Q同时从A、C出发,分别以每秒6个单位,3个单位速度沿数轴正方向运动,M是AP的中点,N在CQ上且CN=CQ,设运动时间为t(t>0).①求点M、N对应的数(含t的式);②x为何值时OM=2BN.9.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B 以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.10.已知,数轴上两点A,B表示的数分别是9和﹣6,动点P从点A出发,以每秒3个单位的速度沿数轴向点B运动,运动到点B停止;(1)在数轴上表示出A,B两点,并直接回答:线段AB的长度是;(2)若满足BP=2AP,求点P的运动时间;(3)在点P运动过程中,若点M为线段AP的中点,点N为线段BP的中点,请计算线段MN的长度,并说出线段MN与线段AB的数量关系;(4)若另一动点Q同时从B点出发,运动的速度是每秒2个单位,几秒钟后,线段PQ 长度等于5?参考答案1.解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示数为.故答案是:18;﹣1(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t.故答案是:﹣10+3t;8﹣2t(3)设它们按上述方式运动,A、B两点经过x秒会相距4个单位长度.根据题意得3x+2x=18﹣4,解得x=2.8;3x+2x=18+4,解得x=4.4.答:A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)由题意得解得t=2.答:经过2秒A、B两点的中点M会与原点重合.2.解:(1)∵a与(﹣1)3互为相反数∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示,②当点A、点B在原点的异侧时,点B所表示的数为1﹣9=﹣8,如图2所示,故点B所表示的数为10或﹣8;(2)当点A、B位于原点O的同侧时,点B表示的数是10设点Q的运动速度为x,则点P的速度为2x∵3秒后两动点相遇∴3(x+2x)=9解得:x=1∴点Q的运动速度为1,则点P的速度为2运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9解得:t=;∴点P表示的数为:1+2×=,点Q表示的数为:10﹣=;②相遇后,再运动y秒,P、Q两点相距2,由题意有:y+2y=2解得:y=∴点P表示的数为:1+3×2+×2=,点Q表示的数为:10﹣3×1﹣×1=;(3)根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度∴点Q的运动速度为:9÷5=1.8设点P的速度为v,∵|OM﹣ON|=2∴|9+1﹣(5v+1)|=2解得:v=或∴点P的速度为或.3.解:(1)A、B两点的距离为:8﹣(﹣10)=18;线段AB的中点M所表示的数为﹣1.故答案为:18;﹣1;(2)由题意可得点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;故答案为:﹣10+3t;8﹣2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时,依题意列式,得3t+2t=18﹣4,解得t=2.8;当点A在点B右侧时,3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)能.设A,B按上述方式继续运动k秒线段的中点M能与原点重合,根据题意列方程,可得=0,解得k=2.运动开始前M点的位置是﹣1,运动2秒后到达原点,由此得M点的运动方向向右,其速度为:|﹣1÷2|=个单位长度.答:运动时间为2秒,中点M点的运动方向向右,其运动速度为每秒个单位长度.4.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.5.解:(1)点Q运动至点A时,所需时间t=(20﹣12)÷1+12÷2+12÷1=26(秒).答:动点Q从点C运动至点A需要26秒;(2)由题可知,P、Q两点相遇在线段OB上M处,设OM=x.则12÷2+x÷1=(20﹣12)÷1+(12﹣x)÷2,解得x=,12÷2+÷1=6+5=11.答:t的值是11,相遇点M所对应的数是.(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍有2种可能:①动点Q在OB上,动点P在BO上,相遇前,则:12+(t﹣12÷2)=[20﹣12+2(t﹣8÷1)],解得:t=.②动点Q在OA上,动点P在BC上,相遇后,则:12+12+2(t﹣18)=[8+12+(t﹣8÷1﹣12÷2)],解得:t=26.综上所述:当t为或26时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍.故答案为:26.6.(1)解:∵|a+2|+(b﹣8)2=0,∴a=﹣2,b=8,∴AB=8﹣(﹣2)=10;(2)解:2x+8=x﹣2,∴x=﹣10,∴C在数轴上对应的数为﹣10,设点P对应的数为y,由题意可知,点P不可能位于点A的左侧,所以存在以下两种情况:①点P在点B的右侧,∴(y﹣8)+[y﹣(﹣2)]=y﹣(﹣10),∴y=16,②当点P在A、B之间,∴(8﹣y)+[y﹣(﹣2)]=y﹣(﹣10),∴y=0,综上所述,点P对应的数是16或0;(3)证明:设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣8t,点N对应的数是8+5t,∵P是ME的中点,∴P点对应的数是=﹣1﹣t,又∵Q是ON的中点,∴Q点对应的数是=4+t,∴MN=(8+5t)﹣(﹣2﹣8t)=10+13t,OE=t,PQ=(4+t)﹣(﹣1﹣t)=5+6t,∴===2(定值).∴在运动过程中,的值不变,这个值是2.7.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.8.解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10.故点A对应的数是﹣10,点B对应的数是2;(2)①AP=6t,CQ=3t,如图1所示:∵M为AP的中点,N在CQ上,且CN=CQ,∴AM=AP=3t,CN=CQ=t,∵点A表示的数是﹣10,点C表示的数是6,∴点M表示的数是﹣10+3t,点N表示的数是6+t;②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,∴|﹣10+3t|=2(4+t)=8+2t,∴﹣10+3t=±(8+2t),当﹣10+3t=8+2t时,t=18;当﹣10+3t=﹣(8+2t)时,t=.∴当t=18或t=时,OM=2BN.9.解:(1)∵AB=15,OA:OB=2∴AO=10,BO=5∴A点对应数为﹣10,B点对应数为5,故答案为:﹣10、5.(2)画图如下:∵点E、F分别为BP、AO的中点∴OF=AO,BE=BP∴EF=OF+OB+BE=AO+OB+BP∴===2.(3)设运动时间为t秒,则点P对应的数:5+4t;点A对应的数:﹣10+2t;点B对应的数:5+5t;∴AP=5+4t﹣(﹣10+2t)=2t+15;OP=5+4t;BP=t.∴3AP+2OP﹣mBP=3(2t+15)+2(5+4t)﹣mt=(14﹣m)t+55.∴当m=14时,为定值55.10.解:(1)如图所示:线段AB的长度是9﹣(﹣6)=9+6=15,故答案为:15;(2)设AP=3t,则BP=6t,可得3t+6t=15,∴t=;(3)∵AP=3t,∴BP=15﹣3t,∵点M为线段AP的中点,点N为线段BP的中点,∴MP=AP=t,PN=(15﹣3t),则MN=MP+PN=t+(15﹣3t)=,∴MN=AB;(4)设BQ=2t,当Q在AB上时,①15﹣2t﹣3t=5,解得t=2;②2t+3t﹣15=5,解得t=4;当Q在AB外时,2t+(15﹣3t)=5,解得t=4;此时,点P不在线段AB外(舍去)综上所述,当2秒或4秒时,线段PQ的长度等于5.。

七年级(上)数学期末总复习

七年级(上)数学期末总复习
(1)单程花 20 分钟这一数据的频数最大 (2)小于20分钟的人数占总人数的40%
等于20分钟的人数占总人数的40% 大于20分钟的人数占总人数的20% (3)老师随机地问一个同学,最可能得到 的答案是20分钟.
课后练习 一、填空题 1.数一数,在图中,共有_2_2_条线段.
2.如图 ( 1 ) 如 果 AD//BC , 那 么 根 据两__直__线__平__行__同__位__角__相__等__ ,
例6.下面是某班30学生每天上学单程所到时间(分钟)
(1)在这个统计表中,单程花_______分钟这一数 据的频数最大.
(2)若把这些数据分成小于20分钟,等于20分钟, 和大于20分钟这三档,则各档人数各占总人数的多少.
(3)Байду номын сангаас如老师随机地问一个同学,你认为老师最可 能得到的答案是几分钟
答:
(2)线段、射线、直线等简单平面图形的有关概念,特 征和表示法,三者的区别和联系,及线段中点概念,和进 行有关的简单计算.
(3)角的有关概念.表示法,度、分、秒、间的 换算及简单的计算.会比较角的大小及分类.
(4)平行线,相交线,了解了有关平行线垂线 的特征及识别.
4.数据的收集 通过解决简单的实际问题,体会大千世界的 不确定性,熟悉收集,整理数据,学会根据 不同问题选择适当统计图描述数据得到较明 显的结论,理解频数、频率,不可能发生, 可能发生和必然发生的概念.
二、典型例题分析 例1.把下面各数填入表示它所在数集里.
-3,11, 2 ,0,2003,0.414,-0.618,-7% 5
解:
例2.有理数a、b、c在数轴上的位置如图所示: 化简|a+b|-|c-b|
解:由a、b、c在数轴上所处的 位置可知:a<0、b>0、c<0, 且|a|<|b|<|c|.a+b>0,c-b<0 所以|a+b|=a+b,|c-b|=b-c. |a+b|-|c-b|=a+b-(b-c)=a+c.

七年级上册数学期末复习资料

七年级上册数学期末复习资料

七年级上册数学期末复习资料七年级上册数学期末复习资料1有理数★有理数的分类1.如果按定义分,有理数可以分为整数(正整数;负整数;0)和分数(正分数,负分数)。

如果按正、负分,有理数可以分为正有理数(正整数;正分数)、0、负有理数(负整数;负分数)。

2.所有的有理数都可以用分数表示,π不是有理数。

数轴★1.数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。

相反数1.只有符号不同的两个数叫做互为相反数。

(0的相反数是0)绝对值1.数轴上一点a到原点的距离表示a的绝对值。

★2.绝对值的性质:非负性。

3.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

有理数的大小1.正数大于0,负数小于0,正数大于负数。

2.两个负数,绝对值大的反而小。

有理数的加法1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。

一个数同0相加,仍得这个数。

3.在有理数的加法中,加法交换率:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

有理数的减法减去一个数,等于加这个数的相反数。

★有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘后得0。

倒数:乘积是1的两个数互为倒数。

乘法交换律:乘法交换律两个数相乘,交换因数的位置,积不变。

乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

★有理数的除法除以某个不为0数等于乘与这个数的倒数两数相除同号为正,异号为负,并把绝对值相除0除以任何一个不等于0的数,都等于0。

有理数的混合运算1.运算顺序:先算乘方,再算乘除,最后算加减。

如果是同级运算,则按从左到右的运算顺序计算。

如果有括号,先算小括号,再算中括号,最后算大括号。

七年级数学上册期末复习要点

七年级数学上册期末复习要点

七年级数学上册期末复习要点第一章有理数一、正数和负数1、大于0的数叫做正数,在正数前面加一个“—”的数叫做负数,0既不是正数,也不是负数;2、表示相反意义的量:盈利与亏损,存入与支出,增加与削减,运进与运出,上升与下降等3、正、负数所表示的实际意义:例题:北京冬季里某天的温度为—3°c~3°c,它确实切含义是什么?这一天北京的温差是多少?吐鲁番盆海拔—155米,世界最顶峰珠穆朗玛海拔8848.13米二、有理数2.1有理数的分类2.2 数轴1、定义:用一条直线上的点表示数,这条直线就叫做数轴。

2、满意的条件:〔1〕在直线上取一个点表示数0,这个点叫做原点;〔2〕通常规定直线从原点向右〔或上〕为正方向,从原点向左〔或下〕为负方向;〔3〕选取适当的长度为单位长度。

2.3相反数定义:只有符号不一样的两个数叫做相反数一般地:a和互为相反数,0的相反数仍旧是0。

在正数的前面添加负号,就得到这个正数的相反数;在分数的前面添加负号,就得到这个数的相反数。

2.4肯定值1、定义:数轴上表示数a的点与原点的距离叫做数a 的肯定值,记作∣a∣由定义可知:一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0。

〔1〕当a是正数时,∣a∣= ;〔2〕当a是负数时,∣a∣= ;〔3〕当a=0时,∣a∣= 。

2.5比拟两个数的大小〔1〕正数大于0,0大于负数,正数大于负数;〔2〕两个负数,肯定值大的反而小。

三、有理数的加减法1、加法法那么:〔1〕同号两数相加:取一样的符号,并把肯定值相加;〔2〕异号两数相加:肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值,互为相反数的两个数相加得0;〔3〕一个数和零相加:任何数和零相加都等于它本身。

2、加法交换律、结合律〔1〕有理数的加法交换律:两个数相加,交换加数的位置,和不变a+b=b+a〔2〕有理数的加法结合律:三个数相加,先把前面两个数相加,或先把后两个数相加,和不变(a+b)+c=a+(b+c)3、有理数的减法法那么:减去一个数,等于加上这个数的相反数:a-b=a+(-b)四、有理数的乘除法有理数的乘法法那么:1. 两数相乘,同号得正,异号得负,并把它们的肯定值相乘。

新人教版七年级数学上册期末专题总复习资料

新人教版七年级数学上册期末专题总复习资料

新人教版七年级数学上册期末专题总复习资料人教版七年级数学上册期末专题总复资料类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三类型一加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】515-3;1-(+6)-3+(-1.25)- 48/82.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】6.82)+3.78+(-3.18)-3.78;311/-5 + (-9)/8 - 1.25.三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是()A。

B。

-1 C。

2016 D。

-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥时,|a|=a;当a<0时,|a|=-a.根据以上阅读完成下列问题:1)|3.14-π|=________;1/1-1/11+1/111-1/1111+…-1/2013+1/2014-1/2015-1/2016 2)计算:2/3-3/2+4/3-9/8+10/9类型二运用分配律解题的技巧一、正用分配律5.计算.131/2-4+8×(-24);39×(-14).二、逆用分配律666/(-3)-3×(-3)-6×3.6.计算:4×7/7.三、除法变乘法,再利用分配律122/6-7+3÷(-42).参考答案与解析1.解:(1)原式=1+(-1.25)-6+4/8= -4.75.2)原式=2.3+6.2-(-1.7-2.2-1.1)= 3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)= -10.2)原式=19+8/4-9/8-1.25= 3.3.D4.解:(1)π-3.14=π-3.14.2)原式=1-1/2-1/10= 3/5.5.解:(1)原式=-12+18-3=3.2)原式=2/3-3/2+4/3-9/8+10/9= 55/72.1.下列说法正确的是()A。

人教版七年级数学上册期末复习大纲【五篇】

人教版七年级数学上册期末复习大纲【五篇】

关注我谢谢你
人教版七年级数学上册期末复习大纲【五篇】
【篇一】第一章有理数
--------------1.1正数与负数
①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。

整数和分数统称有理数。

⑥非负数就是正数和零;非负整数就是正整数和0。

⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。

-------------1.2数轴
①通常用一条直线上的点表示数,这条直线叫数轴。

②数轴三要素:原点、正方向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表
15。

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一有理数的意义一、双基回顾1、前进8米的相反意义的量是;盈利50元的相反意义的量是。

2、向东走5m记作+5m,则向西走8记作,原地不动用表示。

正数{…};负数{…};分数{…};整数{…};非负整数{…};非正数{…}。

4、与表示-1的点距离为3个单位的点所表示的数是。

5、数轴上到原点的距离为2的点所表示的数是。

6、3的相反数的倒数是。

7、最小的自然数是;最小的正整数是;绝对值最小的数是;最大的负整数是。

8、相反数等于它本身的数是,绝对值等于它本身的数是,平方等于它本身的数是,,倒数即是它自己的数是。

9、如图,如果a<,b>0,那么a、b、-a、-b的大小关系是.10、已知︱a+2︱+(3- b)2=0,则a b =。

ab二、例题导引例1(1)大于-3且小于2.1的整数有哪些?(2)绝对值大于1小于4.3的整数的和是多少?例2已知a、b互为相反数,m、n互为倒数,︱x︱=3,求(a+b)2-3mn+2x的值。

例3(1)若a<,a2=4,b3=-8,求a+b的值。

(2)已知︱a︱= 2,︱b︱=5,求a-b的值;3、操演升华1、判断下列叙述是否正确:①零上6℃的相反意义的量是零下6℃,而不是零下8℃()②如果a是负数,那末-a就是正数()③正数与负数互为相反数()④一个数的相反数长短正数,那末这个数肯定长短负数()⑤若a=b,则︱a︱=︱b︱;若︱a︱=︱b︱,则a=b()2、一种零件标明的要求是Ф10(单位:mm)表示这种零件的标准尺寸是10mm,加工零件要求最大直径不超过mm,最小直径不小于mm.。

3、某天气温上升了-2℃的意义是。

5、12的相反数与-7的绝对值的和是。

6、若a<0,b<0,则下列各式正确的是( )A、a-b<0 B、a-b>0 C、a-b=0 D、(-a)+(-b)>07、两个非零有理数的和是,它们的商是()A、0B、-1C、1D、不能确定8、若|x|=-x,则x=_____;若︱x-2︱=3,则x= .9、古希腊科学家把数1,3,6,10,15,21,……叫做三角形数它有一定的规律性,第个三角形数为_______。

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一:有理数的意义一、双基回顾1.前进8米的相反数是后退8米,盈利50元的相反数是亏损50元。

2.向东走5m记作+5m,则向西走8m记作-8m,原地不动用0表示。

3.把下列各数填入相应的大括号中:正数{7,11/2,0.25};负数{-9.25,-301,-7/3};分数{11/2,-7/3,0};整数{7,-9,-301,0};非负整数{0,7,11/2};非正数{-9.25,-301,-7/3,0}。

4.与表示-1的点距离为3个单位的点所表示的数是-4.5.数轴上到原点的距离为2的点所表示的数是±2.6.3的相反数的倒数是-1/3.7.最小的自然数是1;最小的正整数是1;绝对值最小的数是0;最大的负整数是-1.8.相反数等于它本身的数是0,绝对值等于它本身的数是0,平方等于它本身的数是1,立方等于它本身的数是0,倒数等于它本身的数是1.9.如图,如果a0,那么-a>b>-b>a。

10.已知|a+2|+(3-b)²=0,则a=-2,b=3/2.二、例题导引例11) 大于-3且小于2.1的整数有-2,-1,0,1.2) 绝对值大于1小于4.3的整数的和是-3+2+1+3+4=7.例2由a、b互为相反数可得a+b=0,由m、n互为倒数可得mn=1,代入(a+b)²-3mn+2|x|的式子中得(-6)²-3+6=33.例31) 由a²=4得a=±2,由b³=-8得b=-2,故a+b=0.2) 由|a|=2,|b|=5得a=-2,b=5,故a-b=-7.三、练升华1.判断下列叙述是否正确:①零上6℃的相反数是零下6℃,而不是零下8℃。

(错误)②如果a是负数,那么-a就是正数。

(正确)③正数与负数互为相反数。

(正确)④一个数的相反数是非正数,那么这个数一定是非负数。

河南省数学七年级上学期期末复习专题1 有理数的分类及数轴

河南省数学七年级上学期期末复习专题1 有理数的分类及数轴

河南省数学七年级上学期期末复习专题1 有理数的分类及数轴姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016七上·瑞安期中) 下列说法不正确的是()A . 任何有理数都有绝对值B . 整数、分数统称有理数C . 最大的负数是-1D . 零是最小的自然数2. (2分) (2020七上·丹东期中) 下列说法中:(1)一个数,如果不是正数,必定就是负数;(2)整数与分数统称为有理数;(3)如果两个数的绝对值相等,那么这两个数相等;(4)符号不同的两个数互为相反数.其中正确的有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2019七上·东莞期末) 若有理数a、b在数轴上的对应点的位置如图所示,则下列结论中错误的是()A . a<bB . ab<0C . a>﹣bD . a+b<04. (2分)如图所示,则下列判断错误的是()A . a+b<0B . a﹣b>0C . b>aD . |a|<|b|5. (2分)下列说法中,正确的是()A . 存在最小的有理数B . 存在最大的负有理数C . 存在最小的正有理数D . 存在最大的负整数6. (2分) (2020七上·扎兰屯期末) 有理数a、b在数轴上的位置如图所示,则a+b的值()A . 大于B . 小于C . 小于D . 大于7. (2分)有理数a在数轴上的位置如图所示,则下列说法不正确的是()A . ﹣a>2B . a+2>2C . |a|>2D . 2a<08. (2分) (2017七上·静宁期中) 如果规定收入为正,支出为负.收入500元记作+500元,那么支出200元应记作()A . ﹣500元B . ﹣200 元C . +200元D . +500元9. (2分) (2019七上·嵊州期中) 下列说法正确的个数为()(1)0是绝对值最小的有理数;(2)-1乘以任何数仍得这个数;(3)0除以任何数都等于0;(4)数轴上原点两侧的数互为相反数;(5)一个数的平方是正数,则这个数的立方也是正数;(6)一对相反数的平方也互为相反数A . 0个B . 1个C . 2个D . 3个10. (2分) (2019八下·岱岳期末) 若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根为()A .B . 2020C . 2019D . 2018二、填空题 (共8题;共9分)11. (1分)有限小数和无限循环小数统称________ 数.12. (1分)小李不慎将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数有________个.13. (1分) (2019七上·临汾月考) 小明在写作业时不慎将两滴墨水滴在数轴上(如图),根据图中的数据,判断墨迹盖住的整数有________个.14. (1分) (2020七上·淮南期中) 一只蜗牛在数轴上爬行,从原点出发爬行5个单位长度到达终点,那么这个终点表示的数是________.15. (1分) (2020七上·麻城期中) 若数轴上点A表示的数为﹣2,将点A沿数轴正方向平移4个单位,则平移后所得到的点表示的数是________.16. (1分) (2020七上·西安月考) 如图,在数轴上有、、、、、个点,点表示,点表示,且,则与点所表示的数最接近的整数是________.17. (1分) (2017七上·温岭期末) 有理数a、b、c在数轴上的位置如图所示,化简的结果是________.18. (2分) (2020七上·苏州月考) 如图,若点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB.则AB=|a-b|.所以式子|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,解答下列问题:(1)若|x – 5|=|x+1|,则x= ________;(2)式子|x-3|+|x+2|的最小值为________;(3)若|x-3|+|x+2|=7,则x=________.三、综合题 (共8题;共81分)19. (5分) (2019七上·大洼期中) 把下列各数分别填入相应的大括号内:自然数集合{…};整数集合{…};正分数集合{…};非正数集合{…};20. (10分) (2018九下·江都月考) 我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q 是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)= .例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)= .(1)若F(a)= 且a为100以内的正整数,则a=________(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由。

初一上册数学期末重点知识点复习总结11篇

初一上册数学期末重点知识点复习总结11篇

初一上册数学期末重点知识点复习总结优秀11篇初一数学上册复习资料篇一有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

七年级上册数学期末复习资料篇二第二章有理数1 、正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数。

与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。

2 、有理数(1) 正整数、0、负整数统称,正分数和负分数统称。

整数和分数统称。

0既不是数,也不是数。

(2) 通常用一条直线上的点表示数,这条直线叫数轴。

数轴三要素:原点、、单位长度。

在直线上任取一个点表示数0,这个点叫做。

(3) 只有符号不同的两个数叫做互为相反数。

例:2的相反数是;-2的相反数是;0的相反数是(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

3 、有理数的加减法(1)有理数加法法则:①同号两数相加,取相同的,并把绝对值相加。

②绝对值不相等的异号两数相加,取符号,并用减去较小的绝对值。

互为相反数的两个数相加和为0。

③一个数同0相加,仍得这个数。

(2) 有理数减法法则:减去一个数,等于加这个数的相反数。

4、有理数的乘除法(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

(2) 乘积是1的两个数互为倒数。

例:-的倒数是;绝对值是;相反数是。

(3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。

有理数除法法则2:两数相除,同号得,异号得,并把相除。

(完整word版)七年级上册数学常考题型归纳(期末复习用)

(完整word版)七年级上册数学常考题型归纳(期末复习用)

ab 0七年级上册数学常考题型归纳第一章有理数一、正负数的运用 :1、某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适; A .18℃~20℃ ; B .20℃~22℃ ; C .18℃~21℃ ; D .18℃~22℃;2、我县2011年12月21日至24日每天的最高气温与最低气温如下表:日期 12月21日12月22日12月23日12月24日最高气温 8℃ 7℃ 5℃ 6℃ 最低气温-3℃-5℃-4℃-2℃其中温差最大的一天是【 】;A .12月21日;B .12月22日;C .12月23日;D .12月24日 ;二、数轴: (在数轴表示数,数轴与绝对值综合)3、如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为【 】;A .-1;B .-2 ;C .-3 ;D .-4; (思考:如果没有图,结果又会怎样?)4、若数轴上表示2的点为M ,那么在数轴上与点M 相距4个单位的点所对应的数是______;5、如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( );;A .a +b>0 ;B .ab >0;C .110a b -<;D .110a b +>6、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( ); A .a <a -<b <b -; B .b -<a <a -<b ;C .a -<b <b -<a ;D .b -<a <b <a -;7、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( );A .0ab >B .0a b +<C .1ab <D .0a b -<8、有理数a 、b 、c 在数轴上的位置如图3所示,且 a 与b 互为相反数,则c b c a +--= ;9、如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是 .B 02A-1 a 01 b 图3ao cb 图3三、相反数 :(相反的两数相加等于0,相反数与数轴的联系)10、下列各组数中,互为相反数的是( );A .)1(--与1 ;B .(-1)2与1; C .1-与1; D .-12与1;四、倒数 :(互为倒数的两数的积为1)11、-3的倒数是________;五、绝对值 (|a |≥0,即非负数;化简|a+b |类式子时关键看a+b 的符号;如果|a |=b ,则a=±b )12、2-等于( ); A .-2 ; B .12- ; C .2 ;D .12; 13、若ab ≠0,则等式a b a b+=+成立的条件是______________;14、若有理数a, b 满足(a-1)2+|b+3|=0, 则a-b= ;15、有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是_____________;六、乘方运算[理解乘方的意义;(-a)2与-a 2的区别; (-1)奇与(-1)偶的区别]16、下列计算中正确的是( );A .532a a a =+ ; B .22a a -=- ; C .33)(a a =- ; D .22)(a a --;七、科学计数法 (表示形式a ×10n )17、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.八、近似数与准确数(两种表示方法)18、由四舍五入法得到的近似数3108.8×,下列说法中正确的是【 】;A .精确到十分位 ;B .精确到个位;C .精确到百位;D .精确到千位; 19、下面说法中错误的是( );A .368万精确到万位 ;B .2.58精确到百分位;C .0.0450有精确到千分位 ;D .10000精确到万位表示为“1万”或“1×104”;九、有理数的运算(运算顺序;运算法则;运算定律;简便运算)20、计算:(1)-2123+334-13-0.25 (2)22+2×[(-3)2-3÷12](3))23(24)32(412)3(22---×++÷÷ (4)24)75.337811()1()21(25.032×++×÷----(5)(-1)3-14×[2-(-3)2] . (6)计算:()2431(2)453⎡⎤-+-÷⨯--⎣⎦十、综合应用:21、已知4个数中:(―1)2005,2-,-(-1.5),―32,其中正数的个数有( );A .1 ;B .2;C .3 ;D .4;22、下列说,其中正确的个数为( );①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习必备 欢迎下载第 2 章有理数 --- 相关概念一、知识点复习及例题选讲1、知识点 1: 相反意义的量。

用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的, 但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为 负。

例 : 收入 200 元记作 +200, 那么 -100 表示 _____________________2、知识点 2, 正数和负数的概念 , 及有理数分类。

注意 :0 不是正数也不是负数 . 有理数分类有 2 种分类是哪 2 种?注 : 非负数指 __ 非正数指 __ ,非负整数指 __ ___ 非正整数指 _ __ 例:( 2) , 3.5 ,4, -.35,2.5 ,22,0 这些数中5正 数 有 ________________ 负 数 有 ___________ 分 数 有 __________________ 整 数 有_______________________ 非正整数 ____________________, 非负整数有 _________________ 3、知识点 3: 数轴的概念1)知道数轴的 3 要素 , 会判断所给的数轴是否正确 . 例 : 下面给出四条数轴 , 是否有错误 ? ① ③ -3 -2-1 1 234-3 -2 -1 0 1 2 3 ②④3 2 1 0 -1 -2 -3-3 -2 -1 0 1 2 3 2)会在数轴上读出所给点表示的数 , 会画数轴并表示点 .3 )通过数轴如何比较大小 ?例 : 画出数轴 , 在数轴上表示下列各数 , 并用“ >”连接 .+5, -2.5,1,1 1, -|-4|, 0,3.5224) 在数轴上 , 原点右边的点表示 ______, 左边的点表示 ______.4、知识点 4: 相反数。

1)相反数的概念 ?2)互为相反数的 2 个数在数轴有什么特点 ?3)相反数的表示方法 , 一般的数 a 的相反数表示为 ______. 例 . 2 的相反数是 ____ 5、知识点 5: 倒数。

1)倒数概念 ?2)如何求一个数的倒数 ?6、知识点 6: 绝对值。

1)绝对值概念 ?2)整数的绝对值是 ________, 负数的绝对值是 ______, 零的绝对值是 _____3)通过绝对值如何比较 2 个负数的大小 ?例 : 绝对值最小的数是 _______绝对值等于本身的是 ______绝对值是其相反数的是 _______若 x =5, 那么 x=_____用“﹤”“﹥”或“ =”填空: -6 6 ,-1 -10 ,-︱-0.4 ︱ (-4) 4) . 绝对值和乘方集合的题目 : 若 x2 + ( y 5) 2 =0, 求 y 27、知识点 7: 多重符号的化简 : 如何进行多重符号的化简 ?例 : ( 3) 3 =8、知识点 8: 乘方。

1)乘方的概念 , 乘方的结果叫什么 ?2)认识底数 , 指数 3)正数的任何次幂是 _________, 零的任何次幂 ________负数的偶次幂是 _________奇次幂是 ________ 注意: ( 3)2=32 = ( 3)2=(2)2=22= ( 2)2=333二、练习1、盈利 100 元记作 +100 元,那么 50 元的意义是。

2、检查商店出售的袋装白糖,白糖加袋按规定重 503g ,一袋白糖重 502 g ,就记作 1g ,如果一袋白糖重506 g ,应记作 。

3、地图上标有甲、乙、丙三地的海拔高度分别为 1886 米、 300米、 200 米 , 其中最低处是 地,最 高处是 地,它们相差 。

4 、在数轴上表示5 的点与表示 1 的点的距离是 ,表示 5 的点与表示1 的点的距离 是 ,原点与表示 点的距离是 2.5 。

5、请你观察一条数轴,填写下列结论: ⑴最大的负整数是 ,最小的正整数是 ; ⑵ 最大的正整数, 最小的负整数。

(填“存在”或“不存在” )6、比较大小: (填“>”“<”或“=” ) ⑴1 0⑵34⑶12237 课堂上老师要求就数“ 0”发表自己的意见,四位同学共说了下列四句话:① 0 是整数,但不是自然数; ② 0 既不是正数,也不是负数;③ 0 不是整数,是自然数;④ 0 没有实际意义。

其中正确的个数是( )学习必备欢迎下载A . 4B . 3C . 2D .18、在数轴上有一点 A ,它所对应表示的数是 3,若将点 A 在数轴上先向左移动 8 个单位长度,再向右移动4 个单位长度得点 B ,此时点 B 所对应表示的数( )A .3B .1 C . 5 D . 4 9、数轴上一点 A ,一只蚂蚁从 A 出发爬了 4 个单位长度到了原点,则点 A 所表示的数是( ) A .4 B . 4 C . 4 D . 810、数轴上表示整数的点称为整点,某数轴的单位长度为 1 ㎝,若在数轴上画出一条长 2004 ㎝的线段 AB , 则 AB 盖住的整点个数是( ) A . 2002 或 2003 B . 2003 或 2004 C . 2004 或 2005 D .无法确定 11、所有大于4.5 且小于 1 1( )的负整数有A . 433. 4、3、2B .C . 2 D12、画一条数轴,并在数轴上画出表示下列各数的点,再将它们按从小到大的顺序用“<”连接起来。

5,0,2, 1, 0.5,32213、把下列各数填入相应的大括号里:2,1 ,5.2,0,2 , 11, 5 , 2005 , -0.323 63整数集合:{}正数集合:{}正整数集合: { }负分数集合: {}非负有理数集合: {}14、 1)若一个数的绝对值为2,则这个数是 _______;( 2)绝对值不大于 4 1的整数有 ______________,它们的和为。

20,则 x15、已知 2x 4 3x 2 y 2 y ___________。

16、已知 a 、 b 在数轴上的位置如图,把a 、b 、 a 、 b 从小到大排列正确的是:a0 bA 、 ab a bB 、 a b b aC 、 b aa bD 、 a b b a 17、某检修小组从 A 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天 中七次行驶纪录如下。

(单位: km ) 第一次 第二次 第三次 第四次第五次 第六次 第七次 -+ 7 - 9 + 8 + 6 - 5 - 2 1) 求收工时距 A 地多远? 2)在第次纪录时距 A 地最远。

3)若每 km 耗油 0.3 升,问共耗油多少升?第 3 章用字母表示数 --- 相关概念学习必备欢迎下载一、知识点复习及例题选讲1、知识点 1:代数式 1)、代数式:用基本运算符号把数和字母连接而成的式子。

如:n 、-2、s、0.8a、5m、 2n +500 、 abc、 2ab+2bc +2ac (单独一个数或一个字母也是代数式)注意:列代数式时,数字与字a母、字母与字母相乘,乘号通常用·表示或省略不写,并且把数字写在字母的前面,除法运算通常写成分数的形式。

2)、单项式:表示数与字母的积的代数式叫单项式。

单独一个数或一个字母也是单项式。

其中的数字因数叫单项式的系数,所有的字母的指数的和叫单项式的次数。

3)、多项式:几个单项式的和叫做多项式,次数最高项的次数叫做这个多项式的次数。

4)、单项式多项式统称为整式。

例 1 列代数式表示(注意规范书写)1、某商品售价为 a 元,打八折后又降价20 元,则现价为 _____元2、橘子每千克 a 元,买10 kg 以上可享受九折优惠,则买20 千克应付 _________元钱 .3、. 如图,图 1 需 4 根火柴,图 2 需 ____根火柴,图 3 需 ____根火柴,图 n 需____根火柴。

(图 1)(图2)(图3)4、托运行李p 千克( p 为整数)的费用标准:已知托运第 1 个 1 千克需付 2 元,以后每增加 1 千克(不足1 千克按 1 千克计)需增加费用 5 角.若某人托运p 千克( p>1)的行李,则托运费用为;x2 y的系数为 _______,次数为 _____________ :3a 2b 2例2 填空的次数 _____________32、知识点3:去括号法则1.去括号法则:( 1)括号前是“ +”号,把括号和前面的“ +”号去掉,括号里的各项的符号都不改变。

(2)括号前是“-”号,把括号和前面的“-”号去掉,括号里的各项的符号都要改变。

2.去括号法则中乘法分配律的应用:若括号前有因式,应先利用乘法分配律展开,同时注意去括号时符号的变化规律。

3.多重括号的化简原则( 1)由里向外逐层去掉括号( 2)由外向里逐层去掉括号例:去括号,合并同类项( 1)- 3(2s - 5) +6s (2)3x -[5x -(1x- 4) ] 2( 3) 6a2- 4ab- 4(2a 2 + 1ab) ( 4)3( 2x2 xy) 4( x2 xy 6)23、知识点2:代数式的值1)、用具体的数值代替代数式中的字母,按照代数式的运算关系计算,所得的结果是代数式的值。

2)求代数式的值时应注意以下问题: ( 1)严格按求值的步骤和格式去做.( 2)一个代数式中的同一个字母,只能用同一个数值代替,若有多个字母,?代入时要注意对应关系,千万不能混淆.( 3)在代入值时,原来省略的乘号要恢复,而数字和其他运算符号不变(4)字母取负数代入时要添括号( 5)有乘方运算时,如果代入的数是分数或负数,要加括号例 1 当 x= 1 2 2+1;(2)(x y)2 3 , y=-3 时,求下列代数式的值 : ( 1) 3x -2y xy 13.计算程序图的理解和设计(1)如果指明了运算顺序,只要将输入的数按照这个顺序计算即可得到输出的数。

(2)反之,如果知道了输出的代数式,可以根据它的运算顺序设计出计算程序。

学习必备欢迎下载例 3 如图,是一组数值转换机的示意图,填出图一的输出结果及图二的运算顺序:二、练习输入 x输入x()-2×3输出输出 _____( x2) 22 1、甲乙两地相距x 千米,某人原计划t 小时到达,后因故提前 1 小时到达,则他每小时应比原计划多走千米;2 、代数式3xy2 2 x2 的次数是,2( a b)2的系数是53、当 x - y=2 时,代数式( x - y )2+2( x - y )+5 的值是 _______.4.已知4 y 2 —2y + 5=9时,则代数式 2 y 2 —y + 1等于_______.5. 已知│ a-1 │ +(2a-b)2=0,那么3ab–15b2-6ab+15a-2b 2 等于_______.1时,求下列代数式的值: ( 1) 2x 2 -4xy 2 ;( 2)x2 4xy6、当 x=3, y= +4y2xy y2 27、小明读一本共m页的书,第一天读了该书的1,第二天读了剩下的1.3 5(1)用代数式表示小明两天共读了多少页.(2)求当 m=120时,小明两天读的页数.8、 . 去括号(a 2b 2ab 2 3) , 1 2( 3a 2 4ab 1 ) .39、 a 2b 3c 的相反数是()A. a 2b 3cB. a 2b 3cC. a 2b 3cD. a 2b 3c10、化简 2a- 5(a +1) 的结果是()A.-3a+ 5 B. 3a- 5 C.- 3a- 5 D .- 3a-111、当 x= -1,y= -2 时,求 2x2 -5xy+2y 2 -x 2-xy-2y 2-3x 2的值。

相关文档
最新文档