2009年全国高考数学福建卷理科第15题详细解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年全国高考数学福建卷理科第15题

题目背景是斐波那契(Fibonacci)数列.

(2009•福建)五位同学围成一圈依次循环报数,规定①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学报出的数之和,②若报出的数为3的倍数,则报该数的同学需拍手1次.已知甲同学第一个报数.当五位同学依次循环报到第100个数时,甲同学拍手的总次数为

5

.【解法二】归纳猜想:

1.列举:五个数一圈,则分为五个一群。如下:|| 1、1、2、3、5;|| 8、13、21、34、55;|| 89、144、233、377、610;|| 987……

2.观察:上面分群数列中,显然,甲所报数各群首数,呈周期性出现,周期为5。而所报数为3的倍数的数也呈周期性出现,周期为4。

3.找首数:即找甲同学第一次拍手时,所报数。易得第16个数987既是3的倍数,又是甲报的数。

4.规律:由第二步可知,甲所报数为3的倍数的数也呈周期性出现,周期为4与5的最小公倍数,即为20.以后每报数增加4×5=20个时,甲同学拍一次手。5.结论:所以甲报第16个,第36个,第56个,第76个,第96个数时拍手,100个数之内,甲共拍手5次。

解法三:由题意可知:

(1)将每位同学所报的数排列起来,即是“雯波那契数列”:

1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,…(2)该数列的一个规律是,第4,8,12,16,…4n项均是3的倍数.(3)甲同学报数的序数是1,6,11,16,…,5m-4.

(4).问题可化为求数列{4n}与{5m-4}的共同部分数,

易知,当m=4k,n=5k-4时,5m-4=20k-4=4n,又1<4n≤100,

∴20k-4<100.∴k≤5

∴甲拍手的总次数为5次.即第16,36,56,76,96次报数时拍手.故答案为:5

变式训练:

五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1.第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的是为3的倍数,则报该数的同学需拍手一次,当第30个数被报出时,五位同学拍手的总次数为。

解析::这样得到的数列这是历史上著名的数列,叫斐波那契数列.寻找规律是解决问题的根本,否则,费时费力.首先求出这个数列的每一项除以3所得余数的变化规律,再求所求就比较简单了.

这个数列的变化规律是:从第三个数开始递增,且是前两项之和,那么有1、1、2、3、5、

8、13、21、34、55、89、144、233、377、610、987……分别除以3得余数分别是1、1、2、0、2、2、1、0、1、1、2、0、2、2、1、0……由此可见余数的变化规律是按1、1、2、0、2、2、1、0循环,周期是8.在这一个周期内第四个数和第八个数都是3的倍数,所以在三个周期内共有6个报出的数是三的倍数,后面6个报出的数中余数是1、1、2、0、2、2,只有一个是3的倍数,故3的倍数总共有7个,也就是说拍手的总次数为7次.

相关文档
最新文档