高一数学10月月考试题
北京市和平街第一中学2024-2025学年高一上学期10月月考数学试题
北京市和平街第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.设集合{}0,1,2,3A =,{}1,0,1,2,3B =-,则A B =I ( ) A .{}1,0,1,2,3-B .{}1,2C .{}0,1,2,3D .{}1,2,32.已知命题20001:,04∃∈-+≤p x x x R ,则命题p 的否定为( ) A .20001,04∃∈-+>x x x R B .20001,04∃∈-+<x x x R C .21,04∀∈-+≤x x x RD .21,04x x x ∀∈-+>R 3.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则下列结论正确的是( ) A .B A ⊆B .{}1,5U A =ðC .{}3A B =UD .{}2,4,5A B =I4.设集合{}2{,},0,A x y B x ==,若A B =,则2x y +等于( )A .0B .1C .2D .-15.已知0x >,则2x x +的最小值为( )A B .2C .D .46.若a ,b 是任意实数,且a b >,则( ) A .22a b >B .1b a< C .1a b -> D .0a b ->7.不等式2230x x --<的解集为( ) A .()1,3-B .()3,1-C .(1)(3)∞∞--⋃+,, D .(3)(1)∞∞--⋃+,, 8.“02x <<”是“13x -<<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件9.已知集合{}0,A a =,{}230,Z B b b b b =-<∈,A B ≠∅I ,则实数a 的值为( )A .1B .2C .1或2D .2或310.设集合A 的最大元素为M ,最小元素为m ,记A 的特征值为A X M m =-,若集合中只有一个元素,规定其特征值为0.已知1A ,2A ,3A ,…,n A 是集合*N 的元素个数均不相同的非空真子集,且12360n A A A A X X X X +++⋅⋅⋅+=,则n 的最大值为( )A .10B .11C .12D .13二、填空题11.已知函数()43f x x =+,则()3f =.12.设x 、y 满足10x y +=,且x 、y 都是正数,则xy 的最大值为.13.满足{}{}11,2,3A ⊆⊆的集合A 的个数为个.14.已知集合{}{}21,2,3,2,A B a a a ==+.若{}2A B =I ,则a =.15.函数2(0)y ax bx c a =++≠的图像如图所示,则不等式20ax bx c ++<的解集是,不等式0ax bcx a+<+的解集是.三、解答题16.已知集合{}2|430A x x x =-+<,集合{}|2B x x =>.(1)化简集合A 并求A B ⋂,A B U . (2)若全集U R =,求()U B A ⋂ð. 17.完成如下三个小题并写出必要过程(1)设()()23M x x =++,()()14N x x =++,比较,M N 的大小.(2)已知,a b c d ><,求证:a c b d ->-;(3)已知R x ∈,设()1A x x =-;2B x =-,比较A 与B 的大小.18.已知集合{}45A x x =-<<,{}36B x x =-<<,{}|121,R C x m x m m =-≤≤+∈. (1)求A B U ,A B ⋂;(2)若()C A B ⊆⋂,求实数m 的取值范围.19.函数()243f x mx mx =++(1)若1m =,求()0f x ≤的解集;(2)当()0f x >恒成立时,求m 的取值范围;(3)若方程()0f x =有两个实数根12,x x ,且22121230x x x x +->,求m 的取值范围 20.设一个矩形长为x ,宽为y .(1)当点(),P x y 位于直线4y x =-+上时,求该矩形面积的最大值. (2)当点(),P x y 位于曲线81212y x x ⎛⎫=> ⎪-⎝⎭上时,求该矩形周长的最小值. (3)当该矩形的面积比周长多5时,求该矩形面积的取值范围.21.设集合*A ⊆N .定义:和集合{},,B x y x y A x y =+∈≠,积集合{},,C x y x y B x y =⋅∈≠,分别用,,A B C 表示集合,,A B C 中元素的个数. (1)若{}1,2,3,4A =,求集合C ;(2)若5A =,求B 的所有可能的值组成的集合; (3)若4A =,求证:9C ≥.。
高一10月数学月考试题含答案
高一10月数学月考(考试总分:150 分)一、 单选题 (本题共计8小题,总分40分) 1.(5分)1.cos 240=( )A .12-B .C .12D 2.(5分)2.已知扇形的面积为4,扇形圆心角的弧度数是2,则扇形的周长为( ) A .2B .4C .6D .83.(5分)3.已知20.2a =,2log 0.9b =,0.12c =,则,,a b c 的大小关系为( )A. a b c >>B. c a b >>C. a c b >>D. c b a >>4.(5分)4.已知函数3()log 5f x x x =+-,则()f x 的零点所在的区间为( )A.(0,1)B.(1,2)C.(3,4)D.(4,5)5.(5分)5.已知:1p x >,1:1q x≤,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)6.设0,0,22a b a b >>+=,则11a b+的最小值为( )B.3 37.(5分)7.函数222()1x xf x x --=-的图象大致为( )A. B.C. D.8.(5分)8.当0<x ≤12时,4x<log a x (a >0且a ≠1),则a 的取值范围是( )A. (0,22) B. (22,1) C. (1,2) D. (2,2) 二、 多选题 (本题共计4小题,总分20分)9.(5分)9.下列函数中是偶函数,且在(0,)+∞上为增函数的有( )A .y =e -xB .2yx C .3y x = D .2log ||y x =10.(5分)10.已知函数()log (1),()log (1)(0,1)a a f x x g x x a a =+=->≠,则( )A .函数()()f x g x +的定义域为(1,1)-B .函数()()f x g x +的图象关于y 轴对称C .函数()()f x g x +在定义域上有最小值0D .函数()-()f x g x 在区间(0,1)上是减函数11.(5分)11.如图,某湖泊的蓝藻的面积y (单位:2m )与时间t (单位:月)的关系满足t y a =,则下列说法正确的是( )A .蓝藻面积每个月的增长率为100 %B .蓝藻每个月增加的面积都相等C .第6个月时,蓝藻面积就会超过260mD .若蓝藻面积蔓延到2222,3,6m m m 所经过的时间分别是123, , t t t ,则一定有123t t t +=12.(5分)12.德国著名数学家狄利克雷在数学领域成就显著,狄利克雷函数就以其名命名,其解析式为1,()0,x D x x ⎧=⎨⎩是有理数是无理数,关于函数D()x 有以下四个命题,其中真命题是( )A .函数D()x 是奇函数B .,x y ∀∈R ,()()()D x y D x D y +=+C .函数(())D D x 是偶函数D .x ∃∈R ,(())1D D x =三、 填空题 (本题共计4小题,总分20分)13.(5分)13.已知函数()11x f x a +=+()01a a >≠且,则函数()f x 的图像恒过点 ;14.(5分)14. 已知函数y =g (x )的图象与函数y =3x的图象关于直线y =x 对称,则g (2)= ;15.(5分)15.用二分法求方程x 3-2x -5=0在区间(2,3)内的实根,取区间中点为x 0=2.5,那么下一个有根的区间是________.16.(5分)16.已知函数2|1|41,0()2,0x x x x f x x -⎧++≤⎪=⎨>⎪⎩,若()()g x f x a =-恰好有三个零点,则实数a 的取值范围是 .四、 解答题 (本题共计6小题,总分70分) 17.(10分)17.(本题满分10分)计算:(1)3321432116864281---⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭; (2)0.5231lg8lg125log log 3log 24+-+⋅.18.(12分)18. (本题满分12分)已知全集,=,集合是函数的定义域.(1)求集合; (2)求.19.(12分)19.(本题满分12分)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎝ ⎛⎭⎪⎫12x .(1)求函数f (x )的解析式;(2)画出函数的图象,根据图象写出函数f (x )的单调区间20.(12分)20.( (本题满分12分) 已知不等式()()22log 1log 72x x +≤-.(1)求不等式的解集A ;(2)若当x A ∈时,不等式 1114242x xm -⎛⎫⎛⎫-+≥ ⎪⎪⎝⎭⎝⎭总成立,求m 的取值范围. 21.(12分)21.(本题满分12分)已知函数()()212log 31f x ax x a =+++. (1)当0a =,求函数()f x 的单调区间;(2)对于[]1,2x ∈,不等式()1302f x x ⎛⎫-≤ ⎪⎝⎭恒成立,求实数a 的取值范围.22.(12分)22、(本题满分12分)已知定义域为R 的函数f (x )=2x -1a +2x +1是奇函数.(1)求a 的值;(2)求证:f (x )在R 上是增函数;(3)若对任意的t ∈R ,不等式f (mt 2+1)+f (1-mt )>0恒成立,求实数m 的取值范围.R U =A }52{<≤x xB lg(9)y x =-B )(BC A U答案一、 单选题 (本题共计8小题,总分40分) 1.(5分)1. A 2.(5分)2. D 3.(5分)3. B 4.(5分)4. C 5.(5分)5. A 6.(5分)6. A 7.(5分)7. B 8.(5分)8. B二、 多选题 (本题共计4小题,总分20分) 9.(5分)9. BD10.(5分)10. AB11.(5分)11. ACD12.(5分)12. CD三、 填空题 (本题共计4小题,总分20分) 13.(5分)13. 14.(5分)14. g (2)=log 32. 15.(5分)15. (2,2.5) 16.(5分)16.[1,2)四、 解答题 (本题共计6小题,总分70分)17.(10分)17. (Ⅰ)原式1274888=+++312=. (Ⅰ)原式3lg 23lg521=+-+3lg1012=-=. 18.(12分)18. 解:(1)由得所以集合. ...................................6分(2)因为,,所以. (12)()1,2-⎩⎨⎧>-≥-0903x x ⎩⎨⎧<≥93x x {}93|<≤=x x B {}93|≥<=x x x B C U 或{}52|<≤=x x A (){}32|<≤=⋂x x B C A U分19.(12分)19. 解 (1)因为f (x )是定义在R 上的奇函数, 所以f (0)=0,当x <0时,-x >0, f (x )=-f (-x )=-⎝⎛⎭⎫12-x =-2x .所以函数的解析式为:(2)函数图象如图所示:通过函数的图象可以知道,f (x )的单调递减区间是(-∞,0),(0,+∞). 20.(12分)20.解(1)由已知可得:10123172x x x x+>⎧⇒-<≤⎨+≤-⎩分(]1,25∴-不等式解集为分(2)令()1114242x xf x -⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭,则原问题等价为()min 6f x m ≥分()1111442=t ,294224xxxf x ⎛⎫⎛⎫⎛⎫⎡⎫=-+∈ ⎪ ⎪ ⎪⎪⎢⎝⎭⎝⎭⎝⎭⎣⎭令分()()22min 1442412111112112f x t t t t x f x m ⎛⎫=-+=-+ ⎪⎝⎭===∴≤则当时,即时分分21.(12分)21. 解:(1)因为0a =,所以()()12log 31f x x =+,定义域为1,3⎛⎫-+∞ ⎪⎝⎭, 记31t x =+,在1,3⎛⎫-+∞ ⎪⎝⎭上单调递增, ()12log f x t =在()0+∞,上单调递减.所以()()12log 31f x x =+在1,3⎛⎫-+∞ ⎪⎝⎭上单调递减,所以()f x 的单调减区间为1,3⎛⎫-+∞ ⎪⎝⎭,无单调增区间.(2)原问题等价于当[]1,2x ∈时,2310ax x a +++>恒成立且()1302f x x ⎛⎫-≤ ⎪⎝⎭恒成立,()213031302f x x ax x a x ⎛⎫-≤⇔+++-≤ ⎪⎝⎭210ax a ⇔++≤ 211a x -⇒≤+恒成立 即2min1112a a x -⎛⎫≤⇒≤-⎪+⎝⎭, 因为102a ≤-<,23103104610a a ax x a a a +++>⎧+++>⇔⎨+++>⎩ 717525a a ⇒>-⇒-≥>-.22.(12分)22、 [解] (1)由f (x )为R 上的奇函数,得f (1)+f (-1)=0,得2-1a +4+-12a +1=0, 解得a =2.检验a =2时,f (x )=2x -12+2x +1.f (-x )=2-x -12+2-x +1=2-x -121+2-x =12x-121+12x=-2x -12+2x +1=-f (x ),所以对x ∈R ,f (x )是奇函数.(2)证明:任取x 1<x 2,∵2>1,∴2x 2>2x 1. 由(1)知f (x )=2x -122x +1=2x +1-222x+1=12-12x +1, ∴f (x 2)-f (x 1)=(12-12x 2+1)-(12-12x 1+1)=12x 1+1-12x 2+1=2x 2+1-2x 1+12x 1+12x 2+1=2x 2-2x 12x 1+12x 2+1>0.∴f (x 2)>f (x 1).∴f (x )在R 上为增函数. (3)∵f (x )是奇函数,∵f (mt 2+1)+f (1-mt )>0,∴f (mt 2+1)>f (mt -1).∵f (x )在R 上是增函数, ∴对任意的x ∈R ,不等式f (mt 2+1)+f (1-mt )>0恒成立,即mt 2+1>mt -1对任意的t ∈R 恒成立,即mt 2-mt +2>0对任意的t ∈R 恒成立.①m =0时,不等式即为2>0恒成立,符合题意; ②m ≠0时,有⎩⎨⎧m >0,Δ=m 2-8m <0,即0<m <8.综上,实数m 的取值范围为0≤m <8.。
山东省德州市第一中学2024-2025学年高一上学期10月月考数学试题
山东省德州市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.下列元素的全体能构成集合的是( ) A .某学校个子高的学生 B .巴黎奥运会上受欢迎的运动员 C .2024年参加“两会”的代表D .π的近似值2.集合{}|3,Z A x x x =<∈,{}1,0,2,3B =-,则图中阴影部分所表示的集合为( )A .{}3,2,1--B .{}2,1,3-C .{}1,0,2-D .{}1,0,2,3-3.已知命题p :20,430x x x -∀>+>,则命题p 的否定为( ) A .20,430x x x -∀≤+≤ B .20,430x x x ∀>-+≤ C .20,430x x x -∃≤+≤D .0x ∃>,2430x x -+≤4.下列不等式中,可以作为3x <的一个充分不必要条件的是( ) A .24x <<B .34x <<C .2x <D .4x <5.某年级先后举办了数学、历史、化学讲座,其中有70人听了数学讲座,62人听了历史讲座,58人听了化学讲座,记{|A x x =是听了数学讲座的学生},{|B x x =是听了历史讲座的学生},{|C x x =是听了化学讲座的学生}.用()card M 来表示有限集合M 中元素的个数,若()card 17A B =I ,()card 13A C =I ,()card 5B C =I ,A B C =∅I I ,则( ) A .()card 35A B C =I I B .()card 115A B =U C .()card 120B C =UD .()card 190A B C =U U6.若22A x x =-+,64B x =+,则A 与B 的关系是( )A .AB ≤ B .B A ≤C .B A =D .与x 的值有关7.已知不等式0ax b +>的解集为13x x ⎧⎫<⎨⎬⎩⎭,则不等式01ax b x -<+的解集为( ) A .113x x ⎧⎫-<<⎨⎬⎩⎭ B .113x x ⎧⎫-<<-⎨⎬⎩⎭C .{}31x x x -或D .113x x x ⎧⎫--⎨⎬⎩⎭或8.已知0m n >≥且631m n m n+=+-,则3m n +的最小值为( )A .12B .C .27D .二、多选题9.已知0a b c >>>,则下列不等式一定成立的是( ) A .22ac bc >B .11a b< C .a a cb b c+<+ D .11a b a b->- 10.下列说法正确的是( )A .若集合{}1,0,1M =-,则满足条件M N M ⋃=的集合N 的个数为8B .若命题:p x 和y 都是有理数,命题:q x y +是有理数,则p 是q 的必要不充分条件C .若不等式250ax x b ++<的解集为{}41x x -<<-,则4ab =D .若集合{}10A x ax =+=,{}1,1B =-且A B ⊆,则1a =± 11.已知,x y 为正实数,4x y +=,则( )A .xy 的最大值为4BC .4y x y+的最小值3 D .22(1)(1)x y ++的最小值为16三、填空题12.已知R a ∈,R b ∈,若集合{}2,1,1A a =-,{},,1B a b =,A B ⊆且B A ⊆,则a b +的值为.13.若“R x ∀∈,2260ax ax -+>”是假命题,则a 的取值范围是.14.定义集合{|}P x a x b =≤≤的“长度”是b a -,其中,R a b ∈.已知集合{|1}M x m x m =≤≤+,6{|}5N x n x n =-≤≤,且M ,N 都是集合4|}2{x x ≤≤的子集,则集合M N ⋂的“长度”的最小值是;若125m =,集合M N ⋃的“长度”大于65,则n 的取值范围是.四、解答题15.已知R 为全集,集合{}12A x x =-≤,{}25B x x =<<,{}C x x k =<. (1)求集合A B ⋂,A B U ;(2)若R C A C =I ð,求实数k 的取值范围.16.已知集合211,1x M xx x ⎧⎫-=<∈⎨⎬+⎩⎭R ,{}31N x k x k =<<-. (1)若“命题:,p x M x N ∃∈∈”是真命题,求实数k 的取值范围;(2)若命题:q x N ∈是命题:r x M ∈的充分不必要条件,求实数k 的取值范围.17.某蛋糕店今年年初用18万元购进一台新设备.已知使用x 年()*N x ∈所需的总维护费用为2(2)x x +万元,经估算该设备每年可为蛋糕店创造收入16万元.设该设备使用x 年的盈利总额为()w x 万元(盈利总额=总收入-成本-总维护费用). (1)该店从第几年开始盈利?(2)若干年后蛋糕店想在年平均盈利达到最大值时,以11万元的价格卖出设备,请问最终获利为多少?18.已知函数2()2(2)1f x mx m x =-++()m ∈R .(1)若不等式()1f x m ≥--在R 上恒成立,求实数m 的取值范围; (2)若0m ≥,解关于x 的不等式()0f x <.19.已知{}()1,2,,3n S n n =≥L ,{}()12,,,2k A a a a k =≥L 是n S 的子集,定义集合{}*,i j i j i j A a a a a A a a =-∈>且,若{}*n A n S =U ,则称集合A 是n S 的恰当子集.用A 表示有限集合A 的元素个数.(1)若4n =,{}1,3,4A =,求*A 并判断集合A 是否为4S 的恰当子集; (2)已知{}1,,,9,10A a b =()a b <是10S 的恰当子集,求,a b 的值并说明理由; (3)若存在A 是n S 的恰当子集,并且5A =,求n 的最大值.。
四川省成都市第七中学2024-2025学年高一上学期10月月考数学试题(含答案)
2024-2025学年四川省成都市第七中学高一上学期10月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={1,2},B ={1,3,4},则A ∪B =( )A. {1}B. {1,3,4}C. {1,2}D. {1,2,3,4}2.已知0<x <3,0<y <5,则3x−2y 的取值范围是( )A. (−1,0)B. (−10,9)C. (0,4)D. (0,9)3.对于实数x ,“2+x 2−x ≥0”是“|x |≤2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.下列命题中真命题的个数是( )①命题“∀x ∈R ,|x|+x 2≥0”的否定为“∃x ∈R ,|x|+x 2<0”;②“a 2+(b−1)2=0”是“a(b−1)=0”的充要条件;③集合A ={y|y = x 2+1},B ={x|y = x 2+1}表示同一集合.A. 0B. 1C. 2D. 35.已知实数x,y 满足4x 2+4xy +y +6=0,则y 的取值范围是( )A. {y|−3≤y ≤2}B. {y|−2≤y ≤3}C. {y|y ≤−2}∪{y|y ≥3}D. {y|y ≤−3}∪{y|y ≥2}6.已知正实数a,b 满足2a +b =1.则5a +b a 2+ab 的最小值为( )A. 3B. 9C. 4D. 87.关于x 的不等式(ax−1)2<x 2恰有2个整数解,则实数a 的取值范围是( )A. (−32,−1)∪(1,32) B. (−32,−43]∪[43,32)C. (−32,−1]∪[1,32) D. (−32,−43)∪(43,32)8.已知函数f (x )={4x 2−2x +3,x ≤122x +1x ,x >12,设a ∈R ,若关于x 的不等式f (x )≥|x−a 2|在R 上恒成立,则a 的取值范围是( )A. [−398,478]B. [−4,478]C. [−4,4 3]D. [−398,4 3]二、多选题:本题共3小题,共18分。
重庆市第一中学2024-2025学年高一上学期10月月考数学试题
重庆市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}{}432A B x x ==,,则A B =I ( )A .2163x x ⎧⎫<≤⎨⎬⎩⎭ B .{}316x x ≤<C .223x x ⎧⎫<≤⎨⎬⎩⎭D .{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是( ) A .230,1x x x ∀≥+≤ B .230,1x x x ∀<+≤ C .230,1x x x ∃<+≤D .230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1f xg x +的定义域为( )A .()4,3-B .()2,5-C .1,33⎛⎫⎪⎝⎭D .1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是( )A .2a ≥B .2a >C .6a >D .6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是( )A .{31}mm -<<∣ B .{3m m <-∣或1}m > C .{13}mm -<<∣D .{1mm <-∣或3}m > 6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是( ) A .30,2⎛⎫⎪⎝⎭B .30,2⎡⎫⎪⎢⎣⎭C .()0,1D .[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是( )AB .34a a b ++的最小值为7+C .()()11a b ++的最大值为94D .2232a b a b +++的最小值为16 8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为( ) A .2048B .2024C .1024D .512二、多选题9.已知,,a b c ∈R ;则下列不等式一定成立的有( ) A .若0ab ≠且a b <,则11a b> B .若0a b >>,则20242024b b a a +<+ C .若,a bcd >>,则ac bd >D .()221222a b a b ++≥--10.下列说法正确的是( )A .若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B .若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C .若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D .“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有( )A .()()101320272024f f λ+=B .当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C .当0λ<时,()f x 在区间[]2024,2025上单调递减D .当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题12.已知集合{}210A xx =-=∣,则集合A 有个子集. 13.已知集合[]()(){}1,4,10A B xx a ax ==+-≤∣,若A B B =U 且0a ≥,则实数a 的取值范围是.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为.四、解答题15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围. 16.已知函数()f x =A ,集合{}321B xx =->∣. (1)求A B U ;(2)集合{}321M xa x a =-≤≤-∣,若M ()R A ð,求实数a 的取值范围. 17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值; (2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >L,则有*12,2n a a a n n n+++∈≥N L ,当且仅当12n a a a ===L 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11k k ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=- ⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=; ③对任意32x >,恒有()0f x <; ④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞ ⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.。
高一10月月考(数学)试题含答案
高一10月月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)1.下列语言叙述中,能表示集合的是( )A .数轴上离原点距离很近的所有点;B .太阳系内的所有行星C .某高一年级全体视力差的学生;D .与ABC 大小相仿的所有三角形2.(5分)2.若{}21,2,x x ∈,则x 的可能值为( )A .0B .0,1C .0,2D .0,1,23.(5分)3.已知集合{}21P y x ==+,{}21Q y y x ==+,{}21R x y x ==+,(){}2,1M x y y x ==+,{}1N x x =≥,则( ). A .P M B .Q R = C .R M = D .Q N =4.(5分)4.设集合{1A =,2,6},{}24B =,,{|15}C x R x =∈-≤≤,则()A B C =( )A .{}2B .{1,2,4}C .{1,2,4,5}D .{|15}x R x ∈-≤≤5.(5分)5.已知集合{}12A x x =<<,集合{}B x x m =>,若()AB =∅R,则m 的取值范围为( ) A .(],1-∞B .(],2-∞C .[)1,+∞D .[)2,+∞6.(5分)6.不等式(1)(2)0x x +->的解集为( )A .{|1x x <-或2}x >B .{|2x x <-或1}x >C .{|21}x x -<<D .{|12}x x -<<7.(5分)7.已知函数,若R x ∈∀,则k 的取值范围是A 、0<k<43 B 、0≤k<43 C 、k<0或k>43 D 、0<k ≤438.(5分)8.已知集合{|2}A x x =<,{2B =-,0,1,2},则A B =( )A .{}01,B .{1-,0,1} C .{2-,0,1,2} D .{1-,0,1,2}9.(5分)9.若函数()f x 的定义域为[]1,3,则函数()g x =的定义域为( ) A .(]1,2B .(]1,5C .[]1,2D .[]1,510.(5分)10.在下列四组函数中,表示同一函数的是( )A .()21f x x =+,x ∈N ,()21g x x =-,x ∈NB.()f x =()g x =C .(1)(3)()1x x f x x -+=-, ()3g x x =+ D .()||fx x =,()g x11.(5分)11.已知函数()f x 满足()()()222f a b f a f b +=+对,a b ∈R 恒成立,且(1)0f ≠,则(2021)f =( )A .1010B .20212C .1011D .2023212.(5分)12.已知函数()1,101,0x x f x x x a --≤<⎧=⎨-≤≤⎩的值域是[]0,2,则实数a 的取值范围是( ) A .(]0,1B .[]1,3C .[]1,2D .[]2,3二、 填空题 (本题共计4小题,总分20分)13.(5分)13.设{}6A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,则()AAB C =______.14.(5分)14.函数()f x =__________. 15.(5分)15.函数()2,0,00,0x x f x x x π⎧>⎪==⎨⎪<⎩,则()3f f -⎡⎤⎣⎦等于__________.16.(5分)16.定义在R 上的函数()f x 满足1(1)()3f x f x +=,且当[]0,1x ∈时,()242f x x =--,若当[,)x k ∈+∞时,2()9f x ≤,则k 的最小值是___________.三、 解答题 (本题共计6小题,总分70分) 17.(10分)17.解下列不等式.(1)22730x x -+-> (2)3112x x-≥- 18.(12分)18.已知集合{}2|111,1210{|}A x B x x x m m x ==-≤≤+->.(1)若3m =,求()RAB ;(2)若A B A ⋃=,求实数m 的取值范围.19.(12分)19.已知集合{}2560A x x x =+-=,{}22(21)30B x x m x m =-++-=.(1)当1m =-时,集合C 满足{1}C ⊆⋃(A B ),这样的集合C 有几个? (2)若A B B =,求实数m 的取值范围.20.20.(12分)如图,OAB 是边长为2的正三角形,记OAB 位于直线()0x t t =>左侧的图形的面积为()f t .求:(1)函数()y f t =的解析式; (2)画出函数()y f t =的图象; (3)根据图像写出该函数的值域。
广西柳州高级高中2024-2025学年高一上学期10月月考试题 数学含答案
柳州高中2024级高一10月月考数学试卷(答案在最后)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共58分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各式中,正确的个数是()①{}{}00,1,2∈;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}(){}0,10,1=.A.1B.2C.3D.42.已知命题1:0,2p x x x∀>+>,则p ⌝为()A.0x ∀>,12x x +≤ B.0x ∀≤,12x x +≤C.0x ∃≤,12x x+≤ D.0x ∃>,12x x+≤3.下列各组函数是同一个函数的是()A.321x x y x +=+与y x= B.y =1y x =-C.2x y x=与y x= D.0y x =与1y =4.定义集合运算:*{}A B xx A x B =∈∉∣且,若集合{}1,3,4,6,7A =,{}2,4,5,8B =,则集合*A B 的真子集个数为()A.13个B.14个C.15个D.16个5.下列命题为真命题的是()A .若0a b >>,则22ac bc > B.若,a b c d >>,则a d b c ->-;C.若0a b <<,则22a ab b << D.若a b >,则11a b a>-;6.若“260x x --<”的一个必要不充分条件是“2x m -<<”,则实数m 的范围是()A.23m -<≤ B.23m -<< C.3m ≥ D.3m >7.某学校为创建高品质特色高中,准备对校园内现有一处墙角进行规划.如图,墙角线OA 和OB 互相垂直,学校欲建一条直线型走廊AB ,其中AB 的两个端点分别在这两墙角线上.若欲建一条长为10米的走廊AB ,当OAB △的面积最大时,OB 长度为()米.A. B. C. D.8.已知x ,y 为正实数,若212+=x y,且223x y m m +>+恒成立,则m 的取值范围是()A.4m <-或1m > B.1m <-或4m > C.41m -<< D.14-<<m 二、多项选择题(本大题共3小题,每小题6分,共18分.在每个小题给出的选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知集合{},,0A a a =-,{},,1B b a b =+,若A B =,则ab 的取值为()A.2- B.1- C.0D.110.下列说法正确的是()A.224(2)a b a b +≥--B.函数2=23y x x --的零点为(),(3,0)1,0-C.“110a b>>”是“a b <”的充分不必要条件D.由||||||(0,,,R)a b c abc a b c a b c++≠∈所确定的实数集合为{3,1,1,3}--11.设正实数,a b 满足1a b +=,则()A.11a b+有最小值4 B.ab 有最大值14C.+ D.1439ab b +≤第二部分(非选择题共92分)三、填空题(本大题共3小题,每小题5分,共15分.请把正确选项填在题中横线上.)12.函数1()5f x x =-的定义域为_____________.13.设a ∈R ,若关于x 的一元二次方程230x ax a -++=的两个实根为1x ,2x ,且12114x x +=-,则a 的值为_____________.14.已知命题“()3,x ∞∃∈-+,23160x ax a --+<”是真命题,则实数a 的取值范围是______.四、解答题(本大题共5小题,共77分.解答时应写出必要的文字说明、证明过程或演算步棸.)15.已知不等式2(21)(1)0x a x a a -+++≤的解集为集合A ,集合202x B xx ⎧⎫-=<⎨⎬+⎩⎭.(1)若2a =,求A B ,()A B R ð;(2)若A B =∅ ,求实数a 的取值范围.16.(1)已知函数()()20f x ax bx c a =++≠.若不等式()0f x >的解集为{03}xx <<∣,求关于x 的不等式()2320bx ax c b +-+<的解集.(2)已知23x <,求函数()93132f x x x =++-的最大值.17.已知命题:R p x ∃∈,2210ax x +-=为假命题.(1)求实数a 的取值集合A ;(2)设集合{32}B xm x m =<<+∣,若A B A = ,求实数m 的取值集合.18.国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x (单位:吨)最少为70吨,最多为100吨.日加工处理总成本y (单位:元)与日加工处理量x 之间的函数关系可近似地表示为214032002y x x =++,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(1)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(2)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种.①每日进行定额财政补贴,金额为2400元;②根据日加工处理量进行财政补贴,金额为30x .请分别计算两种补贴方式下的最大利润,如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么?19.已知函数()222y ax a x =-++,R a ∈,(1)若不等式32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若关于x 的方程2(2)||21ax a x -++=-有四个不同的实根,求实数a 的取值范围.柳州高中2024级高一10月月考数学试卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共58分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】C二、多项选择题(本大题共3小题,每小题6分,共18分.在每个小题给出的选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分.)【9题答案】【答案】BC 【10题答案】【答案】ACD 【11题答案】【答案】ABD第二部分(非选择题共92分)三、填空题(本大题共3小题,每小题5分,共15分.请把正确选项填在题中横线上.)【12题答案】【答案】[3,5)(5,)-+∞ 【13题答案】【答案】125-【14题答案】【答案】4a >四、解答题(本大题共5小题,共77分.解答时应写出必要的文字说明、证明过程或演算步棸.)【15题答案】【答案】(1){|23}A B x x =-<≤ ,R {|23}()A B x x =≤≤ ð;(2)3a ≤-或2a ≥.【16题答案】【答案】(1){}|12x x -<<;(2)3-【17题答案】【答案】(1){|1}A a a =<-;(2){|3m m ≤-或1}m ≥.【18题答案】【答案】(1)加工处理量为80吨时,每吨厨余垃圾的平均加工成本最低,此时该企业处理1吨厨余垃圾处于亏损状态;(2)选择第一种补贴方式进行补贴,理由见解析.【19题答案】【答案】(1)40a -<£;(2)答案见解析;(3)04a <<-或4a >+.。
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题(含解析)
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C.D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 3. 使 “”成立的必要不充分条件是()2101x x +≥-A .B. 112x -≤≤112x -≤<C.或 D.或12x ≤-1x ≥12x ≤-1x >4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a 最小值85. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B. ac bc>c c a b <C.D. a c ab c b +>+a b b c a c<--6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612xx a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC .D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A. B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.14.对于任意正实数x 、y成立,则k 的范围为______.≤四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 16. 已知正数满足.,a b 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}【正确答案】A【分析】根据集合的含义以及交集的概念即可得到答案.B 【详解】集合,其表示所有的奇数,{21,Z}B xx n n ==+∈∣则.{1,5}A B = 故选:A.2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C. D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 【正确答案】A【分析】根据特称命题的否定是全称命题的知识,选出正确选项.【详解】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.本小题主要考查全称命题与特称命题的否定,属于基础题.3. 使 “”成立的必要不充分条件是()2101x x +≥-A. B. 112x -≤≤112x -≤<C. 或 D.或12x ≤-1x ≥12x ≤-1x >【正确答案】A【分析】解不等式,求得,根据必要不充分条件的定义即可得出结果.2101x x +≥-112x -≤<【详解】不等式可化为解得2101x x +≥-(1)(21)0,10,x x x -+≤⎧⎨-≠⎩11.2x -≤<则成立,反之不可以.112x -≤<⇒112x -≤≤所以是成立的必要不充分条件.112x -≤≤2101x x +≥-故选:A4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a最小值8【正确答案】C【分析】利用基本不等式及其对勾函数的性质分别判断即可.【详解】对于选项,只有当时,才满足基本不等式的使用条件,则不正确;A 0x >A 对于选项,,By ===+(t t =≥即在上单调递增,则最小值为,(22y t t t =+≥)+∞min y ==则不正确;B 对于选项,,则正确;C ()()22(2)211111x x x x x -=--++=--+≤C 对于选项,当时,,当且仅当D 3a >44333733a a a a +=-++≥=--时,即,等号成立,则不正确.433a a -=-5a =D 故选.C 5. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B.ac bc>c c a b <C.D. a c ab c b +>+a bb c a c<--【正确答案】C【分析】对于AB :根据不等式性质分析判断;对于CD :利用作差法分析判断.【详解】对于选项A :因为,则,所以,故A 错()0,,a b c a b c >>->∈R 0c <ac bc <误;对于选项B :因为,且,()0,,a b c a b c >>->∈R 0c <可得,所以,故B 错误;11a b <c c a b >对于选项C :因为,()()()b a ca c a ab bc ab ac b c b b c b b c b-++---==+++且,,则,()0,,a b c a b c >>->∈R 0c <0,0b a b c -<+>可得,所以,故C 正确;()()0b a ca c abc b b c b-+-=>++a c ab c b +>+对于选项D :因为,()()()()()()22a b a b c a b a ac b bc b c a c b c a c b c a c -+---+-==------且,,则,()0,,a b c a b c >>->∈R 0c <0,0,0,0a b a b c b c a c ->+->->->可得,即,故D 错误;()()()()0a b a b c a bb c a c b c a c -+--=>----a bb c a c >--故选:C.6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>【正确答案】D【分析】根据题意,将所给等式变形,得到,推导出,然后利用作差法2(2)0p n m -=->p n >比较大小,结合二次函数的性质证出,从而得出正确结论.n m >【详解】由,得,210m n ++=211m n =--≤-因为,244m n m p ++=+移项得,244m m p n -+=-所以,2(2)0p n m -=->可得,p n >由,得,210m n ++=21m n =--可得,()2221311024n m n n n n n ⎛⎫-=---=++=++> ⎪⎝⎭可得.n m >综上所述,不等式成立,p n m >>故选:D.7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【正确答案】C【分析】利用集合相等的定义得到关于的方程组,推得充分性成立;再简单证得必要性,a b 也成立即可得解.【详解】因为,{}{}22,1,,1A a a B b b =+=+当时,则有,或,A B =2211a ba b =⎧⎨+=+⎩2211a b a b ⎧=+⎨+=⎩若,显然解得;2211a ba b =⎧⎨+=+⎩a b =若,则,整理得,2211a b a b⎧=+⎨+=⎩()2211b b ++=()()22012b b b b -+++=因为,,22131024b b b ⎛⎫+=-+ ⎝⎭->⎪22172024b b b ⎛⎫+=++ ⎝⎭+>⎪所以无解;()()22012bb b b -+++=综上,,即充分性成立;a b =当时,显然,即必要性成立;a b =A B =所以“”是“”的充分必要条件.A B =a b =故选:C.8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612x x a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232【正确答案】B【分析】先利用基本不等式证得(此公式也可背诵下来),从而由题()()2222m n m n +≥+设条件证得,结合题意得到,利用二次不等式的解法解之即可得2211612a b +≥21212xx ≥+-到正数的最小值.x 【详解】因为()()()22222222222m n m n m n m n mn +-+=+-++,当且仅当时,等号成立,()22220m n mn m n =+-=-≥m n =所以,()()2222m n m n +≥+因为为正实数,所以由得,即,,a b ()410a b a +-=4a b ab +=411b a +=所以,222221161441221a b a b b a ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+≥+=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦当且仅当,且,即时,等号成立,41b a =4a b ab +=2,8a b ==所以,即,2211621a b ⎛⎫+≥ ⎪⎝⎭2211612a b +≥因为对满足的所有正实数a ,b 都成立,22211612x x a b +≥+-()410a b a +-=所以,即,整理得,2n 2mi 211612x x a b ⎛⎫ ⎪⎝⎭+≥+-21212x x ≥+-2021x x --≥解得或,由为正数得,1x ≥12x ≤-x 1x ≥所以正数的最小值为.x 1故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U ,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC.D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð【正确答案】AC【分析】由已知韦恩图分析出了阴影部分所表示的集合的元素满足的条件,进而根据集合运算的定义可得答案.【详解】根据图中阴影可知,符合题意,()()U A B A B ð又,∴也符合题意.()()()U U U A B A B ⋃=⋂ððð()A B ()()U U A B ⎡⎤⎣⎦ ðð故选:AC10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A .B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >【正确答案】ACD【分析】根据二次方程根的大小分类讨论,即可求解二次不等式的解集.【详解】对于一元二次不等式,则;()()10a x a x -+>0a ≠当时,函数开口向上,与轴的交点为,0a >()()1y a x a x =-+x ,1a -故不等式的解集为,故D 正确;()(),1,x a ∈-∞-+∞ 当时,函数开口向下,若,不等式解集为,故A 正确;0a <()()1y a x a x =-+1a =-∅若,不等式的解集为,10a -<<()1,a -若,不等式的解集为,故C 正确.1a <-(),1a -故选:ACD11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232【正确答案】BC【分析】先根据一元二次不等式的解集得到对称轴,然后根据端点得到两个等式和一个不等式,求出的取值范围,最后都表示成的形式即可.a 32a b c ++a 【详解】因为不等式的解集为,()2020ax bx c a ≤++≤>{x |−1≤x ≤3}所以二次函数的对称轴为直线,()2f x ax bx c=++1x =且需满足,即,解得,()()()123210f f f ⎧-=⎪=⎨⎪≥⎩29320a b c a b c a b c -+=⎧⎪++=⎨⎪++≥⎩232b ac a =-⎧⎨=-+⎩所以,所以,123202a b c a a a a ++=--+≥⇒≤10,2a ⎛⎤∈ ⎥⎝⎦所以,故的值可以是和,332326445,42a b c a a a a ⎡⎫++=--+=-∈⎪⎢⎣⎭32a b c ++322故选:BC关键点睛:一元二次不等式的解决关键是转化为二次函数问题,求出对称轴和端点的值,继而用同一个变量来表示求解.第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.【正确答案】[)1,+∞【分析】由为的真子集,列出关于的不等式,求出不等式的解集即可.B A a 【详解】因为B A ,所以.1a ≥故[)1,+∞13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.【正确答案】1,2⎛⎤-∞⎥⎝⎦【分析】对和分类讨论求解,结合一元二次方程的根与系数的关系即可求解.0m =0m ≠【详解】当时,方程为,有一个负根,0m =220x +=当时,为一元二次方程,0m ≠2220mx x ++=关于的方程至少有一个负根,设根为,,x 2220mx x ++=1x 2x 当时,即时,方程为,解得,满足题意,480m ∆=-=12m =212202x x ++=2x =-当,即时,且时,480m ∆=->12m <0m ≠若有一个负根,则,解得,1220=<x x m 0m <若有两个负根,则,解得,12122020x x m x x m ⎧+=-<⎪⎪⎨⎪=>⎪⎩102m <<综上所述,则实数的取值范围是,,m (-∞1]2故,.(-∞1214.对于任意正实数x 、y 成立,则k 的范围为______.≤【正确答案】⎫+∞⎪⎪⎭≤2k ≥最大值即可.【详解】易知,,k>k≤.2k ∴≥令,分式上下同除y ,0t =>则,则即可,222221141121221t t t k t t +++⎛⎫≥=+ ⎪++⎝⎭22max 1411221t k t +⎛⎫≥+ ⎪+⎝⎭令,则.411u t =+>14u t -=可转化为:,24121t t ++()28829292u s u u u u u ==≤-++-于是,.()21411311222122t t +⎛⎫+≤+= ⎪+⎝⎭∴,即时,不等式恒成立(当时等号成立).232k ≥k ≥40x y =>故⎫+∞⎪⎪⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 【正确答案】(1)[)1,-+∞(2)(],2-∞-【分析】(1)分和两种情况讨论求解即可;A =∅A ≠∅(2)由题意得,从而可求出的取值范围.351a a -+≥⎧⎨≤-⎩a 【小问1详解】①当时,,∴,∴.A =∅AB =∅ 3a a >-+32a >②当时,要使,必须满足,解得.A ≠∅A B =∅ 32351a a a ⎧≤⎪⎪-+≤⎨⎪≥-⎪⎩312a -≤≤综上所述,的取值范围是.a [)1,-+∞【小问2详解】∵,,或,A B =R {}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >∴,解得,351a a -+≥⎧⎨≤-⎩2a ≤-故所求的取值范围为.a (],2-∞-16. 已知正数满足.,ab 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--【正确答案】(1)8 (2)3+(3)18【分析】(1)根据题意直接利用基本不等式即可得最值;(2)由题意可得,利用乘“1”法结合基本不等式运算求解;211a b +=(3)由题意可得,化简整理结合基本不等式运算求解.()()212a b --=【小问1详解】因为,且,0,0a b >>2a b ab +=则.2ab a b =+≥8ab ≥≥当且仅当,即时等号成立,24a b ==4,2a b ==所以的最小值为8.ab 【小问2详解】因为,且,则,0,0a b >>2a bab +=211a b +=可得,()2122133b a a b a b a b a b ⎛⎫+=++=+++≥+=+ ⎪⎝⎭当且仅当,即,即时等号成立,2b aa b =a=21a b =+=+所以的最小值为.a b +3+【小问3详解】因为,且,所以,0,0a b >>2a b ab +=()()212a b --=可得,()()2248182848101018212121a b a b a b a b a b -+-++=+=++≥+=------当且仅当,即时等号成立,4821a b =--3a b ==所以的最小值为18.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m 【正确答案】(1)[]4,0-(2)4≥m 【分析】(1)依题意可得是真命题,分和两种情况讨论;()R,0x f x ∀∈≤0m =0m ≠(2)依题意参变分离可得存在使得成立,则只需,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭,利用基本不等式求出即可得解.()4,0x ∈-min 4x x ⎛⎫-- ⎪⎝⎭【小问1详解】若命题:是假命题,则是真命题,()R,0x f x ∃∈>()R,0x f x ∀∈≤即在上恒成立,210mxmx -≤-R 当时,,符合题意;0m =10-<当时,需满足,解得;0m ≠20Δ40m m m <⎧⎨=+≤⎩40m -≤<综上所述,的取值范围为.m []4,0-【小问2详解】若存在成立,()()()24,0,13x f x m x ∈-≥++即存在使得成立,故只需,,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭()4,0x ∈-因为,所以,则,()4,0x ∈-()0,4x -∈()444x x x x--=-+≥=-当且仅当,即时取等号,4x x -=-2x =-所以,所以.min44x x ⎛⎫- ⎪⎝⎭=-4≥m 18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =【正确答案】(1)采用方案二;理由见解析 (2)24【分析】(1)列出两种方案的总费用的表达式,作差比较,即可求解;(2)根据题意,得到,利用换元法和基本不等式,即可214((4S S x a a -=-⋅+-求解.【小问1详解】解:方案一的总费用为(元);1S ax by =+方案二的总费用为(元),2S bx ay =+由,21()()()()()S S bx ay ax by a y x b x y y x a b -=+-+=-+-=--因为,可得,所以,4,4y x b a >>>>0,0y x a b ->-<()()0y x a b --<即,所以,所以采用方案二,花费更少.210S S -<21S S <【小问2详解】解:由(1)可知,()()(1244S S y x b a x a a ⎛⎫-=--=-⋅+ ⎪-⎝⎭令,t =24x t =+所以,当时,即时,等号成立,2224(1)33x t t t -=-+=-+≥1t =5x =又因为,可得,4a >40a ->所以,44(4)44844a a a a +=-++≥=--当且仅当时,即时,等号成立,444a a -=-6,14a b ==所以差的最小值为,当且仅当时,等号成立,S 2483=⨯5,8,6,14x y a b ====所以两种方案花费的差值最小为24元.S 19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈【正确答案】(1)集合不具有“包容”性,集合具有“包容”性{}1,1,2,3-{}1,0,1,2-(2)1(3),,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭【分析】(1)根据“包容”性的定义,逐一判断即可;(2)根据“包容”性的定义,能得到,分类讨论,得出a 和b 的值,即可得出结{}01,,a b ∈果;(3)由集合C 的子集有64个,推出集合C 中共有6个元素,且,再由条件,推0C ∈1C ∈出集合中有正数也有负数,将这几个元素设出来,再通过对正数负数个数的讨论,即可求出结果.【小问1详解】(Ⅰ)集合中的,,{}1,1,2,3-{}3361,1,2,3+=∉-{}3301,1,2,3-=∉-所以集合不具有“包容”性.{}1,1,2,3-集合中的任何两个相同或不同的元素,相加或相减,得到的两数中至少有一个属{}1,0,1,2-于集合,所以集合具有“包容”性.{}1,0,1,2-{}1,0,1,2-【小问2详解】(Ⅱ)已知集合具有“包容”性,记,则,{}1,,B a b ={}max 1,,m a b =1m ≥易得,从而必有,{}21,,m a b ∉{}01,,a b ∈不妨令,则,且,0a ={}1,0,B b =0b ≠1b ≠则,{}{}1,11,0,b b b +-⋂≠∅且,{}{}1,11,0,b b b +-⋂≠∅①当时,若,得,此时具有包容性;{}11,0,b b +∈10b +=1b =-{}1,0,1B =-若,得,舍去;若,无解;11b +=0b =1b b +=②当时,则,由且,可知b 无解,{}11,0,b b +∉{}{}1,11,0,b b b --⊆0b ≠1b ≠故.{}1,0,1B =-综上,.221a b +=【小问3详解】(Ⅲ)因为集合C 的子集有64个,所以集合C 中共有6个元素,且,又,且C 0C ∈1C ∈中既有正数也有负数,不妨设,{}1112,,,,0,,,,k k l C b b b a a a ---- 其中,,,5k l +=10l a a <<< 10k b b <<<L 根据题意,1111{,,}{,,,}l l l k k a a a a b b b ----⊆---L L且,1112112{,,,}{,,,}k k l b b b b b b a a a ----⊆L L 从而或.()(),2,3k l =()3,2①当时,,()(),3,2k l ={}{}313212,,b b b b a a --=并且由,得,由,得,313212{,}{,}b b b b b b -+-+=--312b b b =+2112{,}a a a a -∈212a a =由上可得,并且,2131322111(,)(,)(,)(2,)b b b b b b a a a a =--==31213b b b a =+=综上可知;{}111113,2,,0,,2C a a a a a =---②当时,同理可得.()(),2,3k l =11111{2,,0,,2,3}C a a a a a =--综上,C 中有6个元素,且时,符合条件的集合C 有5个,1C ∈分别是,,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭关键点点睛:本题是新定义题型,对于此类问题,要先弄清楚新定义的性质,按照其要求,严格“照章办事”,逐条分析验证。
湖南省长沙市2024-2025学年高一上学期10月月考数学试题含答案
数学(答案在最后)时量:120分钟满分:150分一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的、请把正确的选项填涂在答题卡相应的位置上.)1.已知集合{}26A x x =≤<,{}240B x x x =-<,则A B = ()A.()0,6 B.()4,6 C.[)2,4 D.()[),02,-∞⋃+∞【答案】C 【解析】【分析】根据一元二次不等式化简集合B ,即可根据交集的定义求解.【详解】由{}240B x x x =-<可得{}04B x x =<<,故A B = [)2,4,故选:C2.命题“x ∃∈R ,2220x x -+≤”的否定是()A.x ∃∈R ,2220x x -+≥B.x ∃∈R ,2220x x -+>C.x ∀∈R ,2220x x -+≤D.x ∀∈R ,2220x x -+>【答案】D 【解析】【分析】根据特称命题的否定直接得出答案.【详解】因为特称命题的否定是全称命题,所以命题“x ∃∈R ,2220x x -+≤”的否定是为:x ∀∈R ,2220x x -+>,故选:D.3.设a ∈R ,则“1a >”是“11a<”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由11a<可得1a >或0a <,即可判断.【详解】由11a<可得1a >或0a <,又{}1a a >≠⊂{1a a >或0}a <所以“1a >”是“11a<”的充分不必要条件.故选:A4.下列各组函数中,表示同一个函数的是()A.2(),()x f x x g x x ==B.()(),()()f x x x Rg x x x Z =∈=∈C.,0(),(),0x x f x x g x x x ≥⎧==⎨-<⎩ D.2(),()f x x g x ==【答案】C 【解析】【分析】分别求得函数的定义域和对应法则,结合同一函数的判定方法,逐项判定,即可求解.【详解】对于A 中,函数()f x x =的定义域为R ,函数2()x g x x=的定义域为(,0)(0,)-∞+∞ ,两函数的定义域不同,不是同一函数;对于B 中,函数()()f x x x R =∈和()()g x x x Z =∈的定义域不同,不是同一函数;对于C 中,函数,0(),0x x f x x x x ≥⎧==⎨-<⎩与,0(),0x x g x x x ≥⎧=⎨-<⎩的定义域相同,对应法则也相同,所以是同一函数;对于D 中,函数()f x x =的定义域为R ,2()g x =的定义域为[0,)+∞,两函数的定义域不同,不是同一函数.故选:C.【点睛】本题主要考查了同一函数的判定,其中解答中熟记两函数是同一函数的判定方法是解答的关键,着重考查推理与运算能力,属于基础题.5.函数1xy x=+的大致图象是()A. B.C. D.【答案】A 【解析】【分析】探讨函数1xy x=+的定义域、单调性,再逐一分析各选项判断作答.【详解】函数1xy x=+的定义域为{R |1}x x ∈≠-,选项C ,D 不满足,因111111x y x x+-==-++,则函数1xy x =+在(,1)∞--,(1,)-+∞上都单调递增,B 不满足,则A 满足.故选:A【点睛】方法点睛:函数图象的识别途径:(1)由函数的定义域,判断图象的左右位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性.6.若x A ∈且1A x ∈就称A 是伙伴关系集合,集合111,0,,,1,2,3,432M ⎧⎫=-⎨⎬⎩⎭的所有非空子集中,具有伙伴关系的集合个数为()A.15 B.16C.64D.128【答案】A 【解析】【分析】首先确定具有伙伴集合的元素有1,1-,“3和13”,“2和12”四种可能,它们组成的非空子集的个数为即为所求.【详解】因为1A ∈,111A =∈;1A -∈,111A =-∈-;2A ∈,12A ∈;3A ∈,13A ∈;这样所求集合即由1,1-,“3和13”,“2和12”这“四大”元素所组成的集合的非空子集.所以满足条件的集合的个数为42115-=,故选:A.7.某班有学生56人,同时参加了数学小组和英语小组的学生有32人,同时参加了英语小组和语文小组的学生有22人,同时参加了数学小组和语文小组的学生有25人.已知该班学生每人至少参加了1个小组,则该班学生中只参加了数学小组、英语小组和语文小组中的一个小组的人数最多是()A.20B.21C.23D.25【答案】B 【解析】【分析】设该班学生中同时参加了数学小组、英语小组和语文小组的人数为x ,只参加其中一个小组的人数为y ,根据题意列出方程即可.【详解】如图,设该班学生中同时参加了数学小组、英语小组和语文小组的人数为x ,只参加其中一个小组的人数为y ,则()()()32252256x x x x y -+-+-++=,即223y x =-.因为22x ≤,所以21y ≤.故选:B.8.已知集合P ,Q 中都至少有两个元素,并且满足下列条件:①集合P ,Q 中的元素都为正数;②对于任意(),a b Q a b ∈≠,都有aP b∈;③对于任意(),a b P a b ∈≠,都有ab Q ∈;则下列说法正确的是()A.若P 有2个元素,则Q 有3个元素B.若P 有2个元素,则P Q ⋃有4个元素C.若P 有2个元素,则P Q ⋂有1个元素D.存在满足条件且有3个元素的集合P 【答案】C 【解析】【分析】若集合P 中有2个元素,设{},P a b =,根据集合中元素的特性和题设条件进行分析推导,可判断出选项ABC ;假若P 有3个元素,设{},,P a b c =,再根据题设条件推导分析,可得到P 中还有第四个元素,推出矛盾,从而可判断出D 选项.【详解】若P 有2个元素,设{}(),0,0,P a b a b a b =>>≠,则ab Q ∈,因为Q 至少有2个元素,所以Q 中除ab 外至少还有一个元素,不妨设x ∈Q ,x ab ≠,则0,,x abx P P ab x>∈∈,若x ab ab x=,则()22x ab =且0,0x ab >>,所以x ab =,与假设矛盾,所以x ab ab x≠,所以,x ab a b ab x ==或,x ab b a ab x ==,当,x ab a b ab x ==时,则,1x a ab ==,所以1b a=,若1a =,则1a b ==,与a b ≠矛盾,所以1a ≠,同理可知1b ≠,所以此时{}1,,1,P a Q a a ⎧⎫==⎨⎬⎩⎭,{}1,1,,P Q a P Q a a ⎧⎫==⎨⎩⎭U I ;当,x abb a ab x ==时,则,1x b ab ==,所以1a b=,若1a =,则1a b ==,与a b ≠矛盾,所以1a ≠,同理可知1b ≠,此时{}1,,1,P b Q b b ⎧⎫==⎨⎬⎩⎭,{}1,1,,P Q b P Q b b ⎧⎫==⎨⎬⎩⎭U I ;由上可知,当P 有2个元素,则Q 有2个元素,P Q ⋃有3个元素,P Q ⋂有1个元素,故A 错误,B 错误,C 正确;不妨假设P 有3个元素,设{},,P a b c =,则,,a b c 为互不相等的正数,由③可知:,,ab Q ac Q bc Q ∈∈∈,又因为,,a b c 为互不相等的正数,所以,,ab ac bc 也为互不相等的正数,由②可知:,,,,,b c a c a ba ab bc c都是集合{},,P a b c =的元素,因为,,a b c 为互不相等的正数,所以,,,,,b c a c a b a a b b c c 都是不等于1的正数,所以,,b a c a c ba b a c b c ≠≠≠,又因为,b c 为互不相等的正数,所以,a a c bb c a a≠≠,考虑到b a a b ≠和a a b c ≠,若b a a c ≠,则,,a b ab a c为互不相等的正数,又因为b a ac ≠,所以a c b a ≠,所以c a是与,,a b ab ac 不相等正数,因为,,,c a b aa b a c都是集合P 的元素,所以集合P 中至少有4个元素,这与假设矛盾,因此考虑b aa c=的情况,所以2a bc =,同理可得22,b ac c ab ==,所以333a b c abc ===,所以a b c ==,这与集合中元素的互异性矛盾,所以P 有3个元素不可能成立,故D 错误;故选:C.【点睛】关键点点睛:本题考查元素与集合的关系以及集合运算后集合中元素个数的判断,本题的难点在于如何通过假设推导出矛盾,解答过程中主要利用集合中元素的互异性去检验元素,从而达到确定集合中元素个数的目的.二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分、部分选对的得部分分,有选错的得0分.)9.如果0a b <<,那么下列不等式成立的是()A.11a b< B.2ab b < C.2ab a -<- D.11ab-<-【答案】D 【解析】【分析】由于0a b <<,不妨令2a =-,1b =-,代入各个选项检验,只有D 正确,从而得出结论.【详解】解:由于0a b <<,不妨令2a =-,1b =-,可得111,12a b =-=-,∴11a b>,故A 不正确.可得2ab =,21b =,2ab b ∴>,故B 不正确.可得2ab -=-,24a -=-,2ab a ∴->-,故C 不正确.故选:D .10.已知关于x 的不等式20ax bx c ++≥的解集为{}34xx -≤≤∣,则下列说法正确的是()A.0a <B.不等式20cx bx a -+<的解集为1143xx ⎧⎫-<<⎨⎬⎩⎭∣C.0a b c ++<D.2342cb ++的最小值为4-【答案】AB 【解析】【分析】利用二次不等式解与系数的关系得到,b c 关于a 的表达式,结合基本不等式,逐一分析判断各选项即可得解.【详解】因为关于x 的不等式20ax bx c ++≥的解集为{}34xx -≤≤∣,所以3,4-是方程20ax bx c ++=的两根,且0a <,故A 正确;所以3434ba c a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得12b a c a =-⎧⎨=-⎩,所以20cx bx a -+<,即2120ax ax a -++<,则21210x x --<,解得1143x -<<,所以不等式20cx bx a -+<的解集为1143xx ⎧⎫-<<⎨⎬⎩⎭∣,故B 正确;而12120a b c a a a a ++=--=->,故C 错误;因为0,,12a b a c a <=-=-,所以344a -+>,则()222623483423434c a a b a a +=-=+-+-+-+-+84≥=-,当且仅当()223434a a =-+-+,即1a =或53a =时,等号成立,与0a <矛盾,所以2342cb ++取不到最小值4-,故D 错误.故选:AB.11.已知0x >,0y >且3210x y +=,则下列结论正确的是()A.xy 的最大值为625B.C.32x y +的最小值为52D.22x y +的最大值为10013【答案】BC 【解析】【分析】利用基本不等式直接判断A;利用基本不等式求得2的最大值可判断B ;利用基本不等式“1”的代换可判断C ;利用二次函数的性质可判断D ;【详解】0x >,0y >且3210x y +=,1003x ∴<<,<<0y 5对于A,利用基本不等式得1032x y =+≥256xy ≤,当且仅当32x y =,即55,32x y ==时,等号成立,所以xy 的最大值为256,故A 错误;对于B,21010102320x y =++++=+=,当且仅当32x y =,即55,32x y ==,故B 正确;对于C ,()32132166145329110101203x x y x y y x y y x ⎛⎛⎫+++≥+= ⎪ ⎝⎛⎫+=⨯+=⨯ ⎪⎝⎭⎭⎝,当且仅当66x y y x =,即2x y ==时,等号成立,所以32x y +的最小值为52,故C 正确;对于D ,22222102134013009y y x y y y -⎛⎫++ ⎪⎝-+=⎭=()05y <<利用二次函数的性质知,当20013y <<时,函数单调递减;当20513y <<时,函数单调递增,()222min201340120100131330091x y ⎛⎫⨯ ⎪⎝⎭-⨯+=∴=+,()()222max55221340150099x y -⨯+=⨯<+,故D错误;故选:BC三、填空题(本题共3小题,每小题5分,共15分.)12.若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.【答案】(-∞,-4]【解析】【分析】求出二次函的对称轴,根据二次函数的单调性,确定对称轴的位置,即可求解.【详解】∵f (x )=-x 2-2(a +1)x +3的开口向下,对称轴方程为(1)x a =-+,要使f (x )在(-∞,3]上是增函数,只需-(a +1)≥3,即a ≤-4,∴实数a 的取值范围为(-∞,-4].故答案为:(-∞,-4].【点睛】本题考查二次函数的单调性,属于基础题.13.已知函数()f x =的定义域为R ,则实数a 的取值范围是______.【答案】[]0,8.【解析】【分析】由题意得220ax ax -+≥恒成立,结合二次不等式恒成立对a 进行分类讨论进行求解.【详解】由题意得220ax ax -+≥恒成立,当0a =时,20≥恒成立,满足题意;当0a ≠时,280a a a >⎧⎨-≤⎩,解得08a <≤.综上08a ≤≤.故答案为:[]0,8.14.已知函数()()2462f x x a x a =-++-,若集合(){}N 0A x f x =∈<中有且只有两个元素,则实数a 的取值范围是______【答案】3,15⎛⎤ ⎥⎝⎦【解析】【分析】先将集合的元素个数转化为不等式的自然数解的个数,再分离参数,转化为求函数的取值范围问题,再结合函数的图象进行求解.【详解】由(){}N 0A x f x =∈<中有且只有两个元素,得()24620x a x a -++-<有且只有两个自然数解,即2462x x a x -+>+有且只有两个自然数解,令2t x =+,则()1882a t t t>+-≥,令()()1882g t t t t=+-≥,作出()()1882g t t t t=+-≥的图象(如图所示),又因为()142g =,()355g =,()()361g g ==所以315a <≤.故答案为:3,15⎛⎤ ⎥⎝⎦.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知集合{}121A x m x m =-≤≤-,集合()(){}230B x x x =-+<.(1)若2m =,求A B ;(2)若A B ⊆,求实数m 的范围.【答案】(1){}33A B x x ⋃=-<≤(2)3(,2-∞【解析】【分析】(1)解一元二次不等式求出集合B ,由集合的并集运算可得结果;(2)根据条件对集合A 分类讨论,分别求出实数m 的范围.【小问1详解】由2m =时,集合{}13A x x =≤≤,()(){}{}23032B x x x x x =-+<=-<<,所以{}{}{}133233A B x x x x x x ⋃=≤≤⋃-<<=-<≤,【小问2详解】当121m m ->-,即0m <时,集合=∅,符合A B ⊆,当≠∅时,由A B ⊆,有013212m m m ≥⎧⎪->-⎨⎪-<⎩,解得302≤<m ,综上可知,若A B ⊆,则m 的范围是3(,2-∞.16.如图所示,某学校要建造一个一面靠墙的无盖长方体垃圾池,垃圾池的容积为360m ,为了合理利用地形,要求垃圾池靠墙一面的长为6m ,如果池底每平方米的造价为200元,池壁每平方米的造价为180元(不计靠墙一面的造价),设垃圾池的高为m x ,墙高5m,(1)试将垃圾池的总造价y (元)表示为(m)x 的函数,并指出x 的取值范围;(2)怎样设计垃圾池能使总造价最低?最低总造价是多少?【答案】(1)详解见解析(2)当垃圾池的高为103m 、宽为3m 时,垃圾池总造价最低为10800元.【解析】【分析】利用长方体垃圾池的容积及长与高表示宽,再求各面面积,得出总造价,利用均值不等式求最值.【小问1详解】无盖长方体垃圾池的容积为360m ,长为6m ,高为x m ,则宽10xm ,()60180620200y x x =++⨯,即1200010803600y x x=++,(]0,5x ∈.【小问2详解】1200010803600360010800y x x =++≥=,当且仅当120001080x x =取等号,即(]100,53x =∈.所以当垃圾池的高为103m 宽为3m 时,垃圾池总造价最低为10800元.17.已知()24xf x x =+,()2,2x ∈-.(1)求证:函数()f x 在区间()2,2-上是增函数;(2)求函数()f x 在区间()2,2-上的值域.【答案】(1)证明见解析(2)11,44⎛⎫- ⎪⎝⎭【解析】【分析】(1)用单调性的定义证明即可.(2)由()f x 在区间()2,2-上的单调性易得值域.【小问1详解】令1222x x -<<<,则()()()()22211222112122222121444444x x x x x x x x f x f x x x x x +---=-=++++()()()()()()()()121212121222222121444444x x x x x x x x x x xx xx -----==++++,又1240x x -<,120x x -<,22+412+4>0,即()()21f x f x >,所以函数()f x 在区间()2,2-上是增函数.【小问2详解】由(1)知函数()f x 在区间()2,2-上是增函数,又()()112,244f f -=-=,所以函数()f x 在区间()2,2-上的值域为11,44⎛⎫- ⎪⎝⎭.18.已知函数()11mx f x =++,()()21g x x x a =++.(1)当0a =,1m =-时,解关于x 的不等式()()f x g x ≥;(2)当0m =时,对任意[)1,x ∞∈+,关于x 的不等式()()f x g x ≤恒成立,求实数m 的取值范围;(3)当0m <,0a <时,若点()111,P x y ,()222,P x y 均为函数()y f x =与函数()y g x =图象的公共点,且12x x ≠,求证:()1221223a x x --<+<.【答案】(1)110,122⎡⎡⎫-+---⎪⎢⎢⎪⎣⎦⎣⎭(2)[)0,+∞(3)证明见解析【解析】【分析】(1)即解不等式2101--≥+x x x x ,分0x =、0x >、0x <且1x ≠-讨论,解不等式可得答案;(2)转化为2111x a x x -≥=-+在[)1,x ∞∈+上恒成立,求得1x -的最大值可得答案;(3)由()()f x g x =得()()()32121101x a x a x a m x +++-+--=≠-,化简方程得()()()()22212121211214x x x x a x x a x x ++++++-=<,令21=+t x x ,结合一元二次不等式求解可得答案.【小问1详解】当0a =,1m =-时,即解不等式2111-+≥+x x ,可得2101--≥+x x x x ,当0x =时,00≥成立,当0x >时,得2101--≥+x x x ,即解210--≥x x ,解得1502-+<≤x ;当0x <且1x ≠-时,得2101--≤+x x x ,解得112--≤<-x ,综上所述,不等式的解集为110,,122⎡⎡⎫-+-⋃-⎪⎢⎢⎪⎣⎦⎣⎭;【小问2详解】当0m =时,可得()1f x =,()()21g x x a x =++,对任意[)1,x ∞∈+,关于x 的不等式()()f x g x ≤恒成立,即()211x a x ++≥在[)1,x ∞∈+上恒成立,即2111x a x x -≥=-+在[)1,x ∞∈+上恒成立,即当[)1,x ∞∈+时,1x -的最大值为0,所以0a ≥,所以实数m 的取值范围[)0,∞+;【小问3详解】由()()f x g x =,可得()2111mx a x x +=+++,可得()()()32121101x a x a x a m x +++-+--=≠-,因为点()111,P x y ,()222,P x y 均为函数=与函数=图象的公共点,可得()()3211112110x a x a x a m +++-+--=,()()3222212110x a x a x a m +++-+--=,两式相减得()()()()33222121211210x x a x x a x x -++-+--=,因为12x x ≠,所以()()222211211210x x x x a x x a ++++++-=,可得()()()()22212121211214x x x x a x x a x x ++++++-=<,令21=+t x x ,则()221214t t a t a +++-<,整理得()2312104t a t a +++-<,解得()21223a t --<<,所以()2121223a x x --<+<.【点睛】关键点点睛:第三问解题的关键点是化简方程得()()()()22212121211214x x x x a x x a x x ++++++-=<,令21=+t x x ,结合一元二次不等式求解可得答案.19.已知集合A 为非空数集.定义:{}|,,,{|,,}S x x a b a b A T x x a b a b A ==+∈==-∈(1)若集合{1,3}A =,直接写出集合S ,T ;(2)若集合{}12341234,,,,,A x x x x x x x x =<<<且TA =.求证:423x x =;(3)若集合{}|02024,N ,A x x x S T ⊆≤≤∈⋂=∅,记A 为集合A 中元素的个数,求A 的最大值.【答案】(1){2,4,6}S =,{0,2}T =(2)证明见解析(3)1350.【解析】【分析】(1)根据新定义直接求出,S T ;(2)首先根据定义得出213141,,}{0,T x x x x x x =---234{0,,,}x x x =,然后由324240x x x x x <-<-<,得出结论,再验证43x x -也是T 中元素即得;(3)设{}12,,k A a a a = 满足题意,其中12k a a a <<< ,利用最大的k a 和最小的1a 构造也S 中至少含有的元素,以及T 中至多含有的元素,得21,S k T k ≥-≥,然后由利用S T ⋂=∅,得31S T S T k ⋃=+≥-,再由S T 中最小的元素0与最大的元素2k a 得到1350k ≤,然后构造一个集合{,1,2,,2024}A m m m =++ ,由S T ⋂=∅得出m 的范围,求得S T 中元素个数可以为1350,从而得出结论.【小问1详解】由已知{1,3}A =,则{2,4,6}S =,{0,2}T =;【小问2详解】由于集合{}12341234,,,,,A x x x x x x x x =<<<且TA =,所以T 中也只包含四个元素,因为2131410x x x x x x <-<-<-,即213141,,}{0,T x x x x x x =---且10x =,即234{0,,,}T x x x =,又3242410x x x x x x <-<-<-,所以322423,x x x x x x -=-=,从而3242322,3x x x x x x ==+=,此时243x x x -=满足题意,所以423x x =;【小问3详解】设{}12,,k A a a a = 满足题意,其中12k a a a <<< ,1121312312k k k k k a a a a a a a a a a a a a -<+<+<<+<+<+<<+< 2k a ,112131121,,k S k a a a a a a a a T k ≥--<-<-<<-∴≥ ,∵S T ⋂=∅,∴31S T S T k ⋃=+≥-,又S T 中最小的元素为0,最大的元素为2k a ,则()*21,31214049N ,1350k k S T a k a k k ⋃≤+∴-≤+≤∈∴≤设{,1,2,,2024}A m m m =++ ,N m ∈,则{2,21,22,,4048},{0,1,2,,2024}S m m m T m =++=- ,因为S T ⋂=∅,可得20242m m -<,即26743m >,故m 的最小值为675,于是当675m =时,A 中元素最多,即675,676,6},{77,2024A = 时满足题意,综上所述,集合A 中元素的个数的最大值是1350.【点睛】方法点睛:本题考查集合的新定义,解题关键是对新定义的理解,第(3)小题较难,解题方法首先是对集合A 中元素进行排序,即设{}12,,k A a a a = 满足题意,其中12k a a a <<< ,利用集合中的最大元素和最小元素确定S 的最小值,T 的最小值,确定k 的范围,然后构造出一个集合,使得S T ⋃能取得范围内的最大值.。
2024-2025学年高一上学期第二次月考(10月)数学试题
2024级高一数学试题总分:150分 时间:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,”的否定为( )x ∀∈R 2210x x -+>A., B.,x ∀∈R 2210x x -+<x ∀∉R 2210x x -+>C., D.,x ∃∈R 2210x x -+≥x ∃∈R 2210x x -+≤2.定义集合运算.设,,则集合的真子{},,A B c c a b a A b B ==+∈∈◇{}0,1,2A ={}2,3,4B =A B ◇集个数为( )A.32B.31C.30D.153.设集合,,那么下面的4个图形中,能表示集合到集合且{}02M x x =≤≤{}02N y y =≤≤M N 以集合为值域的函数关系的有( )NA ①②③④ B.①②③C.②③D.②4.已知函数.下列结论正确的是( )()223f x x x =-++A.函数的减区间()f x ()(),11,3-∞- B.函数在上单调递减()f x ()1,1-C.函数在上单调递增()f x ()0,1D.函数的增区间是()f x ()1,3-5.已知函数,则下列关于函数的结论错误的是( )()22,1,12x x f x x x +≤-⎧=⎨-<<⎩()f xA. B.若,则()()11f f -=()3f x =x C.的解集为 D.的值域为()1f x <(),1-∞()f x (),4-∞6.已知函数的定义域和值域都是,则函数的定义域和值域分别为( )()f x []0,1fA.和B.和⎡⎣[]1,0-⎡⎣[]0,1C.和D.和[]1,0-[]1,0-[]1,0-[]0,17.设函数;若,则实数的取值范围是( )()()()4,04,0x x x f x x x x +≥⎧⎪=⎨--<⎪⎩()()231f a f a ->-a A. B.()(),12,-∞-+∞ ()(),21,-∞-+∞ C. D.()(),13,-∞-+∞ ()(),31-∞-+∞ 8.已知函数满足,则( )()f x ()111f x f x x ⎛⎫+=+⎪-⎝⎭()2f =A. B. C. D.34-343294二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9.设集合,集合,若,则实数的值可以为( {}2280A x x x =--={}40B x mx =-=A B =∅R m )A. B. C.0 D.12-1-10.已知对任意的,不等式恒成立,则下列说法正确的是( )0x <()()240ax x b -+≥A. B.0a >0b <C.的最小值为8 D.的最小值为2a b -1b a +16411.已知,均为正实数.则下列说法正确的是( )x y A.的最大值为22xy x y +128.若,则的最大值为84x y +=22x y +C.若,则的最小值为21y x+=1x y +3+D.若,则的最小值为22x y x y +=-12x y x y +++169三、填空题:本题共3小题,每小题5分,共15分.12.函数______()f x =13.已知函数满足对任意实数,都有成立,()25,1,1x ax x f x a x x⎧-+≤⎪=⎨>⎪⎩12x x ≠()()()21210x x f x f x --<⎡⎤⎣⎦则实数的取值范围是______a 14.记为,,中最大的数.设,,则的最小值为______.{}max ,,abc a b c 0x >0y >13max ,,y x x y ⎧⎫+⎨⎬⎩⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)(1)已知是一次函数,且,求的解析式;()f x ()()94ff x x =+()f x (2)已知函数.求的解析式;()24212f x x x +=-()f x (3)已知函数满足,求函数的解析式.()f x ()1222f x f x x ⎛⎫-++= ⎪⎝⎭()y f x =16.(本小题满分15分)已知定义在的函数,,满足对,等式()0,+∞()f x ()21f =(),0,x y ∀∈+∞恒成立且当时,.()()()f xy f x f y =+1x >()0f x >(1)求,的值;()1f 14f ⎛⎫ ⎪⎝⎭(2)若,解关于的不等式:.()21f =x ()()64f x f x +-≤17.(本小题满分15分)已知函数()21,1,1x ax x f x ax x ⎧-++≤=⎨>⎩(1)若,用定义法证明:为递增函数;3a =()f x (2)若对任意的,都有,求实数的取值范围.x ()22f x x >-a 18.(本小题满分17分)两县城和相距20km ,现计划在县城外以为直径的半圆弧(不含A B AB AB 两点)上选择一点建造垃圾处理站,其对城市的影响度与所选地点到城市的距离有关,垃圾处理厂AB C 对城的影响度与所选地点到城的距离的平方成反比,比例系数为4;对城的影响度与所选地点到城A A B 的距离的平方成反比,比例系数为,对城市和城市的总影响度为城市和城市的影响度之和,B K A B A B 记点到城市的距离为,建在处的垃圾处理厂对城和城的总影响度为,统计调查表明:当C A x C A B y 垃圾处理厂建在的中点时,对城和城的总影响度为0.065.AB AB (1)将表示成的函数;y x(2)判断弧上是否存在一点,使得建在此处的垃圾处理厂对城市和城的总信影响度最小?若存AB A B 在,求出该点到坡的距离;若不存在,说明理由.A 19.(本小题满分17分)已知集合,其中,由中元{}()12,,2k A a a a k =⋅⋅⋅⋅⋅⋅≥()1,2,i a Z i k ∈=⋅⋅⋅⋅⋅⋅A 素可构成两个点集和:,.P Q (){},,,P x y x A y A x y A =∈∈+∈(){},,,Q x y x A y A x y A =∈∈-∈其中中有个元素,中有个元素.新定义一个性质:若对任意的,,则称集合具P m Q n G x A ∈x A -∉A 有性质G(1)已知集合与集合和集合,判断它们是否具有性{}0,1,2,3J ={}1,2,3K =-{}222L y y x x ==-+质,若有,则直接写出其对应的集合、;若无,请说明理由;G P Q (2)集合具有性质,若,求:集合最多有几个元素?A G 2024k =Q (3)试判断:集合具有性质是的什么条件并证明.A G m n =。
甘肃省兰州2024-2025学年高一上学期10月月考试题 数学含答案
兰州2024-2025-1学期10月月考试题高一数学(答案在最后)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.《生于忧患,死于安乐》由我国古代著名思想家孟子所作,文中写到“故天将降大任于斯人也,必先苦其心志,劳其筋骨,饿其体肤”,根据文中意思可知“苦其心志,劳其筋骨,饿其体肤”是“天将降大任于斯人也”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知集合{}{}2230,1,2,3,4A xx x B =-->=∣,则A B = ()A.{}1,2 B.{}1,2,3 C.{}3,4 D.{}43.已知命题:0p x ∃>,32x x =,:q x ∀∈R ,40x >,则()A.p 和q 都是真命题B.p 和q ⌝都是真命题C.p ⌝和q 都是真命题D.p ⌝和q ⌝都是真命题4.函数211x y x -=-的定义域是()A.[)4,-+∞ B.()4,-+∞C.[)()4,00,-+∞ D.[)()4,11,-+∞ 5.设集合{}21,Z M x x n n ==+∈,{}31,Z N x x n n ==+∈,{}61,Z P x x n n ==+∈,则()A.M P⊆ B.N P ⊆ C.P M N=⋂ D.M N ⋂=∅6.下列说法正确的是()A.“a b <”是“11a b>”的必要不充分条件B.“0x >”是“2x >”的充分不必要条件C.若不等式20ax bx c ++>的解集为()12,x x ,则必有0a <D.命题“x ∃∈R ,使得210x +=.”的否定为“x ∀∉R ,使得210x +≠.”7.已知命题2:,230p x ax x ∀∈++>R 为真命题,则实数a 的取值范围是()A.1|02a a ⎧⎫<≤⎨⎩⎭B.1|03a a ⎧⎫<<⎨⎬⎩⎭C.1|3a a ⎧⎫≥⎨⎬⎩⎭D.1|3a a ⎧⎫>⎨⎬⎩⎭8.已知函数()()()1,012,0x x f x f x f x x +≤⎧=⎨--->⎩,则()2f =()A.2- B.1- C.0D.1二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若集合A ,B ,U 满足()U A B ⋂=∅ð,则下列结论一定正确的是()A.A B U⋃= B.A B⊆ C.A B A= D.()U A B U È=ð10.若0a b >>,则下列结论一定成立的是()A.11a b> B.2b a a b +>C.2121a ab b ++>++ D.11a b b a+>+11.若正实数,x y 满足21x y +=,则下列说法正确的是()A.xy 有最大值为18B.14x y+有最小值为6+C.224x y +有最小值为12D.()1x y +有最大值为12第Ⅱ卷(非选择题)三、填空题:本大题共3小题,每小题5分,共15分.12.命题“[]1,4x ∃∈,使220x x λ+->成立”的否定命题是______.13.已知315:15210x p x ->⎧⎨>->⎩,:211q m x m -<<+.若p 是q 的必要不充分条件,则实数m 的取值范围是______.14.已知实数,a b 满足40a b ab +-=,且0ab >,若关于t 的不等式253a b t t +≥++恒成立,则实数t 的取值范围是__________.四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.已知集合{|M x y ==,2{|21,R}N y y x x x ==--∈,求:(1)M N ⋂,M N ⋃;(2)(,)A a =+∞,M A ⊆,求a 的取值范围.16.已知二次函数2()(0)f x ax bx c a =++≠满足(1)()21f x f x x +-=-,且(1)4f =-.(1)求()f x 的解析式;(2)集合{(2)0}(,){12}A xf m x B x x x =++<=-<<∣∣,若B A ⊆,求实数m 的取值范围.17.某公园为了美化游园环境,计划修建一个如图所示的总面积为7502m 的矩形花园.图中阴影部分是宽度为1m 的小路,中间,,A B C 三个矩形区域将种植牡丹、郁金香、月季(其中,B C 区域的形状、大小完全相同).设矩形花园的一条边长为m x ,鲜花种植的总面积为2m S .(1)用含有x 的代数式表示a ,并写出x 的取值范围;(2)当x 的值为多少时,才能使鲜花种植的总面积最大?18.已知函数()()()211R f x m x mx m m =+-+-∈.(1)若不等式()0f x <的解集为∅,求m 的取值范围;(2)当2m >-时,解不等式()f x m ≥;(3)对任意的[]1,1x ∈-,不等式()21f x x x ≥-+恒成立,求m 的取值范围.19.已知集合{}()122k A a a a k =≥ ,,,其中()Z 1,2,i a i k ∈= ,由A 中元素可构成两个点集P 和Q :(){},,,P x y x A y A x y A =∈∈+∈,(){},,,Q x y x A y A x y A =∈∈-∈,其中P 中有m 个元素,Q中有n 个元素.新定义1个性质G :若对任意的x A ∈,必有x A -∉,则称集合A 具有性质G(1)已知集合{}0,1,2,3J =}与集合{}1,2,3K =-和集合{}222L y y x x ==-+,判断它们是否具有性质G ,若有,则直接写出其对应的集合P ,Q ;若无,请说明理由;k=,求:集合Q最多有几个元素?(2)集合A具有性质G,若2024=的什么条件并证明.(3)试判断:集合A具有性质G是m n兰州2024-2025-1学期10月月考试题高一数学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】C【7题答案】【答案】D【8题答案】【答案】C二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BC【10题答案】【答案】BD【11题答案】【答案】ABC第Ⅱ卷(非选择题)三、填空题:本大题共3小题,每小题5分,共15分.【12题答案】【答案】“[]1,4x ∀∈,220x x λ+-≤”【13题答案】【答案】3[,)2+∞.【14题答案】【答案】[]6,1-四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.【15题答案】【答案】(1)[1,3]M N ⋂=,[2,)M N ⋃=-+∞(2)(,1)-∞【16题答案】【答案】(1)2()23f x x x =--;(2)122m -<<-.【17题答案】【答案】(1)3753,32502a x x =-<<(2)当25m x =时,才能使鲜花种植的总面积最大【18题答案】【答案】(1),3∞⎡⎫+⎪⎢⎪⎣⎭;(2)答案见解析;(3)3,3∞⎡⎫+⎪⎢⎪⎣⎭.【19题答案】【答案】(1)集合,J L 不具有性质G ;集合K 具有性质G ,对应集合()(){}1,3,3,1P =--,()(){}2,1,2,3Q =-;(2)2047276;(3)充分不必要条件.。
浙江省嘉兴市第一中学2024-2025学年高一上学期10月月考数学试题
浙江省嘉兴市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.集合{13}A xx =-<≤∣,{}24B x x =<,那么集合A B =I ( ) A .{22}x x -<<∣ B .{12}x x -<<∣ C .{23}x x -<≤∣ D .{13}xx -<<∣ 2.已知命题():1,p x ∀∈+∞,20x x ->,则( )A .命题p 的否定为“()1,x ∃∈+∞,20x x ->”B .命题p 的否定为“(],1x ∃∈-∞,20x x -≤”C .命题p 的否定为“()1,x ∃∈+∞,20x x -≤”D .命题p 的否定为“(],1x ∀∈-∞,20x x ->”3.设命题“2x >”是命题“240x -≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设函数()221,036,0x x x f x x x ⎧++<=⎨+≥⎩,则不等式()()1f x f >的解集是( ) A .()(),41,-∞-+∞UB .()(),21,-∞-+∞UC .()(),42,-∞-+∞UD .()(),22,∞∞--⋃+5.设a ,b ,R c ∈,则下列命题正确的是( )A .若a b >,则a b >B .若0a b c >>>,则a a c b b c +<+C .若a b >,则11a b< D .若0a b c >>>,则b c a b a c >-- 6.不等式1122x x x x --->-++的解集为( ) A .{2x x <-或x >1B .{|2}x x <-C .{}1x x > D .{}21x x -<<7.设0m >,若2420mx x -+=有两个不相等的根1x ,2x ,则12x x +的取值范围是( ) A .()0,2 B .(]0,2 C .()2,+∞ D .[)2,+∞8.对于实数a 和b 定义运算“⋅”:⋅a b =22,,a ab a b b ab a b⎧-≤⎨->⎩,设()(21)(2)f x x x =-⋅-,如果关于x 的方程()()f x m m R =∈恰有三个互不相等的实数根123x x x ,,,则m 的取值范围( ) A .9,4⎛⎤-∞ ⎥⎝⎦ B .90,4⎡⎤⎢⎥⎣⎦ C .9(0,)4 D .φ二、多选题9.下列各组函数是同一个函数的是( )A .()221f x x x =--与()221g s s s =--B .()f x ()g x =-C .()x f x x =与()g x =D .()f x x =与()g x =10.已知集合{}22M y y x ==-,{N x y ==,则( )A .M N M ⋂=B .M N M ⋃=C .()N M ⋂=∅R ðD .()M N ⋂=∅R ð11.已知2()2f x x x a =-+.若方程()0f x =有两个根12,x x ,且12x x <,则下列说法正确的有()A .1>0x ,20x >B .1a <C .若120x x ≠,则121211x x x x ++的最小值为D .,R m n ∀∈,都有()()()22f m f n m nf ++≥三、填空题12.设集合{}21,,45A t t t =-+,若2A ∈,则实数t 的值为.13.已知不等式()()22240a x a x -+--≥解集是∅,则实数a 的取值范围是.14.已知a ,b ,0c >满足4a b c ++=,则11ab bc+的最小值为.四、解答题15.已知全集为R ,集合{}22A x x x =+<,{124}B xx a =-<+<∣. (1)当1a =时,求R ()A B ⋃ð;(2)若A B B =I ,求实数a 的取值范围.16.设函数2()(1)2(R)f x ax a x a a =+-+-∈(1)若不等式()2f x ≥-对一切实数x 恒成立,求a 的取值范围;(2)解关于x 的不等式:()1f x a <-.17.设a 为实数,函数()f x =(1)求函数()f x 的定义域;(2)设t ()f x 表示为t 的函数()h t ,并写出定义域;(3)若0a <,求()f x 的最大值18.已知x ,0y >满足6x y +=.(1)求22x y +的最小值;(2)求3yx y +的最小值;(3)若()2244x y m x y +≥+恒成立,求m 的取值范围. 19.已知二次函数()()1f x ax x =-,()0,4a ∈,()0,1x ∈.若有()00f x x =,我们就称0x 为函数()f x 的一阶不动点;若有()()00f f x x =,我们就称0x 为函数()f x 的二阶不动点.(1)求证:()01f x <<;(2)若函数()f x 具有一阶不动点,求a 的取值范围;(3)若函数()f x 具有二阶不动点,求a 的取值范围.。
北京市和平街2024-2025学年高一上学期10月月考数学试题含答案
和平街高一数学月考试题(2024.10)(答案在最后)(考试时间:90分钟,满分150分)第Ⅰ卷(选择题,共40分)一、单选题(每小题4分,共40分)1.设集合{}0,1,2,3A =,{}1,0,1,2,3B =-,则A B = ()A.{}1,0,1,2,3- B.{}1,2 C.{}0,1,2,3 D.{}1,2,3【答案】C 【解析】【分析】根据集合交集运算求解即可.【详解】{}0,1,2,3A B ⋂=,故选:C.2.已知命题20001:,04∃∈-+≤p x x x R ,则命题p 的否定为()A.20001,04∃∈-+>x x x R B.20001,04∃∈-+<x x x R C.21,04∀∈-+≤x x x R D.21,04x x x ∀∈-+>R 【答案】D 【解析】【分析】根据特称命题的否定是全称命题可得答案.【详解】20001:,04∃∈-+≤p x x x R ,则命题p 的否定为21,04x x x ∀∈-+>R .故选:D.3.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则下列结论正确的是()A.B A ⊆B.{}1,5U A =ðC.{}3A B =D.{}2,4,5A B = 【答案】B 【解析】【分析】利用集合的包含关系可判断A 选项的正误,利用集合的基本运算可判断BCD 选项的正误.【详解】已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =.对于A 选项,B A ⊄,A 选项错误;对于B 选项,{}1,5U A =ð,B 选项正确;对于C 选项,{}2,3,4,5A B ⋃=,C 选项错误;对于D 选项,{}3A B ⋂=,D 选项错误.故选:B.4.设集合{}2{,},0,A x y B x ==,若A B =,则2x y +等于()A.0B.1C.2D.-1【答案】C 【解析】【分析】根据元素的确定性可得0x =或0y =,再利用元素的互异性可确定0y =,1x =,从而可得正确的选项.【详解】由A B =,得0x =或0y =.当0x =时,20x =,不满足集合中元素的互异性,舍去;当0y =时,2x x =,则0x =或1x =,由上知0x =不合适,故0y =,1x =,则22x y +=.故选:C.【点睛】本题考查集合相等的性质以及集合元素的确定性和互异性,一般地,我们利用确定性求值,利用互异性取舍,本题属于基础题.5.已知0x >,则2x x+的最小值为()A.B.2C.D.4【答案】C 【解析】【分析】根据给定条件利用均值不等式直接计算作答.【详解】因为0x >,则2x x +≥=2x x =,即x ==”,所以2x x+的最小值为.故选:C6.若a ,b 是任意实数,且a b >,则()A.22a b >B.1b a< C.1a b -> D.0a b ->【答案】D 【解析】【分析】利用不等式性质一一判定选项即可.【详解】若2201a b a b =>=-⇒<,故A 错误;若1221ba b a=->=-⇒=>,故B 错误;若011a b a b =>=-⇒-=,故C 错误;显然0a b a b b b >⇔->-=,故D 正确.故选:D7.不等式2230x x --<的解集为()A.()1,3- B.()3,1-C.(1)(3)∞∞--⋃+,, D.(3)(1)∞∞--⋃+,,【答案】A 【解析】【分析】根据一元二次不等式的解法计算可得.【详解】不等式2230x x --<,即()()130x x +-<,解得13x -<<,所以不等式2230x x --<的解集为()1,3-.故选:A8.“02x <<”是“13x -<<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分必要条件的定义判断.【详解】02x <<时,一定有13x -<<,满足充分性,但13x -<<时,如 2.5x =,不满足02x <<,即不满足必要性,“02x <<”是“13x -<<”的为充分不必要条件.故选:A .9.已知集合{}0,A a =,{}230,Z B b b b b =-<∈,A B ≠∅ ,则实数a 的值为()A.1B.2C.1或2D.2或3【答案】C 【解析】【分析】首先解一元二次不等式即可求出集合B ,再根据A B ≠∅ 求出a 的值.【详解】由230b b -<,即()30b b -<,解得03b <<,所以{}{}{}230,Z 03,Z 1,2B b b b b b b b =-<∈=<<∈=,又{}0,A a =且A B ≠∅ ,所以1a =或2a =.故选:C.10.设集合A 的最大元素为M ,最小元素为m ,记A 的特征值为A X M m =-,若集合中只有一个元素,规定其特征值为0.已知1A ,2A ,3A ,…,n A 是集合*N 的元素个数均不相同的非空真子集,且12360n A A A A X X X X +++⋅⋅⋅+=,则n 的最大值为()A.10B.11C.12D.13【答案】B 【解析】【分析】根据题设描述只需保证各集合中n A X M m =-(*N n ∈)尽量小,结合已知及集合的性质有n 最大时123(1)...2n A A A A n n X X X X -++++=,进而分析n 的取值.【详解】由题设1A ,2A ,3A ,…,n A 中都至少有一个元素,且元素个数互不相同,要使n 最大,则各集合中n A X M m =-(*N n ∈)尽量小,所以集合1A ,2A ,3A ,…,n A 的元素个数尽量少且数值尽可能连续,所以,不妨设1230,1,2,...,1n A A A A X X X X n ====-,有123(1)...2n A A A A n n X X X X -++++=,当11n =时,123...5560n A A A A X X X X ++++=<,当12n =时,123...6660n A A A A X X X X ++++=>,只需在11n =时,在上述特征值取最小情况下,使其中一个集合的特征值增加5即可,故n 的最大值为11.故选:B【点睛】关键点点睛:注意n 最大则各集合中n A X M m =-(*N n ∈)尽量小,并求出该情况下特征值之和关于n 的公式,再分析其最大取值.第Ⅱ卷(非选择题共110分)二、填空题(每小题5分,共25分).11.已知函数()43f x x =+,则()3f =__________.【答案】15【解析】【分析】代值求解可得.【详解】()43f x x =+Q ,(3)43315f ∴=⨯+=.故答案为:15.12.设x 、y 满足10x y +=,且x 、y 都是正数,则xy 的最大值为________.【答案】25【解析】【分析】由基本不等式即可求解.【详解】由于x 、y 都是正数,故2252x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当5x y ==时等号成立,故xy 的最大值为25,故答案为:2513.满足{}{}11,2,3A ⊆⊆的集合A 的个数为____________个.【答案】4【解析】【分析】根据子集的定义即可得到集合A 的个数;【详解】 {}{}11,2,3A ⊆⊆,∴{}1A =或{}1,2或{}1,3或{}1,2,3,故答案为:4.【点睛】本题考查子集的定义,属于基础题.14.已知集合{}{}21,2,3,2,A B a a a ==+.若{}2A B = ,则a =____________.【答案】2-【解析】【分析】根据交集的定义,结合集合中元素的互异性进行求解即可.【详解】当22a =时,1a =,此时{}2,2B =,不满足集合中元素的互异性,所以1a =(舍);当22a a +=时,可得2,1a a =-=(舍),此时,{}4,2B =-,满足条件,所以2a =-.故答案为:2-15.函数2(0)y ax bx c a =++≠的图像如图所示,则不等式20ax bx c ++<的解集是__________,不等式0ax bcx a+<+的解集是__________.【答案】①.{}|12x x <<②.1|32x x ⎧⎫-<<⎨⎬⎩⎭【解析】【分析】根据图像求出a ,b ,c 之间的关系,再解不等式0ax bcx a++<即可.【详解】由函数图像知,20ax bx c ++<的解集为{}|12x x <<;从而0,420,a b c a b c ++=⎧⎨++=⎩且0a >,解得3b a =-且2(0)=>c a a ,所以不等式0ax bcx a +<+等价于3021x x -<+,等价于()()3210x x -+<,解得132x -<<;故答案为:{}|12x x <<;1|3.2⎧⎫-<<⎨⎬⎩⎭x x三、解答题(六小题,共85分)16.已知集合{}2|430A x x x =-+<,集合{}|2B x x =>.(1)化简集合A 并求A B ⋂,A B .(2)若全集U R =,求()U B A ⋂ð.【答案】(1){}|23A B x x =<< ,{}|1A B x x =>U ;(2){}|3x x ≥﹒【解析】【分析】(1)解二次不等式得集合A ,利用交并运算的定义求解即可;(2)先求补集U A ð,进而求交集即可.【小问1详解】{}2|430A x x x =-+<{}|13x x =<<,∴{}|23A B x x =<< ,{}|1A B x x =>U .【小问2详解】∵{|1U A x x =≤ð或3}x ≥,∴(){}|3U B A x x ⋂=≥ð.17.完成如下三个小题并写出必要过程(1)设()()23M x x =++,()()14N x x =++,比较,M N 的大小.(2)已知,a b c d ><,求证:a c b d ->-;(3)已知R x ∈,设()1A x x =-;2B x =-,比较A 与B 的大小.【答案】(1)M N >(2)证明见解析(3)A B>【解析】【分析】(1)由作差法得到−=+2+3−+1+4=2+5+6−2+5+4=2>0,即可比较;(2)由c d <则c d ->-,由同向不等式的可加性可得a c b d ->-;(3)由作差法得到−=2−2+2=−12+1>0,即可比较.【小问1详解】因为−=+2+3−+1+4=2+5+6−2+5+4=2>0,M N ∴>.【小问2详解】因为,a b c d ><,所以c d ->-,由同向不等式的可加性可得a c b d ->-.【小问3详解】因为R x ∈,()1A x x =-,2B x =-,所以−=2−2+2=−12+1>0,所以A B >.18.已知集合{}45A x x =-<<,{}36B x x =-<<,{}|121,R C x m x m m =-≤≤+∈.(1)求A B ,A B ⋂;(2)若()C A B ⊆⋂,求实数m 的取值范围.【答案】(1){}46A B x x ⋃=-<<,{}35A B x x ⋂=-<<(2)2m <-或22m -<<.【解析】【分析】(1)根据集合的交并运算求得A B ,A B ⋂;(2)根据C 是否为空集进行分类讨论,由此求得m 的取值范围.【小问1详解】{}45A x x =-<<,{}36B x x =-<<,∴{}46A B x x ⋃=-<<,{}35A B x x ⋂=-<<.【小问2详解】{}35A B x x ⋂=-<<,当C =∅时,121m m ->+,∴2m <-.当C ≠∅时,213215m m m ≥-⎧⎪->-⎨⎪+<⎩,∴22m -<<.综上所述,2m <-或22m -<<.19.函数()243f x mx mx =++(1)若1m =,求()0f x ≤的解集;(2)当()0f x >恒成立时,求m 的取值范围;(3)若方程()0f x =有两个实数根12,x x ,且22121230x x x x +->,求m 的取值范围【答案】(1)[]3,1--(2)30,4⎡⎫⎪⎢⎣⎭(3)1516m >或0m <【解析】【分析】(1)把1m =代入,结合二次不等式的求解方法可得答案;(2)讨论二次型函数的系数,结合判别式可得答案;(3)利用韦达定理及限制条件可得答案.【小问1详解】当1m =时,原不等式等价于2430x x ++≤,解得31x -≤≤-,所以()0f x ≤的解集为[]3,1--.【小问2详解】当0m =时,()30f x =>恒成立;当0m >时,()0f x >恒成立,则有216120m m -<,解得304m <<,当0m <时,()0f x >显然不恒成立.综上,m 的取值范围是30,4⎡⎫⎪⎢⎣⎭.【小问3详解】()0f x =有两个实数根,所以0m ≠,216120m m ∆=-≥,解得34m ≥或0m <,121234,x x x x m+=-=,因为22121230x x x x +->,所以()2121250x x x x +->,15160m ->解得1516m >或0m <,综上可得1516m >或0m <.20.设一个矩形长为x ,宽为y .(1)当点(),P x y 位于直线4y x =-+上时,求该矩形面积的最大值.(2)当点(),P x y 位于曲线81212y x x ⎛⎫=> ⎪-⎝⎭上时,求该矩形周长的最小值.(3)当该矩形的面积比周长多5时,求该矩形面积的取值范围.【答案】(1)4(2)9(3)[)25,+∞【解析】【分析】(1)表达出矩形面积24S xy x x ==-+,配方后求出最大值;(2)表达出矩形周长16221l x x =+-,变形后,利用基本不等式求出最小值;(3)由题意得到225xy x y --=,由基本不等式得到50xy --≥,求出答案.【小问1详解】该矩形面积为()22424S xy x x x ==-+=--+,04x <<,故当2x =时,S 取得最大值,最大值为4;【小问2详解】该矩形周长()16162222112121l x y x x x x =+=+=-++--,因为12x >,所以16210,021x x ->>-,由基本不等式得()162111921l x x =-++≥+=-,当且仅当162121x x -=-,即52x =时,等号成立,故该矩形周长的最小值为9;【小问3详解】由题意得225xy x y --=,即52xy x y -=+,因为0,0x y >>,由基本不等式得x y +≥52xy -≥,即50xy --≥5≥1≤-(舍去),故25xy ≥,该矩形面积的取值范围为[)25,∞+.21.设集合*A ⊆N .定义:和集合{},,B x y x y A x y =+∈≠,积集合{},,C x y x y B x y =⋅∈≠,分别用,,A B C 表示集合,,A B C 中元素的个数.(1)若{}1,2,3,4A =,求集合C ;(2)若5A =,求B 的所有可能的值组成的集合;(3)若4A =,求证:9C ≥.【答案】(1){}12,15,18,20,21,24,28,30,35,42C =(2){}7,8,9,10(3)证明见解析【解析】【分析】(1)根据新定义直接求解B ,C ;(2)令12345a a a a a <<<<,由和集合得到数的大小关系,再讨论大小关系分类求解;(3)记A 集合为{}1234,,,a a a a ,且1234a a a a <<<,由和集合得到数的大小关系,求出B 有两种可能,当6B =得9C ≥,由5B =及数的大小关系分别讨论7C ≠和8C ≠,讨论五种情况即可求解.【小问1详解】(1)由{}1,2,3,4A =,则{}3,4,5,6,7B =,{}12,15,18,20,21,24,28,30,35,42C =.【小问2详解】当5A =,不妨记A 集合为{}12345,,,,a a a a a ,且令12345a a a a a <<<<,则必有12132324343545a a a a a a a a a a a a a a +<+<+<+<+<+<+,和中剩下的141525,,a a a a a a +++满足141525a a a a a a +<+<+,并且13142535,a a a a a a a a +<++<+,下列有四种可能:一是142315242534,,a a a a a a a a a a a a +=++=++=+,则7B =;二是14a a +与2315,a a a a ++与2425,a a a a ++与34a a +三对数有两对相等,另一对不相等,则8B =;三是14a a +与2315,a a a a ++与2425,a a a a ++与34a a +三对数有一对相等,其它两对不相等,则9B =;四是14a a +与2315,a a a a ++与2425,a a a a ++与34a a +三对数全不相等,则10B =;综上述,B 的所有可能的值组成的集合为{}7,8,9,10.【小问3详解】当4A =,不妨记A 集合为{}1234,,,a a a a ,且1234a a a a <<<,则必有1213232434a a a a a a a a a a +<+<+<+<+,和中剩下的元素为14a a +,满足131424a a a a a a +<+<+,所以B 有两种可能,当1423a a a a +≠+,6B =;当1423a a a a +=+,5B =;ⅰ)当6B =,不妨记这6个元素为123456,,,,,b b b b b b ,且让123456b b b b b b <<<<<,则必有121323243435454656b b b b b b b b b b b b b b b b b b <<<<<<<<,所以9C ≥;ⅱ)当5B =,1423a a a a +=+,不妨记112b a a =+,213b a a =+,323b a a =+,424b a a =+,534b a a =+,则12345b b b b b <<<<,则必有12132324343545b b b b b b b b b b b b b b <<<<<<,积中剩下的141525,,b b b b b b 满足141525b b b b b b <<,则7C ≥,下面先证明7C ≠.假设7C =,由1314242535b b b b b b b b b b <<<<,则142315242534,,b b b b b b b b b b b b ===,即535242131424,,b b b b b b b b b b b b ===,所以35241234b b b b b b b b ===,令21b q b =,由15241234b b b b a a a a +=+=+++,则431111b b q b q b q +=+,所以431q q q +=+,则1q =,与事实不符,所以7C ≠.下面再证明8C ≠.由上述分析知:要使8C =,积中剩下的141525,,b b b b b b 满足141525b b b b b b <<,必有两对积与12132324343545,,,,,,b b b b b b b b b b b b b b 七对中的两对相等,有如下五种情况:一是23142415b b b b b b b b =⎧⎨=⎩,则可推得524134b b b b b b ==,令其比值为t ,则1t >,于是5421,b tb b tb ==,由15241234b b b b a a a a +=+=+++,则1414b tb tb b +=+,则()()1410t b b --=,显然无解,故此情况不能;二是23143415b b b b b b b b =⎧⎨=⎩,则可推得35241314,b b b b b b b b ==,令3524121314,b b b b t t b b b b ====,显然211t t >>,由15241234b b b b a a a a +=+=+++,则124114b t b t b b +=+,所以()()241111t b t b -=-,而显然()()241111t b t b ->-,故此情况不可能;三是23143425b b b b b b b b =⎧⎨=⎩,则可推得354123b b b b b b ==,令其比值为t ,则1t >,由152432b b b b b +=+=,又2315b b b =,则15b b +=,这与15b b +>矛盾,故此情况不可能;四是23153425b b b b b b b b =⎧⎨=⎩,可推得524132b b b b b b ==,令其比值为t ,则1t >,于是53b tb =,21b tb =,2421b tb t b ==,2314a a a a +=+,于是由15241234b b b b a a a a +=+=+++,则2131132b tb tb t b b +=+=,所以132b b t =-,代入得211122b tb t b t+=-,推得()()222t t t +-=,所以32220t t t --+=,所以()()2120t t --=,有1t >,所以t =,这与21b t b =是有理数相矛盾,所以此情况不能;五是24153425b b b b b b b b =⎧⎨=⎩,可推得532142b b b b b b ==,令其比值为t ,则1t >,于是5421,b tb b tb ==,由15241234b b b b a a a a +=+=+++,则1414b tb tb b +=+,则()()1410t b b --=,显然无解,故此情况不可能.所以8C ≠.综上,所以9C ≥.【点睛】关键点点睛:本题考查集合新定义,关键是对集合元素数的大小关系进行讨论,推出矛盾证明第三问.。
福建省福州市福建师范大学附属中学2024-2025学年高一上学期10月月考数学试题
福建省福州市福建师范大学附属中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}0,1A =,{}1,2B =,则A B U 中元素的个数为A .1B .2C .3D .42.设集合2{|0}M x x x =-≥,{|2}N x x =<,则M N =I ( )A .{|0}x x ≤B .{|12}x x ≤<C .{|01}x x ≤≤D .{|0x x ≤或12}x ≤<3.函数()f x )A .[)3,∞-+B .[)2,-+∞C .[)2,+∞D .[)4,+∞ 4.已知函数2()ln f x x ax ax =-+恰有两个零点,则实数a 的取值范围为( ) A .(,0)-∞B .(0,)+∞C .(0,1)(1,)⋃+∞D .(,0){1}-∞U 5. 偶函数在区间[0,a](a>0)上是单调函数,且f (0)·f (a )<0,则函数在区间[-a,a]内零点的个数是A .1B .2C .3D .06.已知函数()32log ,041,0x x f x x x x ⎧>=⎨++≤⎩,函数()() F x f x b =-有四个不同的零点1x 、2x 、3x 、4x ,且满足:1234x x x x <<<,则221323432x x x x x x +-的取值范围是A .)⎡+∞⎣B .833,9⎛⎤ ⎥⎝⎦C .[)3,+∞D .839⎡⎤⎢⎥⎣⎦ 7.定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18≥-f x t t恒成立,则实数t 的取值范围是( )A .(](],10,3-∞-UB .((,-∞UC .[)[)1,03,-+∞UD .))⎡+∞⎣U8.设函数()f x 的定义域为R ,且()()113f x f x =+,当(]1,0x ∈-时,()()1f x x x =+,若对任意(],x m ∈-∞,都有()8116f x ≥-,则实数m 的取值范围是( ) A .7,3⎛⎤-∞ ⎥⎝⎦ B .11,4⎛⎤-∞ ⎥⎝⎦ C .9,4⎛⎤-∞ ⎥⎝⎦ D .(],3-∞二、多选题9.已知0a >,0b >,且1a b +=,则( )A .14ab ≥B .2212a b +≥ C.22a b +≥D .ln 0a b +>10.某数学课外兴趣小组对函数()()21lg 0,R +=≠∈x f x x x x的性质进行了探究,得到下列四个命题,其中正确的命题有( )A .函数()f x 的图象关于y 轴对称B .当0x >时,()f x 是增函数,当0x <时,()f x 是减函数C .函数()f x 的最小值是lg2D .函数()f x 与2x =有四个交点11.已知定义在R 上的函数()f x 满足()()()22024f x f x f ++=,且()21f x +是奇函数,则( )A .()f x 的图象关于点()1,0对称B .()()04f f =C .()21f =D .若1122f ⎛⎫= ⎪⎝⎭,则1001102i if i =⎛⎫-= ⎪⎝⎭∑三、填空题12.已知集合{}A x x k =<,{}12B x x =<<,且A B B =I ,则实数k 的取值范围是. 13.已知函数()1log 1ay ax =-在[]0,2上单调递减,则实数a 的取值范围是.14.设正数a ,b 满足, 11316a b a b ⎛⎫+++= ⎪⎝⎭,则a b b a +的最大值是.四、解答题15.已知f (x )=x 2+2x -5,x ∈[t ,t +1],若f (x )的最小值为h (t ),写出h (t )的表达式.16.已知集合26112x x A x --⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭∣,{22}B x x a =||+-<∣,若A B =∅I . (1)求实数a 的取值范围;(2)求2()23163a a y f a ==⋅-⋅的最值.17.已知函数()x f x b a =⋅(,a b 为常数且0,1a a >≠)的图象经过点(1,8)A ,(3,32)B (1)试求,a b 的值;(2)若不等式11()()0x x m a b+-≥在(,1]x ∈-∞时恒成立,求实数m 的取值范围. 18.已知函数()()log 0,1a f x x a a =>≠.(1)若()()43f a f a +≤,求实数a 的取值范围;(2)设2a =,函数()()()()()232201g x f x m f x m m =-+-++<≤.(i )若1,2m x ⎡⎤∈⎣⎦,证明:()103g x ≤; (ii )若1,22x ⎡⎤∈⎢⎥⎣⎦,求()g x 的最大值()h m . 19.已知函数()()ln 1e ax f x bx =+-是偶函数,e 是自然对数的底数,e 2.71828≈L(1);(2)当1b =时,(i )令()()()11g x f x f x =-++,[]11x ∈-,,求()g x 的值域; (ii )记121...n i n i a a a a ==+++∑,已知12i x -≤≤,()1,2,...,1000i =,且100011000i i x ==∑,当()10001i i f x =∑取最大值时,求222121000...x x x +++的值.。
辽宁省大连市第八中学2024-2025学年高一上学期10月月考数学试题
辽宁省大连市第八中学2024-2025学年高一上学期10月月考数学试题一、单选题1.命题“x ∀∈R ,有2220x x ++≤”的否定是( ) A .x ∀∈R ,有2220x x ++> B .x ∃∈R ,有2220x x ++≤ C .x ∃∈R ,有2220x x ++>D .x ∀∈R ,有2220x x ++≥2.已知集合{02},{13}A xx B x x =<<=<<∣∣,则()R A B ⋂=ð( ) A .(0,1]B .(0,1)C .(2,3)D .(2,3]3.设x ∈R ,则“45x <<”是“21x ->”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.{}2{1,,},1,,2A x y B x y ==,若A B =,则实数x 的取值集合为( )A .12⎧⎫⎨⎬⎩⎭B .11,22⎧⎫-⎨⎬⎩⎭C .10,2⎧⎫-⎨⎬⎩⎭D .110,,22⎧⎫-⎨⎬⎩⎭5.若1a >,则141a a +-的最小值为( ) A .4B .6C .8D .无最小值6.关于x ,y 的方程组2(21)212ax a y a a x ay a ⎧+-=+-⎨+=⎩,则下列说法错误的是( ).A .一定有解B .可能有唯一解C .可能有无穷多解D .可能无解7.已知方程2260x ax a +++=的两根分别是1x 和2x ,且满足22121210x x x x +≥,则实数a 的取值范围是( ) A .[]5,1--B .[]1,5C .[]5,2--D .(]3,58.若a b >,且2ab =,则22(1)(1)a b a b-++-的最小值为( )A .2B .4C .4D .2二、多选题9.已知0,a b b c >>>,则下列不等式一定成立的是( ) A .22b a a b < B .22ac bc > C .11a cb c<-- D .a c b c +>-10.已知方程20(0)x ax b a ++=>有两个相等实根,则( )A .224a b -≤B .若不等式20x ax b +-<的解集为()12,x x ,则120x x >C .214a b+≥ D .若不等式20x ax b +-<的解集为()12,x x ,则120x x < 11.已知集合P ,Q 中都至少有两个元素,并且满足下列条件: ①集合P ,Q 中的元素都为正数;②a ∀,()b Q a b ∈≠,都有aP b∈;③a ∀,()b P a b ∈≠,都有ab Q ∈; 则下列说法正确的是( )A .若P 有2个元素,则Q 有3个元素B .若P 有2个元素,则P Q ⋃有3个元素C .若P 有2个元素,则P Q ⋂有1个元素D .存在满足条件且有3个元素的集合P三、填空题12.不等式22x x->的解集为. 13.已知x ∈R ,记符号[]x 表示不大于x 的最大整数,集合{}2|[]2[]3A x x x =-=,[1,2]B =-,则A B =I (答案用区间表示)14.已知,,a b c 均为正实数,且1a b +=,则当14a b+取得最小值时a =,831ac c b ab c +++的最小值为.四、解答题15.已知集合2{|5140}A x x x =--≤,{R},|13B x m x m m +≤+∈=≤.(1)当5m =时,求A B U 和B A ⋂R ð; (2)若A B A ⋂=R ð,求m 的取值范围. 16.设函数2()(1)2(R)f x ax a x a a =+-+-∈(1)若不等式()2f x ≥-对一切实数x 恒成立,求a 的取值范围; (2)解关于x 的不等式:()1f x a <-.17.已知1x ,2x 是一元二次方程24410(0)kx kx k k -++=≠的两个实数根.(1)是否存在实数k ,使221214x x +=成立?若存在,求出k 的值,若不存在,请说明理由; (2)若12212x x x x +-的值为整数,求整数k 的值. 18.为了加强自主独立性,全国各个半导体领域企业都计划响应国家号召,加大对芯片研发部的投入据了解,某企业研发部原有200名技术人员,年人均投入a 万元(0a >),现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x N ∈且90150x ≤≤),调整后研发人员的年人均投入增加()2%x ,技术人员的年人均投入调整为25x a m ⎛⎫- ⎪⎝⎭万元.(1)要使这200x -名研发人员的年总投入不低于调整前200名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)为了激励芯片研发人员的热情和保持各技术人员的工作积极性,在资金投入方面需要同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.是否存在这样的实数m ,使得技术人员在已知范围内调整后,满足以上两个条件,若存在,求出m 的范围;若不存在,说明理由.19.设集合A 为非空数集,定义{|,,}{|||},,,A x x a b a b A A x x a b a b A +-==+∈==-∈. (1)若{1,1}A =-,写出集合,A A +-;(2)若{}12341234,,,,A x x x x x x x x =<<<,且-=A A ,求证:1423x x x x +=+; (3)若{|02020,N}A x x x ⊆≤≤∈,且A A +-⋂=∅,求集合A 元素个数的最大值.。
江苏省苏州中学2024-2025学年高一上学期10月月考数学试题
江苏省苏州中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知命题{}2|:32,360p x x x x x ∀∈-<<-<,则p ⌝是( )A .{}232,3|60x x x x x ∀∈-<<-≥B .{}232,3|60x x x x x ∃∈-<<-≥C .{}232,3|60x x x x x ∀∉-<<-<D .{}232,3|60x x x x x ∃∈-<<-<2.已知0m n <<,则下列不等式成立的是( )A .n m m n >B .2mn n <C .11n m <D .2m n > 3.已知,a b 为实数,则“1a b >>”是“()()110a b -->”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.小王从甲地到乙地往返的时速分别为a 和()b a b <,其全程的平均时速为v ,则( )A .a v <<B 2a b v +<C .2a b v +<<D v b < 5.已知命题{}|:12p x x x ∀∈≤≤,都有20x a -≥,命题:q 存在2000,220x x ax a ∈++-=R ,若p 与q 不全为真命题,则实数a 的取值范围是( )A .{}|2a a ≤-B .{}|1a a ≤C .{}2|1a a a ≤-=或D .{}1|21a a a -<<>或6.已知集合{}()(){}221,2,|20A B x x ax x x b ==+++=,且()R A B ⋂=∅ð,则集合B 的子集个数为( )A .4B .8C .16D .327.若{},,M x x b a b ==∈∈Z Z ∣,则下列结论中正确结论的个数为( )M ; ②M ⊆Z ;③若12,x x M ∈,则12x x M +∈;④若12,x x M ∈且20x ≠,则12x M x ∈; ⑤存在x M ∈且x ∉Z ,满足2022x M -∈.A .2B .3C .4D .5 8.关于x 的不等式()221ax x -<恰有2个整数解,则实数a 的取值范围是( )A .33,11,22⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭B .3443,,2332⎛⎤⎡⎫--⋃ ⎪⎥⎢⎝⎦⎣⎭C .33,11,22⎛⎤⎡⎫--⋃ ⎪⎥⎢⎝⎦⎣⎭D .3443,,2332⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭二、多选题9.设{}2540A x x x =-+=,{}10B x ax =-=,若A B A =U ,则实数a 的值可以是( ) A .0 B .14 C .4 D .110.若关于x 的不等式()2020ax bx c a ≤++≤>的解集为{}|13x x -≤≤,则32a b c ++的值可以是( )A .12B .32C .2D .411.对任意,A B ⊆R ,记{},A B xx A Bx A B ⊕=∈⋃∉⋂,并称A B ⊕为集合,A B 的对称差.例如:若{}{}1,2,3,2,3,4A B ==,则{}1,4A B ⊕=.下列命题中,为真命题的是( )A .若,AB ⊆R 且A B B ⊕=,则A =∅B .若,A B ⊆R 且A B ⊕=∅,则A B =C .若,A B ⊆R 且A B A ⊕⊆,则A B ⊆D .存在,A B ⊆R ,使得A B A B ⊕≠⊕R R 痧三、填空题12.已知集合{},A m m =,若2A ∈,则m =.13.已知12,34a b a b ≤-≤≤+≤则93a b +的取值范围为.14.定义集合{|}P x a x b =≤≤的“长度”是b a -,其中a ,b ∈R .已如集合1{|}2M x m x m =≤≤+,3{|}5N x n x n =-≤≤,且M ,N 都是集合{|12}x x ≤≤的子集,则集合M N ⋂的“长度”的最小值是;若65m =,集合M N ⋃的“长度”大于35,则n 的取值范围是.四、解答题15.求下列不等式的解集: (1)503x x ->+ (2)2223712x x x x +-≥-- (3)212x x -->.16.已知集合{}28150A x x x =++≤,{}3222B x m x m =-<<+. (1)若A B ⋂≠∅,求实数m 的取值范围;(2)若将题干中的集合B 改为{}2132B x m x m =+≤≤-,是否有可能使命题p :“x A ∀∈,都有x B ∈”为真命题,请说明理由.17.桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1800平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周围的基围宽均为2米,如图,设池塘所占总面积为S 平方米.(Ⅰ)试用x 表示S .(Ⅱ)当x 取何值时,才能使得S 最大?并求出S 的最大值.18.已知函数()()2111y m x m x m =+--+-的图象为C .(1)若图象C 恒在直线1y =下方(不包括直线1y =),求m 的取值范围;(2)求图象C 在直线()1y m x =+上以及直线上方的点的横坐标x 的取值范围(用m 表示);(3)当自变量x 满足1122x -≤≤时,函数值0y ≥恒成立,求m 的取值范围. 19.已知集合{}12,,,n A x x x =L ,*N n ∈,3n ≥,若x A ∈,y A Î,x y A +∈或x y A -∈,则称集合A 具有“包容”性.(1)判断集合{}1,1,2,3-和集合{}1,0,1,2-是否具有“包容”性;(2)若集合{}1,,B a b =具有“包容”性,求22a b +的值;(3)若集合C 具有“包容”性,且集合C 的子集有64个,1C ∈,试确定集合C .。
湖南省长沙市长郡中学2024-2025学年高一上学期10月月考数学试题
湖南省长沙市长郡中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}26A x x =≤<,{}240B x x x =-<,则A B =I ( )A .()0,6B .()4,6C .[)2,4D .()[),02,-∞⋃+∞2.命题“x ∃∈R ,2220x x -+≤”的否定是( ) A .x ∃∈R ,2220x x -+≥ B .x ∃∈R ,2220x x -+> C .x ∀∈R ,2220x x -+≤ D .x ∀∈R ,2220x x -+>3.设a ∈R ,则“1a >”是“11a<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.下列各组函数中,表示同一个函数的是( )A .2(),()x f x x g x x ==B .()(),()()f x x x R g x x x Z =∈=∈C .,0(),(),0x x f x x g x x x ≥⎧==⎨-<⎩D .2(),()f x x g x ==5.函数1xy x=+的大致图象是( ) A . B .C .D .6.若x A ∈且1A x ∈就称A 是伙伴关系集合,集合111,0,,,1,2,3,432M ⎧⎫=-⎨⎬⎩⎭的所有非空子集中,具有伙伴关系的集合个数为( ) A .15B .16C .64D .1287.某班有学生56人,同时参加了数学小组和英语小组的学生有32人,同时参加了英语小组和语文小组的学生有22人,同时参加了数学小组和语文小组的学生有25人.已知该班学生每人至少参加了1个小组,则该班学生中只参加了数学小组、英语小组和语文小组中的一个小组的人数最多是( ) A .20B .21C .23D .258.已知集合P ,Q 中都至少有两个元素,并且满足下列条件:①集合P ,Q 中的元素都为正数;②对于任意(),a b Q a b ∈≠,都有aP b∈;③对于任意(),a b P a b ∈≠,都有ab Q ∈;则下列说法正确的是( )A .若P 有2个元素,则Q 有3个元素B .若P 有2个元素,则P Q ⋃有4个元素C .若P 有2个元素,则P Q ⋂有1个元素D .存在满足条件且有3个元素的集合P9.如果0a b <<,那么下列不等式成立的是( ) A .11a b< B .2ab b < C .2ab a -<-D .11a b-<-二、多选题10.已知关于x 的不等式20ax bx c ++≥的解集为{}34x x -≤≤∣,则下列说法正确的是( )A .0a <B .不等式20cx bx a -+<的解集为1143xx ⎧⎫-<<⎨⎬⎩⎭∣ C .0a b c ++< D .2342cb ++的最小值为4- 11.已知0x >,0y >且3210x y +=,则下列结论正确的是( )A.xy 的最大值为625B C .32x y +的最小值为52D .22x y +的最大值为10013三、填空题12.若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是.13.已知函数()f x =R ,则实数a 的取值范围是.14.已知函数()()2462f x x a x a =-++-,若集合(){}N 0A x f x =∈<中有且只有两个元素,则实数a 的取值范围是四、解答题15.已知集合{}121A x m x m =-≤≤-,集合()(){}230B x x x =-+<. (1)若2m =,求A B U ; (2)若A B ⊆,求实数m 的范围.16.如图所示,某学校要建造一个一面靠墙的无盖长方体垃圾池,垃圾池的容积为360m ,为了合理利用地形,要求垃圾池靠墙一面的长为6m ,如果池底每平方米的造价为200元,池壁每平方米的造价为180元(不计靠墙一面的造价),设垃圾池的高为m x ,墙高5m ,(1)试将垃圾池的总造价y (元)表示为(m)x 的函数,并指出x 的取值范围; (2)怎样设计垃圾池能使总造价最低?最低总造价是多少? 17.已知()24xf x x =+,()2,2x ∈-. (1)求证:函数()f x 在区间()2,2-上是增函数; (2)求函数()f x 在区间()2,2-上的值域. 18.已知函数()11mx f x =++,()()21g x x x a =++. (1)当0a =,1m =-时,解关于x 的不等式()()f x g x ≥;(2)当0m =时,对任意[)1,x ∞∈+,关于x 的不等式()()f x g x ≤恒成立,求实数m 的取值范围;(3)当0m <,0a <时,若点()111,P x y ,()222,P x y 均为函数()y f x =与函数()y g x =图象的公共点,且12x x ≠,求证:()1221223a x x --<+<.19.已知集合A 为非空数集.定义:{}|,,,{|,,}S x x a b a b A T x x a b a b A ==+∈==-∈ (1)若集合{1,3}A =,直接写出集合S ,T ;(2)若集合{}12341234,,,,,A x x x x x x x x =<<<且T A =.求证:423x x =;(3)若集合{}|02024,N ,A x x x S T ⊆≤≤∈⋂=∅,记A 为集合A 中元素的个数,求A 的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年高一数学10月月考试题一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B I =( )A .{1}B .{4}C .{1,3}D .{1,4}2.已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =U ( )A .{1}B .{12},C .{0123},,,D .{10123}-,,,,3.已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q =R U ð( ) A .[2,3]B .( -2,3 ]C.[1,2)D .(,2][1,)-∞-⋃+∞4.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A .M N UB .M N IC .()()U UM N U 痧D .()()U UM N I 痧5.已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A .3B .6C .8D .106.下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .2y x =- C .1y x=D .||y x x =7.某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[10x] B .y =[310x +] C .y =[410x +] D .y =[510x +] 8.设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B=Ø的集合S 的个数是( )A .64B .56C .49D .89.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油 10.若f (x )是偶函数,且当x ∈),0[∞+时,f (x ) = x -1,则f (x -1) < 0的解集是( )A .{x |-1 < x < 0}B .{x | x < 0或1< x < 2}C .{x | 0 < x < 2}D .{x | 1 < x < 2}11.已知)(x f 是定义在),0(+∞上的减函数,若)143()12(22+-<++a a f a a f 成立,则a 的取值范围是( ) A .51310<<<<a a 或 B .50<<aC .131><a a 或D .50><a a 或12.设函数f (x ) = x |x | + bx + c ,给出下列四个命题:①c = 0时,y = f (x )是奇函数; ②b = 0,c > 0时,方程f (x ) = 0只有一个实根;③ y = f (x )的图象关于(0,c )对称; ④方程f (x ) = 0至多两个实根 其中正确的命题是( )A .①、④B .①、③C .①、②、③D .①、②、④二、填空题:本大题共4小题,每小题5分,共20分.13.函数y 的定义域是 ▲ .14.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 ▲ .15.已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为▲ .16.在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为▲ .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(10分)(1)已知}}{{4-5|,3-|≤<=>=y y B x x A ,求B A Y ; (2)已知集合{}23,21,4A a a a =---,若-3∈A ,试求实数a 的值。
18.(12分)已知集合{}1,1A =-,}{220B x x ax b =-+=,若B ≠∅,且A B A =U 求实数b a ,的值。
19.(12分)利用函数单调性的定义,讨论函数f (x )=21xax- (a ≠0)在区间(-1,1)内的单调性。
20.(12分)(1)已知()f x 的定义域为{|0}x x ≠,且12()()f x f x x+=,求)(x f 的解析式,判断()f x 的奇偶性并证明。
(2)函数()f x 定义域为R ,且对于一切实数,x y 都有()()()f x y f x f y +=+,试判断()f x 的奇偶性并证明。
21.(12分)函数)(x f =4943322++--m x x ,x ∈[―m ,1―m ],该函数的最大值是25,求该函数取最大值时自变量x 的值.22.(12分)定义在区间(-1,1)上的函数f (x )满足:①对任意的x ,y ∈(-1,1),都有f (x ) + f(y ) =)1(xyyx f ++; ②当x ∈(-1,0),f (x ) > 0. (1)求证f (x )为奇函数;(2)试解不等式:f (x ) + f (x -1) )21(f >.高一月考(一)数学试题参考答案1.D {1,4,7,10},A B {1,4}.B ==I2.C 集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=U 3.B根据补集的运算得{}24(2,2),=<=-ðR Q x x [](]()(2,2)1,32,3∴=-=-U U R P Q ð.4.D {}4,3,2,1=N M Y ,Φ=N M I ,()()U UM N U 痧{}6,5,4,3,2,1=,()()U U M N I 痧{}6,5= 5.D 要使A y x ∈-,当5=x 时,y 可是1,2,3,4.当4=x 时,y 可是1,2,3.当3=x 时,y 可是1,2.当2=x 时,y 可是1,综上共有10个,选D .6.D 根据奇偶性的定义和基本初等函数的性质易知A 非奇非偶的增函数;B 是偶函数且在R 上不单调;C 是奇函数且在)0,(-∞,),0(+∞上是减函数;D 中函数可化为⎩⎨⎧<-≥=0,0,22x x x x y 易知是奇函数且是增函数 7.B 法一:特殊取值法,若x=56, y=5,排除C 、D ,若x=57,y=6,排除A ,所以选B法二:设)90(10≤≤+=ααm x ,,时⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤≤10103103,60x m m x αα 1101103103,96+⎥⎦⎤⎢⎣⎡=+=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤<x m m x αα时当,所以选B 8.D 集合A 的所有子集共有6264=个,其中不含4,5,6的子集有328=个.故选D .9.D “燃油效率”是指汽车每消耗1升汽油行驶的里程,A 中乙车消耗1升汽油,最多行驶的路程为乙车图象最高点的纵坐标值,A 错误;B 中以相同速度行驶相同路程,甲燃油效率最高,所以甲最省油,B 错误,C 中甲车以80千米/小时的速度行驶1小时,甲车每消耗1升汽油行驶的里程10km,行驶80km ,消耗8升汽油,C 错误,D 中某城市机动车最高限速80千米/小时. 由于丙比乙的燃油效率高,相同条件下,在该市用丙车比用乙车更省油。
10.C ∵f (x )是偶函数,在),0[∞+∈x 时,f (x ) = x -1.又当x < 0时,-x > 0,∴f (-x )=-x -1,∴f (x )=-x -1.11.A 解:由⎪⎩⎪⎨⎧>+->++014301222a a a a ,得131><a a 或,由题意得1431222+->++a a a a 所以052<-a a ,即50<<a .故所求a 的取值范围为51310<<<<a a 或。
12.C ①显然成立. 当b = 0,f (x ) = x | x | + c ,方程只有一实根,正确,f (-x ) =-x | x |-bx + c =-(f (x )-c ) + c = 2c -f (x ),故关于点(0, c )对称,③正确。
13.[]3,1-要使函数有意义,必须2320x x --≥,即2230x x +-≤,31x ∴-≤≤.故答案应填:[]3,1-,14.6 (2)(2)93,(2)6g f f -=-+=-=-则,又()f x 为奇函数,所以(2)(2)6f f =--=。
15.34a =-0a ≠Q ,30,2212,2a a a a a a >-+=---=-,不符合; 30,1222,4a a a a a a <-+-=++=- .16.12-在同一直角坐株系内,作出12--==a x y a y 与的大致图像,由题意, 可知2112-=⇒-=a a17.(1)A ∪B ={x|x >-3}∪{y |-5<y ≤4} ={x |x >-5}5分(2)∵-3∈A ∴①a -3=-3 得a =0 经检验满足题意 6分 ②2a -1=-3得a =-1此时a 2-4=-3 故舍去7分③a 2-4=-3得a 1=1,a 2=-1(舍去)当a =1满足题意9分 综合①②③可知,实数a 的值为1或0.10分18.解:由A B A =U ,B ≠∅得{}{}{}111,1B =--或或 2分当{}1B =时,方程220x ax b -+=有两个等根1,由韦达定理解得⎩⎨⎧==11b a . 5分 当B ={}1-时,方程220x ax b -+=有两个等根—1,由韦达定理解得⎩⎨⎧==11-b a 8分当{}1,1B =-时,方程220x ax b -+=有两个根—1、1,由韦达定理解得 ⎩⎨⎧==1b a 11分综上,⎩⎨⎧==11b a 或⎩⎨⎧==11-b a 或⎩⎨⎧==1b a 。